[InstCombine] call SimplifyICmpInst with correct context
[oota-llvm.git] / lib / Transforms / InstCombine / InstCombineCompares.cpp
1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitICmp and visitFCmp functions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/MemoryBuiltins.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28
29 using namespace llvm;
30 using namespace PatternMatch;
31
32 #define DEBUG_TYPE "instcombine"
33
34 // How many times is a select replaced by one of its operands?
35 STATISTIC(NumSel, "Number of select opts");
36
37 // Initialization Routines
38
39 static ConstantInt *getOne(Constant *C) {
40   return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
41 }
42
43 static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
44   return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
45 }
46
47 static bool HasAddOverflow(ConstantInt *Result,
48                            ConstantInt *In1, ConstantInt *In2,
49                            bool IsSigned) {
50   if (!IsSigned)
51     return Result->getValue().ult(In1->getValue());
52
53   if (In2->isNegative())
54     return Result->getValue().sgt(In1->getValue());
55   return Result->getValue().slt(In1->getValue());
56 }
57
58 /// AddWithOverflow - Compute Result = In1+In2, returning true if the result
59 /// overflowed for this type.
60 static bool AddWithOverflow(Constant *&Result, Constant *In1,
61                             Constant *In2, bool IsSigned = false) {
62   Result = ConstantExpr::getAdd(In1, In2);
63
64   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
65     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
66       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
67       if (HasAddOverflow(ExtractElement(Result, Idx),
68                          ExtractElement(In1, Idx),
69                          ExtractElement(In2, Idx),
70                          IsSigned))
71         return true;
72     }
73     return false;
74   }
75
76   return HasAddOverflow(cast<ConstantInt>(Result),
77                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
78                         IsSigned);
79 }
80
81 static bool HasSubOverflow(ConstantInt *Result,
82                            ConstantInt *In1, ConstantInt *In2,
83                            bool IsSigned) {
84   if (!IsSigned)
85     return Result->getValue().ugt(In1->getValue());
86
87   if (In2->isNegative())
88     return Result->getValue().slt(In1->getValue());
89
90   return Result->getValue().sgt(In1->getValue());
91 }
92
93 /// SubWithOverflow - Compute Result = In1-In2, returning true if the result
94 /// overflowed for this type.
95 static bool SubWithOverflow(Constant *&Result, Constant *In1,
96                             Constant *In2, bool IsSigned = false) {
97   Result = ConstantExpr::getSub(In1, In2);
98
99   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
100     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
101       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
102       if (HasSubOverflow(ExtractElement(Result, Idx),
103                          ExtractElement(In1, Idx),
104                          ExtractElement(In2, Idx),
105                          IsSigned))
106         return true;
107     }
108     return false;
109   }
110
111   return HasSubOverflow(cast<ConstantInt>(Result),
112                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
113                         IsSigned);
114 }
115
116 /// isSignBitCheck - Given an exploded icmp instruction, return true if the
117 /// comparison only checks the sign bit.  If it only checks the sign bit, set
118 /// TrueIfSigned if the result of the comparison is true when the input value is
119 /// signed.
120 static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
121                            bool &TrueIfSigned) {
122   switch (pred) {
123   case ICmpInst::ICMP_SLT:   // True if LHS s< 0
124     TrueIfSigned = true;
125     return RHS->isZero();
126   case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
127     TrueIfSigned = true;
128     return RHS->isAllOnesValue();
129   case ICmpInst::ICMP_SGT:   // True if LHS s> -1
130     TrueIfSigned = false;
131     return RHS->isAllOnesValue();
132   case ICmpInst::ICMP_UGT:
133     // True if LHS u> RHS and RHS == high-bit-mask - 1
134     TrueIfSigned = true;
135     return RHS->isMaxValue(true);
136   case ICmpInst::ICMP_UGE:
137     // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
138     TrueIfSigned = true;
139     return RHS->getValue().isSignBit();
140   default:
141     return false;
142   }
143 }
144
145 /// Returns true if the exploded icmp can be expressed as a signed comparison
146 /// to zero and updates the predicate accordingly.
147 /// The signedness of the comparison is preserved.
148 static bool isSignTest(ICmpInst::Predicate &pred, const ConstantInt *RHS) {
149   if (!ICmpInst::isSigned(pred))
150     return false;
151
152   if (RHS->isZero())
153     return ICmpInst::isRelational(pred);
154
155   if (RHS->isOne()) {
156     if (pred == ICmpInst::ICMP_SLT) {
157       pred = ICmpInst::ICMP_SLE;
158       return true;
159     }
160   } else if (RHS->isAllOnesValue()) {
161     if (pred == ICmpInst::ICMP_SGT) {
162       pred = ICmpInst::ICMP_SGE;
163       return true;
164     }
165   }
166
167   return false;
168 }
169
170 // isHighOnes - Return true if the constant is of the form 1+0+.
171 // This is the same as lowones(~X).
172 static bool isHighOnes(const ConstantInt *CI) {
173   return (~CI->getValue() + 1).isPowerOf2();
174 }
175
176 /// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
177 /// set of known zero and one bits, compute the maximum and minimum values that
178 /// could have the specified known zero and known one bits, returning them in
179 /// min/max.
180 static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
181                                                    const APInt& KnownOne,
182                                                    APInt& Min, APInt& Max) {
183   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
184          KnownZero.getBitWidth() == Min.getBitWidth() &&
185          KnownZero.getBitWidth() == Max.getBitWidth() &&
186          "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
187   APInt UnknownBits = ~(KnownZero|KnownOne);
188
189   // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
190   // bit if it is unknown.
191   Min = KnownOne;
192   Max = KnownOne|UnknownBits;
193
194   if (UnknownBits.isNegative()) { // Sign bit is unknown
195     Min.setBit(Min.getBitWidth()-1);
196     Max.clearBit(Max.getBitWidth()-1);
197   }
198 }
199
200 // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
201 // a set of known zero and one bits, compute the maximum and minimum values that
202 // could have the specified known zero and known one bits, returning them in
203 // min/max.
204 static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
205                                                      const APInt &KnownOne,
206                                                      APInt &Min, APInt &Max) {
207   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
208          KnownZero.getBitWidth() == Min.getBitWidth() &&
209          KnownZero.getBitWidth() == Max.getBitWidth() &&
210          "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
211   APInt UnknownBits = ~(KnownZero|KnownOne);
212
213   // The minimum value is when the unknown bits are all zeros.
214   Min = KnownOne;
215   // The maximum value is when the unknown bits are all ones.
216   Max = KnownOne|UnknownBits;
217 }
218
219
220
221 /// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
222 ///   cmp pred (load (gep GV, ...)), cmpcst
223 /// where GV is a global variable with a constant initializer.  Try to simplify
224 /// this into some simple computation that does not need the load.  For example
225 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
226 ///
227 /// If AndCst is non-null, then the loaded value is masked with that constant
228 /// before doing the comparison.  This handles cases like "A[i]&4 == 0".
229 Instruction *InstCombiner::
230 FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
231                              CmpInst &ICI, ConstantInt *AndCst) {
232   Constant *Init = GV->getInitializer();
233   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
234     return nullptr;
235
236   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
237   if (ArrayElementCount > 1024) return nullptr; // Don't blow up on huge arrays.
238
239   // There are many forms of this optimization we can handle, for now, just do
240   // the simple index into a single-dimensional array.
241   //
242   // Require: GEP GV, 0, i {{, constant indices}}
243   if (GEP->getNumOperands() < 3 ||
244       !isa<ConstantInt>(GEP->getOperand(1)) ||
245       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
246       isa<Constant>(GEP->getOperand(2)))
247     return nullptr;
248
249   // Check that indices after the variable are constants and in-range for the
250   // type they index.  Collect the indices.  This is typically for arrays of
251   // structs.
252   SmallVector<unsigned, 4> LaterIndices;
253
254   Type *EltTy = Init->getType()->getArrayElementType();
255   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
256     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
257     if (!Idx) return nullptr;  // Variable index.
258
259     uint64_t IdxVal = Idx->getZExtValue();
260     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
261
262     if (StructType *STy = dyn_cast<StructType>(EltTy))
263       EltTy = STy->getElementType(IdxVal);
264     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
265       if (IdxVal >= ATy->getNumElements()) return nullptr;
266       EltTy = ATy->getElementType();
267     } else {
268       return nullptr; // Unknown type.
269     }
270
271     LaterIndices.push_back(IdxVal);
272   }
273
274   enum { Overdefined = -3, Undefined = -2 };
275
276   // Variables for our state machines.
277
278   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
279   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
280   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
281   // undefined, otherwise set to the first true element.  SecondTrueElement is
282   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
283   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
284
285   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
286   // form "i != 47 & i != 87".  Same state transitions as for true elements.
287   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
288
289   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
290   /// define a state machine that triggers for ranges of values that the index
291   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
292   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
293   /// index in the range (inclusive).  We use -2 for undefined here because we
294   /// use relative comparisons and don't want 0-1 to match -1.
295   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
296
297   // MagicBitvector - This is a magic bitvector where we set a bit if the
298   // comparison is true for element 'i'.  If there are 64 elements or less in
299   // the array, this will fully represent all the comparison results.
300   uint64_t MagicBitvector = 0;
301
302   // Scan the array and see if one of our patterns matches.
303   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
304   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
305     Constant *Elt = Init->getAggregateElement(i);
306     if (!Elt) return nullptr;
307
308     // If this is indexing an array of structures, get the structure element.
309     if (!LaterIndices.empty())
310       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
311
312     // If the element is masked, handle it.
313     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
314
315     // Find out if the comparison would be true or false for the i'th element.
316     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
317                                                   CompareRHS, DL, TLI);
318     // If the result is undef for this element, ignore it.
319     if (isa<UndefValue>(C)) {
320       // Extend range state machines to cover this element in case there is an
321       // undef in the middle of the range.
322       if (TrueRangeEnd == (int)i-1)
323         TrueRangeEnd = i;
324       if (FalseRangeEnd == (int)i-1)
325         FalseRangeEnd = i;
326       continue;
327     }
328
329     // If we can't compute the result for any of the elements, we have to give
330     // up evaluating the entire conditional.
331     if (!isa<ConstantInt>(C)) return nullptr;
332
333     // Otherwise, we know if the comparison is true or false for this element,
334     // update our state machines.
335     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
336
337     // State machine for single/double/range index comparison.
338     if (IsTrueForElt) {
339       // Update the TrueElement state machine.
340       if (FirstTrueElement == Undefined)
341         FirstTrueElement = TrueRangeEnd = i;  // First true element.
342       else {
343         // Update double-compare state machine.
344         if (SecondTrueElement == Undefined)
345           SecondTrueElement = i;
346         else
347           SecondTrueElement = Overdefined;
348
349         // Update range state machine.
350         if (TrueRangeEnd == (int)i-1)
351           TrueRangeEnd = i;
352         else
353           TrueRangeEnd = Overdefined;
354       }
355     } else {
356       // Update the FalseElement state machine.
357       if (FirstFalseElement == Undefined)
358         FirstFalseElement = FalseRangeEnd = i; // First false element.
359       else {
360         // Update double-compare state machine.
361         if (SecondFalseElement == Undefined)
362           SecondFalseElement = i;
363         else
364           SecondFalseElement = Overdefined;
365
366         // Update range state machine.
367         if (FalseRangeEnd == (int)i-1)
368           FalseRangeEnd = i;
369         else
370           FalseRangeEnd = Overdefined;
371       }
372     }
373
374
375     // If this element is in range, update our magic bitvector.
376     if (i < 64 && IsTrueForElt)
377       MagicBitvector |= 1ULL << i;
378
379     // If all of our states become overdefined, bail out early.  Since the
380     // predicate is expensive, only check it every 8 elements.  This is only
381     // really useful for really huge arrays.
382     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
383         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
384         FalseRangeEnd == Overdefined)
385       return nullptr;
386   }
387
388   // Now that we've scanned the entire array, emit our new comparison(s).  We
389   // order the state machines in complexity of the generated code.
390   Value *Idx = GEP->getOperand(2);
391
392   // If the index is larger than the pointer size of the target, truncate the
393   // index down like the GEP would do implicitly.  We don't have to do this for
394   // an inbounds GEP because the index can't be out of range.
395   if (!GEP->isInBounds()) {
396     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
397     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
398     if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
399       Idx = Builder->CreateTrunc(Idx, IntPtrTy);
400   }
401
402   // If the comparison is only true for one or two elements, emit direct
403   // comparisons.
404   if (SecondTrueElement != Overdefined) {
405     // None true -> false.
406     if (FirstTrueElement == Undefined)
407       return ReplaceInstUsesWith(ICI, Builder->getFalse());
408
409     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
410
411     // True for one element -> 'i == 47'.
412     if (SecondTrueElement == Undefined)
413       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
414
415     // True for two elements -> 'i == 47 | i == 72'.
416     Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
417     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
418     Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
419     return BinaryOperator::CreateOr(C1, C2);
420   }
421
422   // If the comparison is only false for one or two elements, emit direct
423   // comparisons.
424   if (SecondFalseElement != Overdefined) {
425     // None false -> true.
426     if (FirstFalseElement == Undefined)
427       return ReplaceInstUsesWith(ICI, Builder->getTrue());
428
429     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
430
431     // False for one element -> 'i != 47'.
432     if (SecondFalseElement == Undefined)
433       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
434
435     // False for two elements -> 'i != 47 & i != 72'.
436     Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
437     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
438     Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
439     return BinaryOperator::CreateAnd(C1, C2);
440   }
441
442   // If the comparison can be replaced with a range comparison for the elements
443   // where it is true, emit the range check.
444   if (TrueRangeEnd != Overdefined) {
445     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
446
447     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
448     if (FirstTrueElement) {
449       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
450       Idx = Builder->CreateAdd(Idx, Offs);
451     }
452
453     Value *End = ConstantInt::get(Idx->getType(),
454                                   TrueRangeEnd-FirstTrueElement+1);
455     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
456   }
457
458   // False range check.
459   if (FalseRangeEnd != Overdefined) {
460     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
461     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
462     if (FirstFalseElement) {
463       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
464       Idx = Builder->CreateAdd(Idx, Offs);
465     }
466
467     Value *End = ConstantInt::get(Idx->getType(),
468                                   FalseRangeEnd-FirstFalseElement);
469     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
470   }
471
472
473   // If a magic bitvector captures the entire comparison state
474   // of this load, replace it with computation that does:
475   //   ((magic_cst >> i) & 1) != 0
476   {
477     Type *Ty = nullptr;
478
479     // Look for an appropriate type:
480     // - The type of Idx if the magic fits
481     // - The smallest fitting legal type if we have a DataLayout
482     // - Default to i32
483     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
484       Ty = Idx->getType();
485     else
486       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
487
488     if (Ty) {
489       Value *V = Builder->CreateIntCast(Idx, Ty, false);
490       V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
491       V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
492       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
493     }
494   }
495
496   return nullptr;
497 }
498
499
500 /// EvaluateGEPOffsetExpression - Return a value that can be used to compare
501 /// the *offset* implied by a GEP to zero.  For example, if we have &A[i], we
502 /// want to return 'i' for "icmp ne i, 0".  Note that, in general, indices can
503 /// be complex, and scales are involved.  The above expression would also be
504 /// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
505 /// This later form is less amenable to optimization though, and we are allowed
506 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
507 ///
508 /// If we can't emit an optimized form for this expression, this returns null.
509 ///
510 static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
511                                           const DataLayout &DL) {
512   gep_type_iterator GTI = gep_type_begin(GEP);
513
514   // Check to see if this gep only has a single variable index.  If so, and if
515   // any constant indices are a multiple of its scale, then we can compute this
516   // in terms of the scale of the variable index.  For example, if the GEP
517   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
518   // because the expression will cross zero at the same point.
519   unsigned i, e = GEP->getNumOperands();
520   int64_t Offset = 0;
521   for (i = 1; i != e; ++i, ++GTI) {
522     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
523       // Compute the aggregate offset of constant indices.
524       if (CI->isZero()) continue;
525
526       // Handle a struct index, which adds its field offset to the pointer.
527       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
528         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
529       } else {
530         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
531         Offset += Size*CI->getSExtValue();
532       }
533     } else {
534       // Found our variable index.
535       break;
536     }
537   }
538
539   // If there are no variable indices, we must have a constant offset, just
540   // evaluate it the general way.
541   if (i == e) return nullptr;
542
543   Value *VariableIdx = GEP->getOperand(i);
544   // Determine the scale factor of the variable element.  For example, this is
545   // 4 if the variable index is into an array of i32.
546   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
547
548   // Verify that there are no other variable indices.  If so, emit the hard way.
549   for (++i, ++GTI; i != e; ++i, ++GTI) {
550     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
551     if (!CI) return nullptr;
552
553     // Compute the aggregate offset of constant indices.
554     if (CI->isZero()) continue;
555
556     // Handle a struct index, which adds its field offset to the pointer.
557     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
558       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
559     } else {
560       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
561       Offset += Size*CI->getSExtValue();
562     }
563   }
564
565
566
567   // Okay, we know we have a single variable index, which must be a
568   // pointer/array/vector index.  If there is no offset, life is simple, return
569   // the index.
570   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
571   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
572   if (Offset == 0) {
573     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
574     // we don't need to bother extending: the extension won't affect where the
575     // computation crosses zero.
576     if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
577       VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
578     }
579     return VariableIdx;
580   }
581
582   // Otherwise, there is an index.  The computation we will do will be modulo
583   // the pointer size, so get it.
584   uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
585
586   Offset &= PtrSizeMask;
587   VariableScale &= PtrSizeMask;
588
589   // To do this transformation, any constant index must be a multiple of the
590   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
591   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
592   // multiple of the variable scale.
593   int64_t NewOffs = Offset / (int64_t)VariableScale;
594   if (Offset != NewOffs*(int64_t)VariableScale)
595     return nullptr;
596
597   // Okay, we can do this evaluation.  Start by converting the index to intptr.
598   if (VariableIdx->getType() != IntPtrTy)
599     VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
600                                             true /*Signed*/);
601   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
602   return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
603 }
604
605 /// FoldGEPICmp - Fold comparisons between a GEP instruction and something
606 /// else.  At this point we know that the GEP is on the LHS of the comparison.
607 Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
608                                        ICmpInst::Predicate Cond,
609                                        Instruction &I) {
610   // Don't transform signed compares of GEPs into index compares. Even if the
611   // GEP is inbounds, the final add of the base pointer can have signed overflow
612   // and would change the result of the icmp.
613   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
614   // the maximum signed value for the pointer type.
615   if (ICmpInst::isSigned(Cond))
616     return nullptr;
617
618   // Look through bitcasts and addrspacecasts. We do not however want to remove
619   // 0 GEPs.
620   if (!isa<GetElementPtrInst>(RHS))
621     RHS = RHS->stripPointerCasts();
622
623   Value *PtrBase = GEPLHS->getOperand(0);
624   if (PtrBase == RHS && GEPLHS->isInBounds()) {
625     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
626     // This transformation (ignoring the base and scales) is valid because we
627     // know pointers can't overflow since the gep is inbounds.  See if we can
628     // output an optimized form.
629     Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this, DL);
630
631     // If not, synthesize the offset the hard way.
632     if (!Offset)
633       Offset = EmitGEPOffset(GEPLHS);
634     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
635                         Constant::getNullValue(Offset->getType()));
636   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
637     // If the base pointers are different, but the indices are the same, just
638     // compare the base pointer.
639     if (PtrBase != GEPRHS->getOperand(0)) {
640       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
641       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
642                         GEPRHS->getOperand(0)->getType();
643       if (IndicesTheSame)
644         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
645           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
646             IndicesTheSame = false;
647             break;
648           }
649
650       // If all indices are the same, just compare the base pointers.
651       if (IndicesTheSame)
652         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
653
654       // If we're comparing GEPs with two base pointers that only differ in type
655       // and both GEPs have only constant indices or just one use, then fold
656       // the compare with the adjusted indices.
657       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
658           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
659           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
660           PtrBase->stripPointerCasts() ==
661               GEPRHS->getOperand(0)->stripPointerCasts()) {
662         Value *LOffset = EmitGEPOffset(GEPLHS);
663         Value *ROffset = EmitGEPOffset(GEPRHS);
664
665         // If we looked through an addrspacecast between different sized address
666         // spaces, the LHS and RHS pointers are different sized
667         // integers. Truncate to the smaller one.
668         Type *LHSIndexTy = LOffset->getType();
669         Type *RHSIndexTy = ROffset->getType();
670         if (LHSIndexTy != RHSIndexTy) {
671           if (LHSIndexTy->getPrimitiveSizeInBits() <
672               RHSIndexTy->getPrimitiveSizeInBits()) {
673             ROffset = Builder->CreateTrunc(ROffset, LHSIndexTy);
674           } else
675             LOffset = Builder->CreateTrunc(LOffset, RHSIndexTy);
676         }
677
678         Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
679                                          LOffset, ROffset);
680         return ReplaceInstUsesWith(I, Cmp);
681       }
682
683       // Otherwise, the base pointers are different and the indices are
684       // different, bail out.
685       return nullptr;
686     }
687
688     // If one of the GEPs has all zero indices, recurse.
689     if (GEPLHS->hasAllZeroIndices())
690       return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
691                          ICmpInst::getSwappedPredicate(Cond), I);
692
693     // If the other GEP has all zero indices, recurse.
694     if (GEPRHS->hasAllZeroIndices())
695       return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
696
697     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
698     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
699       // If the GEPs only differ by one index, compare it.
700       unsigned NumDifferences = 0;  // Keep track of # differences.
701       unsigned DiffOperand = 0;     // The operand that differs.
702       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
703         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
704           if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
705                    GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
706             // Irreconcilable differences.
707             NumDifferences = 2;
708             break;
709           } else {
710             if (NumDifferences++) break;
711             DiffOperand = i;
712           }
713         }
714
715       if (NumDifferences == 0)   // SAME GEP?
716         return ReplaceInstUsesWith(I, // No comparison is needed here.
717                              Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond)));
718
719       else if (NumDifferences == 1 && GEPsInBounds) {
720         Value *LHSV = GEPLHS->getOperand(DiffOperand);
721         Value *RHSV = GEPRHS->getOperand(DiffOperand);
722         // Make sure we do a signed comparison here.
723         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
724       }
725     }
726
727     // Only lower this if the icmp is the only user of the GEP or if we expect
728     // the result to fold to a constant!
729     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
730         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
731       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
732       Value *L = EmitGEPOffset(GEPLHS);
733       Value *R = EmitGEPOffset(GEPRHS);
734       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
735     }
736   }
737   return nullptr;
738 }
739
740 /// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
741 Instruction *InstCombiner::FoldICmpAddOpCst(Instruction &ICI,
742                                             Value *X, ConstantInt *CI,
743                                             ICmpInst::Predicate Pred) {
744   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
745   // so the values can never be equal.  Similarly for all other "or equals"
746   // operators.
747
748   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
749   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
750   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
751   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
752     Value *R =
753       ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
754     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
755   }
756
757   // (X+1) >u X        --> X <u (0-1)        --> X != 255
758   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
759   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
760   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
761     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
762
763   unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
764   ConstantInt *SMax = ConstantInt::get(X->getContext(),
765                                        APInt::getSignedMaxValue(BitWidth));
766
767   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
768   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
769   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
770   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
771   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
772   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
773   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
774     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
775
776   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
777   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
778   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
779   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
780   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
781   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
782
783   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
784   Constant *C = Builder->getInt(CI->getValue()-1);
785   return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
786 }
787
788 /// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
789 /// and CmpRHS are both known to be integer constants.
790 Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
791                                           ConstantInt *DivRHS) {
792   ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
793   const APInt &CmpRHSV = CmpRHS->getValue();
794
795   // FIXME: If the operand types don't match the type of the divide
796   // then don't attempt this transform. The code below doesn't have the
797   // logic to deal with a signed divide and an unsigned compare (and
798   // vice versa). This is because (x /s C1) <s C2  produces different
799   // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
800   // (x /u C1) <u C2.  Simply casting the operands and result won't
801   // work. :(  The if statement below tests that condition and bails
802   // if it finds it.
803   bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
804   if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
805     return nullptr;
806   if (DivRHS->isZero())
807     return nullptr; // The ProdOV computation fails on divide by zero.
808   if (DivIsSigned && DivRHS->isAllOnesValue())
809     return nullptr; // The overflow computation also screws up here
810   if (DivRHS->isOne()) {
811     // This eliminates some funny cases with INT_MIN.
812     ICI.setOperand(0, DivI->getOperand(0));   // X/1 == X.
813     return &ICI;
814   }
815
816   // Compute Prod = CI * DivRHS. We are essentially solving an equation
817   // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
818   // C2 (CI). By solving for X we can turn this into a range check
819   // instead of computing a divide.
820   Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
821
822   // Determine if the product overflows by seeing if the product is
823   // not equal to the divide. Make sure we do the same kind of divide
824   // as in the LHS instruction that we're folding.
825   bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
826                  ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
827
828   // Get the ICmp opcode
829   ICmpInst::Predicate Pred = ICI.getPredicate();
830
831   /// If the division is known to be exact, then there is no remainder from the
832   /// divide, so the covered range size is unit, otherwise it is the divisor.
833   ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
834
835   // Figure out the interval that is being checked.  For example, a comparison
836   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
837   // Compute this interval based on the constants involved and the signedness of
838   // the compare/divide.  This computes a half-open interval, keeping track of
839   // whether either value in the interval overflows.  After analysis each
840   // overflow variable is set to 0 if it's corresponding bound variable is valid
841   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
842   int LoOverflow = 0, HiOverflow = 0;
843   Constant *LoBound = nullptr, *HiBound = nullptr;
844
845   if (!DivIsSigned) {  // udiv
846     // e.g. X/5 op 3  --> [15, 20)
847     LoBound = Prod;
848     HiOverflow = LoOverflow = ProdOV;
849     if (!HiOverflow) {
850       // If this is not an exact divide, then many values in the range collapse
851       // to the same result value.
852       HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
853     }
854
855   } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
856     if (CmpRHSV == 0) {       // (X / pos) op 0
857       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
858       LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
859       HiBound = RangeSize;
860     } else if (CmpRHSV.isStrictlyPositive()) {   // (X / pos) op pos
861       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
862       HiOverflow = LoOverflow = ProdOV;
863       if (!HiOverflow)
864         HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
865     } else {                       // (X / pos) op neg
866       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
867       HiBound = AddOne(Prod);
868       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
869       if (!LoOverflow) {
870         ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
871         LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
872       }
873     }
874   } else if (DivRHS->isNegative()) { // Divisor is < 0.
875     if (DivI->isExact())
876       RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
877     if (CmpRHSV == 0) {       // (X / neg) op 0
878       // e.g. X/-5 op 0  --> [-4, 5)
879       LoBound = AddOne(RangeSize);
880       HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
881       if (HiBound == DivRHS) {     // -INTMIN = INTMIN
882         HiOverflow = 1;            // [INTMIN+1, overflow)
883         HiBound = nullptr;         // e.g. X/INTMIN = 0 --> X > INTMIN
884       }
885     } else if (CmpRHSV.isStrictlyPositive()) {   // (X / neg) op pos
886       // e.g. X/-5 op 3  --> [-19, -14)
887       HiBound = AddOne(Prod);
888       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
889       if (!LoOverflow)
890         LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
891     } else {                       // (X / neg) op neg
892       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
893       LoOverflow = HiOverflow = ProdOV;
894       if (!HiOverflow)
895         HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
896     }
897
898     // Dividing by a negative swaps the condition.  LT <-> GT
899     Pred = ICmpInst::getSwappedPredicate(Pred);
900   }
901
902   Value *X = DivI->getOperand(0);
903   switch (Pred) {
904   default: llvm_unreachable("Unhandled icmp opcode!");
905   case ICmpInst::ICMP_EQ:
906     if (LoOverflow && HiOverflow)
907       return ReplaceInstUsesWith(ICI, Builder->getFalse());
908     if (HiOverflow)
909       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
910                           ICmpInst::ICMP_UGE, X, LoBound);
911     if (LoOverflow)
912       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
913                           ICmpInst::ICMP_ULT, X, HiBound);
914     return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
915                                                     DivIsSigned, true));
916   case ICmpInst::ICMP_NE:
917     if (LoOverflow && HiOverflow)
918       return ReplaceInstUsesWith(ICI, Builder->getTrue());
919     if (HiOverflow)
920       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
921                           ICmpInst::ICMP_ULT, X, LoBound);
922     if (LoOverflow)
923       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
924                           ICmpInst::ICMP_UGE, X, HiBound);
925     return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
926                                                     DivIsSigned, false));
927   case ICmpInst::ICMP_ULT:
928   case ICmpInst::ICMP_SLT:
929     if (LoOverflow == +1)   // Low bound is greater than input range.
930       return ReplaceInstUsesWith(ICI, Builder->getTrue());
931     if (LoOverflow == -1)   // Low bound is less than input range.
932       return ReplaceInstUsesWith(ICI, Builder->getFalse());
933     return new ICmpInst(Pred, X, LoBound);
934   case ICmpInst::ICMP_UGT:
935   case ICmpInst::ICMP_SGT:
936     if (HiOverflow == +1)       // High bound greater than input range.
937       return ReplaceInstUsesWith(ICI, Builder->getFalse());
938     if (HiOverflow == -1)       // High bound less than input range.
939       return ReplaceInstUsesWith(ICI, Builder->getTrue());
940     if (Pred == ICmpInst::ICMP_UGT)
941       return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
942     return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
943   }
944 }
945
946 /// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
947 Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
948                                           ConstantInt *ShAmt) {
949   const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
950
951   // Check that the shift amount is in range.  If not, don't perform
952   // undefined shifts.  When the shift is visited it will be
953   // simplified.
954   uint32_t TypeBits = CmpRHSV.getBitWidth();
955   uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
956   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
957     return nullptr;
958
959   if (!ICI.isEquality()) {
960     // If we have an unsigned comparison and an ashr, we can't simplify this.
961     // Similarly for signed comparisons with lshr.
962     if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
963       return nullptr;
964
965     // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
966     // by a power of 2.  Since we already have logic to simplify these,
967     // transform to div and then simplify the resultant comparison.
968     if (Shr->getOpcode() == Instruction::AShr &&
969         (!Shr->isExact() || ShAmtVal == TypeBits - 1))
970       return nullptr;
971
972     // Revisit the shift (to delete it).
973     Worklist.Add(Shr);
974
975     Constant *DivCst =
976       ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
977
978     Value *Tmp =
979       Shr->getOpcode() == Instruction::AShr ?
980       Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
981       Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
982
983     ICI.setOperand(0, Tmp);
984
985     // If the builder folded the binop, just return it.
986     BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
987     if (!TheDiv)
988       return &ICI;
989
990     // Otherwise, fold this div/compare.
991     assert(TheDiv->getOpcode() == Instruction::SDiv ||
992            TheDiv->getOpcode() == Instruction::UDiv);
993
994     Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
995     assert(Res && "This div/cst should have folded!");
996     return Res;
997   }
998
999
1000   // If we are comparing against bits always shifted out, the
1001   // comparison cannot succeed.
1002   APInt Comp = CmpRHSV << ShAmtVal;
1003   ConstantInt *ShiftedCmpRHS = Builder->getInt(Comp);
1004   if (Shr->getOpcode() == Instruction::LShr)
1005     Comp = Comp.lshr(ShAmtVal);
1006   else
1007     Comp = Comp.ashr(ShAmtVal);
1008
1009   if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
1010     bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1011     Constant *Cst = Builder->getInt1(IsICMP_NE);
1012     return ReplaceInstUsesWith(ICI, Cst);
1013   }
1014
1015   // Otherwise, check to see if the bits shifted out are known to be zero.
1016   // If so, we can compare against the unshifted value:
1017   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
1018   if (Shr->hasOneUse() && Shr->isExact())
1019     return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
1020
1021   if (Shr->hasOneUse()) {
1022     // Otherwise strength reduce the shift into an and.
1023     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
1024     Constant *Mask = Builder->getInt(Val);
1025
1026     Value *And = Builder->CreateAnd(Shr->getOperand(0),
1027                                     Mask, Shr->getName()+".mask");
1028     return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
1029   }
1030   return nullptr;
1031 }
1032
1033 /// FoldICmpCstShrCst - Handle "(icmp eq/ne (ashr/lshr const2, A), const1)" ->
1034 /// (icmp eq/ne A, Log2(const2/const1)) ->
1035 /// (icmp eq/ne A, Log2(const2) - Log2(const1)).
1036 Instruction *InstCombiner::FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A,
1037                                              ConstantInt *CI1,
1038                                              ConstantInt *CI2) {
1039   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1040
1041   auto getConstant = [&I, this](bool IsTrue) {
1042     if (I.getPredicate() == I.ICMP_NE)
1043       IsTrue = !IsTrue;
1044     return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue));
1045   };
1046
1047   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1048     if (I.getPredicate() == I.ICMP_NE)
1049       Pred = CmpInst::getInversePredicate(Pred);
1050     return new ICmpInst(Pred, LHS, RHS);
1051   };
1052
1053   APInt AP1 = CI1->getValue();
1054   APInt AP2 = CI2->getValue();
1055
1056   // Don't bother doing any work for cases which InstSimplify handles.
1057   if (AP2 == 0)
1058     return nullptr;
1059   bool IsAShr = isa<AShrOperator>(Op);
1060   if (IsAShr) {
1061     if (AP2.isAllOnesValue())
1062       return nullptr;
1063     if (AP2.isNegative() != AP1.isNegative())
1064       return nullptr;
1065     if (AP2.sgt(AP1))
1066       return nullptr;
1067   }
1068
1069   if (!AP1)
1070     // 'A' must be large enough to shift out the highest set bit.
1071     return getICmp(I.ICMP_UGT, A,
1072                    ConstantInt::get(A->getType(), AP2.logBase2()));
1073
1074   if (AP1 == AP2)
1075     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1076
1077   // Get the distance between the highest bit that's set.
1078   int Shift;
1079   // Both the constants are negative, take their positive to calculate log.
1080   if (IsAShr && AP1.isNegative())
1081     // Get the ones' complement of AP2 and AP1 when computing the distance.
1082     Shift = (~AP2).logBase2() - (~AP1).logBase2();
1083   else
1084     Shift = AP2.logBase2() - AP1.logBase2();
1085
1086   if (Shift > 0) {
1087     if (IsAShr ? AP1 == AP2.ashr(Shift) : AP1 == AP2.lshr(Shift))
1088       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1089   }
1090   // Shifting const2 will never be equal to const1.
1091   return getConstant(false);
1092 }
1093
1094 /// FoldICmpCstShlCst - Handle "(icmp eq/ne (shl const2, A), const1)" ->
1095 /// (icmp eq/ne A, TrailingZeros(const1) - TrailingZeros(const2)).
1096 Instruction *InstCombiner::FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A,
1097                                              ConstantInt *CI1,
1098                                              ConstantInt *CI2) {
1099   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1100
1101   auto getConstant = [&I, this](bool IsTrue) {
1102     if (I.getPredicate() == I.ICMP_NE)
1103       IsTrue = !IsTrue;
1104     return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue));
1105   };
1106
1107   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1108     if (I.getPredicate() == I.ICMP_NE)
1109       Pred = CmpInst::getInversePredicate(Pred);
1110     return new ICmpInst(Pred, LHS, RHS);
1111   };
1112
1113   APInt AP1 = CI1->getValue();
1114   APInt AP2 = CI2->getValue();
1115
1116   // Don't bother doing any work for cases which InstSimplify handles.
1117   if (AP2 == 0)
1118     return nullptr;
1119
1120   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1121
1122   if (!AP1 && AP2TrailingZeros != 0)
1123     return getICmp(I.ICMP_UGE, A,
1124                    ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1125
1126   if (AP1 == AP2)
1127     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1128
1129   // Get the distance between the lowest bits that are set.
1130   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1131
1132   if (Shift > 0 && AP2.shl(Shift) == AP1)
1133     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1134
1135   // Shifting const2 will never be equal to const1.
1136   return getConstant(false);
1137 }
1138
1139 /// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
1140 ///
1141 Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
1142                                                           Instruction *LHSI,
1143                                                           ConstantInt *RHS) {
1144   const APInt &RHSV = RHS->getValue();
1145
1146   switch (LHSI->getOpcode()) {
1147   case Instruction::Trunc:
1148     if (ICI.isEquality() && LHSI->hasOneUse()) {
1149       // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1150       // of the high bits truncated out of x are known.
1151       unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
1152              SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
1153       APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
1154       computeKnownBits(LHSI->getOperand(0), KnownZero, KnownOne, 0, &ICI);
1155
1156       // If all the high bits are known, we can do this xform.
1157       if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
1158         // Pull in the high bits from known-ones set.
1159         APInt NewRHS = RHS->getValue().zext(SrcBits);
1160         NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits);
1161         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1162                             Builder->getInt(NewRHS));
1163       }
1164     }
1165     break;
1166
1167   case Instruction::Xor:         // (icmp pred (xor X, XorCst), CI)
1168     if (ConstantInt *XorCst = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1169       // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1170       // fold the xor.
1171       if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
1172           (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
1173         Value *CompareVal = LHSI->getOperand(0);
1174
1175         // If the sign bit of the XorCst is not set, there is no change to
1176         // the operation, just stop using the Xor.
1177         if (!XorCst->isNegative()) {
1178           ICI.setOperand(0, CompareVal);
1179           Worklist.Add(LHSI);
1180           return &ICI;
1181         }
1182
1183         // Was the old condition true if the operand is positive?
1184         bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
1185
1186         // If so, the new one isn't.
1187         isTrueIfPositive ^= true;
1188
1189         if (isTrueIfPositive)
1190           return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
1191                               SubOne(RHS));
1192         else
1193           return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
1194                               AddOne(RHS));
1195       }
1196
1197       if (LHSI->hasOneUse()) {
1198         // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
1199         if (!ICI.isEquality() && XorCst->getValue().isSignBit()) {
1200           const APInt &SignBit = XorCst->getValue();
1201           ICmpInst::Predicate Pred = ICI.isSigned()
1202                                          ? ICI.getUnsignedPredicate()
1203                                          : ICI.getSignedPredicate();
1204           return new ICmpInst(Pred, LHSI->getOperand(0),
1205                               Builder->getInt(RHSV ^ SignBit));
1206         }
1207
1208         // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
1209         if (!ICI.isEquality() && XorCst->isMaxValue(true)) {
1210           const APInt &NotSignBit = XorCst->getValue();
1211           ICmpInst::Predicate Pred = ICI.isSigned()
1212                                          ? ICI.getUnsignedPredicate()
1213                                          : ICI.getSignedPredicate();
1214           Pred = ICI.getSwappedPredicate(Pred);
1215           return new ICmpInst(Pred, LHSI->getOperand(0),
1216                               Builder->getInt(RHSV ^ NotSignBit));
1217         }
1218       }
1219
1220       // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C)
1221       //   iff -C is a power of 2
1222       if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
1223           XorCst->getValue() == ~RHSV && (RHSV + 1).isPowerOf2())
1224         return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), XorCst);
1225
1226       // (icmp ult (xor X, C), -C) -> (icmp uge X, C)
1227       //   iff -C is a power of 2
1228       if (ICI.getPredicate() == ICmpInst::ICMP_ULT &&
1229           XorCst->getValue() == -RHSV && RHSV.isPowerOf2())
1230         return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), XorCst);
1231     }
1232     break;
1233   case Instruction::And:         // (icmp pred (and X, AndCst), RHS)
1234     if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
1235         LHSI->getOperand(0)->hasOneUse()) {
1236       ConstantInt *AndCst = cast<ConstantInt>(LHSI->getOperand(1));
1237
1238       // If the LHS is an AND of a truncating cast, we can widen the
1239       // and/compare to be the input width without changing the value
1240       // produced, eliminating a cast.
1241       if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
1242         // We can do this transformation if either the AND constant does not
1243         // have its sign bit set or if it is an equality comparison.
1244         // Extending a relational comparison when we're checking the sign
1245         // bit would not work.
1246         if (ICI.isEquality() ||
1247             (!AndCst->isNegative() && RHSV.isNonNegative())) {
1248           Value *NewAnd =
1249             Builder->CreateAnd(Cast->getOperand(0),
1250                                ConstantExpr::getZExt(AndCst, Cast->getSrcTy()));
1251           NewAnd->takeName(LHSI);
1252           return new ICmpInst(ICI.getPredicate(), NewAnd,
1253                               ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
1254         }
1255       }
1256
1257       // If the LHS is an AND of a zext, and we have an equality compare, we can
1258       // shrink the and/compare to the smaller type, eliminating the cast.
1259       if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
1260         IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
1261         // Make sure we don't compare the upper bits, SimplifyDemandedBits
1262         // should fold the icmp to true/false in that case.
1263         if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
1264           Value *NewAnd =
1265             Builder->CreateAnd(Cast->getOperand(0),
1266                                ConstantExpr::getTrunc(AndCst, Ty));
1267           NewAnd->takeName(LHSI);
1268           return new ICmpInst(ICI.getPredicate(), NewAnd,
1269                               ConstantExpr::getTrunc(RHS, Ty));
1270         }
1271       }
1272
1273       // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
1274       // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
1275       // happens a LOT in code produced by the C front-end, for bitfield
1276       // access.
1277       BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
1278       if (Shift && !Shift->isShift())
1279         Shift = nullptr;
1280
1281       ConstantInt *ShAmt;
1282       ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : nullptr;
1283
1284       // This seemingly simple opportunity to fold away a shift turns out to
1285       // be rather complicated. See PR17827
1286       // ( http://llvm.org/bugs/show_bug.cgi?id=17827 ) for details.
1287       if (ShAmt) {
1288         bool CanFold = false;
1289         unsigned ShiftOpcode = Shift->getOpcode();
1290         if (ShiftOpcode == Instruction::AShr) {
1291           // There may be some constraints that make this possible,
1292           // but nothing simple has been discovered yet.
1293           CanFold = false;
1294         } else if (ShiftOpcode == Instruction::Shl) {
1295           // For a left shift, we can fold if the comparison is not signed.
1296           // We can also fold a signed comparison if the mask value and
1297           // comparison value are not negative. These constraints may not be
1298           // obvious, but we can prove that they are correct using an SMT
1299           // solver.
1300           if (!ICI.isSigned() || (!AndCst->isNegative() && !RHS->isNegative()))
1301             CanFold = true;
1302         } else if (ShiftOpcode == Instruction::LShr) {
1303           // For a logical right shift, we can fold if the comparison is not
1304           // signed. We can also fold a signed comparison if the shifted mask
1305           // value and the shifted comparison value are not negative.
1306           // These constraints may not be obvious, but we can prove that they
1307           // are correct using an SMT solver.
1308           if (!ICI.isSigned())
1309             CanFold = true;
1310           else {
1311             ConstantInt *ShiftedAndCst =
1312               cast<ConstantInt>(ConstantExpr::getShl(AndCst, ShAmt));
1313             ConstantInt *ShiftedRHSCst =
1314               cast<ConstantInt>(ConstantExpr::getShl(RHS, ShAmt));
1315             
1316             if (!ShiftedAndCst->isNegative() && !ShiftedRHSCst->isNegative())
1317               CanFold = true;
1318           }
1319         }
1320
1321         if (CanFold) {
1322           Constant *NewCst;
1323           if (ShiftOpcode == Instruction::Shl)
1324             NewCst = ConstantExpr::getLShr(RHS, ShAmt);
1325           else
1326             NewCst = ConstantExpr::getShl(RHS, ShAmt);
1327
1328           // Check to see if we are shifting out any of the bits being
1329           // compared.
1330           if (ConstantExpr::get(ShiftOpcode, NewCst, ShAmt) != RHS) {
1331             // If we shifted bits out, the fold is not going to work out.
1332             // As a special case, check to see if this means that the
1333             // result is always true or false now.
1334             if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1335               return ReplaceInstUsesWith(ICI, Builder->getFalse());
1336             if (ICI.getPredicate() == ICmpInst::ICMP_NE)
1337               return ReplaceInstUsesWith(ICI, Builder->getTrue());
1338           } else {
1339             ICI.setOperand(1, NewCst);
1340             Constant *NewAndCst;
1341             if (ShiftOpcode == Instruction::Shl)
1342               NewAndCst = ConstantExpr::getLShr(AndCst, ShAmt);
1343             else
1344               NewAndCst = ConstantExpr::getShl(AndCst, ShAmt);
1345             LHSI->setOperand(1, NewAndCst);
1346             LHSI->setOperand(0, Shift->getOperand(0));
1347             Worklist.Add(Shift); // Shift is dead.
1348             return &ICI;
1349           }
1350         }
1351       }
1352
1353       // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is
1354       // preferable because it allows the C<<Y expression to be hoisted out
1355       // of a loop if Y is invariant and X is not.
1356       if (Shift && Shift->hasOneUse() && RHSV == 0 &&
1357           ICI.isEquality() && !Shift->isArithmeticShift() &&
1358           !isa<Constant>(Shift->getOperand(0))) {
1359         // Compute C << Y.
1360         Value *NS;
1361         if (Shift->getOpcode() == Instruction::LShr) {
1362           NS = Builder->CreateShl(AndCst, Shift->getOperand(1));
1363         } else {
1364           // Insert a logical shift.
1365           NS = Builder->CreateLShr(AndCst, Shift->getOperand(1));
1366         }
1367
1368         // Compute X & (C << Y).
1369         Value *NewAnd =
1370           Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
1371
1372         ICI.setOperand(0, NewAnd);
1373         return &ICI;
1374       }
1375
1376       // (icmp pred (and (or (lshr X, Y), X), 1), 0) -->
1377       //    (icmp pred (and X, (or (shl 1, Y), 1), 0))
1378       //
1379       // iff pred isn't signed
1380       {
1381         Value *X, *Y, *LShr;
1382         if (!ICI.isSigned() && RHSV == 0) {
1383           if (match(LHSI->getOperand(1), m_One())) {
1384             Constant *One = cast<Constant>(LHSI->getOperand(1));
1385             Value *Or = LHSI->getOperand(0);
1386             if (match(Or, m_Or(m_Value(LShr), m_Value(X))) &&
1387                 match(LShr, m_LShr(m_Specific(X), m_Value(Y)))) {
1388               unsigned UsesRemoved = 0;
1389               if (LHSI->hasOneUse())
1390                 ++UsesRemoved;
1391               if (Or->hasOneUse())
1392                 ++UsesRemoved;
1393               if (LShr->hasOneUse())
1394                 ++UsesRemoved;
1395               Value *NewOr = nullptr;
1396               // Compute X & ((1 << Y) | 1)
1397               if (auto *C = dyn_cast<Constant>(Y)) {
1398                 if (UsesRemoved >= 1)
1399                   NewOr =
1400                       ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1401               } else {
1402                 if (UsesRemoved >= 3)
1403                   NewOr = Builder->CreateOr(Builder->CreateShl(One, Y,
1404                                                                LShr->getName(),
1405                                                                /*HasNUW=*/true),
1406                                             One, Or->getName());
1407               }
1408               if (NewOr) {
1409                 Value *NewAnd = Builder->CreateAnd(X, NewOr, LHSI->getName());
1410                 ICI.setOperand(0, NewAnd);
1411                 return &ICI;
1412               }
1413             }
1414           }
1415         }
1416       }
1417
1418       // Replace ((X & AndCst) > RHSV) with ((X & AndCst) != 0), if any
1419       // bit set in (X & AndCst) will produce a result greater than RHSV.
1420       if (ICI.getPredicate() == ICmpInst::ICMP_UGT) {
1421         unsigned NTZ = AndCst->getValue().countTrailingZeros();
1422         if ((NTZ < AndCst->getBitWidth()) &&
1423             APInt::getOneBitSet(AndCst->getBitWidth(), NTZ).ugt(RHSV))
1424           return new ICmpInst(ICmpInst::ICMP_NE, LHSI,
1425                               Constant::getNullValue(RHS->getType()));
1426       }
1427     }
1428
1429     // Try to optimize things like "A[i]&42 == 0" to index computations.
1430     if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
1431       if (GetElementPtrInst *GEP =
1432           dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1433         if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1434           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1435               !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
1436             ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
1437             if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
1438               return Res;
1439           }
1440     }
1441
1442     // X & -C == -C -> X >  u ~C
1443     // X & -C != -C -> X <= u ~C
1444     //   iff C is a power of 2
1445     if (ICI.isEquality() && RHS == LHSI->getOperand(1) && (-RHSV).isPowerOf2())
1446       return new ICmpInst(
1447           ICI.getPredicate() == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_UGT
1448                                                   : ICmpInst::ICMP_ULE,
1449           LHSI->getOperand(0), SubOne(RHS));
1450     break;
1451
1452   case Instruction::Or: {
1453     if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
1454       break;
1455     Value *P, *Q;
1456     if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1457       // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1458       // -> and (icmp eq P, null), (icmp eq Q, null).
1459       Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
1460                                         Constant::getNullValue(P->getType()));
1461       Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
1462                                         Constant::getNullValue(Q->getType()));
1463       Instruction *Op;
1464       if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1465         Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
1466       else
1467         Op = BinaryOperator::CreateOr(ICIP, ICIQ);
1468       return Op;
1469     }
1470     break;
1471   }
1472
1473   case Instruction::Mul: {       // (icmp pred (mul X, Val), CI)
1474     ConstantInt *Val = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1475     if (!Val) break;
1476
1477     // If this is a signed comparison to 0 and the mul is sign preserving,
1478     // use the mul LHS operand instead.
1479     ICmpInst::Predicate pred = ICI.getPredicate();
1480     if (isSignTest(pred, RHS) && !Val->isZero() &&
1481         cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
1482       return new ICmpInst(Val->isNegative() ?
1483                           ICmpInst::getSwappedPredicate(pred) : pred,
1484                           LHSI->getOperand(0),
1485                           Constant::getNullValue(RHS->getType()));
1486
1487     break;
1488   }
1489
1490   case Instruction::Shl: {       // (icmp pred (shl X, ShAmt), CI)
1491     uint32_t TypeBits = RHSV.getBitWidth();
1492     ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1493     if (!ShAmt) {
1494       Value *X;
1495       // (1 << X) pred P2 -> X pred Log2(P2)
1496       if (match(LHSI, m_Shl(m_One(), m_Value(X)))) {
1497         bool RHSVIsPowerOf2 = RHSV.isPowerOf2();
1498         ICmpInst::Predicate Pred = ICI.getPredicate();
1499         if (ICI.isUnsigned()) {
1500           if (!RHSVIsPowerOf2) {
1501             // (1 << X) <  30 -> X <= 4
1502             // (1 << X) <= 30 -> X <= 4
1503             // (1 << X) >= 30 -> X >  4
1504             // (1 << X) >  30 -> X >  4
1505             if (Pred == ICmpInst::ICMP_ULT)
1506               Pred = ICmpInst::ICMP_ULE;
1507             else if (Pred == ICmpInst::ICMP_UGE)
1508               Pred = ICmpInst::ICMP_UGT;
1509           }
1510           unsigned RHSLog2 = RHSV.logBase2();
1511
1512           // (1 << X) >= 2147483648 -> X >= 31 -> X == 31
1513           // (1 << X) <  2147483648 -> X <  31 -> X != 31
1514           if (RHSLog2 == TypeBits-1) {
1515             if (Pred == ICmpInst::ICMP_UGE)
1516               Pred = ICmpInst::ICMP_EQ;
1517             else if (Pred == ICmpInst::ICMP_ULT)
1518               Pred = ICmpInst::ICMP_NE;
1519           }
1520
1521           return new ICmpInst(Pred, X,
1522                               ConstantInt::get(RHS->getType(), RHSLog2));
1523         } else if (ICI.isSigned()) {
1524           if (RHSV.isAllOnesValue()) {
1525             // (1 << X) <= -1 -> X == 31
1526             if (Pred == ICmpInst::ICMP_SLE)
1527               return new ICmpInst(ICmpInst::ICMP_EQ, X,
1528                                   ConstantInt::get(RHS->getType(), TypeBits-1));
1529
1530             // (1 << X) >  -1 -> X != 31
1531             if (Pred == ICmpInst::ICMP_SGT)
1532               return new ICmpInst(ICmpInst::ICMP_NE, X,
1533                                   ConstantInt::get(RHS->getType(), TypeBits-1));
1534           } else if (!RHSV) {
1535             // (1 << X) <  0 -> X == 31
1536             // (1 << X) <= 0 -> X == 31
1537             if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1538               return new ICmpInst(ICmpInst::ICMP_EQ, X,
1539                                   ConstantInt::get(RHS->getType(), TypeBits-1));
1540
1541             // (1 << X) >= 0 -> X != 31
1542             // (1 << X) >  0 -> X != 31
1543             if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
1544               return new ICmpInst(ICmpInst::ICMP_NE, X,
1545                                   ConstantInt::get(RHS->getType(), TypeBits-1));
1546           }
1547         } else if (ICI.isEquality()) {
1548           if (RHSVIsPowerOf2)
1549             return new ICmpInst(
1550                 Pred, X, ConstantInt::get(RHS->getType(), RHSV.logBase2()));
1551         }
1552       }
1553       break;
1554     }
1555
1556     // Check that the shift amount is in range.  If not, don't perform
1557     // undefined shifts.  When the shift is visited it will be
1558     // simplified.
1559     if (ShAmt->uge(TypeBits))
1560       break;
1561
1562     if (ICI.isEquality()) {
1563       // If we are comparing against bits always shifted out, the
1564       // comparison cannot succeed.
1565       Constant *Comp =
1566         ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
1567                                                                  ShAmt);
1568       if (Comp != RHS) {// Comparing against a bit that we know is zero.
1569         bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1570         Constant *Cst = Builder->getInt1(IsICMP_NE);
1571         return ReplaceInstUsesWith(ICI, Cst);
1572       }
1573
1574       // If the shift is NUW, then it is just shifting out zeros, no need for an
1575       // AND.
1576       if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
1577         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1578                             ConstantExpr::getLShr(RHS, ShAmt));
1579
1580       // If the shift is NSW and we compare to 0, then it is just shifting out
1581       // sign bits, no need for an AND either.
1582       if (cast<BinaryOperator>(LHSI)->hasNoSignedWrap() && RHSV == 0)
1583         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1584                             ConstantExpr::getLShr(RHS, ShAmt));
1585
1586       if (LHSI->hasOneUse()) {
1587         // Otherwise strength reduce the shift into an and.
1588         uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
1589         Constant *Mask = Builder->getInt(APInt::getLowBitsSet(TypeBits,
1590                                                           TypeBits - ShAmtVal));
1591
1592         Value *And =
1593           Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
1594         return new ICmpInst(ICI.getPredicate(), And,
1595                             ConstantExpr::getLShr(RHS, ShAmt));
1596       }
1597     }
1598
1599     // If this is a signed comparison to 0 and the shift is sign preserving,
1600     // use the shift LHS operand instead.
1601     ICmpInst::Predicate pred = ICI.getPredicate();
1602     if (isSignTest(pred, RHS) &&
1603         cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
1604       return new ICmpInst(pred,
1605                           LHSI->getOperand(0),
1606                           Constant::getNullValue(RHS->getType()));
1607
1608     // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1609     bool TrueIfSigned = false;
1610     if (LHSI->hasOneUse() &&
1611         isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
1612       // (X << 31) <s 0  --> (X&1) != 0
1613       Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
1614                                         APInt::getOneBitSet(TypeBits,
1615                                             TypeBits-ShAmt->getZExtValue()-1));
1616       Value *And =
1617         Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
1618       return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
1619                           And, Constant::getNullValue(And->getType()));
1620     }
1621
1622     // Transform (icmp pred iM (shl iM %v, N), CI)
1623     // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (CI>>N))
1624     // Transform the shl to a trunc if (trunc (CI>>N)) has no loss and M-N.
1625     // This enables to get rid of the shift in favor of a trunc which can be
1626     // free on the target. It has the additional benefit of comparing to a
1627     // smaller constant, which will be target friendly.
1628     unsigned Amt = ShAmt->getLimitedValue(TypeBits-1);
1629     if (LHSI->hasOneUse() &&
1630         Amt != 0 && RHSV.countTrailingZeros() >= Amt) {
1631       Type *NTy = IntegerType::get(ICI.getContext(), TypeBits - Amt);
1632       Constant *NCI = ConstantExpr::getTrunc(
1633                         ConstantExpr::getAShr(RHS,
1634                           ConstantInt::get(RHS->getType(), Amt)),
1635                         NTy);
1636       return new ICmpInst(ICI.getPredicate(),
1637                           Builder->CreateTrunc(LHSI->getOperand(0), NTy),
1638                           NCI);
1639     }
1640
1641     break;
1642   }
1643
1644   case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI)
1645   case Instruction::AShr: {
1646     // Handle equality comparisons of shift-by-constant.
1647     BinaryOperator *BO = cast<BinaryOperator>(LHSI);
1648     if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1649       if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
1650         return Res;
1651     }
1652
1653     // Handle exact shr's.
1654     if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
1655       if (RHSV.isMinValue())
1656         return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
1657     }
1658     break;
1659   }
1660
1661   case Instruction::SDiv:
1662   case Instruction::UDiv:
1663     // Fold: icmp pred ([us]div X, C1), C2 -> range test
1664     // Fold this div into the comparison, producing a range check.
1665     // Determine, based on the divide type, what the range is being
1666     // checked.  If there is an overflow on the low or high side, remember
1667     // it, otherwise compute the range [low, hi) bounding the new value.
1668     // See: InsertRangeTest above for the kinds of replacements possible.
1669     if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
1670       if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
1671                                           DivRHS))
1672         return R;
1673     break;
1674
1675   case Instruction::Sub: {
1676     ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(0));
1677     if (!LHSC) break;
1678     const APInt &LHSV = LHSC->getValue();
1679
1680     // C1-X <u C2 -> (X|(C2-1)) == C1
1681     //   iff C1 & (C2-1) == C2-1
1682     //       C2 is a power of 2
1683     if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
1684         RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == (RHSV - 1))
1685       return new ICmpInst(ICmpInst::ICMP_EQ,
1686                           Builder->CreateOr(LHSI->getOperand(1), RHSV - 1),
1687                           LHSC);
1688
1689     // C1-X >u C2 -> (X|C2) != C1
1690     //   iff C1 & C2 == C2
1691     //       C2+1 is a power of 2
1692     if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
1693         (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == RHSV)
1694       return new ICmpInst(ICmpInst::ICMP_NE,
1695                           Builder->CreateOr(LHSI->getOperand(1), RHSV), LHSC);
1696     break;
1697   }
1698
1699   case Instruction::Add:
1700     // Fold: icmp pred (add X, C1), C2
1701     if (!ICI.isEquality()) {
1702       ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1703       if (!LHSC) break;
1704       const APInt &LHSV = LHSC->getValue();
1705
1706       ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
1707                             .subtract(LHSV);
1708
1709       if (ICI.isSigned()) {
1710         if (CR.getLower().isSignBit()) {
1711           return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
1712                               Builder->getInt(CR.getUpper()));
1713         } else if (CR.getUpper().isSignBit()) {
1714           return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
1715                               Builder->getInt(CR.getLower()));
1716         }
1717       } else {
1718         if (CR.getLower().isMinValue()) {
1719           return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
1720                               Builder->getInt(CR.getUpper()));
1721         } else if (CR.getUpper().isMinValue()) {
1722           return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
1723                               Builder->getInt(CR.getLower()));
1724         }
1725       }
1726
1727       // X-C1 <u C2 -> (X & -C2) == C1
1728       //   iff C1 & (C2-1) == 0
1729       //       C2 is a power of 2
1730       if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
1731           RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == 0)
1732         return new ICmpInst(ICmpInst::ICMP_EQ,
1733                             Builder->CreateAnd(LHSI->getOperand(0), -RHSV),
1734                             ConstantExpr::getNeg(LHSC));
1735
1736       // X-C1 >u C2 -> (X & ~C2) != C1
1737       //   iff C1 & C2 == 0
1738       //       C2+1 is a power of 2
1739       if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
1740           (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == 0)
1741         return new ICmpInst(ICmpInst::ICMP_NE,
1742                             Builder->CreateAnd(LHSI->getOperand(0), ~RHSV),
1743                             ConstantExpr::getNeg(LHSC));
1744     }
1745     break;
1746   }
1747
1748   // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
1749   if (ICI.isEquality()) {
1750     bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1751
1752     // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
1753     // the second operand is a constant, simplify a bit.
1754     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
1755       switch (BO->getOpcode()) {
1756       case Instruction::SRem:
1757         // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
1758         if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
1759           const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
1760           if (V.sgt(1) && V.isPowerOf2()) {
1761             Value *NewRem =
1762               Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
1763                                   BO->getName());
1764             return new ICmpInst(ICI.getPredicate(), NewRem,
1765                                 Constant::getNullValue(BO->getType()));
1766           }
1767         }
1768         break;
1769       case Instruction::Add:
1770         // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
1771         if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1772           if (BO->hasOneUse())
1773             return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1774                                 ConstantExpr::getSub(RHS, BOp1C));
1775         } else if (RHSV == 0) {
1776           // Replace ((add A, B) != 0) with (A != -B) if A or B is
1777           // efficiently invertible, or if the add has just this one use.
1778           Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
1779
1780           if (Value *NegVal = dyn_castNegVal(BOp1))
1781             return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
1782           if (Value *NegVal = dyn_castNegVal(BOp0))
1783             return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
1784           if (BO->hasOneUse()) {
1785             Value *Neg = Builder->CreateNeg(BOp1);
1786             Neg->takeName(BO);
1787             return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
1788           }
1789         }
1790         break;
1791       case Instruction::Xor:
1792         // For the xor case, we can xor two constants together, eliminating
1793         // the explicit xor.
1794         if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
1795           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1796                               ConstantExpr::getXor(RHS, BOC));
1797         } else if (RHSV == 0) {
1798           // Replace ((xor A, B) != 0) with (A != B)
1799           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1800                               BO->getOperand(1));
1801         }
1802         break;
1803       case Instruction::Sub:
1804         // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
1805         if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
1806           if (BO->hasOneUse())
1807             return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
1808                                 ConstantExpr::getSub(BOp0C, RHS));
1809         } else if (RHSV == 0) {
1810           // Replace ((sub A, B) != 0) with (A != B)
1811           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1812                               BO->getOperand(1));
1813         }
1814         break;
1815       case Instruction::Or:
1816         // If bits are being or'd in that are not present in the constant we
1817         // are comparing against, then the comparison could never succeed!
1818         if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1819           Constant *NotCI = ConstantExpr::getNot(RHS);
1820           if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
1821             return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
1822         }
1823         break;
1824
1825       case Instruction::And:
1826         if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1827           // If bits are being compared against that are and'd out, then the
1828           // comparison can never succeed!
1829           if ((RHSV & ~BOC->getValue()) != 0)
1830             return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
1831
1832           // If we have ((X & C) == C), turn it into ((X & C) != 0).
1833           if (RHS == BOC && RHSV.isPowerOf2())
1834             return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
1835                                 ICmpInst::ICMP_NE, LHSI,
1836                                 Constant::getNullValue(RHS->getType()));
1837
1838           // Don't perform the following transforms if the AND has multiple uses
1839           if (!BO->hasOneUse())
1840             break;
1841
1842           // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
1843           if (BOC->getValue().isSignBit()) {
1844             Value *X = BO->getOperand(0);
1845             Constant *Zero = Constant::getNullValue(X->getType());
1846             ICmpInst::Predicate pred = isICMP_NE ?
1847               ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1848             return new ICmpInst(pred, X, Zero);
1849           }
1850
1851           // ((X & ~7) == 0) --> X < 8
1852           if (RHSV == 0 && isHighOnes(BOC)) {
1853             Value *X = BO->getOperand(0);
1854             Constant *NegX = ConstantExpr::getNeg(BOC);
1855             ICmpInst::Predicate pred = isICMP_NE ?
1856               ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1857             return new ICmpInst(pred, X, NegX);
1858           }
1859         }
1860         break;
1861       case Instruction::Mul:
1862         if (RHSV == 0 && BO->hasNoSignedWrap()) {
1863           if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1864             // The trivial case (mul X, 0) is handled by InstSimplify
1865             // General case : (mul X, C) != 0 iff X != 0
1866             //                (mul X, C) == 0 iff X == 0
1867             if (!BOC->isZero())
1868               return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1869                                   Constant::getNullValue(RHS->getType()));
1870           }
1871         }
1872         break;
1873       default: break;
1874       }
1875     } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
1876       // Handle icmp {eq|ne} <intrinsic>, intcst.
1877       switch (II->getIntrinsicID()) {
1878       case Intrinsic::bswap:
1879         Worklist.Add(II);
1880         ICI.setOperand(0, II->getArgOperand(0));
1881         ICI.setOperand(1, Builder->getInt(RHSV.byteSwap()));
1882         return &ICI;
1883       case Intrinsic::ctlz:
1884       case Intrinsic::cttz:
1885         // ctz(A) == bitwidth(a)  ->  A == 0 and likewise for !=
1886         if (RHSV == RHS->getType()->getBitWidth()) {
1887           Worklist.Add(II);
1888           ICI.setOperand(0, II->getArgOperand(0));
1889           ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
1890           return &ICI;
1891         }
1892         break;
1893       case Intrinsic::ctpop:
1894         // popcount(A) == 0  ->  A == 0 and likewise for !=
1895         if (RHS->isZero()) {
1896           Worklist.Add(II);
1897           ICI.setOperand(0, II->getArgOperand(0));
1898           ICI.setOperand(1, RHS);
1899           return &ICI;
1900         }
1901         break;
1902       default:
1903         break;
1904       }
1905     }
1906   }
1907   return nullptr;
1908 }
1909
1910 /// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
1911 /// We only handle extending casts so far.
1912 ///
1913 Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
1914   const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
1915   Value *LHSCIOp        = LHSCI->getOperand(0);
1916   Type *SrcTy     = LHSCIOp->getType();
1917   Type *DestTy    = LHSCI->getType();
1918   Value *RHSCIOp;
1919
1920   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
1921   // integer type is the same size as the pointer type.
1922   if (LHSCI->getOpcode() == Instruction::PtrToInt &&
1923       DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) {
1924     Value *RHSOp = nullptr;
1925     if (PtrToIntOperator *RHSC = dyn_cast<PtrToIntOperator>(ICI.getOperand(1))) {
1926       Value *RHSCIOp = RHSC->getOperand(0);
1927       if (RHSCIOp->getType()->getPointerAddressSpace() ==
1928           LHSCIOp->getType()->getPointerAddressSpace()) {
1929         RHSOp = RHSC->getOperand(0);
1930         // If the pointer types don't match, insert a bitcast.
1931         if (LHSCIOp->getType() != RHSOp->getType())
1932           RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
1933       }
1934     } else if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1)))
1935       RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
1936
1937     if (RHSOp)
1938       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
1939   }
1940
1941   // The code below only handles extension cast instructions, so far.
1942   // Enforce this.
1943   if (LHSCI->getOpcode() != Instruction::ZExt &&
1944       LHSCI->getOpcode() != Instruction::SExt)
1945     return nullptr;
1946
1947   bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
1948   bool isSignedCmp = ICI.isSigned();
1949
1950   if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
1951     // Not an extension from the same type?
1952     RHSCIOp = CI->getOperand(0);
1953     if (RHSCIOp->getType() != LHSCIOp->getType())
1954       return nullptr;
1955
1956     // If the signedness of the two casts doesn't agree (i.e. one is a sext
1957     // and the other is a zext), then we can't handle this.
1958     if (CI->getOpcode() != LHSCI->getOpcode())
1959       return nullptr;
1960
1961     // Deal with equality cases early.
1962     if (ICI.isEquality())
1963       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1964
1965     // A signed comparison of sign extended values simplifies into a
1966     // signed comparison.
1967     if (isSignedCmp && isSignedExt)
1968       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1969
1970     // The other three cases all fold into an unsigned comparison.
1971     return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
1972   }
1973
1974   // If we aren't dealing with a constant on the RHS, exit early
1975   ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
1976   if (!CI)
1977     return nullptr;
1978
1979   // Compute the constant that would happen if we truncated to SrcTy then
1980   // reextended to DestTy.
1981   Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
1982   Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
1983                                                 Res1, DestTy);
1984
1985   // If the re-extended constant didn't change...
1986   if (Res2 == CI) {
1987     // Deal with equality cases early.
1988     if (ICI.isEquality())
1989       return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1990
1991     // A signed comparison of sign extended values simplifies into a
1992     // signed comparison.
1993     if (isSignedExt && isSignedCmp)
1994       return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1995
1996     // The other three cases all fold into an unsigned comparison.
1997     return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
1998   }
1999
2000   // The re-extended constant changed so the constant cannot be represented
2001   // in the shorter type. Consequently, we cannot emit a simple comparison.
2002   // All the cases that fold to true or false will have already been handled
2003   // by SimplifyICmpInst, so only deal with the tricky case.
2004
2005   if (isSignedCmp || !isSignedExt)
2006     return nullptr;
2007
2008   // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
2009   // should have been folded away previously and not enter in here.
2010
2011   // We're performing an unsigned comp with a sign extended value.
2012   // This is true if the input is >= 0. [aka >s -1]
2013   Constant *NegOne = Constant::getAllOnesValue(SrcTy);
2014   Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
2015
2016   // Finally, return the value computed.
2017   if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
2018     return ReplaceInstUsesWith(ICI, Result);
2019
2020   assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
2021   return BinaryOperator::CreateNot(Result);
2022 }
2023
2024 /// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
2025 ///   I = icmp ugt (add (add A, B), CI2), CI1
2026 /// If this is of the form:
2027 ///   sum = a + b
2028 ///   if (sum+128 >u 255)
2029 /// Then replace it with llvm.sadd.with.overflow.i8.
2030 ///
2031 static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
2032                                           ConstantInt *CI2, ConstantInt *CI1,
2033                                           InstCombiner &IC) {
2034   // The transformation we're trying to do here is to transform this into an
2035   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
2036   // with a narrower add, and discard the add-with-constant that is part of the
2037   // range check (if we can't eliminate it, this isn't profitable).
2038
2039   // In order to eliminate the add-with-constant, the compare can be its only
2040   // use.
2041   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
2042   if (!AddWithCst->hasOneUse()) return nullptr;
2043
2044   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
2045   if (!CI2->getValue().isPowerOf2()) return nullptr;
2046   unsigned NewWidth = CI2->getValue().countTrailingZeros();
2047   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return nullptr;
2048
2049   // The width of the new add formed is 1 more than the bias.
2050   ++NewWidth;
2051
2052   // Check to see that CI1 is an all-ones value with NewWidth bits.
2053   if (CI1->getBitWidth() == NewWidth ||
2054       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
2055     return nullptr;
2056
2057   // This is only really a signed overflow check if the inputs have been
2058   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
2059   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
2060   unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
2061   if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
2062       IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
2063     return nullptr;
2064
2065   // In order to replace the original add with a narrower
2066   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
2067   // and truncates that discard the high bits of the add.  Verify that this is
2068   // the case.
2069   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
2070   for (User *U : OrigAdd->users()) {
2071     if (U == AddWithCst) continue;
2072
2073     // Only accept truncates for now.  We would really like a nice recursive
2074     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
2075     // chain to see which bits of a value are actually demanded.  If the
2076     // original add had another add which was then immediately truncated, we
2077     // could still do the transformation.
2078     TruncInst *TI = dyn_cast<TruncInst>(U);
2079     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
2080       return nullptr;
2081   }
2082
2083   // If the pattern matches, truncate the inputs to the narrower type and
2084   // use the sadd_with_overflow intrinsic to efficiently compute both the
2085   // result and the overflow bit.
2086   Module *M = I.getParent()->getParent()->getParent();
2087
2088   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
2089   Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
2090                                        NewType);
2091
2092   InstCombiner::BuilderTy *Builder = IC.Builder;
2093
2094   // Put the new code above the original add, in case there are any uses of the
2095   // add between the add and the compare.
2096   Builder->SetInsertPoint(OrigAdd);
2097
2098   Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
2099   Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
2100   CallInst *Call = Builder->CreateCall(F, {TruncA, TruncB}, "sadd");
2101   Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
2102   Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
2103
2104   // The inner add was the result of the narrow add, zero extended to the
2105   // wider type.  Replace it with the result computed by the intrinsic.
2106   IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
2107
2108   // The original icmp gets replaced with the overflow value.
2109   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
2110 }
2111
2112 bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS,
2113                                          Value *RHS, Instruction &OrigI,
2114                                          Value *&Result, Constant *&Overflow) {
2115   assert((!OrigI.isCommutative() ||
2116           !(isa<Constant>(LHS) && !isa<Constant>(RHS))) &&
2117          "call with a constant RHS if possible!");
2118
2119   auto SetResult = [&](Value *OpResult, Constant *OverflowVal, bool ReuseName) {
2120     Result = OpResult;
2121     Overflow = OverflowVal;
2122     if (ReuseName)
2123       Result->takeName(&OrigI);
2124     return true;
2125   };
2126
2127   switch (OCF) {
2128   case OCF_INVALID:
2129     llvm_unreachable("bad overflow check kind!");
2130
2131   case OCF_UNSIGNED_ADD: {
2132     OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, &OrigI);
2133     if (OR == OverflowResult::NeverOverflows)
2134       return SetResult(Builder->CreateNUWAdd(LHS, RHS), Builder->getFalse(),
2135                        true);
2136
2137     if (OR == OverflowResult::AlwaysOverflows)
2138       return SetResult(Builder->CreateAdd(LHS, RHS), Builder->getTrue(), true);
2139   }
2140   // FALL THROUGH uadd into sadd
2141   case OCF_SIGNED_ADD: {
2142     // X + 0 -> {X, false}
2143     if (match(RHS, m_Zero()))
2144       return SetResult(LHS, Builder->getFalse(), false);
2145
2146     // We can strength reduce this signed add into a regular add if we can prove
2147     // that it will never overflow.
2148     if (OCF == OCF_SIGNED_ADD)
2149       if (WillNotOverflowSignedAdd(LHS, RHS, OrigI))
2150         return SetResult(Builder->CreateNSWAdd(LHS, RHS), Builder->getFalse(),
2151                          true);
2152     break;
2153   }
2154
2155   case OCF_UNSIGNED_SUB:
2156   case OCF_SIGNED_SUB: {
2157     // X - 0 -> {X, false}
2158     if (match(RHS, m_Zero()))
2159       return SetResult(LHS, Builder->getFalse(), false);
2160
2161     if (OCF == OCF_SIGNED_SUB) {
2162       if (WillNotOverflowSignedSub(LHS, RHS, OrigI))
2163         return SetResult(Builder->CreateNSWSub(LHS, RHS), Builder->getFalse(),
2164                          true);
2165     } else {
2166       if (WillNotOverflowUnsignedSub(LHS, RHS, OrigI))
2167         return SetResult(Builder->CreateNUWSub(LHS, RHS), Builder->getFalse(),
2168                          true);
2169     }
2170     break;
2171   }
2172
2173   case OCF_UNSIGNED_MUL: {
2174     OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, &OrigI);
2175     if (OR == OverflowResult::NeverOverflows)
2176       return SetResult(Builder->CreateNUWMul(LHS, RHS), Builder->getFalse(),
2177                        true);
2178     if (OR == OverflowResult::AlwaysOverflows)
2179       return SetResult(Builder->CreateMul(LHS, RHS), Builder->getTrue(), true);
2180   } // FALL THROUGH
2181   case OCF_SIGNED_MUL:
2182     // X * undef -> undef
2183     if (isa<UndefValue>(RHS))
2184       return SetResult(RHS, UndefValue::get(Builder->getInt1Ty()), false);
2185
2186     // X * 0 -> {0, false}
2187     if (match(RHS, m_Zero()))
2188       return SetResult(RHS, Builder->getFalse(), false);
2189
2190     // X * 1 -> {X, false}
2191     if (match(RHS, m_One()))
2192       return SetResult(LHS, Builder->getFalse(), false);
2193
2194     if (OCF == OCF_SIGNED_MUL)
2195       if (WillNotOverflowSignedMul(LHS, RHS, OrigI))
2196         return SetResult(Builder->CreateNSWMul(LHS, RHS), Builder->getFalse(),
2197                          true);
2198     break;
2199   }
2200
2201   return false;
2202 }
2203
2204 /// \brief Recognize and process idiom involving test for multiplication
2205 /// overflow.
2206 ///
2207 /// The caller has matched a pattern of the form:
2208 ///   I = cmp u (mul(zext A, zext B), V
2209 /// The function checks if this is a test for overflow and if so replaces
2210 /// multiplication with call to 'mul.with.overflow' intrinsic.
2211 ///
2212 /// \param I Compare instruction.
2213 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
2214 ///               the compare instruction.  Must be of integer type.
2215 /// \param OtherVal The other argument of compare instruction.
2216 /// \returns Instruction which must replace the compare instruction, NULL if no
2217 ///          replacement required.
2218 static Instruction *ProcessUMulZExtIdiom(ICmpInst &I, Value *MulVal,
2219                                          Value *OtherVal, InstCombiner &IC) {
2220   // Don't bother doing this transformation for pointers, don't do it for
2221   // vectors.
2222   if (!isa<IntegerType>(MulVal->getType()))
2223     return nullptr;
2224
2225   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
2226   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
2227   Instruction *MulInstr = cast<Instruction>(MulVal);
2228   assert(MulInstr->getOpcode() == Instruction::Mul);
2229
2230   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
2231        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
2232   assert(LHS->getOpcode() == Instruction::ZExt);
2233   assert(RHS->getOpcode() == Instruction::ZExt);
2234   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
2235
2236   // Calculate type and width of the result produced by mul.with.overflow.
2237   Type *TyA = A->getType(), *TyB = B->getType();
2238   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
2239            WidthB = TyB->getPrimitiveSizeInBits();
2240   unsigned MulWidth;
2241   Type *MulType;
2242   if (WidthB > WidthA) {
2243     MulWidth = WidthB;
2244     MulType = TyB;
2245   } else {
2246     MulWidth = WidthA;
2247     MulType = TyA;
2248   }
2249
2250   // In order to replace the original mul with a narrower mul.with.overflow,
2251   // all uses must ignore upper bits of the product.  The number of used low
2252   // bits must be not greater than the width of mul.with.overflow.
2253   if (MulVal->hasNUsesOrMore(2))
2254     for (User *U : MulVal->users()) {
2255       if (U == &I)
2256         continue;
2257       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
2258         // Check if truncation ignores bits above MulWidth.
2259         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
2260         if (TruncWidth > MulWidth)
2261           return nullptr;
2262       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
2263         // Check if AND ignores bits above MulWidth.
2264         if (BO->getOpcode() != Instruction::And)
2265           return nullptr;
2266         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
2267           const APInt &CVal = CI->getValue();
2268           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
2269             return nullptr;
2270         }
2271       } else {
2272         // Other uses prohibit this transformation.
2273         return nullptr;
2274       }
2275     }
2276
2277   // Recognize patterns
2278   switch (I.getPredicate()) {
2279   case ICmpInst::ICMP_EQ:
2280   case ICmpInst::ICMP_NE:
2281     // Recognize pattern:
2282     //   mulval = mul(zext A, zext B)
2283     //   cmp eq/neq mulval, zext trunc mulval
2284     if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
2285       if (Zext->hasOneUse()) {
2286         Value *ZextArg = Zext->getOperand(0);
2287         if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
2288           if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
2289             break; //Recognized
2290       }
2291
2292     // Recognize pattern:
2293     //   mulval = mul(zext A, zext B)
2294     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
2295     ConstantInt *CI;
2296     Value *ValToMask;
2297     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
2298       if (ValToMask != MulVal)
2299         return nullptr;
2300       const APInt &CVal = CI->getValue() + 1;
2301       if (CVal.isPowerOf2()) {
2302         unsigned MaskWidth = CVal.logBase2();
2303         if (MaskWidth == MulWidth)
2304           break; // Recognized
2305       }
2306     }
2307     return nullptr;
2308
2309   case ICmpInst::ICMP_UGT:
2310     // Recognize pattern:
2311     //   mulval = mul(zext A, zext B)
2312     //   cmp ugt mulval, max
2313     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2314       APInt MaxVal = APInt::getMaxValue(MulWidth);
2315       MaxVal = MaxVal.zext(CI->getBitWidth());
2316       if (MaxVal.eq(CI->getValue()))
2317         break; // Recognized
2318     }
2319     return nullptr;
2320
2321   case ICmpInst::ICMP_UGE:
2322     // Recognize pattern:
2323     //   mulval = mul(zext A, zext B)
2324     //   cmp uge mulval, max+1
2325     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2326       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
2327       if (MaxVal.eq(CI->getValue()))
2328         break; // Recognized
2329     }
2330     return nullptr;
2331
2332   case ICmpInst::ICMP_ULE:
2333     // Recognize pattern:
2334     //   mulval = mul(zext A, zext B)
2335     //   cmp ule mulval, max
2336     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2337       APInt MaxVal = APInt::getMaxValue(MulWidth);
2338       MaxVal = MaxVal.zext(CI->getBitWidth());
2339       if (MaxVal.eq(CI->getValue()))
2340         break; // Recognized
2341     }
2342     return nullptr;
2343
2344   case ICmpInst::ICMP_ULT:
2345     // Recognize pattern:
2346     //   mulval = mul(zext A, zext B)
2347     //   cmp ule mulval, max + 1
2348     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2349       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
2350       if (MaxVal.eq(CI->getValue()))
2351         break; // Recognized
2352     }
2353     return nullptr;
2354
2355   default:
2356     return nullptr;
2357   }
2358
2359   InstCombiner::BuilderTy *Builder = IC.Builder;
2360   Builder->SetInsertPoint(MulInstr);
2361   Module *M = I.getParent()->getParent()->getParent();
2362
2363   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
2364   Value *MulA = A, *MulB = B;
2365   if (WidthA < MulWidth)
2366     MulA = Builder->CreateZExt(A, MulType);
2367   if (WidthB < MulWidth)
2368     MulB = Builder->CreateZExt(B, MulType);
2369   Value *F =
2370       Intrinsic::getDeclaration(M, Intrinsic::umul_with_overflow, MulType);
2371   CallInst *Call = Builder->CreateCall(F, {MulA, MulB}, "umul");
2372   IC.Worklist.Add(MulInstr);
2373
2374   // If there are uses of mul result other than the comparison, we know that
2375   // they are truncation or binary AND. Change them to use result of
2376   // mul.with.overflow and adjust properly mask/size.
2377   if (MulVal->hasNUsesOrMore(2)) {
2378     Value *Mul = Builder->CreateExtractValue(Call, 0, "umul.value");
2379     for (User *U : MulVal->users()) {
2380       if (U == &I || U == OtherVal)
2381         continue;
2382       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
2383         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
2384           IC.ReplaceInstUsesWith(*TI, Mul);
2385         else
2386           TI->setOperand(0, Mul);
2387       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
2388         assert(BO->getOpcode() == Instruction::And);
2389         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
2390         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
2391         APInt ShortMask = CI->getValue().trunc(MulWidth);
2392         Value *ShortAnd = Builder->CreateAnd(Mul, ShortMask);
2393         Instruction *Zext =
2394             cast<Instruction>(Builder->CreateZExt(ShortAnd, BO->getType()));
2395         IC.Worklist.Add(Zext);
2396         IC.ReplaceInstUsesWith(*BO, Zext);
2397       } else {
2398         llvm_unreachable("Unexpected Binary operation");
2399       }
2400       IC.Worklist.Add(cast<Instruction>(U));
2401     }
2402   }
2403   if (isa<Instruction>(OtherVal))
2404     IC.Worklist.Add(cast<Instruction>(OtherVal));
2405
2406   // The original icmp gets replaced with the overflow value, maybe inverted
2407   // depending on predicate.
2408   bool Inverse = false;
2409   switch (I.getPredicate()) {
2410   case ICmpInst::ICMP_NE:
2411     break;
2412   case ICmpInst::ICMP_EQ:
2413     Inverse = true;
2414     break;
2415   case ICmpInst::ICMP_UGT:
2416   case ICmpInst::ICMP_UGE:
2417     if (I.getOperand(0) == MulVal)
2418       break;
2419     Inverse = true;
2420     break;
2421   case ICmpInst::ICMP_ULT:
2422   case ICmpInst::ICMP_ULE:
2423     if (I.getOperand(1) == MulVal)
2424       break;
2425     Inverse = true;
2426     break;
2427   default:
2428     llvm_unreachable("Unexpected predicate");
2429   }
2430   if (Inverse) {
2431     Value *Res = Builder->CreateExtractValue(Call, 1);
2432     return BinaryOperator::CreateNot(Res);
2433   }
2434
2435   return ExtractValueInst::Create(Call, 1);
2436 }
2437
2438 // DemandedBitsLHSMask - When performing a comparison against a constant,
2439 // it is possible that not all the bits in the LHS are demanded.  This helper
2440 // method computes the mask that IS demanded.
2441 static APInt DemandedBitsLHSMask(ICmpInst &I,
2442                                  unsigned BitWidth, bool isSignCheck) {
2443   if (isSignCheck)
2444     return APInt::getSignBit(BitWidth);
2445
2446   ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
2447   if (!CI) return APInt::getAllOnesValue(BitWidth);
2448   const APInt &RHS = CI->getValue();
2449
2450   switch (I.getPredicate()) {
2451   // For a UGT comparison, we don't care about any bits that
2452   // correspond to the trailing ones of the comparand.  The value of these
2453   // bits doesn't impact the outcome of the comparison, because any value
2454   // greater than the RHS must differ in a bit higher than these due to carry.
2455   case ICmpInst::ICMP_UGT: {
2456     unsigned trailingOnes = RHS.countTrailingOnes();
2457     APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
2458     return ~lowBitsSet;
2459   }
2460
2461   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
2462   // Any value less than the RHS must differ in a higher bit because of carries.
2463   case ICmpInst::ICMP_ULT: {
2464     unsigned trailingZeros = RHS.countTrailingZeros();
2465     APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
2466     return ~lowBitsSet;
2467   }
2468
2469   default:
2470     return APInt::getAllOnesValue(BitWidth);
2471   }
2472
2473 }
2474
2475 /// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst
2476 /// should be swapped.
2477 /// The decision is based on how many times these two operands are reused
2478 /// as subtract operands and their positions in those instructions.
2479 /// The rational is that several architectures use the same instruction for
2480 /// both subtract and cmp, thus it is better if the order of those operands
2481 /// match.
2482 /// \return true if Op0 and Op1 should be swapped.
2483 static bool swapMayExposeCSEOpportunities(const Value * Op0,
2484                                           const Value * Op1) {
2485   // Filter out pointer value as those cannot appears directly in subtract.
2486   // FIXME: we may want to go through inttoptrs or bitcasts.
2487   if (Op0->getType()->isPointerTy())
2488     return false;
2489   // Count every uses of both Op0 and Op1 in a subtract.
2490   // Each time Op0 is the first operand, count -1: swapping is bad, the
2491   // subtract has already the same layout as the compare.
2492   // Each time Op0 is the second operand, count +1: swapping is good, the
2493   // subtract has a different layout as the compare.
2494   // At the end, if the benefit is greater than 0, Op0 should come second to
2495   // expose more CSE opportunities.
2496   int GlobalSwapBenefits = 0;
2497   for (const User *U : Op0->users()) {
2498     const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(U);
2499     if (!BinOp || BinOp->getOpcode() != Instruction::Sub)
2500       continue;
2501     // If Op0 is the first argument, this is not beneficial to swap the
2502     // arguments.
2503     int LocalSwapBenefits = -1;
2504     unsigned Op1Idx = 1;
2505     if (BinOp->getOperand(Op1Idx) == Op0) {
2506       Op1Idx = 0;
2507       LocalSwapBenefits = 1;
2508     }
2509     if (BinOp->getOperand(Op1Idx) != Op1)
2510       continue;
2511     GlobalSwapBenefits += LocalSwapBenefits;
2512   }
2513   return GlobalSwapBenefits > 0;
2514 }
2515
2516 /// \brief Check that one use is in the same block as the definition and all
2517 /// other uses are in blocks dominated by a given block
2518 ///
2519 /// \param DI Definition
2520 /// \param UI Use
2521 /// \param DB Block that must dominate all uses of \p DI outside
2522 ///           the parent block
2523 /// \return true when \p UI is the only use of \p DI in the parent block
2524 /// and all other uses of \p DI are in blocks dominated by \p DB.
2525 ///
2526 bool InstCombiner::dominatesAllUses(const Instruction *DI,
2527                                     const Instruction *UI,
2528                                     const BasicBlock *DB) const {
2529   assert(DI && UI && "Instruction not defined\n");
2530   // ignore incomplete definitions
2531   if (!DI->getParent())
2532     return false;
2533   // DI and UI must be in the same block
2534   if (DI->getParent() != UI->getParent())
2535     return false;
2536   // Protect from self-referencing blocks
2537   if (DI->getParent() == DB)
2538     return false;
2539   // DominatorTree available?
2540   if (!DT)
2541     return false;
2542   for (const User *U : DI->users()) {
2543     auto *Usr = cast<Instruction>(U);
2544     if (Usr != UI && !DT->dominates(DB, Usr->getParent()))
2545       return false;
2546   }
2547   return true;
2548 }
2549
2550 ///
2551 /// true when the instruction sequence within a block is select-cmp-br.
2552 ///
2553 static bool isChainSelectCmpBranch(const SelectInst *SI) {
2554   const BasicBlock *BB = SI->getParent();
2555   if (!BB)
2556     return false;
2557   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
2558   if (!BI || BI->getNumSuccessors() != 2)
2559     return false;
2560   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
2561   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
2562     return false;
2563   return true;
2564 }
2565
2566 ///
2567 /// \brief True when a select result is replaced by one of its operands
2568 /// in select-icmp sequence. This will eventually result in the elimination
2569 /// of the select.
2570 ///
2571 /// \param SI    Select instruction
2572 /// \param Icmp  Compare instruction
2573 /// \param SIOpd Operand that replaces the select
2574 ///
2575 /// Notes:
2576 /// - The replacement is global and requires dominator information
2577 /// - The caller is responsible for the actual replacement
2578 ///
2579 /// Example:
2580 ///
2581 /// entry:
2582 ///  %4 = select i1 %3, %C* %0, %C* null
2583 ///  %5 = icmp eq %C* %4, null
2584 ///  br i1 %5, label %9, label %7
2585 ///  ...
2586 ///  ; <label>:7                                       ; preds = %entry
2587 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
2588 ///  ...
2589 ///
2590 /// can be transformed to
2591 ///
2592 ///  %5 = icmp eq %C* %0, null
2593 ///  %6 = select i1 %3, i1 %5, i1 true
2594 ///  br i1 %6, label %9, label %7
2595 ///  ...
2596 ///  ; <label>:7                                       ; preds = %entry
2597 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
2598 ///
2599 /// Similar when the first operand of the select is a constant or/and
2600 /// the compare is for not equal rather than equal.
2601 ///
2602 /// NOTE: The function is only called when the select and compare constants
2603 /// are equal, the optimization can work only for EQ predicates. This is not a
2604 /// major restriction since a NE compare should be 'normalized' to an equal
2605 /// compare, which usually happens in the combiner and test case
2606 /// select-cmp-br.ll
2607 /// checks for it.
2608 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
2609                                              const ICmpInst *Icmp,
2610                                              const unsigned SIOpd) {
2611   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
2612   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
2613     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
2614     // The check for the unique predecessor is not the best that can be
2615     // done. But it protects efficiently against cases like  when SI's
2616     // home block has two successors, Succ and Succ1, and Succ1 predecessor
2617     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
2618     // replaced can be reached on either path. So the uniqueness check
2619     // guarantees that the path all uses of SI (outside SI's parent) are on
2620     // is disjoint from all other paths out of SI. But that information
2621     // is more expensive to compute, and the trade-off here is in favor
2622     // of compile-time.
2623     if (Succ->getUniquePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
2624       NumSel++;
2625       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
2626       return true;
2627     }
2628   }
2629   return false;
2630 }
2631
2632 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
2633   bool Changed = false;
2634   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2635   unsigned Op0Cplxity = getComplexity(Op0);
2636   unsigned Op1Cplxity = getComplexity(Op1);
2637
2638   /// Orders the operands of the compare so that they are listed from most
2639   /// complex to least complex.  This puts constants before unary operators,
2640   /// before binary operators.
2641   if (Op0Cplxity < Op1Cplxity ||
2642         (Op0Cplxity == Op1Cplxity &&
2643          swapMayExposeCSEOpportunities(Op0, Op1))) {
2644     I.swapOperands();
2645     std::swap(Op0, Op1);
2646     Changed = true;
2647   }
2648
2649   if (Value *V =
2650           SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL, TLI, DT, AC, &I))
2651     return ReplaceInstUsesWith(I, V);
2652
2653   // comparing -val or val with non-zero is the same as just comparing val
2654   // ie, abs(val) != 0 -> val != 0
2655   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero()))
2656   {
2657     Value *Cond, *SelectTrue, *SelectFalse;
2658     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
2659                             m_Value(SelectFalse)))) {
2660       if (Value *V = dyn_castNegVal(SelectTrue)) {
2661         if (V == SelectFalse)
2662           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
2663       }
2664       else if (Value *V = dyn_castNegVal(SelectFalse)) {
2665         if (V == SelectTrue)
2666           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
2667       }
2668     }
2669   }
2670
2671   Type *Ty = Op0->getType();
2672
2673   // icmp's with boolean values can always be turned into bitwise operations
2674   if (Ty->isIntegerTy(1)) {
2675     switch (I.getPredicate()) {
2676     default: llvm_unreachable("Invalid icmp instruction!");
2677     case ICmpInst::ICMP_EQ: {               // icmp eq i1 A, B -> ~(A^B)
2678       Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
2679       return BinaryOperator::CreateNot(Xor);
2680     }
2681     case ICmpInst::ICMP_NE:                  // icmp eq i1 A, B -> A^B
2682       return BinaryOperator::CreateXor(Op0, Op1);
2683
2684     case ICmpInst::ICMP_UGT:
2685       std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult
2686       // FALL THROUGH
2687     case ICmpInst::ICMP_ULT:{               // icmp ult i1 A, B -> ~A & B
2688       Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
2689       return BinaryOperator::CreateAnd(Not, Op1);
2690     }
2691     case ICmpInst::ICMP_SGT:
2692       std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt
2693       // FALL THROUGH
2694     case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B
2695       Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
2696       return BinaryOperator::CreateAnd(Not, Op0);
2697     }
2698     case ICmpInst::ICMP_UGE:
2699       std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule
2700       // FALL THROUGH
2701     case ICmpInst::ICMP_ULE: {               //  icmp ule i1 A, B -> ~A | B
2702       Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
2703       return BinaryOperator::CreateOr(Not, Op1);
2704     }
2705     case ICmpInst::ICMP_SGE:
2706       std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle
2707       // FALL THROUGH
2708     case ICmpInst::ICMP_SLE: {               //  icmp sle i1 A, B -> A | ~B
2709       Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
2710       return BinaryOperator::CreateOr(Not, Op0);
2711     }
2712     }
2713   }
2714
2715   unsigned BitWidth = 0;
2716   if (Ty->isIntOrIntVectorTy())
2717     BitWidth = Ty->getScalarSizeInBits();
2718   else // Get pointer size.
2719     BitWidth = DL.getTypeSizeInBits(Ty->getScalarType());
2720
2721   bool isSignBit = false;
2722
2723   // See if we are doing a comparison with a constant.
2724   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2725     Value *A = nullptr, *B = nullptr;
2726
2727     // Match the following pattern, which is a common idiom when writing
2728     // overflow-safe integer arithmetic function.  The source performs an
2729     // addition in wider type, and explicitly checks for overflow using
2730     // comparisons against INT_MIN and INT_MAX.  Simplify this by using the
2731     // sadd_with_overflow intrinsic.
2732     //
2733     // TODO: This could probably be generalized to handle other overflow-safe
2734     // operations if we worked out the formulas to compute the appropriate
2735     // magic constants.
2736     //
2737     // sum = a + b
2738     // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
2739     {
2740     ConstantInt *CI2;    // I = icmp ugt (add (add A, B), CI2), CI
2741     if (I.getPredicate() == ICmpInst::ICMP_UGT &&
2742         match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
2743       if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
2744         return Res;
2745     }
2746
2747     // The following transforms are only 'worth it' if the only user of the
2748     // subtraction is the icmp.
2749     if (Op0->hasOneUse()) {
2750       // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
2751       if (I.isEquality() && CI->isZero() &&
2752           match(Op0, m_Sub(m_Value(A), m_Value(B))))
2753         return new ICmpInst(I.getPredicate(), A, B);
2754
2755       // (icmp sgt (sub nsw A B), -1) -> (icmp sge A, B)
2756       if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isAllOnesValue() &&
2757           match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
2758         return new ICmpInst(ICmpInst::ICMP_SGE, A, B);
2759
2760       // (icmp sgt (sub nsw A B), 0) -> (icmp sgt A, B)
2761       if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isZero() &&
2762           match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
2763         return new ICmpInst(ICmpInst::ICMP_SGT, A, B);
2764
2765       // (icmp slt (sub nsw A B), 0) -> (icmp slt A, B)
2766       if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isZero() &&
2767           match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
2768         return new ICmpInst(ICmpInst::ICMP_SLT, A, B);
2769
2770       // (icmp slt (sub nsw A B), 1) -> (icmp sle A, B)
2771       if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isOne() &&
2772           match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
2773         return new ICmpInst(ICmpInst::ICMP_SLE, A, B);
2774     }
2775
2776     // If we have an icmp le or icmp ge instruction, turn it into the
2777     // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
2778     // them being folded in the code below.  The SimplifyICmpInst code has
2779     // already handled the edge cases for us, so we just assert on them.
2780     switch (I.getPredicate()) {
2781     default: break;
2782     case ICmpInst::ICMP_ULE:
2783       assert(!CI->isMaxValue(false));                 // A <=u MAX -> TRUE
2784       return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
2785                           Builder->getInt(CI->getValue()+1));
2786     case ICmpInst::ICMP_SLE:
2787       assert(!CI->isMaxValue(true));                  // A <=s MAX -> TRUE
2788       return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
2789                           Builder->getInt(CI->getValue()+1));
2790     case ICmpInst::ICMP_UGE:
2791       assert(!CI->isMinValue(false));                 // A >=u MIN -> TRUE
2792       return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
2793                           Builder->getInt(CI->getValue()-1));
2794     case ICmpInst::ICMP_SGE:
2795       assert(!CI->isMinValue(true));                  // A >=s MIN -> TRUE
2796       return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
2797                           Builder->getInt(CI->getValue()-1));
2798     }
2799
2800     if (I.isEquality()) {
2801       ConstantInt *CI2;
2802       if (match(Op0, m_AShr(m_ConstantInt(CI2), m_Value(A))) ||
2803           match(Op0, m_LShr(m_ConstantInt(CI2), m_Value(A)))) {
2804         // (icmp eq/ne (ashr/lshr const2, A), const1)
2805         if (Instruction *Inst = FoldICmpCstShrCst(I, Op0, A, CI, CI2))
2806           return Inst;
2807       }
2808       if (match(Op0, m_Shl(m_ConstantInt(CI2), m_Value(A)))) {
2809         // (icmp eq/ne (shl const2, A), const1)
2810         if (Instruction *Inst = FoldICmpCstShlCst(I, Op0, A, CI, CI2))
2811           return Inst;
2812       }
2813     }
2814
2815     // If this comparison is a normal comparison, it demands all
2816     // bits, if it is a sign bit comparison, it only demands the sign bit.
2817     bool UnusedBit;
2818     isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
2819   }
2820
2821   // See if we can fold the comparison based on range information we can get
2822   // by checking whether bits are known to be zero or one in the input.
2823   if (BitWidth != 0) {
2824     APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
2825     APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
2826
2827     if (SimplifyDemandedBits(I.getOperandUse(0),
2828                              DemandedBitsLHSMask(I, BitWidth, isSignBit),
2829                              Op0KnownZero, Op0KnownOne, 0))
2830       return &I;
2831     if (SimplifyDemandedBits(I.getOperandUse(1),
2832                              APInt::getAllOnesValue(BitWidth), Op1KnownZero,
2833                              Op1KnownOne, 0))
2834       return &I;
2835
2836     // Given the known and unknown bits, compute a range that the LHS could be
2837     // in.  Compute the Min, Max and RHS values based on the known bits. For the
2838     // EQ and NE we use unsigned values.
2839     APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
2840     APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
2841     if (I.isSigned()) {
2842       ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
2843                                              Op0Min, Op0Max);
2844       ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
2845                                              Op1Min, Op1Max);
2846     } else {
2847       ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
2848                                                Op0Min, Op0Max);
2849       ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
2850                                                Op1Min, Op1Max);
2851     }
2852
2853     // If Min and Max are known to be the same, then SimplifyDemandedBits
2854     // figured out that the LHS is a constant.  Just constant fold this now so
2855     // that code below can assume that Min != Max.
2856     if (!isa<Constant>(Op0) && Op0Min == Op0Max)
2857       return new ICmpInst(I.getPredicate(),
2858                           ConstantInt::get(Op0->getType(), Op0Min), Op1);
2859     if (!isa<Constant>(Op1) && Op1Min == Op1Max)
2860       return new ICmpInst(I.getPredicate(), Op0,
2861                           ConstantInt::get(Op1->getType(), Op1Min));
2862
2863     // Based on the range information we know about the LHS, see if we can
2864     // simplify this comparison.  For example, (x&4) < 8 is always true.
2865     switch (I.getPredicate()) {
2866     default: llvm_unreachable("Unknown icmp opcode!");
2867     case ICmpInst::ICMP_EQ: {
2868       if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
2869         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2870
2871       // If all bits are known zero except for one, then we know at most one
2872       // bit is set.   If the comparison is against zero, then this is a check
2873       // to see if *that* bit is set.
2874       APInt Op0KnownZeroInverted = ~Op0KnownZero;
2875       if (~Op1KnownZero == 0) {
2876         // If the LHS is an AND with the same constant, look through it.
2877         Value *LHS = nullptr;
2878         ConstantInt *LHSC = nullptr;
2879         if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
2880             LHSC->getValue() != Op0KnownZeroInverted)
2881           LHS = Op0;
2882
2883         // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
2884         // then turn "((1 << x)&8) == 0" into "x != 3".
2885         // or turn "((1 << x)&7) == 0" into "x > 2".
2886         Value *X = nullptr;
2887         if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
2888           APInt ValToCheck = Op0KnownZeroInverted;
2889           if (ValToCheck.isPowerOf2()) {
2890             unsigned CmpVal = ValToCheck.countTrailingZeros();
2891             return new ICmpInst(ICmpInst::ICMP_NE, X,
2892                                 ConstantInt::get(X->getType(), CmpVal));
2893           } else if ((++ValToCheck).isPowerOf2()) {
2894             unsigned CmpVal = ValToCheck.countTrailingZeros() - 1;
2895             return new ICmpInst(ICmpInst::ICMP_UGT, X,
2896                                 ConstantInt::get(X->getType(), CmpVal));
2897           }
2898         }
2899
2900         // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
2901         // then turn "((8 >>u x)&1) == 0" into "x != 3".
2902         const APInt *CI;
2903         if (Op0KnownZeroInverted == 1 &&
2904             match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
2905           return new ICmpInst(ICmpInst::ICMP_NE, X,
2906                               ConstantInt::get(X->getType(),
2907                                                CI->countTrailingZeros()));
2908       }
2909
2910       break;
2911     }
2912     case ICmpInst::ICMP_NE: {
2913       if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
2914         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2915
2916       // If all bits are known zero except for one, then we know at most one
2917       // bit is set.   If the comparison is against zero, then this is a check
2918       // to see if *that* bit is set.
2919       APInt Op0KnownZeroInverted = ~Op0KnownZero;
2920       if (~Op1KnownZero == 0) {
2921         // If the LHS is an AND with the same constant, look through it.
2922         Value *LHS = nullptr;
2923         ConstantInt *LHSC = nullptr;
2924         if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
2925             LHSC->getValue() != Op0KnownZeroInverted)
2926           LHS = Op0;
2927
2928         // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
2929         // then turn "((1 << x)&8) != 0" into "x == 3".
2930         // or turn "((1 << x)&7) != 0" into "x < 3".
2931         Value *X = nullptr;
2932         if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
2933           APInt ValToCheck = Op0KnownZeroInverted;
2934           if (ValToCheck.isPowerOf2()) {
2935             unsigned CmpVal = ValToCheck.countTrailingZeros();
2936             return new ICmpInst(ICmpInst::ICMP_EQ, X,
2937                                 ConstantInt::get(X->getType(), CmpVal));
2938           } else if ((++ValToCheck).isPowerOf2()) {
2939             unsigned CmpVal = ValToCheck.countTrailingZeros();
2940             return new ICmpInst(ICmpInst::ICMP_ULT, X,
2941                                 ConstantInt::get(X->getType(), CmpVal));
2942           }
2943         }
2944
2945         // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
2946         // then turn "((8 >>u x)&1) != 0" into "x == 3".
2947         const APInt *CI;
2948         if (Op0KnownZeroInverted == 1 &&
2949             match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
2950           return new ICmpInst(ICmpInst::ICMP_EQ, X,
2951                               ConstantInt::get(X->getType(),
2952                                                CI->countTrailingZeros()));
2953       }
2954
2955       break;
2956     }
2957     case ICmpInst::ICMP_ULT:
2958       if (Op0Max.ult(Op1Min))          // A <u B -> true if max(A) < min(B)
2959         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2960       if (Op0Min.uge(Op1Max))          // A <u B -> false if min(A) >= max(B)
2961         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2962       if (Op1Min == Op0Max)            // A <u B -> A != B if max(A) == min(B)
2963         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2964       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2965         if (Op1Max == Op0Min+1)        // A <u C -> A == C-1 if min(A)+1 == C
2966           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2967                               Builder->getInt(CI->getValue()-1));
2968
2969         // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear
2970         if (CI->isMinValue(true))
2971           return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
2972                            Constant::getAllOnesValue(Op0->getType()));
2973       }
2974       break;
2975     case ICmpInst::ICMP_UGT:
2976       if (Op0Min.ugt(Op1Max))          // A >u B -> true if min(A) > max(B)
2977         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2978       if (Op0Max.ule(Op1Min))          // A >u B -> false if max(A) <= max(B)
2979         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2980
2981       if (Op1Max == Op0Min)            // A >u B -> A != B if min(A) == max(B)
2982         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2983       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2984         if (Op1Min == Op0Max-1)        // A >u C -> A == C+1 if max(a)-1 == C
2985           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2986                               Builder->getInt(CI->getValue()+1));
2987
2988         // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set
2989         if (CI->isMaxValue(true))
2990           return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
2991                               Constant::getNullValue(Op0->getType()));
2992       }
2993       break;
2994     case ICmpInst::ICMP_SLT:
2995       if (Op0Max.slt(Op1Min))          // A <s B -> true if max(A) < min(C)
2996         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2997       if (Op0Min.sge(Op1Max))          // A <s B -> false if min(A) >= max(C)
2998         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2999       if (Op1Min == Op0Max)            // A <s B -> A != B if max(A) == min(B)
3000         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
3001       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
3002         if (Op1Max == Op0Min+1)        // A <s C -> A == C-1 if min(A)+1 == C
3003           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
3004                               Builder->getInt(CI->getValue()-1));
3005       }
3006       break;
3007     case ICmpInst::ICMP_SGT:
3008       if (Op0Min.sgt(Op1Max))          // A >s B -> true if min(A) > max(B)
3009         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3010       if (Op0Max.sle(Op1Min))          // A >s B -> false if max(A) <= min(B)
3011         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3012
3013       if (Op1Max == Op0Min)            // A >s B -> A != B if min(A) == max(B)
3014         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
3015       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
3016         if (Op1Min == Op0Max-1)        // A >s C -> A == C+1 if max(A)-1 == C
3017           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
3018                               Builder->getInt(CI->getValue()+1));
3019       }
3020       break;
3021     case ICmpInst::ICMP_SGE:
3022       assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
3023       if (Op0Min.sge(Op1Max))          // A >=s B -> true if min(A) >= max(B)
3024         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3025       if (Op0Max.slt(Op1Min))          // A >=s B -> false if max(A) < min(B)
3026         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3027       break;
3028     case ICmpInst::ICMP_SLE:
3029       assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
3030       if (Op0Max.sle(Op1Min))          // A <=s B -> true if max(A) <= min(B)
3031         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3032       if (Op0Min.sgt(Op1Max))          // A <=s B -> false if min(A) > max(B)
3033         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3034       break;
3035     case ICmpInst::ICMP_UGE:
3036       assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
3037       if (Op0Min.uge(Op1Max))          // A >=u B -> true if min(A) >= max(B)
3038         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3039       if (Op0Max.ult(Op1Min))          // A >=u B -> false if max(A) < min(B)
3040         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3041       break;
3042     case ICmpInst::ICMP_ULE:
3043       assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
3044       if (Op0Max.ule(Op1Min))          // A <=u B -> true if max(A) <= min(B)
3045         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3046       if (Op0Min.ugt(Op1Max))          // A <=u B -> false if min(A) > max(B)
3047         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3048       break;
3049     }
3050
3051     // Turn a signed comparison into an unsigned one if both operands
3052     // are known to have the same sign.
3053     if (I.isSigned() &&
3054         ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
3055          (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
3056       return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
3057   }
3058
3059   // Test if the ICmpInst instruction is used exclusively by a select as
3060   // part of a minimum or maximum operation. If so, refrain from doing
3061   // any other folding. This helps out other analyses which understand
3062   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
3063   // and CodeGen. And in this case, at least one of the comparison
3064   // operands has at least one user besides the compare (the select),
3065   // which would often largely negate the benefit of folding anyway.
3066   if (I.hasOneUse())
3067     if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
3068       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
3069           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
3070         return nullptr;
3071
3072   // See if we are doing a comparison between a constant and an instruction that
3073   // can be folded into the comparison.
3074   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
3075     // Since the RHS is a ConstantInt (CI), if the left hand side is an
3076     // instruction, see if that instruction also has constants so that the
3077     // instruction can be folded into the icmp
3078     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
3079       if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
3080         return Res;
3081   }
3082
3083   // Handle icmp with constant (but not simple integer constant) RHS
3084   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
3085     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
3086       switch (LHSI->getOpcode()) {
3087       case Instruction::GetElementPtr:
3088           // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3089         if (RHSC->isNullValue() &&
3090             cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3091           return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
3092                   Constant::getNullValue(LHSI->getOperand(0)->getType()));
3093         break;
3094       case Instruction::PHI:
3095         // Only fold icmp into the PHI if the phi and icmp are in the same
3096         // block.  If in the same block, we're encouraging jump threading.  If
3097         // not, we are just pessimizing the code by making an i1 phi.
3098         if (LHSI->getParent() == I.getParent())
3099           if (Instruction *NV = FoldOpIntoPhi(I))
3100             return NV;
3101         break;
3102       case Instruction::Select: {
3103         // If either operand of the select is a constant, we can fold the
3104         // comparison into the select arms, which will cause one to be
3105         // constant folded and the select turned into a bitwise or.
3106         Value *Op1 = nullptr, *Op2 = nullptr;
3107         ConstantInt *CI = 0;
3108         if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3109           Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3110           CI = dyn_cast<ConstantInt>(Op1);
3111         }
3112         if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3113           Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3114           CI = dyn_cast<ConstantInt>(Op2);
3115         }
3116
3117         // We only want to perform this transformation if it will not lead to
3118         // additional code. This is true if either both sides of the select
3119         // fold to a constant (in which case the icmp is replaced with a select
3120         // which will usually simplify) or this is the only user of the
3121         // select (in which case we are trading a select+icmp for a simpler
3122         // select+icmp) or all uses of the select can be replaced based on
3123         // dominance information ("Global cases").
3124         bool Transform = false;
3125         if (Op1 && Op2)
3126           Transform = true;
3127         else if (Op1 || Op2) {
3128           // Local case
3129           if (LHSI->hasOneUse())
3130             Transform = true;
3131           // Global cases
3132           else if (CI && !CI->isZero())
3133             // When Op1 is constant try replacing select with second operand.
3134             // Otherwise Op2 is constant and try replacing select with first
3135             // operand.
3136             Transform = replacedSelectWithOperand(cast<SelectInst>(LHSI), &I,
3137                                                   Op1 ? 2 : 1);
3138         }
3139         if (Transform) {
3140           if (!Op1)
3141             Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
3142                                       RHSC, I.getName());
3143           if (!Op2)
3144             Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
3145                                       RHSC, I.getName());
3146           return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3147         }
3148         break;
3149       }
3150       case Instruction::IntToPtr:
3151         // icmp pred inttoptr(X), null -> icmp pred X, 0
3152         if (RHSC->isNullValue() &&
3153             DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3154           return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
3155                         Constant::getNullValue(LHSI->getOperand(0)->getType()));
3156         break;
3157
3158       case Instruction::Load:
3159         // Try to optimize things like "A[i] > 4" to index computations.
3160         if (GetElementPtrInst *GEP =
3161               dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3162           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3163             if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3164                 !cast<LoadInst>(LHSI)->isVolatile())
3165               if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
3166                 return Res;
3167         }
3168         break;
3169       }
3170   }
3171
3172   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
3173   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
3174     if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
3175       return NI;
3176   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
3177     if (Instruction *NI = FoldGEPICmp(GEP, Op0,
3178                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
3179       return NI;
3180
3181   // Test to see if the operands of the icmp are casted versions of other
3182   // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
3183   // now.
3184   if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
3185     if (Op0->getType()->isPointerTy() &&
3186         (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
3187       // We keep moving the cast from the left operand over to the right
3188       // operand, where it can often be eliminated completely.
3189       Op0 = CI->getOperand(0);
3190
3191       // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
3192       // so eliminate it as well.
3193       if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
3194         Op1 = CI2->getOperand(0);
3195
3196       // If Op1 is a constant, we can fold the cast into the constant.
3197       if (Op0->getType() != Op1->getType()) {
3198         if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
3199           Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
3200         } else {
3201           // Otherwise, cast the RHS right before the icmp
3202           Op1 = Builder->CreateBitCast(Op1, Op0->getType());
3203         }
3204       }
3205       return new ICmpInst(I.getPredicate(), Op0, Op1);
3206     }
3207   }
3208
3209   if (isa<CastInst>(Op0)) {
3210     // Handle the special case of: icmp (cast bool to X), <cst>
3211     // This comes up when you have code like
3212     //   int X = A < B;
3213     //   if (X) ...
3214     // For generality, we handle any zero-extension of any operand comparison
3215     // with a constant or another cast from the same type.
3216     if (isa<Constant>(Op1) || isa<CastInst>(Op1))
3217       if (Instruction *R = visitICmpInstWithCastAndCast(I))
3218         return R;
3219   }
3220
3221   // Special logic for binary operators.
3222   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3223   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3224   if (BO0 || BO1) {
3225     CmpInst::Predicate Pred = I.getPredicate();
3226     bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3227     if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3228       NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
3229         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3230         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3231     if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3232       NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
3233         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3234         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3235
3236     // Analyze the case when either Op0 or Op1 is an add instruction.
3237     // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3238     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3239     if (BO0 && BO0->getOpcode() == Instruction::Add)
3240       A = BO0->getOperand(0), B = BO0->getOperand(1);
3241     if (BO1 && BO1->getOpcode() == Instruction::Add)
3242       C = BO1->getOperand(0), D = BO1->getOperand(1);
3243
3244     // icmp (X+cst) < 0 --> X < -cst
3245     if (NoOp0WrapProblem && ICmpInst::isSigned(Pred) && match(Op1, m_Zero()))
3246       if (ConstantInt *RHSC = dyn_cast_or_null<ConstantInt>(B))
3247         if (!RHSC->isMinValue(/*isSigned=*/true))
3248           return new ICmpInst(Pred, A, ConstantExpr::getNeg(RHSC));
3249
3250     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
3251     if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
3252       return new ICmpInst(Pred, A == Op1 ? B : A,
3253                           Constant::getNullValue(Op1->getType()));
3254
3255     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
3256     if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
3257       return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
3258                           C == Op0 ? D : C);
3259
3260     // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
3261     if (A && C && (A == C || A == D || B == C || B == D) &&
3262         NoOp0WrapProblem && NoOp1WrapProblem &&
3263         // Try not to increase register pressure.
3264         BO0->hasOneUse() && BO1->hasOneUse()) {
3265       // Determine Y and Z in the form icmp (X+Y), (X+Z).
3266       Value *Y, *Z;
3267       if (A == C) {
3268         // C + B == C + D  ->  B == D
3269         Y = B;
3270         Z = D;
3271       } else if (A == D) {
3272         // D + B == C + D  ->  B == C
3273         Y = B;
3274         Z = C;
3275       } else if (B == C) {
3276         // A + C == C + D  ->  A == D
3277         Y = A;
3278         Z = D;
3279       } else {
3280         assert(B == D);
3281         // A + D == C + D  ->  A == C
3282         Y = A;
3283         Z = C;
3284       }
3285       return new ICmpInst(Pred, Y, Z);
3286     }
3287
3288     // icmp slt (X + -1), Y -> icmp sle X, Y
3289     if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
3290         match(B, m_AllOnes()))
3291       return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
3292
3293     // icmp sge (X + -1), Y -> icmp sgt X, Y
3294     if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
3295         match(B, m_AllOnes()))
3296       return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
3297
3298     // icmp sle (X + 1), Y -> icmp slt X, Y
3299     if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE &&
3300         match(B, m_One()))
3301       return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
3302
3303     // icmp sgt (X + 1), Y -> icmp sge X, Y
3304     if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT &&
3305         match(B, m_One()))
3306       return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
3307
3308     // if C1 has greater magnitude than C2:
3309     //  icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
3310     //  s.t. C3 = C1 - C2
3311     //
3312     // if C2 has greater magnitude than C1:
3313     //  icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
3314     //  s.t. C3 = C2 - C1
3315     if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
3316         (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
3317       if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
3318         if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
3319           const APInt &AP1 = C1->getValue();
3320           const APInt &AP2 = C2->getValue();
3321           if (AP1.isNegative() == AP2.isNegative()) {
3322             APInt AP1Abs = C1->getValue().abs();
3323             APInt AP2Abs = C2->getValue().abs();
3324             if (AP1Abs.uge(AP2Abs)) {
3325               ConstantInt *C3 = Builder->getInt(AP1 - AP2);
3326               Value *NewAdd = Builder->CreateNSWAdd(A, C3);
3327               return new ICmpInst(Pred, NewAdd, C);
3328             } else {
3329               ConstantInt *C3 = Builder->getInt(AP2 - AP1);
3330               Value *NewAdd = Builder->CreateNSWAdd(C, C3);
3331               return new ICmpInst(Pred, A, NewAdd);
3332             }
3333           }
3334         }
3335
3336
3337     // Analyze the case when either Op0 or Op1 is a sub instruction.
3338     // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
3339     A = nullptr; B = nullptr; C = nullptr; D = nullptr;
3340     if (BO0 && BO0->getOpcode() == Instruction::Sub)
3341       A = BO0->getOperand(0), B = BO0->getOperand(1);
3342     if (BO1 && BO1->getOpcode() == Instruction::Sub)
3343       C = BO1->getOperand(0), D = BO1->getOperand(1);
3344
3345     // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
3346     if (A == Op1 && NoOp0WrapProblem)
3347       return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
3348
3349     // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
3350     if (C == Op0 && NoOp1WrapProblem)
3351       return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
3352
3353     // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
3354     if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
3355         // Try not to increase register pressure.
3356         BO0->hasOneUse() && BO1->hasOneUse())
3357       return new ICmpInst(Pred, A, C);
3358
3359     // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
3360     if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
3361         // Try not to increase register pressure.
3362         BO0->hasOneUse() && BO1->hasOneUse())
3363       return new ICmpInst(Pred, D, B);
3364
3365     // icmp (0-X) < cst --> x > -cst
3366     if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
3367       Value *X;
3368       if (match(BO0, m_Neg(m_Value(X))))
3369         if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
3370           if (!RHSC->isMinValue(/*isSigned=*/true))
3371             return new ICmpInst(I.getSwappedPredicate(), X,
3372                                 ConstantExpr::getNeg(RHSC));
3373     }
3374
3375     BinaryOperator *SRem = nullptr;
3376     // icmp (srem X, Y), Y
3377     if (BO0 && BO0->getOpcode() == Instruction::SRem &&
3378         Op1 == BO0->getOperand(1))
3379       SRem = BO0;
3380     // icmp Y, (srem X, Y)
3381     else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
3382              Op0 == BO1->getOperand(1))
3383       SRem = BO1;
3384     if (SRem) {
3385       // We don't check hasOneUse to avoid increasing register pressure because
3386       // the value we use is the same value this instruction was already using.
3387       switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
3388         default: break;
3389         case ICmpInst::ICMP_EQ:
3390           return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3391         case ICmpInst::ICMP_NE:
3392           return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3393         case ICmpInst::ICMP_SGT:
3394         case ICmpInst::ICMP_SGE:
3395           return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
3396                               Constant::getAllOnesValue(SRem->getType()));
3397         case ICmpInst::ICMP_SLT:
3398         case ICmpInst::ICMP_SLE:
3399           return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
3400                               Constant::getNullValue(SRem->getType()));
3401       }
3402     }
3403
3404     if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
3405         BO0->hasOneUse() && BO1->hasOneUse() &&
3406         BO0->getOperand(1) == BO1->getOperand(1)) {
3407       switch (BO0->getOpcode()) {
3408       default: break;
3409       case Instruction::Add:
3410       case Instruction::Sub:
3411       case Instruction::Xor:
3412         if (I.isEquality())    // a+x icmp eq/ne b+x --> a icmp b
3413           return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
3414                               BO1->getOperand(0));
3415         // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
3416         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
3417           if (CI->getValue().isSignBit()) {
3418             ICmpInst::Predicate Pred = I.isSigned()
3419                                            ? I.getUnsignedPredicate()
3420                                            : I.getSignedPredicate();
3421             return new ICmpInst(Pred, BO0->getOperand(0),
3422                                 BO1->getOperand(0));
3423           }
3424
3425           if (CI->isMaxValue(true)) {
3426             ICmpInst::Predicate Pred = I.isSigned()
3427                                            ? I.getUnsignedPredicate()
3428                                            : I.getSignedPredicate();
3429             Pred = I.getSwappedPredicate(Pred);
3430             return new ICmpInst(Pred, BO0->getOperand(0),
3431                                 BO1->getOperand(0));
3432           }
3433         }
3434         break;
3435       case Instruction::Mul:
3436         if (!I.isEquality())
3437           break;
3438
3439         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
3440           // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
3441           // Mask = -1 >> count-trailing-zeros(Cst).
3442           if (!CI->isZero() && !CI->isOne()) {
3443             const APInt &AP = CI->getValue();
3444             ConstantInt *Mask = ConstantInt::get(I.getContext(),
3445                                     APInt::getLowBitsSet(AP.getBitWidth(),
3446                                                          AP.getBitWidth() -
3447                                                     AP.countTrailingZeros()));
3448             Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
3449             Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
3450             return new ICmpInst(I.getPredicate(), And1, And2);
3451           }
3452         }
3453         break;
3454       case Instruction::UDiv:
3455       case Instruction::LShr:
3456         if (I.isSigned())
3457           break;
3458         // fall-through
3459       case Instruction::SDiv:
3460       case Instruction::AShr:
3461         if (!BO0->isExact() || !BO1->isExact())
3462           break;
3463         return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
3464                             BO1->getOperand(0));
3465       case Instruction::Shl: {
3466         bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
3467         bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
3468         if (!NUW && !NSW)
3469           break;
3470         if (!NSW && I.isSigned())
3471           break;
3472         return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
3473                             BO1->getOperand(0));
3474       }
3475       }
3476     }
3477   }
3478
3479   { Value *A, *B;
3480     // Transform (A & ~B) == 0 --> (A & B) != 0
3481     // and       (A & ~B) != 0 --> (A & B) == 0
3482     // if A is a power of 2.
3483     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
3484         match(Op1, m_Zero()) &&
3485         isKnownToBeAPowerOfTwo(A, DL, false, 0, AC, &I, DT) && I.isEquality())
3486       return new ICmpInst(I.getInversePredicate(),
3487                           Builder->CreateAnd(A, B),
3488                           Op1);
3489
3490     // ~x < ~y --> y < x
3491     // ~x < cst --> ~cst < x
3492     if (match(Op0, m_Not(m_Value(A)))) {
3493       if (match(Op1, m_Not(m_Value(B))))
3494         return new ICmpInst(I.getPredicate(), B, A);
3495       if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
3496         return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
3497     }
3498
3499     Instruction *AddI = nullptr;
3500     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
3501                                      m_Instruction(AddI))) &&
3502         isa<IntegerType>(A->getType())) {
3503       Value *Result;
3504       Constant *Overflow;
3505       if (OptimizeOverflowCheck(OCF_UNSIGNED_ADD, A, B, *AddI, Result,
3506                                 Overflow)) {
3507         ReplaceInstUsesWith(*AddI, Result);
3508         return ReplaceInstUsesWith(I, Overflow);
3509       }
3510     }
3511
3512     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
3513     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
3514       if (Instruction *R = ProcessUMulZExtIdiom(I, Op0, Op1, *this))
3515         return R;
3516     }
3517     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
3518       if (Instruction *R = ProcessUMulZExtIdiom(I, Op1, Op0, *this))
3519         return R;
3520     }
3521   }
3522
3523   if (I.isEquality()) {
3524     Value *A, *B, *C, *D;
3525
3526     if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3527       if (A == Op1 || B == Op1) {    // (A^B) == A  ->  B == 0
3528         Value *OtherVal = A == Op1 ? B : A;
3529         return new ICmpInst(I.getPredicate(), OtherVal,
3530                             Constant::getNullValue(A->getType()));
3531       }
3532
3533       if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
3534         // A^c1 == C^c2 --> A == C^(c1^c2)
3535         ConstantInt *C1, *C2;
3536         if (match(B, m_ConstantInt(C1)) &&
3537             match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
3538           Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue());
3539           Value *Xor = Builder->CreateXor(C, NC);
3540           return new ICmpInst(I.getPredicate(), A, Xor);
3541         }
3542
3543         // A^B == A^D -> B == D
3544         if (A == C) return new ICmpInst(I.getPredicate(), B, D);
3545         if (A == D) return new ICmpInst(I.getPredicate(), B, C);
3546         if (B == C) return new ICmpInst(I.getPredicate(), A, D);
3547         if (B == D) return new ICmpInst(I.getPredicate(), A, C);
3548       }
3549     }
3550
3551     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
3552         (A == Op0 || B == Op0)) {
3553       // A == (A^B)  ->  B == 0
3554       Value *OtherVal = A == Op0 ? B : A;
3555       return new ICmpInst(I.getPredicate(), OtherVal,
3556                           Constant::getNullValue(A->getType()));
3557     }
3558
3559     // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
3560     if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
3561         match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
3562       Value *X = nullptr, *Y = nullptr, *Z = nullptr;
3563
3564       if (A == C) {
3565         X = B; Y = D; Z = A;
3566       } else if (A == D) {
3567         X = B; Y = C; Z = A;
3568       } else if (B == C) {
3569         X = A; Y = D; Z = B;
3570       } else if (B == D) {
3571         X = A; Y = C; Z = B;
3572       }
3573
3574       if (X) {   // Build (X^Y) & Z
3575         Op1 = Builder->CreateXor(X, Y);
3576         Op1 = Builder->CreateAnd(Op1, Z);
3577         I.setOperand(0, Op1);
3578         I.setOperand(1, Constant::getNullValue(Op1->getType()));
3579         return &I;
3580       }
3581     }
3582
3583     // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
3584     // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
3585     ConstantInt *Cst1;
3586     if ((Op0->hasOneUse() &&
3587          match(Op0, m_ZExt(m_Value(A))) &&
3588          match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
3589         (Op1->hasOneUse() &&
3590          match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
3591          match(Op1, m_ZExt(m_Value(A))))) {
3592       APInt Pow2 = Cst1->getValue() + 1;
3593       if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
3594           Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
3595         return new ICmpInst(I.getPredicate(), A,
3596                             Builder->CreateTrunc(B, A->getType()));
3597     }
3598
3599     // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
3600     // For lshr and ashr pairs.
3601     if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
3602          match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
3603         (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
3604          match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
3605       unsigned TypeBits = Cst1->getBitWidth();
3606       unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
3607       if (ShAmt < TypeBits && ShAmt != 0) {
3608         ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_NE
3609                                        ? ICmpInst::ICMP_UGE
3610                                        : ICmpInst::ICMP_ULT;
3611         Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
3612         APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
3613         return new ICmpInst(Pred, Xor, Builder->getInt(CmpVal));
3614       }
3615     }
3616
3617     // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
3618     if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
3619         match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
3620       unsigned TypeBits = Cst1->getBitWidth();
3621       unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
3622       if (ShAmt < TypeBits && ShAmt != 0) {
3623         Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
3624         APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
3625         Value *And = Builder->CreateAnd(Xor, Builder->getInt(AndVal),
3626                                         I.getName() + ".mask");
3627         return new ICmpInst(I.getPredicate(), And,
3628                             Constant::getNullValue(Cst1->getType()));
3629       }
3630     }
3631
3632     // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
3633     // "icmp (and X, mask), cst"
3634     uint64_t ShAmt = 0;
3635     if (Op0->hasOneUse() &&
3636         match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A),
3637                                            m_ConstantInt(ShAmt))))) &&
3638         match(Op1, m_ConstantInt(Cst1)) &&
3639         // Only do this when A has multiple uses.  This is most important to do
3640         // when it exposes other optimizations.
3641         !A->hasOneUse()) {
3642       unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
3643
3644       if (ShAmt < ASize) {
3645         APInt MaskV =
3646           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
3647         MaskV <<= ShAmt;
3648
3649         APInt CmpV = Cst1->getValue().zext(ASize);
3650         CmpV <<= ShAmt;
3651
3652         Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
3653         return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
3654       }
3655     }
3656   }
3657
3658   // The 'cmpxchg' instruction returns an aggregate containing the old value and
3659   // an i1 which indicates whether or not we successfully did the swap.
3660   //
3661   // Replace comparisons between the old value and the expected value with the
3662   // indicator that 'cmpxchg' returns.
3663   //
3664   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
3665   // spuriously fail.  In those cases, the old value may equal the expected
3666   // value but it is possible for the swap to not occur.
3667   if (I.getPredicate() == ICmpInst::ICMP_EQ)
3668     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
3669       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
3670         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
3671             !ACXI->isWeak())
3672           return ExtractValueInst::Create(ACXI, 1);
3673
3674   {
3675     Value *X; ConstantInt *Cst;
3676     // icmp X+Cst, X
3677     if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
3678       return FoldICmpAddOpCst(I, X, Cst, I.getPredicate());
3679
3680     // icmp X, X+Cst
3681     if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
3682       return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate());
3683   }
3684   return Changed ? &I : nullptr;
3685 }
3686
3687 /// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
3688 Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
3689                                                 Instruction *LHSI,
3690                                                 Constant *RHSC) {
3691   if (!isa<ConstantFP>(RHSC)) return nullptr;
3692   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
3693
3694   // Get the width of the mantissa.  We don't want to hack on conversions that
3695   // might lose information from the integer, e.g. "i64 -> float"
3696   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
3697   if (MantissaWidth == -1) return nullptr;  // Unknown.
3698
3699   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
3700
3701   // Check to see that the input is converted from an integer type that is small
3702   // enough that preserves all bits.  TODO: check here for "known" sign bits.
3703   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
3704   unsigned InputSize = IntTy->getScalarSizeInBits();
3705
3706   // If this is a uitofp instruction, we need an extra bit to hold the sign.
3707   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
3708   if (LHSUnsigned)
3709     ++InputSize;
3710
3711   if (I.isEquality()) {
3712     FCmpInst::Predicate P = I.getPredicate();
3713     bool IsExact = false;
3714     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
3715     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
3716
3717     // If the floating point constant isn't an integer value, we know if we will
3718     // ever compare equal / not equal to it.
3719     if (!IsExact) {
3720       // TODO: Can never be -0.0 and other non-representable values
3721       APFloat RHSRoundInt(RHS);
3722       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
3723       if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) {
3724         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
3725           return ReplaceInstUsesWith(I, Builder->getFalse());
3726
3727         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
3728         return ReplaceInstUsesWith(I, Builder->getTrue());
3729       }
3730     }
3731
3732     // TODO: If the constant is exactly representable, is it always OK to do
3733     // equality compares as integer?
3734   }
3735
3736   // Comparisons with zero are a special case where we know we won't lose
3737   // information.
3738   bool IsCmpZero = RHS.isPosZero();
3739
3740   // If the conversion would lose info, don't hack on this.
3741   if ((int)InputSize > MantissaWidth && !IsCmpZero)
3742     return nullptr;
3743
3744   // Otherwise, we can potentially simplify the comparison.  We know that it
3745   // will always come through as an integer value and we know the constant is
3746   // not a NAN (it would have been previously simplified).
3747   assert(!RHS.isNaN() && "NaN comparison not already folded!");
3748
3749   ICmpInst::Predicate Pred;
3750   switch (I.getPredicate()) {
3751   default: llvm_unreachable("Unexpected predicate!");
3752   case FCmpInst::FCMP_UEQ:
3753   case FCmpInst::FCMP_OEQ:
3754     Pred = ICmpInst::ICMP_EQ;
3755     break;
3756   case FCmpInst::FCMP_UGT:
3757   case FCmpInst::FCMP_OGT:
3758     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
3759     break;
3760   case FCmpInst::FCMP_UGE:
3761   case FCmpInst::FCMP_OGE:
3762     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
3763     break;
3764   case FCmpInst::FCMP_ULT:
3765   case FCmpInst::FCMP_OLT:
3766     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
3767     break;
3768   case FCmpInst::FCMP_ULE:
3769   case FCmpInst::FCMP_OLE:
3770     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
3771     break;
3772   case FCmpInst::FCMP_UNE:
3773   case FCmpInst::FCMP_ONE:
3774     Pred = ICmpInst::ICMP_NE;
3775     break;
3776   case FCmpInst::FCMP_ORD:
3777     return ReplaceInstUsesWith(I, Builder->getTrue());
3778   case FCmpInst::FCMP_UNO:
3779     return ReplaceInstUsesWith(I, Builder->getFalse());
3780   }
3781
3782   // Now we know that the APFloat is a normal number, zero or inf.
3783
3784   // See if the FP constant is too large for the integer.  For example,
3785   // comparing an i8 to 300.0.
3786   unsigned IntWidth = IntTy->getScalarSizeInBits();
3787
3788   if (!LHSUnsigned) {
3789     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
3790     // and large values.
3791     APFloat SMax(RHS.getSemantics());
3792     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
3793                           APFloat::rmNearestTiesToEven);
3794     if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
3795       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
3796           Pred == ICmpInst::ICMP_SLE)
3797         return ReplaceInstUsesWith(I, Builder->getTrue());
3798       return ReplaceInstUsesWith(I, Builder->getFalse());
3799     }
3800   } else {
3801     // If the RHS value is > UnsignedMax, fold the comparison. This handles
3802     // +INF and large values.
3803     APFloat UMax(RHS.getSemantics());
3804     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
3805                           APFloat::rmNearestTiesToEven);
3806     if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
3807       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
3808           Pred == ICmpInst::ICMP_ULE)
3809         return ReplaceInstUsesWith(I, Builder->getTrue());
3810       return ReplaceInstUsesWith(I, Builder->getFalse());
3811     }
3812   }
3813
3814   if (!LHSUnsigned) {
3815     // See if the RHS value is < SignedMin.
3816     APFloat SMin(RHS.getSemantics());
3817     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
3818                           APFloat::rmNearestTiesToEven);
3819     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
3820       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
3821           Pred == ICmpInst::ICMP_SGE)
3822         return ReplaceInstUsesWith(I, Builder->getTrue());
3823       return ReplaceInstUsesWith(I, Builder->getFalse());
3824     }
3825   } else {
3826     // See if the RHS value is < UnsignedMin.
3827     APFloat SMin(RHS.getSemantics());
3828     SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
3829                           APFloat::rmNearestTiesToEven);
3830     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
3831       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
3832           Pred == ICmpInst::ICMP_UGE)
3833         return ReplaceInstUsesWith(I, Builder->getTrue());
3834       return ReplaceInstUsesWith(I, Builder->getFalse());
3835     }
3836   }
3837
3838   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
3839   // [0, UMAX], but it may still be fractional.  See if it is fractional by
3840   // casting the FP value to the integer value and back, checking for equality.
3841   // Don't do this for zero, because -0.0 is not fractional.
3842   Constant *RHSInt = LHSUnsigned
3843     ? ConstantExpr::getFPToUI(RHSC, IntTy)
3844     : ConstantExpr::getFPToSI(RHSC, IntTy);
3845   if (!RHS.isZero()) {
3846     bool Equal = LHSUnsigned
3847       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
3848       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
3849     if (!Equal) {
3850       // If we had a comparison against a fractional value, we have to adjust
3851       // the compare predicate and sometimes the value.  RHSC is rounded towards
3852       // zero at this point.
3853       switch (Pred) {
3854       default: llvm_unreachable("Unexpected integer comparison!");
3855       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
3856         return ReplaceInstUsesWith(I, Builder->getTrue());
3857       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
3858         return ReplaceInstUsesWith(I, Builder->getFalse());
3859       case ICmpInst::ICMP_ULE:
3860         // (float)int <= 4.4   --> int <= 4
3861         // (float)int <= -4.4  --> false
3862         if (RHS.isNegative())
3863           return ReplaceInstUsesWith(I, Builder->getFalse());
3864         break;
3865       case ICmpInst::ICMP_SLE:
3866         // (float)int <= 4.4   --> int <= 4
3867         // (float)int <= -4.4  --> int < -4
3868         if (RHS.isNegative())
3869           Pred = ICmpInst::ICMP_SLT;
3870         break;
3871       case ICmpInst::ICMP_ULT:
3872         // (float)int < -4.4   --> false
3873         // (float)int < 4.4    --> int <= 4
3874         if (RHS.isNegative())
3875           return ReplaceInstUsesWith(I, Builder->getFalse());
3876         Pred = ICmpInst::ICMP_ULE;
3877         break;
3878       case ICmpInst::ICMP_SLT:
3879         // (float)int < -4.4   --> int < -4
3880         // (float)int < 4.4    --> int <= 4
3881         if (!RHS.isNegative())
3882           Pred = ICmpInst::ICMP_SLE;
3883         break;
3884       case ICmpInst::ICMP_UGT:
3885         // (float)int > 4.4    --> int > 4
3886         // (float)int > -4.4   --> true
3887         if (RHS.isNegative())
3888           return ReplaceInstUsesWith(I, Builder->getTrue());
3889         break;
3890       case ICmpInst::ICMP_SGT:
3891         // (float)int > 4.4    --> int > 4
3892         // (float)int > -4.4   --> int >= -4
3893         if (RHS.isNegative())
3894           Pred = ICmpInst::ICMP_SGE;
3895         break;
3896       case ICmpInst::ICMP_UGE:
3897         // (float)int >= -4.4   --> true
3898         // (float)int >= 4.4    --> int > 4
3899         if (RHS.isNegative())
3900           return ReplaceInstUsesWith(I, Builder->getTrue());
3901         Pred = ICmpInst::ICMP_UGT;
3902         break;
3903       case ICmpInst::ICMP_SGE:
3904         // (float)int >= -4.4   --> int >= -4
3905         // (float)int >= 4.4    --> int > 4
3906         if (!RHS.isNegative())
3907           Pred = ICmpInst::ICMP_SGT;
3908         break;
3909       }
3910     }
3911   }
3912
3913   // Lower this FP comparison into an appropriate integer version of the
3914   // comparison.
3915   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
3916 }
3917
3918 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
3919   bool Changed = false;
3920
3921   /// Orders the operands of the compare so that they are listed from most
3922   /// complex to least complex.  This puts constants before unary operators,
3923   /// before binary operators.
3924   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
3925     I.swapOperands();
3926     Changed = true;
3927   }
3928
3929   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3930
3931   if (Value *V =
3932           SimplifyFCmpInst(I.getPredicate(), Op0, Op1, DL, TLI, DT, AC, &I))
3933     return ReplaceInstUsesWith(I, V);
3934
3935   // Simplify 'fcmp pred X, X'
3936   if (Op0 == Op1) {
3937     switch (I.getPredicate()) {
3938     default: llvm_unreachable("Unknown predicate!");
3939     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
3940     case FCmpInst::FCMP_ULT:    // True if unordered or less than
3941     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
3942     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
3943       // Canonicalize these to be 'fcmp uno %X, 0.0'.
3944       I.setPredicate(FCmpInst::FCMP_UNO);
3945       I.setOperand(1, Constant::getNullValue(Op0->getType()));
3946       return &I;
3947
3948     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
3949     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
3950     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
3951     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
3952       // Canonicalize these to be 'fcmp ord %X, 0.0'.
3953       I.setPredicate(FCmpInst::FCMP_ORD);
3954       I.setOperand(1, Constant::getNullValue(Op0->getType()));
3955       return &I;
3956     }
3957   }
3958
3959   // Test if the FCmpInst instruction is used exclusively by a select as
3960   // part of a minimum or maximum operation. If so, refrain from doing
3961   // any other folding. This helps out other analyses which understand
3962   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
3963   // and CodeGen. And in this case, at least one of the comparison
3964   // operands has at least one user besides the compare (the select),
3965   // which would often largely negate the benefit of folding anyway.
3966   if (I.hasOneUse())
3967     if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
3968       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
3969           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
3970         return nullptr;
3971
3972   // Handle fcmp with constant RHS
3973   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
3974     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
3975       switch (LHSI->getOpcode()) {
3976       case Instruction::FPExt: {
3977         // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
3978         FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
3979         ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
3980         if (!RHSF)
3981           break;
3982
3983         const fltSemantics *Sem;
3984         // FIXME: This shouldn't be here.
3985         if (LHSExt->getSrcTy()->isHalfTy())
3986           Sem = &APFloat::IEEEhalf;
3987         else if (LHSExt->getSrcTy()->isFloatTy())
3988           Sem = &APFloat::IEEEsingle;
3989         else if (LHSExt->getSrcTy()->isDoubleTy())
3990           Sem = &APFloat::IEEEdouble;
3991         else if (LHSExt->getSrcTy()->isFP128Ty())
3992           Sem = &APFloat::IEEEquad;
3993         else if (LHSExt->getSrcTy()->isX86_FP80Ty())
3994           Sem = &APFloat::x87DoubleExtended;
3995         else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
3996           Sem = &APFloat::PPCDoubleDouble;
3997         else
3998           break;
3999
4000         bool Lossy;
4001         APFloat F = RHSF->getValueAPF();
4002         F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
4003
4004         // Avoid lossy conversions and denormals. Zero is a special case
4005         // that's OK to convert.
4006         APFloat Fabs = F;
4007         Fabs.clearSign();
4008         if (!Lossy &&
4009             ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
4010                  APFloat::cmpLessThan) || Fabs.isZero()))
4011
4012           return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
4013                               ConstantFP::get(RHSC->getContext(), F));
4014         break;
4015       }
4016       case Instruction::PHI:
4017         // Only fold fcmp into the PHI if the phi and fcmp are in the same
4018         // block.  If in the same block, we're encouraging jump threading.  If
4019         // not, we are just pessimizing the code by making an i1 phi.
4020         if (LHSI->getParent() == I.getParent())
4021           if (Instruction *NV = FoldOpIntoPhi(I))
4022             return NV;
4023         break;
4024       case Instruction::SIToFP:
4025       case Instruction::UIToFP:
4026         if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
4027           return NV;
4028         break;
4029       case Instruction::FSub: {
4030         // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
4031         Value *Op;
4032         if (match(LHSI, m_FNeg(m_Value(Op))))
4033           return new FCmpInst(I.getSwappedPredicate(), Op,
4034                               ConstantExpr::getFNeg(RHSC));
4035         break;
4036       }
4037       case Instruction::Load:
4038         if (GetElementPtrInst *GEP =
4039             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
4040           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
4041             if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
4042                 !cast<LoadInst>(LHSI)->isVolatile())
4043               if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
4044                 return Res;
4045         }
4046         break;
4047       case Instruction::Call: {
4048         if (!RHSC->isNullValue())
4049           break;
4050
4051         CallInst *CI = cast<CallInst>(LHSI);
4052         const Function *F = CI->getCalledFunction();
4053         if (!F)
4054           break;
4055
4056         // Various optimization for fabs compared with zero.
4057         LibFunc::Func Func;
4058         if (F->getIntrinsicID() == Intrinsic::fabs ||
4059             (TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
4060              (Func == LibFunc::fabs || Func == LibFunc::fabsf ||
4061               Func == LibFunc::fabsl))) {
4062           switch (I.getPredicate()) {
4063           default:
4064             break;
4065             // fabs(x) < 0 --> false
4066           case FCmpInst::FCMP_OLT:
4067             return ReplaceInstUsesWith(I, Builder->getFalse());
4068             // fabs(x) > 0 --> x != 0
4069           case FCmpInst::FCMP_OGT:
4070             return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0), RHSC);
4071             // fabs(x) <= 0 --> x == 0
4072           case FCmpInst::FCMP_OLE:
4073             return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0), RHSC);
4074             // fabs(x) >= 0 --> !isnan(x)
4075           case FCmpInst::FCMP_OGE:
4076             return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0), RHSC);
4077             // fabs(x) == 0 --> x == 0
4078             // fabs(x) != 0 --> x != 0
4079           case FCmpInst::FCMP_OEQ:
4080           case FCmpInst::FCMP_UEQ:
4081           case FCmpInst::FCMP_ONE:
4082           case FCmpInst::FCMP_UNE:
4083             return new FCmpInst(I.getPredicate(), CI->getArgOperand(0), RHSC);
4084           }
4085         }
4086       }
4087       }
4088   }
4089
4090   // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
4091   Value *X, *Y;
4092   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
4093     return new FCmpInst(I.getSwappedPredicate(), X, Y);
4094
4095   // fcmp (fpext x), (fpext y) -> fcmp x, y
4096   if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
4097     if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
4098       if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
4099         return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
4100                             RHSExt->getOperand(0));
4101
4102   return Changed ? &I : nullptr;
4103 }