[X86, SSE] instcombine common cases of insertps intrinsics into shuffles
[oota-llvm.git] / lib / Transforms / InstCombine / InstCombineCalls.cpp
1 //===- InstCombineCalls.cpp -----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitCall and visitInvoke functions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/MemoryBuiltins.h"
17 #include "llvm/IR/CallSite.h"
18 #include "llvm/IR/Dominators.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/IR/Statepoint.h"
21 #include "llvm/Transforms/Utils/BuildLibCalls.h"
22 #include "llvm/Transforms/Utils/Local.h"
23 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
24 using namespace llvm;
25 using namespace PatternMatch;
26
27 #define DEBUG_TYPE "instcombine"
28
29 STATISTIC(NumSimplified, "Number of library calls simplified");
30
31 /// getPromotedType - Return the specified type promoted as it would be to pass
32 /// though a va_arg area.
33 static Type *getPromotedType(Type *Ty) {
34   if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
35     if (ITy->getBitWidth() < 32)
36       return Type::getInt32Ty(Ty->getContext());
37   }
38   return Ty;
39 }
40
41 /// reduceToSingleValueType - Given an aggregate type which ultimately holds a
42 /// single scalar element, like {{{type}}} or [1 x type], return type.
43 static Type *reduceToSingleValueType(Type *T) {
44   while (!T->isSingleValueType()) {
45     if (StructType *STy = dyn_cast<StructType>(T)) {
46       if (STy->getNumElements() == 1)
47         T = STy->getElementType(0);
48       else
49         break;
50     } else if (ArrayType *ATy = dyn_cast<ArrayType>(T)) {
51       if (ATy->getNumElements() == 1)
52         T = ATy->getElementType();
53       else
54         break;
55     } else
56       break;
57   }
58
59   return T;
60 }
61
62 Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
63   unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), DL, MI, AC, DT);
64   unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), DL, MI, AC, DT);
65   unsigned MinAlign = std::min(DstAlign, SrcAlign);
66   unsigned CopyAlign = MI->getAlignment();
67
68   if (CopyAlign < MinAlign) {
69     MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
70                                              MinAlign, false));
71     return MI;
72   }
73
74   // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
75   // load/store.
76   ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
77   if (!MemOpLength) return nullptr;
78
79   // Source and destination pointer types are always "i8*" for intrinsic.  See
80   // if the size is something we can handle with a single primitive load/store.
81   // A single load+store correctly handles overlapping memory in the memmove
82   // case.
83   uint64_t Size = MemOpLength->getLimitedValue();
84   assert(Size && "0-sized memory transferring should be removed already.");
85
86   if (Size > 8 || (Size&(Size-1)))
87     return nullptr;  // If not 1/2/4/8 bytes, exit.
88
89   // Use an integer load+store unless we can find something better.
90   unsigned SrcAddrSp =
91     cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
92   unsigned DstAddrSp =
93     cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
94
95   IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
96   Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
97   Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
98
99   // Memcpy forces the use of i8* for the source and destination.  That means
100   // that if you're using memcpy to move one double around, you'll get a cast
101   // from double* to i8*.  We'd much rather use a double load+store rather than
102   // an i64 load+store, here because this improves the odds that the source or
103   // dest address will be promotable.  See if we can find a better type than the
104   // integer datatype.
105   Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts();
106   MDNode *CopyMD = nullptr;
107   if (StrippedDest != MI->getArgOperand(0)) {
108     Type *SrcETy = cast<PointerType>(StrippedDest->getType())
109                                     ->getElementType();
110     if (SrcETy->isSized() && DL.getTypeStoreSize(SrcETy) == Size) {
111       // The SrcETy might be something like {{{double}}} or [1 x double].  Rip
112       // down through these levels if so.
113       SrcETy = reduceToSingleValueType(SrcETy);
114
115       if (SrcETy->isSingleValueType()) {
116         NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
117         NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
118
119         // If the memcpy has metadata describing the members, see if we can
120         // get the TBAA tag describing our copy.
121         if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
122           if (M->getNumOperands() == 3 && M->getOperand(0) &&
123               mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
124               mdconst::extract<ConstantInt>(M->getOperand(0))->isNullValue() &&
125               M->getOperand(1) &&
126               mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
127               mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
128                   Size &&
129               M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
130             CopyMD = cast<MDNode>(M->getOperand(2));
131         }
132       }
133     }
134   }
135
136   // If the memcpy/memmove provides better alignment info than we can
137   // infer, use it.
138   SrcAlign = std::max(SrcAlign, CopyAlign);
139   DstAlign = std::max(DstAlign, CopyAlign);
140
141   Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
142   Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
143   LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile());
144   L->setAlignment(SrcAlign);
145   if (CopyMD)
146     L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
147   StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile());
148   S->setAlignment(DstAlign);
149   if (CopyMD)
150     S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
151
152   // Set the size of the copy to 0, it will be deleted on the next iteration.
153   MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType()));
154   return MI;
155 }
156
157 Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
158   unsigned Alignment = getKnownAlignment(MI->getDest(), DL, MI, AC, DT);
159   if (MI->getAlignment() < Alignment) {
160     MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
161                                              Alignment, false));
162     return MI;
163   }
164
165   // Extract the length and alignment and fill if they are constant.
166   ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
167   ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
168   if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
169     return nullptr;
170   uint64_t Len = LenC->getLimitedValue();
171   Alignment = MI->getAlignment();
172   assert(Len && "0-sized memory setting should be removed already.");
173
174   // memset(s,c,n) -> store s, c (for n=1,2,4,8)
175   if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
176     Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
177
178     Value *Dest = MI->getDest();
179     unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
180     Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
181     Dest = Builder->CreateBitCast(Dest, NewDstPtrTy);
182
183     // Alignment 0 is identity for alignment 1 for memset, but not store.
184     if (Alignment == 0) Alignment = 1;
185
186     // Extract the fill value and store.
187     uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
188     StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest,
189                                         MI->isVolatile());
190     S->setAlignment(Alignment);
191
192     // Set the size of the copy to 0, it will be deleted on the next iteration.
193     MI->setLength(Constant::getNullValue(LenC->getType()));
194     return MI;
195   }
196
197   return nullptr;
198 }
199
200 static Value *SimplifyX86insertps(const IntrinsicInst &II,
201                                   InstCombiner::BuilderTy &Builder) {
202   if (auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
203     VectorType *VecTy = cast<VectorType>(II.getType());
204     ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
205     
206     // The immediate permute control byte looks like this:
207     //    [3:0] - zero mask for each 32-bit lane
208     //    [5:4] - select one 32-bit destination lane
209     //    [7:6] - select one 32-bit source lane
210
211     uint8_t Imm = CInt->getZExtValue();
212     uint8_t ZMask = Imm & 0xf;
213     uint8_t DestLane = (Imm >> 4) & 0x3;
214     uint8_t SourceLane = (Imm >> 6) & 0x3;
215
216     // If all zero mask bits are set, this was just a weird way to
217     // generate a zero vector.
218     if (ZMask == 0xf)
219       return ZeroVector;
220     
221     // TODO: Model this case as two shuffles or a 'logical and' plus shuffle?
222     if (ZMask)
223       return nullptr;
224
225     assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type");
226
227     // If we're not zeroing anything, this is a single shuffle.
228     // Replace the selected destination lane with the selected source lane.
229     // For all other lanes, pass the first source bits through.
230     int ShuffleMask[4] = { 0, 1, 2, 3 };
231     ShuffleMask[DestLane] = SourceLane + 4;
232     
233     return Builder.CreateShuffleVector(II.getArgOperand(0), II.getArgOperand(1),
234                                        ShuffleMask);
235   }
236   return nullptr;
237 }
238
239 /// The shuffle mask for a perm2*128 selects any two halves of two 256-bit
240 /// source vectors, unless a zero bit is set. If a zero bit is set,
241 /// then ignore that half of the mask and clear that half of the vector.
242 static Value *SimplifyX86vperm2(const IntrinsicInst &II,
243                                 InstCombiner::BuilderTy &Builder) {
244   if (auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
245     VectorType *VecTy = cast<VectorType>(II.getType());
246     ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
247
248     // The immediate permute control byte looks like this:
249     //    [1:0] - select 128 bits from sources for low half of destination
250     //    [2]   - ignore
251     //    [3]   - zero low half of destination
252     //    [5:4] - select 128 bits from sources for high half of destination
253     //    [6]   - ignore
254     //    [7]   - zero high half of destination
255
256     uint8_t Imm = CInt->getZExtValue();
257
258     bool LowHalfZero = Imm & 0x08;
259     bool HighHalfZero = Imm & 0x80;
260
261     // If both zero mask bits are set, this was just a weird way to
262     // generate a zero vector.
263     if (LowHalfZero && HighHalfZero)
264       return ZeroVector;
265
266     // If 0 or 1 zero mask bits are set, this is a simple shuffle.
267     unsigned NumElts = VecTy->getNumElements();
268     unsigned HalfSize = NumElts / 2;
269     SmallVector<int, 8> ShuffleMask(NumElts);
270
271     // The high bit of the selection field chooses the 1st or 2nd operand.
272     bool LowInputSelect = Imm & 0x02;
273     bool HighInputSelect = Imm & 0x20;
274     
275     // The low bit of the selection field chooses the low or high half
276     // of the selected operand.
277     bool LowHalfSelect = Imm & 0x01;
278     bool HighHalfSelect = Imm & 0x10;
279
280     // Determine which operand(s) are actually in use for this instruction.
281     Value *V0 = LowInputSelect ? II.getArgOperand(1) : II.getArgOperand(0);
282     Value *V1 = HighInputSelect ? II.getArgOperand(1) : II.getArgOperand(0);
283     
284     // If needed, replace operands based on zero mask.
285     V0 = LowHalfZero ? ZeroVector : V0;
286     V1 = HighHalfZero ? ZeroVector : V1;
287     
288     // Permute low half of result.
289     unsigned StartIndex = LowHalfSelect ? HalfSize : 0;
290     for (unsigned i = 0; i < HalfSize; ++i)
291       ShuffleMask[i] = StartIndex + i;
292
293     // Permute high half of result.
294     StartIndex = HighHalfSelect ? HalfSize : 0;
295     StartIndex += NumElts;
296     for (unsigned i = 0; i < HalfSize; ++i)
297       ShuffleMask[i + HalfSize] = StartIndex + i;
298
299     return Builder.CreateShuffleVector(V0, V1, ShuffleMask);
300   }
301   return nullptr;
302 }
303
304 /// visitCallInst - CallInst simplification.  This mostly only handles folding
305 /// of intrinsic instructions.  For normal calls, it allows visitCallSite to do
306 /// the heavy lifting.
307 ///
308 Instruction *InstCombiner::visitCallInst(CallInst &CI) {
309   if (isFreeCall(&CI, TLI))
310     return visitFree(CI);
311
312   // If the caller function is nounwind, mark the call as nounwind, even if the
313   // callee isn't.
314   if (CI.getParent()->getParent()->doesNotThrow() &&
315       !CI.doesNotThrow()) {
316     CI.setDoesNotThrow();
317     return &CI;
318   }
319
320   IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
321   if (!II) return visitCallSite(&CI);
322
323   // Intrinsics cannot occur in an invoke, so handle them here instead of in
324   // visitCallSite.
325   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
326     bool Changed = false;
327
328     // memmove/cpy/set of zero bytes is a noop.
329     if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
330       if (NumBytes->isNullValue())
331         return EraseInstFromFunction(CI);
332
333       if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
334         if (CI->getZExtValue() == 1) {
335           // Replace the instruction with just byte operations.  We would
336           // transform other cases to loads/stores, but we don't know if
337           // alignment is sufficient.
338         }
339     }
340
341     // No other transformations apply to volatile transfers.
342     if (MI->isVolatile())
343       return nullptr;
344
345     // If we have a memmove and the source operation is a constant global,
346     // then the source and dest pointers can't alias, so we can change this
347     // into a call to memcpy.
348     if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
349       if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
350         if (GVSrc->isConstant()) {
351           Module *M = CI.getParent()->getParent()->getParent();
352           Intrinsic::ID MemCpyID = Intrinsic::memcpy;
353           Type *Tys[3] = { CI.getArgOperand(0)->getType(),
354                            CI.getArgOperand(1)->getType(),
355                            CI.getArgOperand(2)->getType() };
356           CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
357           Changed = true;
358         }
359     }
360
361     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
362       // memmove(x,x,size) -> noop.
363       if (MTI->getSource() == MTI->getDest())
364         return EraseInstFromFunction(CI);
365     }
366
367     // If we can determine a pointer alignment that is bigger than currently
368     // set, update the alignment.
369     if (isa<MemTransferInst>(MI)) {
370       if (Instruction *I = SimplifyMemTransfer(MI))
371         return I;
372     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
373       if (Instruction *I = SimplifyMemSet(MSI))
374         return I;
375     }
376
377     if (Changed) return II;
378   }
379
380   switch (II->getIntrinsicID()) {
381   default: break;
382   case Intrinsic::objectsize: {
383     uint64_t Size;
384     if (getObjectSize(II->getArgOperand(0), Size, DL, TLI))
385       return ReplaceInstUsesWith(CI, ConstantInt::get(CI.getType(), Size));
386     return nullptr;
387   }
388   case Intrinsic::bswap: {
389     Value *IIOperand = II->getArgOperand(0);
390     Value *X = nullptr;
391
392     // bswap(bswap(x)) -> x
393     if (match(IIOperand, m_BSwap(m_Value(X))))
394         return ReplaceInstUsesWith(CI, X);
395
396     // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
397     if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
398       unsigned C = X->getType()->getPrimitiveSizeInBits() -
399         IIOperand->getType()->getPrimitiveSizeInBits();
400       Value *CV = ConstantInt::get(X->getType(), C);
401       Value *V = Builder->CreateLShr(X, CV);
402       return new TruncInst(V, IIOperand->getType());
403     }
404     break;
405   }
406
407   case Intrinsic::powi:
408     if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
409       // powi(x, 0) -> 1.0
410       if (Power->isZero())
411         return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
412       // powi(x, 1) -> x
413       if (Power->isOne())
414         return ReplaceInstUsesWith(CI, II->getArgOperand(0));
415       // powi(x, -1) -> 1/x
416       if (Power->isAllOnesValue())
417         return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
418                                           II->getArgOperand(0));
419     }
420     break;
421   case Intrinsic::cttz: {
422     // If all bits below the first known one are known zero,
423     // this value is constant.
424     IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
425     // FIXME: Try to simplify vectors of integers.
426     if (!IT) break;
427     uint32_t BitWidth = IT->getBitWidth();
428     APInt KnownZero(BitWidth, 0);
429     APInt KnownOne(BitWidth, 0);
430     computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne, 0, II);
431     unsigned TrailingZeros = KnownOne.countTrailingZeros();
432     APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
433     if ((Mask & KnownZero) == Mask)
434       return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
435                                  APInt(BitWidth, TrailingZeros)));
436
437     }
438     break;
439   case Intrinsic::ctlz: {
440     // If all bits above the first known one are known zero,
441     // this value is constant.
442     IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
443     // FIXME: Try to simplify vectors of integers.
444     if (!IT) break;
445     uint32_t BitWidth = IT->getBitWidth();
446     APInt KnownZero(BitWidth, 0);
447     APInt KnownOne(BitWidth, 0);
448     computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne, 0, II);
449     unsigned LeadingZeros = KnownOne.countLeadingZeros();
450     APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
451     if ((Mask & KnownZero) == Mask)
452       return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
453                                  APInt(BitWidth, LeadingZeros)));
454
455     }
456     break;
457
458   case Intrinsic::uadd_with_overflow:
459   case Intrinsic::sadd_with_overflow:
460   case Intrinsic::umul_with_overflow:
461   case Intrinsic::smul_with_overflow:
462     if (isa<Constant>(II->getArgOperand(0)) &&
463         !isa<Constant>(II->getArgOperand(1))) {
464       // Canonicalize constants into the RHS.
465       Value *LHS = II->getArgOperand(0);
466       II->setArgOperand(0, II->getArgOperand(1));
467       II->setArgOperand(1, LHS);
468       return II;
469     }
470     // fall through
471
472   case Intrinsic::usub_with_overflow:
473   case Intrinsic::ssub_with_overflow: {
474     OverflowCheckFlavor OCF =
475         IntrinsicIDToOverflowCheckFlavor(II->getIntrinsicID());
476     assert(OCF != OCF_INVALID && "unexpected!");
477
478     Value *OperationResult = nullptr;
479     Constant *OverflowResult = nullptr;
480     if (OptimizeOverflowCheck(OCF, II->getArgOperand(0), II->getArgOperand(1),
481                               *II, OperationResult, OverflowResult))
482       return CreateOverflowTuple(II, OperationResult, OverflowResult);
483
484     break;
485   }
486
487   case Intrinsic::minnum:
488   case Intrinsic::maxnum: {
489     Value *Arg0 = II->getArgOperand(0);
490     Value *Arg1 = II->getArgOperand(1);
491
492     // fmin(x, x) -> x
493     if (Arg0 == Arg1)
494       return ReplaceInstUsesWith(CI, Arg0);
495
496     const ConstantFP *C0 = dyn_cast<ConstantFP>(Arg0);
497     const ConstantFP *C1 = dyn_cast<ConstantFP>(Arg1);
498
499     // Canonicalize constants into the RHS.
500     if (C0 && !C1) {
501       II->setArgOperand(0, Arg1);
502       II->setArgOperand(1, Arg0);
503       return II;
504     }
505
506     // fmin(x, nan) -> x
507     if (C1 && C1->isNaN())
508       return ReplaceInstUsesWith(CI, Arg0);
509
510     // This is the value because if undef were NaN, we would return the other
511     // value and cannot return a NaN unless both operands are.
512     //
513     // fmin(undef, x) -> x
514     if (isa<UndefValue>(Arg0))
515       return ReplaceInstUsesWith(CI, Arg1);
516
517     // fmin(x, undef) -> x
518     if (isa<UndefValue>(Arg1))
519       return ReplaceInstUsesWith(CI, Arg0);
520
521     Value *X = nullptr;
522     Value *Y = nullptr;
523     if (II->getIntrinsicID() == Intrinsic::minnum) {
524       // fmin(x, fmin(x, y)) -> fmin(x, y)
525       // fmin(y, fmin(x, y)) -> fmin(x, y)
526       if (match(Arg1, m_FMin(m_Value(X), m_Value(Y)))) {
527         if (Arg0 == X || Arg0 == Y)
528           return ReplaceInstUsesWith(CI, Arg1);
529       }
530
531       // fmin(fmin(x, y), x) -> fmin(x, y)
532       // fmin(fmin(x, y), y) -> fmin(x, y)
533       if (match(Arg0, m_FMin(m_Value(X), m_Value(Y)))) {
534         if (Arg1 == X || Arg1 == Y)
535           return ReplaceInstUsesWith(CI, Arg0);
536       }
537
538       // TODO: fmin(nnan x, inf) -> x
539       // TODO: fmin(nnan ninf x, flt_max) -> x
540       if (C1 && C1->isInfinity()) {
541         // fmin(x, -inf) -> -inf
542         if (C1->isNegative())
543           return ReplaceInstUsesWith(CI, Arg1);
544       }
545     } else {
546       assert(II->getIntrinsicID() == Intrinsic::maxnum);
547       // fmax(x, fmax(x, y)) -> fmax(x, y)
548       // fmax(y, fmax(x, y)) -> fmax(x, y)
549       if (match(Arg1, m_FMax(m_Value(X), m_Value(Y)))) {
550         if (Arg0 == X || Arg0 == Y)
551           return ReplaceInstUsesWith(CI, Arg1);
552       }
553
554       // fmax(fmax(x, y), x) -> fmax(x, y)
555       // fmax(fmax(x, y), y) -> fmax(x, y)
556       if (match(Arg0, m_FMax(m_Value(X), m_Value(Y)))) {
557         if (Arg1 == X || Arg1 == Y)
558           return ReplaceInstUsesWith(CI, Arg0);
559       }
560
561       // TODO: fmax(nnan x, -inf) -> x
562       // TODO: fmax(nnan ninf x, -flt_max) -> x
563       if (C1 && C1->isInfinity()) {
564         // fmax(x, inf) -> inf
565         if (!C1->isNegative())
566           return ReplaceInstUsesWith(CI, Arg1);
567       }
568     }
569     break;
570   }
571   case Intrinsic::ppc_altivec_lvx:
572   case Intrinsic::ppc_altivec_lvxl:
573     // Turn PPC lvx -> load if the pointer is known aligned.
574     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >=
575         16) {
576       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
577                                          PointerType::getUnqual(II->getType()));
578       return new LoadInst(Ptr);
579     }
580     break;
581   case Intrinsic::ppc_vsx_lxvw4x:
582   case Intrinsic::ppc_vsx_lxvd2x: {
583     // Turn PPC VSX loads into normal loads.
584     Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
585                                         PointerType::getUnqual(II->getType()));
586     return new LoadInst(Ptr, Twine(""), false, 1);
587   }
588   case Intrinsic::ppc_altivec_stvx:
589   case Intrinsic::ppc_altivec_stvxl:
590     // Turn stvx -> store if the pointer is known aligned.
591     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, AC, DT) >=
592         16) {
593       Type *OpPtrTy =
594         PointerType::getUnqual(II->getArgOperand(0)->getType());
595       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
596       return new StoreInst(II->getArgOperand(0), Ptr);
597     }
598     break;
599   case Intrinsic::ppc_vsx_stxvw4x:
600   case Intrinsic::ppc_vsx_stxvd2x: {
601     // Turn PPC VSX stores into normal stores.
602     Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType());
603     Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
604     return new StoreInst(II->getArgOperand(0), Ptr, false, 1);
605   }
606   case Intrinsic::ppc_qpx_qvlfs:
607     // Turn PPC QPX qvlfs -> load if the pointer is known aligned.
608     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >=
609         16) {
610       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
611                                          PointerType::getUnqual(II->getType()));
612       return new LoadInst(Ptr);
613     }
614     break;
615   case Intrinsic::ppc_qpx_qvlfd:
616     // Turn PPC QPX qvlfd -> load if the pointer is known aligned.
617     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 32, DL, II, AC, DT) >=
618         32) {
619       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
620                                          PointerType::getUnqual(II->getType()));
621       return new LoadInst(Ptr);
622     }
623     break;
624   case Intrinsic::ppc_qpx_qvstfs:
625     // Turn PPC QPX qvstfs -> store if the pointer is known aligned.
626     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, AC, DT) >=
627         16) {
628       Type *OpPtrTy =
629         PointerType::getUnqual(II->getArgOperand(0)->getType());
630       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
631       return new StoreInst(II->getArgOperand(0), Ptr);
632     }
633     break;
634   case Intrinsic::ppc_qpx_qvstfd:
635     // Turn PPC QPX qvstfd -> store if the pointer is known aligned.
636     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 32, DL, II, AC, DT) >=
637         32) {
638       Type *OpPtrTy =
639         PointerType::getUnqual(II->getArgOperand(0)->getType());
640       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
641       return new StoreInst(II->getArgOperand(0), Ptr);
642     }
643     break;
644   case Intrinsic::x86_sse_storeu_ps:
645   case Intrinsic::x86_sse2_storeu_pd:
646   case Intrinsic::x86_sse2_storeu_dq:
647     // Turn X86 storeu -> store if the pointer is known aligned.
648     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >=
649         16) {
650       Type *OpPtrTy =
651         PointerType::getUnqual(II->getArgOperand(1)->getType());
652       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), OpPtrTy);
653       return new StoreInst(II->getArgOperand(1), Ptr);
654     }
655     break;
656
657   case Intrinsic::x86_sse_cvtss2si:
658   case Intrinsic::x86_sse_cvtss2si64:
659   case Intrinsic::x86_sse_cvttss2si:
660   case Intrinsic::x86_sse_cvttss2si64:
661   case Intrinsic::x86_sse2_cvtsd2si:
662   case Intrinsic::x86_sse2_cvtsd2si64:
663   case Intrinsic::x86_sse2_cvttsd2si:
664   case Intrinsic::x86_sse2_cvttsd2si64: {
665     // These intrinsics only demand the 0th element of their input vectors. If
666     // we can simplify the input based on that, do so now.
667     unsigned VWidth =
668       cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
669     APInt DemandedElts(VWidth, 1);
670     APInt UndefElts(VWidth, 0);
671     if (Value *V = SimplifyDemandedVectorElts(II->getArgOperand(0),
672                                               DemandedElts, UndefElts)) {
673       II->setArgOperand(0, V);
674       return II;
675     }
676     break;
677   }
678
679   // Constant fold <A x Bi> << Ci.
680   // FIXME: We don't handle _dq because it's a shift of an i128, but is
681   // represented in the IR as <2 x i64>. A per element shift is wrong.
682   case Intrinsic::x86_sse2_psll_d:
683   case Intrinsic::x86_sse2_psll_q:
684   case Intrinsic::x86_sse2_psll_w:
685   case Intrinsic::x86_sse2_pslli_d:
686   case Intrinsic::x86_sse2_pslli_q:
687   case Intrinsic::x86_sse2_pslli_w:
688   case Intrinsic::x86_avx2_psll_d:
689   case Intrinsic::x86_avx2_psll_q:
690   case Intrinsic::x86_avx2_psll_w:
691   case Intrinsic::x86_avx2_pslli_d:
692   case Intrinsic::x86_avx2_pslli_q:
693   case Intrinsic::x86_avx2_pslli_w:
694   case Intrinsic::x86_sse2_psrl_d:
695   case Intrinsic::x86_sse2_psrl_q:
696   case Intrinsic::x86_sse2_psrl_w:
697   case Intrinsic::x86_sse2_psrli_d:
698   case Intrinsic::x86_sse2_psrli_q:
699   case Intrinsic::x86_sse2_psrli_w:
700   case Intrinsic::x86_avx2_psrl_d:
701   case Intrinsic::x86_avx2_psrl_q:
702   case Intrinsic::x86_avx2_psrl_w:
703   case Intrinsic::x86_avx2_psrli_d:
704   case Intrinsic::x86_avx2_psrli_q:
705   case Intrinsic::x86_avx2_psrli_w: {
706     // Simplify if count is constant. To 0 if >= BitWidth,
707     // otherwise to shl/lshr.
708     auto CDV = dyn_cast<ConstantDataVector>(II->getArgOperand(1));
709     auto CInt = dyn_cast<ConstantInt>(II->getArgOperand(1));
710     if (!CDV && !CInt)
711       break;
712     ConstantInt *Count;
713     if (CDV)
714       Count = cast<ConstantInt>(CDV->getElementAsConstant(0));
715     else
716       Count = CInt;
717
718     auto Vec = II->getArgOperand(0);
719     auto VT = cast<VectorType>(Vec->getType());
720     if (Count->getZExtValue() >
721         VT->getElementType()->getPrimitiveSizeInBits() - 1)
722       return ReplaceInstUsesWith(
723           CI, ConstantAggregateZero::get(Vec->getType()));
724
725     bool isPackedShiftLeft = true;
726     switch (II->getIntrinsicID()) {
727     default : break;
728     case Intrinsic::x86_sse2_psrl_d:
729     case Intrinsic::x86_sse2_psrl_q:
730     case Intrinsic::x86_sse2_psrl_w:
731     case Intrinsic::x86_sse2_psrli_d:
732     case Intrinsic::x86_sse2_psrli_q:
733     case Intrinsic::x86_sse2_psrli_w:
734     case Intrinsic::x86_avx2_psrl_d:
735     case Intrinsic::x86_avx2_psrl_q:
736     case Intrinsic::x86_avx2_psrl_w:
737     case Intrinsic::x86_avx2_psrli_d:
738     case Intrinsic::x86_avx2_psrli_q:
739     case Intrinsic::x86_avx2_psrli_w: isPackedShiftLeft = false; break;
740     }
741
742     unsigned VWidth = VT->getNumElements();
743     // Get a constant vector of the same type as the first operand.
744     auto VTCI = ConstantInt::get(VT->getElementType(), Count->getZExtValue());
745     if (isPackedShiftLeft)
746       return BinaryOperator::CreateShl(Vec,
747           Builder->CreateVectorSplat(VWidth, VTCI));
748
749     return BinaryOperator::CreateLShr(Vec,
750         Builder->CreateVectorSplat(VWidth, VTCI));
751   }
752
753   case Intrinsic::x86_sse41_pmovsxbw:
754   case Intrinsic::x86_sse41_pmovsxwd:
755   case Intrinsic::x86_sse41_pmovsxdq:
756   case Intrinsic::x86_sse41_pmovzxbw:
757   case Intrinsic::x86_sse41_pmovzxwd:
758   case Intrinsic::x86_sse41_pmovzxdq: {
759     // pmov{s|z}x ignores the upper half of their input vectors.
760     unsigned VWidth =
761       cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
762     unsigned LowHalfElts = VWidth / 2;
763     APInt InputDemandedElts(APInt::getBitsSet(VWidth, 0, LowHalfElts));
764     APInt UndefElts(VWidth, 0);
765     if (Value *TmpV = SimplifyDemandedVectorElts(
766             II->getArgOperand(0), InputDemandedElts, UndefElts)) {
767       II->setArgOperand(0, TmpV);
768       return II;
769     }
770     break;
771   }
772   case Intrinsic::x86_sse41_insertps:
773     if (Value *V = SimplifyX86insertps(*II, *Builder))
774       return ReplaceInstUsesWith(*II, V);
775     break;
776     
777   case Intrinsic::x86_sse4a_insertqi: {
778     // insertqi x, y, 64, 0 can just copy y's lower bits and leave the top
779     // ones undef
780     // TODO: eventually we should lower this intrinsic to IR
781     if (auto CIWidth = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
782       if (auto CIStart = dyn_cast<ConstantInt>(II->getArgOperand(3))) {
783         unsigned Index = CIStart->getZExtValue();
784         // From AMD documentation: "a value of zero in the field length is
785         // defined as length of 64".
786         unsigned Length = CIWidth->equalsInt(0) ? 64 : CIWidth->getZExtValue();
787
788         // From AMD documentation: "If the sum of the bit index + length field
789         // is greater than 64, the results are undefined".
790
791         // Note that both field index and field length are 8-bit quantities.
792         // Since variables 'Index' and 'Length' are unsigned values
793         // obtained from zero-extending field index and field length
794         // respectively, their sum should never wrap around.
795         if ((Index + Length) > 64)
796           return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
797
798         if (Length == 64 && Index == 0) {
799           Value *Vec = II->getArgOperand(1);
800           Value *Undef = UndefValue::get(Vec->getType());
801           const uint32_t Mask[] = { 0, 2 };
802           return ReplaceInstUsesWith(
803               CI,
804               Builder->CreateShuffleVector(
805                   Vec, Undef, ConstantDataVector::get(
806                                   II->getContext(), makeArrayRef(Mask))));
807
808         } else if (auto Source =
809                        dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
810           if (Source->hasOneUse() &&
811               Source->getArgOperand(1) == II->getArgOperand(1)) {
812             // If the source of the insert has only one use and it's another
813             // insert (and they're both inserting from the same vector), try to
814             // bundle both together.
815             auto CISourceWidth =
816                 dyn_cast<ConstantInt>(Source->getArgOperand(2));
817             auto CISourceStart =
818                 dyn_cast<ConstantInt>(Source->getArgOperand(3));
819             if (CISourceStart && CISourceWidth) {
820               unsigned Start = CIStart->getZExtValue();
821               unsigned Width = CIWidth->getZExtValue();
822               unsigned End = Start + Width;
823               unsigned SourceStart = CISourceStart->getZExtValue();
824               unsigned SourceWidth = CISourceWidth->getZExtValue();
825               unsigned SourceEnd = SourceStart + SourceWidth;
826               unsigned NewStart, NewWidth;
827               bool ShouldReplace = false;
828               if (Start <= SourceStart && SourceStart <= End) {
829                 NewStart = Start;
830                 NewWidth = std::max(End, SourceEnd) - NewStart;
831                 ShouldReplace = true;
832               } else if (SourceStart <= Start && Start <= SourceEnd) {
833                 NewStart = SourceStart;
834                 NewWidth = std::max(SourceEnd, End) - NewStart;
835                 ShouldReplace = true;
836               }
837
838               if (ShouldReplace) {
839                 Constant *ConstantWidth = ConstantInt::get(
840                     II->getArgOperand(2)->getType(), NewWidth, false);
841                 Constant *ConstantStart = ConstantInt::get(
842                     II->getArgOperand(3)->getType(), NewStart, false);
843                 Value *Args[4] = { Source->getArgOperand(0),
844                                    II->getArgOperand(1), ConstantWidth,
845                                    ConstantStart };
846                 Module *M = CI.getParent()->getParent()->getParent();
847                 Value *F =
848                     Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi);
849                 return ReplaceInstUsesWith(CI, Builder->CreateCall(F, Args));
850               }
851             }
852           }
853         }
854       }
855     }
856     break;
857   }
858
859   case Intrinsic::x86_sse41_pblendvb:
860   case Intrinsic::x86_sse41_blendvps:
861   case Intrinsic::x86_sse41_blendvpd:
862   case Intrinsic::x86_avx_blendv_ps_256:
863   case Intrinsic::x86_avx_blendv_pd_256:
864   case Intrinsic::x86_avx2_pblendvb: {
865     // Convert blendv* to vector selects if the mask is constant.
866     // This optimization is convoluted because the intrinsic is defined as
867     // getting a vector of floats or doubles for the ps and pd versions.
868     // FIXME: That should be changed.
869     Value *Mask = II->getArgOperand(2);
870     if (auto C = dyn_cast<ConstantDataVector>(Mask)) {
871       auto Tyi1 = Builder->getInt1Ty();
872       auto SelectorType = cast<VectorType>(Mask->getType());
873       auto EltTy = SelectorType->getElementType();
874       unsigned Size = SelectorType->getNumElements();
875       unsigned BitWidth =
876           EltTy->isFloatTy()
877               ? 32
878               : (EltTy->isDoubleTy() ? 64 : EltTy->getIntegerBitWidth());
879       assert((BitWidth == 64 || BitWidth == 32 || BitWidth == 8) &&
880              "Wrong arguments for variable blend intrinsic");
881       SmallVector<Constant *, 32> Selectors;
882       for (unsigned I = 0; I < Size; ++I) {
883         // The intrinsics only read the top bit
884         uint64_t Selector;
885         if (BitWidth == 8)
886           Selector = C->getElementAsInteger(I);
887         else
888           Selector = C->getElementAsAPFloat(I).bitcastToAPInt().getZExtValue();
889         Selectors.push_back(ConstantInt::get(Tyi1, Selector >> (BitWidth - 1)));
890       }
891       auto NewSelector = ConstantVector::get(Selectors);
892       return SelectInst::Create(NewSelector, II->getArgOperand(1),
893                                 II->getArgOperand(0), "blendv");
894     } else {
895       break;
896     }
897   }
898
899   case Intrinsic::x86_avx_vpermilvar_ps:
900   case Intrinsic::x86_avx_vpermilvar_ps_256:
901   case Intrinsic::x86_avx_vpermilvar_pd:
902   case Intrinsic::x86_avx_vpermilvar_pd_256: {
903     // Convert vpermil* to shufflevector if the mask is constant.
904     Value *V = II->getArgOperand(1);
905     unsigned Size = cast<VectorType>(V->getType())->getNumElements();
906     assert(Size == 8 || Size == 4 || Size == 2);
907     uint32_t Indexes[8];
908     if (auto C = dyn_cast<ConstantDataVector>(V)) {
909       // The intrinsics only read one or two bits, clear the rest.
910       for (unsigned I = 0; I < Size; ++I) {
911         uint32_t Index = C->getElementAsInteger(I) & 0x3;
912         if (II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd ||
913             II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd_256)
914           Index >>= 1;
915         Indexes[I] = Index;
916       }
917     } else if (isa<ConstantAggregateZero>(V)) {
918       for (unsigned I = 0; I < Size; ++I)
919         Indexes[I] = 0;
920     } else {
921       break;
922     }
923     // The _256 variants are a bit trickier since the mask bits always index
924     // into the corresponding 128 half. In order to convert to a generic
925     // shuffle, we have to make that explicit.
926     if (II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_ps_256 ||
927         II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd_256) {
928       for (unsigned I = Size / 2; I < Size; ++I)
929         Indexes[I] += Size / 2;
930     }
931     auto NewC =
932         ConstantDataVector::get(V->getContext(), makeArrayRef(Indexes, Size));
933     auto V1 = II->getArgOperand(0);
934     auto V2 = UndefValue::get(V1->getType());
935     auto Shuffle = Builder->CreateShuffleVector(V1, V2, NewC);
936     return ReplaceInstUsesWith(CI, Shuffle);
937   }
938
939   case Intrinsic::x86_avx_vperm2f128_pd_256:
940   case Intrinsic::x86_avx_vperm2f128_ps_256:
941   case Intrinsic::x86_avx_vperm2f128_si_256:
942   case Intrinsic::x86_avx2_vperm2i128:
943     if (Value *V = SimplifyX86vperm2(*II, *Builder))
944       return ReplaceInstUsesWith(*II, V);
945     break;
946
947   case Intrinsic::ppc_altivec_vperm:
948     // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
949     // Note that ppc_altivec_vperm has a big-endian bias, so when creating
950     // a vectorshuffle for little endian, we must undo the transformation
951     // performed on vec_perm in altivec.h.  That is, we must complement
952     // the permutation mask with respect to 31 and reverse the order of
953     // V1 and V2.
954     if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
955       assert(Mask->getType()->getVectorNumElements() == 16 &&
956              "Bad type for intrinsic!");
957
958       // Check that all of the elements are integer constants or undefs.
959       bool AllEltsOk = true;
960       for (unsigned i = 0; i != 16; ++i) {
961         Constant *Elt = Mask->getAggregateElement(i);
962         if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
963           AllEltsOk = false;
964           break;
965         }
966       }
967
968       if (AllEltsOk) {
969         // Cast the input vectors to byte vectors.
970         Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0),
971                                             Mask->getType());
972         Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1),
973                                             Mask->getType());
974         Value *Result = UndefValue::get(Op0->getType());
975
976         // Only extract each element once.
977         Value *ExtractedElts[32];
978         memset(ExtractedElts, 0, sizeof(ExtractedElts));
979
980         for (unsigned i = 0; i != 16; ++i) {
981           if (isa<UndefValue>(Mask->getAggregateElement(i)))
982             continue;
983           unsigned Idx =
984             cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
985           Idx &= 31;  // Match the hardware behavior.
986           if (DL.isLittleEndian())
987             Idx = 31 - Idx;
988
989           if (!ExtractedElts[Idx]) {
990             Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
991             Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
992             ExtractedElts[Idx] =
993               Builder->CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse,
994                                             Builder->getInt32(Idx&15));
995           }
996
997           // Insert this value into the result vector.
998           Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
999                                                 Builder->getInt32(i));
1000         }
1001         return CastInst::Create(Instruction::BitCast, Result, CI.getType());
1002       }
1003     }
1004     break;
1005
1006   case Intrinsic::arm_neon_vld1:
1007   case Intrinsic::arm_neon_vld2:
1008   case Intrinsic::arm_neon_vld3:
1009   case Intrinsic::arm_neon_vld4:
1010   case Intrinsic::arm_neon_vld2lane:
1011   case Intrinsic::arm_neon_vld3lane:
1012   case Intrinsic::arm_neon_vld4lane:
1013   case Intrinsic::arm_neon_vst1:
1014   case Intrinsic::arm_neon_vst2:
1015   case Intrinsic::arm_neon_vst3:
1016   case Intrinsic::arm_neon_vst4:
1017   case Intrinsic::arm_neon_vst2lane:
1018   case Intrinsic::arm_neon_vst3lane:
1019   case Intrinsic::arm_neon_vst4lane: {
1020     unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), DL, II, AC, DT);
1021     unsigned AlignArg = II->getNumArgOperands() - 1;
1022     ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
1023     if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
1024       II->setArgOperand(AlignArg,
1025                         ConstantInt::get(Type::getInt32Ty(II->getContext()),
1026                                          MemAlign, false));
1027       return II;
1028     }
1029     break;
1030   }
1031
1032   case Intrinsic::arm_neon_vmulls:
1033   case Intrinsic::arm_neon_vmullu:
1034   case Intrinsic::aarch64_neon_smull:
1035   case Intrinsic::aarch64_neon_umull: {
1036     Value *Arg0 = II->getArgOperand(0);
1037     Value *Arg1 = II->getArgOperand(1);
1038
1039     // Handle mul by zero first:
1040     if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
1041       return ReplaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
1042     }
1043
1044     // Check for constant LHS & RHS - in this case we just simplify.
1045     bool Zext = (II->getIntrinsicID() == Intrinsic::arm_neon_vmullu ||
1046                  II->getIntrinsicID() == Intrinsic::aarch64_neon_umull);
1047     VectorType *NewVT = cast<VectorType>(II->getType());
1048     if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
1049       if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
1050         CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
1051         CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
1052
1053         return ReplaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
1054       }
1055
1056       // Couldn't simplify - canonicalize constant to the RHS.
1057       std::swap(Arg0, Arg1);
1058     }
1059
1060     // Handle mul by one:
1061     if (Constant *CV1 = dyn_cast<Constant>(Arg1))
1062       if (ConstantInt *Splat =
1063               dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
1064         if (Splat->isOne())
1065           return CastInst::CreateIntegerCast(Arg0, II->getType(),
1066                                              /*isSigned=*/!Zext);
1067
1068     break;
1069   }
1070
1071   case Intrinsic::AMDGPU_rcp: {
1072     if (const ConstantFP *C = dyn_cast<ConstantFP>(II->getArgOperand(0))) {
1073       const APFloat &ArgVal = C->getValueAPF();
1074       APFloat Val(ArgVal.getSemantics(), 1.0);
1075       APFloat::opStatus Status = Val.divide(ArgVal,
1076                                             APFloat::rmNearestTiesToEven);
1077       // Only do this if it was exact and therefore not dependent on the
1078       // rounding mode.
1079       if (Status == APFloat::opOK)
1080         return ReplaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val));
1081     }
1082
1083     break;
1084   }
1085   case Intrinsic::stackrestore: {
1086     // If the save is right next to the restore, remove the restore.  This can
1087     // happen when variable allocas are DCE'd.
1088     if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
1089       if (SS->getIntrinsicID() == Intrinsic::stacksave) {
1090         BasicBlock::iterator BI = SS;
1091         if (&*++BI == II)
1092           return EraseInstFromFunction(CI);
1093       }
1094     }
1095
1096     // Scan down this block to see if there is another stack restore in the
1097     // same block without an intervening call/alloca.
1098     BasicBlock::iterator BI = II;
1099     TerminatorInst *TI = II->getParent()->getTerminator();
1100     bool CannotRemove = false;
1101     for (++BI; &*BI != TI; ++BI) {
1102       if (isa<AllocaInst>(BI)) {
1103         CannotRemove = true;
1104         break;
1105       }
1106       if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
1107         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
1108           // If there is a stackrestore below this one, remove this one.
1109           if (II->getIntrinsicID() == Intrinsic::stackrestore)
1110             return EraseInstFromFunction(CI);
1111           // Otherwise, ignore the intrinsic.
1112         } else {
1113           // If we found a non-intrinsic call, we can't remove the stack
1114           // restore.
1115           CannotRemove = true;
1116           break;
1117         }
1118       }
1119     }
1120
1121     // If the stack restore is in a return, resume, or unwind block and if there
1122     // are no allocas or calls between the restore and the return, nuke the
1123     // restore.
1124     if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
1125       return EraseInstFromFunction(CI);
1126     break;
1127   }
1128   case Intrinsic::assume: {
1129     // Canonicalize assume(a && b) -> assume(a); assume(b);
1130     // Note: New assumption intrinsics created here are registered by
1131     // the InstCombineIRInserter object.
1132     Value *IIOperand = II->getArgOperand(0), *A, *B,
1133           *AssumeIntrinsic = II->getCalledValue();
1134     if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) {
1135       Builder->CreateCall(AssumeIntrinsic, A, II->getName());
1136       Builder->CreateCall(AssumeIntrinsic, B, II->getName());
1137       return EraseInstFromFunction(*II);
1138     }
1139     // assume(!(a || b)) -> assume(!a); assume(!b);
1140     if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) {
1141       Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(A),
1142                           II->getName());
1143       Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(B),
1144                           II->getName());
1145       return EraseInstFromFunction(*II);
1146     }
1147
1148     // assume( (load addr) != null ) -> add 'nonnull' metadata to load
1149     // (if assume is valid at the load)
1150     if (ICmpInst* ICmp = dyn_cast<ICmpInst>(IIOperand)) {
1151       Value *LHS = ICmp->getOperand(0);
1152       Value *RHS = ICmp->getOperand(1);
1153       if (ICmpInst::ICMP_NE == ICmp->getPredicate() &&
1154           isa<LoadInst>(LHS) &&
1155           isa<Constant>(RHS) &&
1156           RHS->getType()->isPointerTy() &&
1157           cast<Constant>(RHS)->isNullValue()) {
1158         LoadInst* LI = cast<LoadInst>(LHS);
1159         if (isValidAssumeForContext(II, LI, DT)) {
1160           MDNode *MD = MDNode::get(II->getContext(), None);
1161           LI->setMetadata(LLVMContext::MD_nonnull, MD);
1162           return EraseInstFromFunction(*II);
1163         }
1164       }
1165       // TODO: apply nonnull return attributes to calls and invokes
1166       // TODO: apply range metadata for range check patterns?
1167     }
1168     // If there is a dominating assume with the same condition as this one,
1169     // then this one is redundant, and should be removed.
1170     APInt KnownZero(1, 0), KnownOne(1, 0);
1171     computeKnownBits(IIOperand, KnownZero, KnownOne, 0, II);
1172     if (KnownOne.isAllOnesValue())
1173       return EraseInstFromFunction(*II);
1174
1175     break;
1176   }
1177   case Intrinsic::experimental_gc_relocate: {
1178     // Translate facts known about a pointer before relocating into
1179     // facts about the relocate value, while being careful to
1180     // preserve relocation semantics.
1181     GCRelocateOperands Operands(II);
1182     Value *DerivedPtr = Operands.derivedPtr();
1183
1184     // Remove the relocation if unused, note that this check is required
1185     // to prevent the cases below from looping forever.
1186     if (II->use_empty())
1187       return EraseInstFromFunction(*II);
1188
1189     // Undef is undef, even after relocation.
1190     // TODO: provide a hook for this in GCStrategy.  This is clearly legal for
1191     // most practical collectors, but there was discussion in the review thread
1192     // about whether it was legal for all possible collectors.
1193     if (isa<UndefValue>(DerivedPtr))
1194       return ReplaceInstUsesWith(*II, DerivedPtr);
1195
1196     // The relocation of null will be null for most any collector.
1197     // TODO: provide a hook for this in GCStrategy.  There might be some weird
1198     // collector this property does not hold for.
1199     if (isa<ConstantPointerNull>(DerivedPtr))
1200       return ReplaceInstUsesWith(*II, DerivedPtr);
1201
1202     // isKnownNonNull -> nonnull attribute
1203     if (isKnownNonNull(DerivedPtr))
1204       II->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
1205
1206     // isDereferenceablePointer -> deref attribute
1207     if (DerivedPtr->isDereferenceablePointer(DL)) {
1208       if (Argument *A = dyn_cast<Argument>(DerivedPtr)) {
1209         uint64_t Bytes = A->getDereferenceableBytes();
1210         II->addDereferenceableAttr(AttributeSet::ReturnIndex, Bytes);
1211       }
1212     }
1213
1214     // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
1215     // Canonicalize on the type from the uses to the defs
1216
1217     // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
1218   }
1219   }
1220
1221   return visitCallSite(II);
1222 }
1223
1224 // InvokeInst simplification
1225 //
1226 Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
1227   return visitCallSite(&II);
1228 }
1229
1230 /// isSafeToEliminateVarargsCast - If this cast does not affect the value
1231 /// passed through the varargs area, we can eliminate the use of the cast.
1232 static bool isSafeToEliminateVarargsCast(const CallSite CS,
1233                                          const DataLayout &DL,
1234                                          const CastInst *const CI,
1235                                          const int ix) {
1236   if (!CI->isLosslessCast())
1237     return false;
1238
1239   // If this is a GC intrinsic, avoid munging types.  We need types for
1240   // statepoint reconstruction in SelectionDAG.
1241   // TODO: This is probably something which should be expanded to all
1242   // intrinsics since the entire point of intrinsics is that
1243   // they are understandable by the optimizer.
1244   if (isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS))
1245     return false;
1246
1247   // The size of ByVal or InAlloca arguments is derived from the type, so we
1248   // can't change to a type with a different size.  If the size were
1249   // passed explicitly we could avoid this check.
1250   if (!CS.isByValOrInAllocaArgument(ix))
1251     return true;
1252
1253   Type* SrcTy =
1254             cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
1255   Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
1256   if (!SrcTy->isSized() || !DstTy->isSized())
1257     return false;
1258   if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy))
1259     return false;
1260   return true;
1261 }
1262
1263 // Try to fold some different type of calls here.
1264 // Currently we're only working with the checking functions, memcpy_chk,
1265 // mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
1266 // strcat_chk and strncat_chk.
1267 Instruction *InstCombiner::tryOptimizeCall(CallInst *CI) {
1268   if (!CI->getCalledFunction()) return nullptr;
1269
1270   auto InstCombineRAUW = [this](Instruction *From, Value *With) {
1271     ReplaceInstUsesWith(*From, With);
1272   };
1273   LibCallSimplifier Simplifier(DL, TLI, InstCombineRAUW);
1274   if (Value *With = Simplifier.optimizeCall(CI)) {
1275     ++NumSimplified;
1276     return CI->use_empty() ? CI : ReplaceInstUsesWith(*CI, With);
1277   }
1278
1279   return nullptr;
1280 }
1281
1282 static IntrinsicInst *FindInitTrampolineFromAlloca(Value *TrampMem) {
1283   // Strip off at most one level of pointer casts, looking for an alloca.  This
1284   // is good enough in practice and simpler than handling any number of casts.
1285   Value *Underlying = TrampMem->stripPointerCasts();
1286   if (Underlying != TrampMem &&
1287       (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
1288     return nullptr;
1289   if (!isa<AllocaInst>(Underlying))
1290     return nullptr;
1291
1292   IntrinsicInst *InitTrampoline = nullptr;
1293   for (User *U : TrampMem->users()) {
1294     IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
1295     if (!II)
1296       return nullptr;
1297     if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
1298       if (InitTrampoline)
1299         // More than one init_trampoline writes to this value.  Give up.
1300         return nullptr;
1301       InitTrampoline = II;
1302       continue;
1303     }
1304     if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
1305       // Allow any number of calls to adjust.trampoline.
1306       continue;
1307     return nullptr;
1308   }
1309
1310   // No call to init.trampoline found.
1311   if (!InitTrampoline)
1312     return nullptr;
1313
1314   // Check that the alloca is being used in the expected way.
1315   if (InitTrampoline->getOperand(0) != TrampMem)
1316     return nullptr;
1317
1318   return InitTrampoline;
1319 }
1320
1321 static IntrinsicInst *FindInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
1322                                                Value *TrampMem) {
1323   // Visit all the previous instructions in the basic block, and try to find a
1324   // init.trampoline which has a direct path to the adjust.trampoline.
1325   for (BasicBlock::iterator I = AdjustTramp,
1326        E = AdjustTramp->getParent()->begin(); I != E; ) {
1327     Instruction *Inst = --I;
1328     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1329       if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
1330           II->getOperand(0) == TrampMem)
1331         return II;
1332     if (Inst->mayWriteToMemory())
1333       return nullptr;
1334   }
1335   return nullptr;
1336 }
1337
1338 // Given a call to llvm.adjust.trampoline, find and return the corresponding
1339 // call to llvm.init.trampoline if the call to the trampoline can be optimized
1340 // to a direct call to a function.  Otherwise return NULL.
1341 //
1342 static IntrinsicInst *FindInitTrampoline(Value *Callee) {
1343   Callee = Callee->stripPointerCasts();
1344   IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
1345   if (!AdjustTramp ||
1346       AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
1347     return nullptr;
1348
1349   Value *TrampMem = AdjustTramp->getOperand(0);
1350
1351   if (IntrinsicInst *IT = FindInitTrampolineFromAlloca(TrampMem))
1352     return IT;
1353   if (IntrinsicInst *IT = FindInitTrampolineFromBB(AdjustTramp, TrampMem))
1354     return IT;
1355   return nullptr;
1356 }
1357
1358 // visitCallSite - Improvements for call and invoke instructions.
1359 //
1360 Instruction *InstCombiner::visitCallSite(CallSite CS) {
1361   if (isAllocLikeFn(CS.getInstruction(), TLI))
1362     return visitAllocSite(*CS.getInstruction());
1363
1364   bool Changed = false;
1365
1366   // If the callee is a pointer to a function, attempt to move any casts to the
1367   // arguments of the call/invoke.
1368   Value *Callee = CS.getCalledValue();
1369   if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
1370     return nullptr;
1371
1372   if (Function *CalleeF = dyn_cast<Function>(Callee))
1373     // If the call and callee calling conventions don't match, this call must
1374     // be unreachable, as the call is undefined.
1375     if (CalleeF->getCallingConv() != CS.getCallingConv() &&
1376         // Only do this for calls to a function with a body.  A prototype may
1377         // not actually end up matching the implementation's calling conv for a
1378         // variety of reasons (e.g. it may be written in assembly).
1379         !CalleeF->isDeclaration()) {
1380       Instruction *OldCall = CS.getInstruction();
1381       new StoreInst(ConstantInt::getTrue(Callee->getContext()),
1382                 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
1383                                   OldCall);
1384       // If OldCall does not return void then replaceAllUsesWith undef.
1385       // This allows ValueHandlers and custom metadata to adjust itself.
1386       if (!OldCall->getType()->isVoidTy())
1387         ReplaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
1388       if (isa<CallInst>(OldCall))
1389         return EraseInstFromFunction(*OldCall);
1390
1391       // We cannot remove an invoke, because it would change the CFG, just
1392       // change the callee to a null pointer.
1393       cast<InvokeInst>(OldCall)->setCalledFunction(
1394                                     Constant::getNullValue(CalleeF->getType()));
1395       return nullptr;
1396     }
1397
1398   if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1399     // If CS does not return void then replaceAllUsesWith undef.
1400     // This allows ValueHandlers and custom metadata to adjust itself.
1401     if (!CS.getInstruction()->getType()->isVoidTy())
1402       ReplaceInstUsesWith(*CS.getInstruction(),
1403                           UndefValue::get(CS.getInstruction()->getType()));
1404
1405     if (isa<InvokeInst>(CS.getInstruction())) {
1406       // Can't remove an invoke because we cannot change the CFG.
1407       return nullptr;
1408     }
1409
1410     // This instruction is not reachable, just remove it.  We insert a store to
1411     // undef so that we know that this code is not reachable, despite the fact
1412     // that we can't modify the CFG here.
1413     new StoreInst(ConstantInt::getTrue(Callee->getContext()),
1414                   UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
1415                   CS.getInstruction());
1416
1417     return EraseInstFromFunction(*CS.getInstruction());
1418   }
1419
1420   if (IntrinsicInst *II = FindInitTrampoline(Callee))
1421     return transformCallThroughTrampoline(CS, II);
1422
1423   PointerType *PTy = cast<PointerType>(Callee->getType());
1424   FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1425   if (FTy->isVarArg()) {
1426     int ix = FTy->getNumParams();
1427     // See if we can optimize any arguments passed through the varargs area of
1428     // the call.
1429     for (CallSite::arg_iterator I = CS.arg_begin() + FTy->getNumParams(),
1430            E = CS.arg_end(); I != E; ++I, ++ix) {
1431       CastInst *CI = dyn_cast<CastInst>(*I);
1432       if (CI && isSafeToEliminateVarargsCast(CS, DL, CI, ix)) {
1433         *I = CI->getOperand(0);
1434         Changed = true;
1435       }
1436     }
1437   }
1438
1439   if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
1440     // Inline asm calls cannot throw - mark them 'nounwind'.
1441     CS.setDoesNotThrow();
1442     Changed = true;
1443   }
1444
1445   // Try to optimize the call if possible, we require DataLayout for most of
1446   // this.  None of these calls are seen as possibly dead so go ahead and
1447   // delete the instruction now.
1448   if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
1449     Instruction *I = tryOptimizeCall(CI);
1450     // If we changed something return the result, etc. Otherwise let
1451     // the fallthrough check.
1452     if (I) return EraseInstFromFunction(*I);
1453   }
1454
1455   return Changed ? CS.getInstruction() : nullptr;
1456 }
1457
1458 // transformConstExprCastCall - If the callee is a constexpr cast of a function,
1459 // attempt to move the cast to the arguments of the call/invoke.
1460 //
1461 bool InstCombiner::transformConstExprCastCall(CallSite CS) {
1462   Function *Callee =
1463     dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
1464   if (!Callee)
1465     return false;
1466   // The prototype of thunks are a lie, don't try to directly call such
1467   // functions.
1468   if (Callee->hasFnAttribute("thunk"))
1469     return false;
1470   Instruction *Caller = CS.getInstruction();
1471   const AttributeSet &CallerPAL = CS.getAttributes();
1472
1473   // Okay, this is a cast from a function to a different type.  Unless doing so
1474   // would cause a type conversion of one of our arguments, change this call to
1475   // be a direct call with arguments casted to the appropriate types.
1476   //
1477   FunctionType *FT = Callee->getFunctionType();
1478   Type *OldRetTy = Caller->getType();
1479   Type *NewRetTy = FT->getReturnType();
1480
1481   // Check to see if we are changing the return type...
1482   if (OldRetTy != NewRetTy) {
1483
1484     if (NewRetTy->isStructTy())
1485       return false; // TODO: Handle multiple return values.
1486
1487     if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
1488       if (Callee->isDeclaration())
1489         return false;   // Cannot transform this return value.
1490
1491       if (!Caller->use_empty() &&
1492           // void -> non-void is handled specially
1493           !NewRetTy->isVoidTy())
1494         return false;   // Cannot transform this return value.
1495     }
1496
1497     if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
1498       AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex);
1499       if (RAttrs.
1500           hasAttributes(AttributeFuncs::
1501                         typeIncompatible(NewRetTy, AttributeSet::ReturnIndex),
1502                         AttributeSet::ReturnIndex))
1503         return false;   // Attribute not compatible with transformed value.
1504     }
1505
1506     // If the callsite is an invoke instruction, and the return value is used by
1507     // a PHI node in a successor, we cannot change the return type of the call
1508     // because there is no place to put the cast instruction (without breaking
1509     // the critical edge).  Bail out in this case.
1510     if (!Caller->use_empty())
1511       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
1512         for (User *U : II->users())
1513           if (PHINode *PN = dyn_cast<PHINode>(U))
1514             if (PN->getParent() == II->getNormalDest() ||
1515                 PN->getParent() == II->getUnwindDest())
1516               return false;
1517   }
1518
1519   unsigned NumActualArgs = CS.arg_size();
1520   unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
1521
1522   // Prevent us turning:
1523   // declare void @takes_i32_inalloca(i32* inalloca)
1524   //  call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
1525   //
1526   // into:
1527   //  call void @takes_i32_inalloca(i32* null)
1528   //
1529   //  Similarly, avoid folding away bitcasts of byval calls.
1530   if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
1531       Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal))
1532     return false;
1533
1534   CallSite::arg_iterator AI = CS.arg_begin();
1535   for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
1536     Type *ParamTy = FT->getParamType(i);
1537     Type *ActTy = (*AI)->getType();
1538
1539     if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
1540       return false;   // Cannot transform this parameter value.
1541
1542     if (AttrBuilder(CallerPAL.getParamAttributes(i + 1), i + 1).
1543           hasAttributes(AttributeFuncs::
1544                         typeIncompatible(ParamTy, i + 1), i + 1))
1545       return false;   // Attribute not compatible with transformed value.
1546
1547     if (CS.isInAllocaArgument(i))
1548       return false;   // Cannot transform to and from inalloca.
1549
1550     // If the parameter is passed as a byval argument, then we have to have a
1551     // sized type and the sized type has to have the same size as the old type.
1552     if (ParamTy != ActTy &&
1553         CallerPAL.getParamAttributes(i + 1).hasAttribute(i + 1,
1554                                                          Attribute::ByVal)) {
1555       PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
1556       if (!ParamPTy || !ParamPTy->getElementType()->isSized())
1557         return false;
1558
1559       Type *CurElTy = ActTy->getPointerElementType();
1560       if (DL.getTypeAllocSize(CurElTy) !=
1561           DL.getTypeAllocSize(ParamPTy->getElementType()))
1562         return false;
1563     }
1564   }
1565
1566   if (Callee->isDeclaration()) {
1567     // Do not delete arguments unless we have a function body.
1568     if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
1569       return false;
1570
1571     // If the callee is just a declaration, don't change the varargsness of the
1572     // call.  We don't want to introduce a varargs call where one doesn't
1573     // already exist.
1574     PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
1575     if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
1576       return false;
1577
1578     // If both the callee and the cast type are varargs, we still have to make
1579     // sure the number of fixed parameters are the same or we have the same
1580     // ABI issues as if we introduce a varargs call.
1581     if (FT->isVarArg() &&
1582         cast<FunctionType>(APTy->getElementType())->isVarArg() &&
1583         FT->getNumParams() !=
1584         cast<FunctionType>(APTy->getElementType())->getNumParams())
1585       return false;
1586   }
1587
1588   if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
1589       !CallerPAL.isEmpty())
1590     // In this case we have more arguments than the new function type, but we
1591     // won't be dropping them.  Check that these extra arguments have attributes
1592     // that are compatible with being a vararg call argument.
1593     for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
1594       unsigned Index = CallerPAL.getSlotIndex(i - 1);
1595       if (Index <= FT->getNumParams())
1596         break;
1597
1598       // Check if it has an attribute that's incompatible with varargs.
1599       AttributeSet PAttrs = CallerPAL.getSlotAttributes(i - 1);
1600       if (PAttrs.hasAttribute(Index, Attribute::StructRet))
1601         return false;
1602     }
1603
1604
1605   // Okay, we decided that this is a safe thing to do: go ahead and start
1606   // inserting cast instructions as necessary.
1607   std::vector<Value*> Args;
1608   Args.reserve(NumActualArgs);
1609   SmallVector<AttributeSet, 8> attrVec;
1610   attrVec.reserve(NumCommonArgs);
1611
1612   // Get any return attributes.
1613   AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex);
1614
1615   // If the return value is not being used, the type may not be compatible
1616   // with the existing attributes.  Wipe out any problematic attributes.
1617   RAttrs.
1618     removeAttributes(AttributeFuncs::
1619                      typeIncompatible(NewRetTy, AttributeSet::ReturnIndex),
1620                      AttributeSet::ReturnIndex);
1621
1622   // Add the new return attributes.
1623   if (RAttrs.hasAttributes())
1624     attrVec.push_back(AttributeSet::get(Caller->getContext(),
1625                                         AttributeSet::ReturnIndex, RAttrs));
1626
1627   AI = CS.arg_begin();
1628   for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
1629     Type *ParamTy = FT->getParamType(i);
1630
1631     if ((*AI)->getType() == ParamTy) {
1632       Args.push_back(*AI);
1633     } else {
1634       Args.push_back(Builder->CreateBitOrPointerCast(*AI, ParamTy));
1635     }
1636
1637     // Add any parameter attributes.
1638     AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1);
1639     if (PAttrs.hasAttributes())
1640       attrVec.push_back(AttributeSet::get(Caller->getContext(), i + 1,
1641                                           PAttrs));
1642   }
1643
1644   // If the function takes more arguments than the call was taking, add them
1645   // now.
1646   for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
1647     Args.push_back(Constant::getNullValue(FT->getParamType(i)));
1648
1649   // If we are removing arguments to the function, emit an obnoxious warning.
1650   if (FT->getNumParams() < NumActualArgs) {
1651     // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
1652     if (FT->isVarArg()) {
1653       // Add all of the arguments in their promoted form to the arg list.
1654       for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
1655         Type *PTy = getPromotedType((*AI)->getType());
1656         if (PTy != (*AI)->getType()) {
1657           // Must promote to pass through va_arg area!
1658           Instruction::CastOps opcode =
1659             CastInst::getCastOpcode(*AI, false, PTy, false);
1660           Args.push_back(Builder->CreateCast(opcode, *AI, PTy));
1661         } else {
1662           Args.push_back(*AI);
1663         }
1664
1665         // Add any parameter attributes.
1666         AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1);
1667         if (PAttrs.hasAttributes())
1668           attrVec.push_back(AttributeSet::get(FT->getContext(), i + 1,
1669                                               PAttrs));
1670       }
1671     }
1672   }
1673
1674   AttributeSet FnAttrs = CallerPAL.getFnAttributes();
1675   if (CallerPAL.hasAttributes(AttributeSet::FunctionIndex))
1676     attrVec.push_back(AttributeSet::get(Callee->getContext(), FnAttrs));
1677
1678   if (NewRetTy->isVoidTy())
1679     Caller->setName("");   // Void type should not have a name.
1680
1681   const AttributeSet &NewCallerPAL = AttributeSet::get(Callee->getContext(),
1682                                                        attrVec);
1683
1684   Instruction *NC;
1685   if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1686     NC = Builder->CreateInvoke(Callee, II->getNormalDest(),
1687                                II->getUnwindDest(), Args);
1688     NC->takeName(II);
1689     cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
1690     cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
1691   } else {
1692     CallInst *CI = cast<CallInst>(Caller);
1693     NC = Builder->CreateCall(Callee, Args);
1694     NC->takeName(CI);
1695     if (CI->isTailCall())
1696       cast<CallInst>(NC)->setTailCall();
1697     cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
1698     cast<CallInst>(NC)->setAttributes(NewCallerPAL);
1699   }
1700
1701   // Insert a cast of the return type as necessary.
1702   Value *NV = NC;
1703   if (OldRetTy != NV->getType() && !Caller->use_empty()) {
1704     if (!NV->getType()->isVoidTy()) {
1705       NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
1706       NC->setDebugLoc(Caller->getDebugLoc());
1707
1708       // If this is an invoke instruction, we should insert it after the first
1709       // non-phi, instruction in the normal successor block.
1710       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1711         BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
1712         InsertNewInstBefore(NC, *I);
1713       } else {
1714         // Otherwise, it's a call, just insert cast right after the call.
1715         InsertNewInstBefore(NC, *Caller);
1716       }
1717       Worklist.AddUsersToWorkList(*Caller);
1718     } else {
1719       NV = UndefValue::get(Caller->getType());
1720     }
1721   }
1722
1723   if (!Caller->use_empty())
1724     ReplaceInstUsesWith(*Caller, NV);
1725   else if (Caller->hasValueHandle()) {
1726     if (OldRetTy == NV->getType())
1727       ValueHandleBase::ValueIsRAUWd(Caller, NV);
1728     else
1729       // We cannot call ValueIsRAUWd with a different type, and the
1730       // actual tracked value will disappear.
1731       ValueHandleBase::ValueIsDeleted(Caller);
1732   }
1733
1734   EraseInstFromFunction(*Caller);
1735   return true;
1736 }
1737
1738 // transformCallThroughTrampoline - Turn a call to a function created by
1739 // init_trampoline / adjust_trampoline intrinsic pair into a direct call to the
1740 // underlying function.
1741 //
1742 Instruction *
1743 InstCombiner::transformCallThroughTrampoline(CallSite CS,
1744                                              IntrinsicInst *Tramp) {
1745   Value *Callee = CS.getCalledValue();
1746   PointerType *PTy = cast<PointerType>(Callee->getType());
1747   FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1748   const AttributeSet &Attrs = CS.getAttributes();
1749
1750   // If the call already has the 'nest' attribute somewhere then give up -
1751   // otherwise 'nest' would occur twice after splicing in the chain.
1752   if (Attrs.hasAttrSomewhere(Attribute::Nest))
1753     return nullptr;
1754
1755   assert(Tramp &&
1756          "transformCallThroughTrampoline called with incorrect CallSite.");
1757
1758   Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
1759   PointerType *NestFPTy = cast<PointerType>(NestF->getType());
1760   FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
1761
1762   const AttributeSet &NestAttrs = NestF->getAttributes();
1763   if (!NestAttrs.isEmpty()) {
1764     unsigned NestIdx = 1;
1765     Type *NestTy = nullptr;
1766     AttributeSet NestAttr;
1767
1768     // Look for a parameter marked with the 'nest' attribute.
1769     for (FunctionType::param_iterator I = NestFTy->param_begin(),
1770          E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
1771       if (NestAttrs.hasAttribute(NestIdx, Attribute::Nest)) {
1772         // Record the parameter type and any other attributes.
1773         NestTy = *I;
1774         NestAttr = NestAttrs.getParamAttributes(NestIdx);
1775         break;
1776       }
1777
1778     if (NestTy) {
1779       Instruction *Caller = CS.getInstruction();
1780       std::vector<Value*> NewArgs;
1781       NewArgs.reserve(CS.arg_size() + 1);
1782
1783       SmallVector<AttributeSet, 8> NewAttrs;
1784       NewAttrs.reserve(Attrs.getNumSlots() + 1);
1785
1786       // Insert the nest argument into the call argument list, which may
1787       // mean appending it.  Likewise for attributes.
1788
1789       // Add any result attributes.
1790       if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
1791         NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
1792                                              Attrs.getRetAttributes()));
1793
1794       {
1795         unsigned Idx = 1;
1796         CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
1797         do {
1798           if (Idx == NestIdx) {
1799             // Add the chain argument and attributes.
1800             Value *NestVal = Tramp->getArgOperand(2);
1801             if (NestVal->getType() != NestTy)
1802               NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest");
1803             NewArgs.push_back(NestVal);
1804             NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
1805                                                  NestAttr));
1806           }
1807
1808           if (I == E)
1809             break;
1810
1811           // Add the original argument and attributes.
1812           NewArgs.push_back(*I);
1813           AttributeSet Attr = Attrs.getParamAttributes(Idx);
1814           if (Attr.hasAttributes(Idx)) {
1815             AttrBuilder B(Attr, Idx);
1816             NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
1817                                                  Idx + (Idx >= NestIdx), B));
1818           }
1819
1820           ++Idx, ++I;
1821         } while (1);
1822       }
1823
1824       // Add any function attributes.
1825       if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
1826         NewAttrs.push_back(AttributeSet::get(FTy->getContext(),
1827                                              Attrs.getFnAttributes()));
1828
1829       // The trampoline may have been bitcast to a bogus type (FTy).
1830       // Handle this by synthesizing a new function type, equal to FTy
1831       // with the chain parameter inserted.
1832
1833       std::vector<Type*> NewTypes;
1834       NewTypes.reserve(FTy->getNumParams()+1);
1835
1836       // Insert the chain's type into the list of parameter types, which may
1837       // mean appending it.
1838       {
1839         unsigned Idx = 1;
1840         FunctionType::param_iterator I = FTy->param_begin(),
1841           E = FTy->param_end();
1842
1843         do {
1844           if (Idx == NestIdx)
1845             // Add the chain's type.
1846             NewTypes.push_back(NestTy);
1847
1848           if (I == E)
1849             break;
1850
1851           // Add the original type.
1852           NewTypes.push_back(*I);
1853
1854           ++Idx, ++I;
1855         } while (1);
1856       }
1857
1858       // Replace the trampoline call with a direct call.  Let the generic
1859       // code sort out any function type mismatches.
1860       FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
1861                                                 FTy->isVarArg());
1862       Constant *NewCallee =
1863         NestF->getType() == PointerType::getUnqual(NewFTy) ?
1864         NestF : ConstantExpr::getBitCast(NestF,
1865                                          PointerType::getUnqual(NewFTy));
1866       const AttributeSet &NewPAL =
1867           AttributeSet::get(FTy->getContext(), NewAttrs);
1868
1869       Instruction *NewCaller;
1870       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1871         NewCaller = InvokeInst::Create(NewCallee,
1872                                        II->getNormalDest(), II->getUnwindDest(),
1873                                        NewArgs);
1874         cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
1875         cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
1876       } else {
1877         NewCaller = CallInst::Create(NewCallee, NewArgs);
1878         if (cast<CallInst>(Caller)->isTailCall())
1879           cast<CallInst>(NewCaller)->setTailCall();
1880         cast<CallInst>(NewCaller)->
1881           setCallingConv(cast<CallInst>(Caller)->getCallingConv());
1882         cast<CallInst>(NewCaller)->setAttributes(NewPAL);
1883       }
1884
1885       return NewCaller;
1886     }
1887   }
1888
1889   // Replace the trampoline call with a direct call.  Since there is no 'nest'
1890   // parameter, there is no need to adjust the argument list.  Let the generic
1891   // code sort out any function type mismatches.
1892   Constant *NewCallee =
1893     NestF->getType() == PTy ? NestF :
1894                               ConstantExpr::getBitCast(NestF, PTy);
1895   CS.setCalledFunction(NewCallee);
1896   return CS.getInstruction();
1897 }