Remove a instcombine transform that (no longer?) makes sense:
[oota-llvm.git] / lib / Transforms / InstCombine / InstCombineAddSub.cpp
1 //===- InstCombineAddSub.cpp ----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for add, fadd, sub, and fsub.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombine.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/Target/TargetData.h"
17 #include "llvm/Support/GetElementPtrTypeIterator.h"
18 #include "llvm/Support/PatternMatch.h"
19 using namespace llvm;
20 using namespace PatternMatch;
21
22 /// AddOne - Add one to a ConstantInt.
23 static Constant *AddOne(Constant *C) {
24   return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
25 }
26 /// SubOne - Subtract one from a ConstantInt.
27 static Constant *SubOne(ConstantInt *C) {
28   return ConstantInt::get(C->getContext(), C->getValue()-1);
29 }
30
31
32 // dyn_castFoldableMul - If this value is a multiply that can be folded into
33 // other computations (because it has a constant operand), return the
34 // non-constant operand of the multiply, and set CST to point to the multiplier.
35 // Otherwise, return null.
36 //
37 static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
38   if (!V->hasOneUse() || !V->getType()->isIntegerTy())
39     return 0;
40   
41   Instruction *I = dyn_cast<Instruction>(V);
42   if (I == 0) return 0;
43   
44   if (I->getOpcode() == Instruction::Mul)
45     if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
46       return I->getOperand(0);
47   if (I->getOpcode() == Instruction::Shl)
48     if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
49       // The multiplier is really 1 << CST.
50       uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
51       uint32_t CSTVal = CST->getLimitedValue(BitWidth);
52       CST = ConstantInt::get(V->getType()->getContext(),
53                              APInt(BitWidth, 1).shl(CSTVal));
54       return I->getOperand(0);
55     }
56   return 0;
57 }
58
59
60 /// WillNotOverflowSignedAdd - Return true if we can prove that:
61 ///    (sext (add LHS, RHS))  === (add (sext LHS), (sext RHS))
62 /// This basically requires proving that the add in the original type would not
63 /// overflow to change the sign bit or have a carry out.
64 bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
65   // There are different heuristics we can use for this.  Here are some simple
66   // ones.
67   
68   // Add has the property that adding any two 2's complement numbers can only 
69   // have one carry bit which can change a sign.  As such, if LHS and RHS each
70   // have at least two sign bits, we know that the addition of the two values
71   // will sign extend fine.
72   if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
73     return true;
74   
75   
76   // If one of the operands only has one non-zero bit, and if the other operand
77   // has a known-zero bit in a more significant place than it (not including the
78   // sign bit) the ripple may go up to and fill the zero, but won't change the
79   // sign.  For example, (X & ~4) + 1.
80   
81   // TODO: Implement.
82   
83   return false;
84 }
85
86 Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
87   bool Changed = SimplifyAssociativeOrCommutative(I);
88   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
89
90   if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
91                                  I.hasNoUnsignedWrap(), TD))
92     return ReplaceInstUsesWith(I, V);
93
94   // (A*B)+(A*C) -> A*(B+C) etc
95   if (Value *V = SimplifyUsingDistributiveLaws(I))
96     return ReplaceInstUsesWith(I, V);
97
98   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
99     // X + (signbit) --> X ^ signbit
100     const APInt &Val = CI->getValue();
101     if (Val.isSignBit())
102       return BinaryOperator::CreateXor(LHS, RHS);
103     
104     // See if SimplifyDemandedBits can simplify this.  This handles stuff like
105     // (X & 254)+1 -> (X&254)|1
106     if (SimplifyDemandedInstructionBits(I))
107       return &I;
108
109     // zext(bool) + C -> bool ? C + 1 : C
110     if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
111       if (ZI->getSrcTy()->isIntegerTy(1))
112         return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
113     
114     Value *XorLHS = 0; ConstantInt *XorRHS = 0;
115     if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
116       uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
117       const APInt &RHSVal = CI->getValue();
118       unsigned ExtendAmt = 0;
119       // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
120       // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
121       if (XorRHS->getValue() == -RHSVal) {
122         if (RHSVal.isPowerOf2())
123           ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
124         else if (XorRHS->getValue().isPowerOf2())
125           ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
126       }
127       
128       if (ExtendAmt) {
129         APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
130         if (!MaskedValueIsZero(XorLHS, Mask))
131           ExtendAmt = 0;
132       }
133       
134       if (ExtendAmt) {
135         Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
136         Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
137         return BinaryOperator::CreateAShr(NewShl, ShAmt);
138       }
139
140       // If this is a xor that was canonicalized from a sub, turn it back into
141       // a sub and fuse this add with it.
142       if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
143         IntegerType *IT = cast<IntegerType>(I.getType());
144         APInt LHSKnownOne(IT->getBitWidth(), 0);
145         APInt LHSKnownZero(IT->getBitWidth(), 0);
146         ComputeMaskedBits(XorLHS, LHSKnownZero, LHSKnownOne);
147         if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue())
148           return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
149                                            XorLHS);
150       }
151     }
152   }
153
154   if (isa<Constant>(RHS) && isa<PHINode>(LHS))
155     if (Instruction *NV = FoldOpIntoPhi(I))
156       return NV;
157
158   if (I.getType()->isIntegerTy(1))
159     return BinaryOperator::CreateXor(LHS, RHS);
160
161   // X + X --> X << 1
162   if (LHS == RHS) {
163     BinaryOperator *New =
164       BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
165     New->setHasNoSignedWrap(I.hasNoSignedWrap());
166     New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
167     return New;
168   }
169
170   // -A + B  -->  B - A
171   // -A + -B  -->  -(A + B)
172   if (Value *LHSV = dyn_castNegVal(LHS)) {
173     if (!isa<Constant>(RHS))
174       if (Value *RHSV = dyn_castNegVal(RHS)) {
175         Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
176         return BinaryOperator::CreateNeg(NewAdd);
177       }
178     
179     return BinaryOperator::CreateSub(RHS, LHSV);
180   }
181
182   // A + -B  -->  A - B
183   if (!isa<Constant>(RHS))
184     if (Value *V = dyn_castNegVal(RHS))
185       return BinaryOperator::CreateSub(LHS, V);
186
187
188   ConstantInt *C2;
189   if (Value *X = dyn_castFoldableMul(LHS, C2)) {
190     if (X == RHS)   // X*C + X --> X * (C+1)
191       return BinaryOperator::CreateMul(RHS, AddOne(C2));
192
193     // X*C1 + X*C2 --> X * (C1+C2)
194     ConstantInt *C1;
195     if (X == dyn_castFoldableMul(RHS, C1))
196       return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2));
197   }
198
199   // X + X*C --> X * (C+1)
200   if (dyn_castFoldableMul(RHS, C2) == LHS)
201     return BinaryOperator::CreateMul(LHS, AddOne(C2));
202
203   // A+B --> A|B iff A and B have no bits set in common.
204   if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
205     APInt LHSKnownOne(IT->getBitWidth(), 0);
206     APInt LHSKnownZero(IT->getBitWidth(), 0);
207     ComputeMaskedBits(LHS, LHSKnownZero, LHSKnownOne);
208     if (LHSKnownZero != 0) {
209       APInt RHSKnownOne(IT->getBitWidth(), 0);
210       APInt RHSKnownZero(IT->getBitWidth(), 0);
211       ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne);
212       
213       // No bits in common -> bitwise or.
214       if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
215         return BinaryOperator::CreateOr(LHS, RHS);
216     }
217   }
218
219   // W*X + Y*Z --> W * (X+Z)  iff W == Y
220   {
221     Value *W, *X, *Y, *Z;
222     if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
223         match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
224       if (W != Y) {
225         if (W == Z) {
226           std::swap(Y, Z);
227         } else if (Y == X) {
228           std::swap(W, X);
229         } else if (X == Z) {
230           std::swap(Y, Z);
231           std::swap(W, X);
232         }
233       }
234
235       if (W == Y) {
236         Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName());
237         return BinaryOperator::CreateMul(W, NewAdd);
238       }
239     }
240   }
241
242   if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
243     Value *X = 0;
244     if (match(LHS, m_Not(m_Value(X))))    // ~X + C --> (C-1) - X
245       return BinaryOperator::CreateSub(SubOne(CRHS), X);
246
247     // (X & FF00) + xx00  -> (X+xx00) & FF00
248     if (LHS->hasOneUse() &&
249         match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
250         CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
251       // See if all bits from the first bit set in the Add RHS up are included
252       // in the mask.  First, get the rightmost bit.
253       const APInt &AddRHSV = CRHS->getValue();
254       
255       // Form a mask of all bits from the lowest bit added through the top.
256       APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
257
258       // See if the and mask includes all of these bits.
259       APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
260
261       if (AddRHSHighBits == AddRHSHighBitsAnd) {
262         // Okay, the xform is safe.  Insert the new add pronto.
263         Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
264         return BinaryOperator::CreateAnd(NewAdd, C2);
265       }
266     }
267
268     // Try to fold constant add into select arguments.
269     if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
270       if (Instruction *R = FoldOpIntoSelect(I, SI))
271         return R;
272   }
273
274   // add (select X 0 (sub n A)) A  -->  select X A n
275   {
276     SelectInst *SI = dyn_cast<SelectInst>(LHS);
277     Value *A = RHS;
278     if (!SI) {
279       SI = dyn_cast<SelectInst>(RHS);
280       A = LHS;
281     }
282     if (SI && SI->hasOneUse()) {
283       Value *TV = SI->getTrueValue();
284       Value *FV = SI->getFalseValue();
285       Value *N;
286
287       // Can we fold the add into the argument of the select?
288       // We check both true and false select arguments for a matching subtract.
289       if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
290         // Fold the add into the true select value.
291         return SelectInst::Create(SI->getCondition(), N, A);
292       
293       if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
294         // Fold the add into the false select value.
295         return SelectInst::Create(SI->getCondition(), A, N);
296     }
297   }
298
299   // Check for (add (sext x), y), see if we can merge this into an
300   // integer add followed by a sext.
301   if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
302     // (add (sext x), cst) --> (sext (add x, cst'))
303     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
304       Constant *CI = 
305         ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
306       if (LHSConv->hasOneUse() &&
307           ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
308           WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
309         // Insert the new, smaller add.
310         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 
311                                               CI, "addconv");
312         return new SExtInst(NewAdd, I.getType());
313       }
314     }
315     
316     // (add (sext x), (sext y)) --> (sext (add int x, y))
317     if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
318       // Only do this if x/y have the same type, if at last one of them has a
319       // single use (so we don't increase the number of sexts), and if the
320       // integer add will not overflow.
321       if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
322           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
323           WillNotOverflowSignedAdd(LHSConv->getOperand(0),
324                                    RHSConv->getOperand(0))) {
325         // Insert the new integer add.
326         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 
327                                              RHSConv->getOperand(0), "addconv");
328         return new SExtInst(NewAdd, I.getType());
329       }
330     }
331   }
332
333   // Check for (x & y) + (x ^ y)
334   {
335     Value *A = 0, *B = 0;
336     if (match(RHS, m_Xor(m_Value(A), m_Value(B))) &&
337         (match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
338          match(LHS, m_And(m_Specific(B), m_Specific(A)))))
339       return BinaryOperator::CreateOr(A, B);
340
341     if (match(LHS, m_Xor(m_Value(A), m_Value(B))) &&
342         (match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
343          match(RHS, m_And(m_Specific(B), m_Specific(A)))))
344       return BinaryOperator::CreateOr(A, B);
345   }
346
347   return Changed ? &I : 0;
348 }
349
350 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
351   bool Changed = SimplifyAssociativeOrCommutative(I);
352   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
353
354   if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
355     // X + 0 --> X
356     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
357       if (CFP->isExactlyValue(ConstantFP::getNegativeZero
358                               (I.getType())->getValueAPF()))
359         return ReplaceInstUsesWith(I, LHS);
360     }
361
362     if (isa<PHINode>(LHS))
363       if (Instruction *NV = FoldOpIntoPhi(I))
364         return NV;
365   }
366
367   // -A + B  -->  B - A
368   // -A + -B  -->  -(A + B)
369   if (Value *LHSV = dyn_castFNegVal(LHS))
370     return BinaryOperator::CreateFSub(RHS, LHSV);
371
372   // A + -B  -->  A - B
373   if (!isa<Constant>(RHS))
374     if (Value *V = dyn_castFNegVal(RHS))
375       return BinaryOperator::CreateFSub(LHS, V);
376
377   // Check for X+0.0.  Simplify it to X if we know X is not -0.0.
378   if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
379     if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
380       return ReplaceInstUsesWith(I, LHS);
381
382   // Check for (fadd double (sitofp x), y), see if we can merge this into an
383   // integer add followed by a promotion.
384   if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
385     // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
386     // ... if the constant fits in the integer value.  This is useful for things
387     // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
388     // requires a constant pool load, and generally allows the add to be better
389     // instcombined.
390     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
391       Constant *CI = 
392       ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
393       if (LHSConv->hasOneUse() &&
394           ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
395           WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
396         // Insert the new integer add.
397         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
398                                               CI, "addconv");
399         return new SIToFPInst(NewAdd, I.getType());
400       }
401     }
402     
403     // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
404     if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
405       // Only do this if x/y have the same type, if at last one of them has a
406       // single use (so we don't increase the number of int->fp conversions),
407       // and if the integer add will not overflow.
408       if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
409           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
410           WillNotOverflowSignedAdd(LHSConv->getOperand(0),
411                                    RHSConv->getOperand(0))) {
412         // Insert the new integer add.
413         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 
414                                               RHSConv->getOperand(0),"addconv");
415         return new SIToFPInst(NewAdd, I.getType());
416       }
417     }
418   }
419   
420   return Changed ? &I : 0;
421 }
422
423
424 /// Optimize pointer differences into the same array into a size.  Consider:
425 ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
426 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
427 ///
428 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
429                                                Type *Ty) {
430   assert(TD && "Must have target data info for this");
431   
432   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
433   // this.
434   bool Swapped = false;
435   GEPOperator *GEP1 = 0, *GEP2 = 0;
436
437   // For now we require one side to be the base pointer "A" or a constant
438   // GEP derived from it.
439   if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
440     // (gep X, ...) - X
441     if (LHSGEP->getOperand(0) == RHS) {
442       GEP1 = LHSGEP;
443       Swapped = false;
444     } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
445       // (gep X, ...) - (gep X, ...)
446       if (LHSGEP->getOperand(0)->stripPointerCasts() ==
447             RHSGEP->getOperand(0)->stripPointerCasts()) {
448         GEP2 = RHSGEP;
449         GEP1 = LHSGEP;
450         Swapped = false;
451       }
452     }
453   }
454   
455   if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
456     // X - (gep X, ...)
457     if (RHSGEP->getOperand(0) == LHS) {
458       GEP1 = RHSGEP;
459       Swapped = true;
460     } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
461       // (gep X, ...) - (gep X, ...)
462       if (RHSGEP->getOperand(0)->stripPointerCasts() ==
463             LHSGEP->getOperand(0)->stripPointerCasts()) {
464         GEP2 = LHSGEP;
465         GEP1 = RHSGEP;
466         Swapped = true;
467       }
468     }
469   }
470   
471   // Avoid duplicating the arithmetic if GEP2 has non-constant indices and
472   // multiple users.
473   if (GEP1 == 0 ||
474       (GEP2 != 0 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse()))
475     return 0;
476   
477   // Emit the offset of the GEP and an intptr_t.
478   Value *Result = EmitGEPOffset(GEP1);
479   
480   // If we had a constant expression GEP on the other side offsetting the
481   // pointer, subtract it from the offset we have.
482   if (GEP2) {
483     Value *Offset = EmitGEPOffset(GEP2);
484     Result = Builder->CreateSub(Result, Offset);
485   }
486
487   // If we have p - gep(p, ...)  then we have to negate the result.
488   if (Swapped)
489     Result = Builder->CreateNeg(Result, "diff.neg");
490
491   return Builder->CreateIntCast(Result, Ty, true);
492 }
493
494
495 Instruction *InstCombiner::visitSub(BinaryOperator &I) {
496   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
497
498   if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(),
499                                  I.hasNoUnsignedWrap(), TD))
500     return ReplaceInstUsesWith(I, V);
501
502   // (A*B)-(A*C) -> A*(B-C) etc
503   if (Value *V = SimplifyUsingDistributiveLaws(I))
504     return ReplaceInstUsesWith(I, V);
505
506   // If this is a 'B = x-(-A)', change to B = x+A.  This preserves NSW/NUW.
507   if (Value *V = dyn_castNegVal(Op1)) {
508     BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
509     Res->setHasNoSignedWrap(I.hasNoSignedWrap());
510     Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
511     return Res;
512   }
513
514   if (I.getType()->isIntegerTy(1))
515     return BinaryOperator::CreateXor(Op0, Op1);
516
517   // Replace (-1 - A) with (~A).
518   if (match(Op0, m_AllOnes()))
519     return BinaryOperator::CreateNot(Op1);
520   
521   if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
522     // C - ~X == X + (1+C)
523     Value *X = 0;
524     if (match(Op1, m_Not(m_Value(X))))
525       return BinaryOperator::CreateAdd(X, AddOne(C));
526
527     // -(X >>u 31) -> (X >>s 31)
528     // -(X >>s 31) -> (X >>u 31)
529     if (C->isZero()) {
530       Value *X; ConstantInt *CI;
531       if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) &&
532           // Verify we are shifting out everything but the sign bit.
533           CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
534         return BinaryOperator::CreateAShr(X, CI);
535
536       if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) &&
537           // Verify we are shifting out everything but the sign bit.
538           CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
539         return BinaryOperator::CreateLShr(X, CI);
540     }
541
542     // Try to fold constant sub into select arguments.
543     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
544       if (Instruction *R = FoldOpIntoSelect(I, SI))
545         return R;
546
547     // C-(X+C2) --> (C-C2)-X
548     ConstantInt *C2;
549     if (match(Op1, m_Add(m_Value(X), m_ConstantInt(C2))))
550       return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
551
552     if (SimplifyDemandedInstructionBits(I))
553       return &I;
554   }
555
556   
557   { Value *Y;
558     // X-(X+Y) == -Y    X-(Y+X) == -Y
559     if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) ||
560         match(Op1, m_Add(m_Value(Y), m_Specific(Op0))))
561       return BinaryOperator::CreateNeg(Y);
562     
563     // (X-Y)-X == -Y
564     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
565       return BinaryOperator::CreateNeg(Y);
566   }
567   
568   if (Op1->hasOneUse()) {
569     Value *X = 0, *Y = 0, *Z = 0;
570     Constant *C = 0;
571     ConstantInt *CI = 0;
572
573     // (X - (Y - Z))  -->  (X + (Z - Y)).
574     if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
575       return BinaryOperator::CreateAdd(Op0,
576                                       Builder->CreateSub(Z, Y, Op1->getName()));
577
578     // (X - (X & Y))   -->   (X & ~Y)
579     //
580     if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) ||
581         match(Op1, m_And(m_Specific(Op0), m_Value(Y))))
582       return BinaryOperator::CreateAnd(Op0,
583                                   Builder->CreateNot(Y, Y->getName() + ".not"));
584     
585     // 0 - (X sdiv C)  -> (X sdiv -C)
586     if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) &&
587         match(Op0, m_Zero()))
588       return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
589
590     // 0 - (X << Y)  -> (-X << Y)   when X is freely negatable.
591     if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
592       if (Value *XNeg = dyn_castNegVal(X))
593         return BinaryOperator::CreateShl(XNeg, Y);
594
595     // X - X*C --> X * (1-C)
596     if (match(Op1, m_Mul(m_Specific(Op0), m_ConstantInt(CI)))) {
597       Constant *CP1 = ConstantExpr::getSub(ConstantInt::get(I.getType(),1), CI);
598       return BinaryOperator::CreateMul(Op0, CP1);
599     }
600
601     // X - X<<C --> X * (1-(1<<C))
602     if (match(Op1, m_Shl(m_Specific(Op0), m_ConstantInt(CI)))) {
603       Constant *One = ConstantInt::get(I.getType(), 1);
604       C = ConstantExpr::getSub(One, ConstantExpr::getShl(One, CI));
605       return BinaryOperator::CreateMul(Op0, C);
606     }
607     
608     // X - A*-B -> X + A*B
609     // X - -A*B -> X + A*B
610     Value *A, *B;
611     if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) ||
612         match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B))))
613       return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B));
614       
615     // X - A*CI -> X + A*-CI
616     // X - CI*A -> X + A*-CI
617     if (match(Op1, m_Mul(m_Value(A), m_ConstantInt(CI))) ||
618         match(Op1, m_Mul(m_ConstantInt(CI), m_Value(A)))) {
619       Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI));
620       return BinaryOperator::CreateAdd(Op0, NewMul);
621     }
622   }
623
624   ConstantInt *C1;
625   if (Value *X = dyn_castFoldableMul(Op0, C1)) {
626     if (X == Op1)  // X*C - X --> X * (C-1)
627       return BinaryOperator::CreateMul(Op1, SubOne(C1));
628
629     ConstantInt *C2;   // X*C1 - X*C2 -> X * (C1-C2)
630     if (X == dyn_castFoldableMul(Op1, C2))
631       return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2));
632   }
633   
634   // Optimize pointer differences into the same array into a size.  Consider:
635   //  &A[10] - &A[0]: we should compile this to "10".
636   if (TD) {
637     Value *LHSOp, *RHSOp;
638     if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
639         match(Op1, m_PtrToInt(m_Value(RHSOp))))
640       if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
641         return ReplaceInstUsesWith(I, Res);
642     
643     // trunc(p)-trunc(q) -> trunc(p-q)
644     if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
645         match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
646       if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
647         return ReplaceInstUsesWith(I, Res);
648   }
649   
650   return 0;
651 }
652
653 Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
654   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
655
656   // If this is a 'B = x-(-A)', change to B = x+A...
657   if (Value *V = dyn_castFNegVal(Op1))
658     return BinaryOperator::CreateFAdd(Op0, V);
659
660   return 0;
661 }