Fix some Clang-tidy modernize warnings, other minor fixes.
[oota-llvm.git] / lib / Transforms / InstCombine / InstCombineAddSub.cpp
1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for add, fadd, sub, and fsub.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/GetElementPtrTypeIterator.h"
19 #include "llvm/IR/PatternMatch.h"
20
21 using namespace llvm;
22 using namespace PatternMatch;
23
24 #define DEBUG_TYPE "instcombine"
25
26 namespace {
27
28   /// Class representing coefficient of floating-point addend.
29   /// This class needs to be highly efficient, which is especially true for
30   /// the constructor. As of I write this comment, the cost of the default
31   /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
32   /// perform write-merging).
33   ///
34   class FAddendCoef {
35   public:
36     // The constructor has to initialize a APFloat, which is unnecessary for
37     // most addends which have coefficient either 1 or -1. So, the constructor
38     // is expensive. In order to avoid the cost of the constructor, we should
39     // reuse some instances whenever possible. The pre-created instances
40     // FAddCombine::Add[0-5] embodies this idea.
41     //
42     FAddendCoef() : IsFp(false), BufHasFpVal(false), IntVal(0) {}
43     ~FAddendCoef();
44
45     void set(short C) {
46       assert(!insaneIntVal(C) && "Insane coefficient");
47       IsFp = false; IntVal = C;
48     }
49
50     void set(const APFloat& C);
51
52     void negate();
53
54     bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
55     Value *getValue(Type *) const;
56
57     // If possible, don't define operator+/operator- etc because these
58     // operators inevitably call FAddendCoef's constructor which is not cheap.
59     void operator=(const FAddendCoef &A);
60     void operator+=(const FAddendCoef &A);
61     void operator-=(const FAddendCoef &A);
62     void operator*=(const FAddendCoef &S);
63
64     bool isOne() const { return isInt() && IntVal == 1; }
65     bool isTwo() const { return isInt() && IntVal == 2; }
66     bool isMinusOne() const { return isInt() && IntVal == -1; }
67     bool isMinusTwo() const { return isInt() && IntVal == -2; }
68
69   private:
70     bool insaneIntVal(int V) { return V > 4 || V < -4; }
71     APFloat *getFpValPtr()
72       { return reinterpret_cast<APFloat*>(&FpValBuf.buffer[0]); }
73     const APFloat *getFpValPtr() const
74       { return reinterpret_cast<const APFloat*>(&FpValBuf.buffer[0]); }
75
76     const APFloat &getFpVal() const {
77       assert(IsFp && BufHasFpVal && "Incorret state");
78       return *getFpValPtr();
79     }
80
81     APFloat &getFpVal() {
82       assert(IsFp && BufHasFpVal && "Incorret state");
83       return *getFpValPtr();
84     }
85
86     bool isInt() const { return !IsFp; }
87
88     // If the coefficient is represented by an integer, promote it to a
89     // floating point.
90     void convertToFpType(const fltSemantics &Sem);
91
92     // Construct an APFloat from a signed integer.
93     // TODO: We should get rid of this function when APFloat can be constructed
94     //       from an *SIGNED* integer.
95     APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
96
97   private:
98     bool IsFp;
99
100     // True iff FpValBuf contains an instance of APFloat.
101     bool BufHasFpVal;
102
103     // The integer coefficient of an individual addend is either 1 or -1,
104     // and we try to simplify at most 4 addends from neighboring at most
105     // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
106     // is overkill of this end.
107     short IntVal;
108
109     AlignedCharArrayUnion<APFloat> FpValBuf;
110   };
111
112   /// FAddend is used to represent floating-point addend. An addend is
113   /// represented as <C, V>, where the V is a symbolic value, and C is a
114   /// constant coefficient. A constant addend is represented as <C, 0>.
115   ///
116   class FAddend {
117   public:
118     FAddend() : Val(nullptr) {}
119
120     Value *getSymVal() const { return Val; }
121     const FAddendCoef &getCoef() const { return Coeff; }
122
123     bool isConstant() const { return Val == nullptr; }
124     bool isZero() const { return Coeff.isZero(); }
125
126     void set(short Coefficient, Value *V) { Coeff.set(Coefficient), Val = V; }
127     void set(const APFloat& Coefficient, Value *V)
128       { Coeff.set(Coefficient); Val = V; }
129     void set(const ConstantFP* Coefficient, Value *V)
130       { Coeff.set(Coefficient->getValueAPF()); Val = V; }
131
132     void negate() { Coeff.negate(); }
133
134     /// Drill down the U-D chain one step to find the definition of V, and
135     /// try to break the definition into one or two addends.
136     static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
137
138     /// Similar to FAddend::drillDownOneStep() except that the value being
139     /// splitted is the addend itself.
140     unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
141
142     void operator+=(const FAddend &T) {
143       assert((Val == T.Val) && "Symbolic-values disagree");
144       Coeff += T.Coeff;
145     }
146
147   private:
148     void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
149
150     // This addend has the value of "Coeff * Val".
151     Value *Val;
152     FAddendCoef Coeff;
153   };
154
155   /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
156   /// with its neighboring at most two instructions.
157   ///
158   class FAddCombine {
159   public:
160     FAddCombine(InstCombiner::BuilderTy *B) : Builder(B), Instr(nullptr) {}
161     Value *simplify(Instruction *FAdd);
162
163   private:
164     typedef SmallVector<const FAddend*, 4> AddendVect;
165
166     Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
167
168     Value *performFactorization(Instruction *I);
169
170     /// Convert given addend to a Value
171     Value *createAddendVal(const FAddend &A, bool& NeedNeg);
172
173     /// Return the number of instructions needed to emit the N-ary addition.
174     unsigned calcInstrNumber(const AddendVect& Vect);
175     Value *createFSub(Value *Opnd0, Value *Opnd1);
176     Value *createFAdd(Value *Opnd0, Value *Opnd1);
177     Value *createFMul(Value *Opnd0, Value *Opnd1);
178     Value *createFDiv(Value *Opnd0, Value *Opnd1);
179     Value *createFNeg(Value *V);
180     Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
181     void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
182
183     InstCombiner::BuilderTy *Builder;
184     Instruction *Instr;
185
186      // Debugging stuff are clustered here.
187     #ifndef NDEBUG
188       unsigned CreateInstrNum;
189       void initCreateInstNum() { CreateInstrNum = 0; }
190       void incCreateInstNum() { CreateInstrNum++; }
191     #else
192       void initCreateInstNum() {}
193       void incCreateInstNum() {}
194     #endif
195   };
196
197 } // anonymous namespace
198
199 //===----------------------------------------------------------------------===//
200 //
201 // Implementation of
202 //    {FAddendCoef, FAddend, FAddition, FAddCombine}.
203 //
204 //===----------------------------------------------------------------------===//
205 FAddendCoef::~FAddendCoef() {
206   if (BufHasFpVal)
207     getFpValPtr()->~APFloat();
208 }
209
210 void FAddendCoef::set(const APFloat& C) {
211   APFloat *P = getFpValPtr();
212
213   if (isInt()) {
214     // As the buffer is meanless byte stream, we cannot call
215     // APFloat::operator=().
216     new(P) APFloat(C);
217   } else
218     *P = C;
219
220   IsFp = BufHasFpVal = true;
221 }
222
223 void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
224   if (!isInt())
225     return;
226
227   APFloat *P = getFpValPtr();
228   if (IntVal > 0)
229     new(P) APFloat(Sem, IntVal);
230   else {
231     new(P) APFloat(Sem, 0 - IntVal);
232     P->changeSign();
233   }
234   IsFp = BufHasFpVal = true;
235 }
236
237 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
238   if (Val >= 0)
239     return APFloat(Sem, Val);
240
241   APFloat T(Sem, 0 - Val);
242   T.changeSign();
243
244   return T;
245 }
246
247 void FAddendCoef::operator=(const FAddendCoef &That) {
248   if (That.isInt())
249     set(That.IntVal);
250   else
251     set(That.getFpVal());
252 }
253
254 void FAddendCoef::operator+=(const FAddendCoef &That) {
255   enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
256   if (isInt() == That.isInt()) {
257     if (isInt())
258       IntVal += That.IntVal;
259     else
260       getFpVal().add(That.getFpVal(), RndMode);
261     return;
262   }
263
264   if (isInt()) {
265     const APFloat &T = That.getFpVal();
266     convertToFpType(T.getSemantics());
267     getFpVal().add(T, RndMode);
268     return;
269   }
270
271   APFloat &T = getFpVal();
272   T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
273 }
274
275 void FAddendCoef::operator-=(const FAddendCoef &That) {
276   enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
277   if (isInt() == That.isInt()) {
278     if (isInt())
279       IntVal -= That.IntVal;
280     else
281       getFpVal().subtract(That.getFpVal(), RndMode);
282     return;
283   }
284
285   if (isInt()) {
286     const APFloat &T = That.getFpVal();
287     convertToFpType(T.getSemantics());
288     getFpVal().subtract(T, RndMode);
289     return;
290   }
291
292   APFloat &T = getFpVal();
293   T.subtract(createAPFloatFromInt(T.getSemantics(), IntVal), RndMode);
294 }
295
296 void FAddendCoef::operator*=(const FAddendCoef &That) {
297   if (That.isOne())
298     return;
299
300   if (That.isMinusOne()) {
301     negate();
302     return;
303   }
304
305   if (isInt() && That.isInt()) {
306     int Res = IntVal * (int)That.IntVal;
307     assert(!insaneIntVal(Res) && "Insane int value");
308     IntVal = Res;
309     return;
310   }
311
312   const fltSemantics &Semantic =
313     isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
314
315   if (isInt())
316     convertToFpType(Semantic);
317   APFloat &F0 = getFpVal();
318
319   if (That.isInt())
320     F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
321                 APFloat::rmNearestTiesToEven);
322   else
323     F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
324
325   return;
326 }
327
328 void FAddendCoef::negate() {
329   if (isInt())
330     IntVal = 0 - IntVal;
331   else
332     getFpVal().changeSign();
333 }
334
335 Value *FAddendCoef::getValue(Type *Ty) const {
336   return isInt() ?
337     ConstantFP::get(Ty, float(IntVal)) :
338     ConstantFP::get(Ty->getContext(), getFpVal());
339 }
340
341 // The definition of <Val>     Addends
342 // =========================================
343 //  A + B                     <1, A>, <1,B>
344 //  A - B                     <1, A>, <1,B>
345 //  0 - B                     <-1, B>
346 //  C * A,                    <C, A>
347 //  A + C                     <1, A> <C, NULL>
348 //  0 +/- 0                   <0, NULL> (corner case)
349 //
350 // Legend: A and B are not constant, C is constant
351 //
352 unsigned FAddend::drillValueDownOneStep
353   (Value *Val, FAddend &Addend0, FAddend &Addend1) {
354   Instruction *I = nullptr;
355   if (!Val || !(I = dyn_cast<Instruction>(Val)))
356     return 0;
357
358   unsigned Opcode = I->getOpcode();
359
360   if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
361     ConstantFP *C0, *C1;
362     Value *Opnd0 = I->getOperand(0);
363     Value *Opnd1 = I->getOperand(1);
364     if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
365       Opnd0 = nullptr;
366
367     if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
368       Opnd1 = nullptr;
369
370     if (Opnd0) {
371       if (!C0)
372         Addend0.set(1, Opnd0);
373       else
374         Addend0.set(C0, nullptr);
375     }
376
377     if (Opnd1) {
378       FAddend &Addend = Opnd0 ? Addend1 : Addend0;
379       if (!C1)
380         Addend.set(1, Opnd1);
381       else
382         Addend.set(C1, nullptr);
383       if (Opcode == Instruction::FSub)
384         Addend.negate();
385     }
386
387     if (Opnd0 || Opnd1)
388       return Opnd0 && Opnd1 ? 2 : 1;
389
390     // Both operands are zero. Weird!
391     Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
392     return 1;
393   }
394
395   if (I->getOpcode() == Instruction::FMul) {
396     Value *V0 = I->getOperand(0);
397     Value *V1 = I->getOperand(1);
398     if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
399       Addend0.set(C, V1);
400       return 1;
401     }
402
403     if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
404       Addend0.set(C, V0);
405       return 1;
406     }
407   }
408
409   return 0;
410 }
411
412 // Try to break *this* addend into two addends. e.g. Suppose this addend is
413 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
414 // i.e. <2.3, X> and <2.3, Y>.
415 //
416 unsigned FAddend::drillAddendDownOneStep
417   (FAddend &Addend0, FAddend &Addend1) const {
418   if (isConstant())
419     return 0;
420
421   unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
422   if (!BreakNum || Coeff.isOne())
423     return BreakNum;
424
425   Addend0.Scale(Coeff);
426
427   if (BreakNum == 2)
428     Addend1.Scale(Coeff);
429
430   return BreakNum;
431 }
432
433 // Try to perform following optimization on the input instruction I. Return the
434 // simplified expression if was successful; otherwise, return 0.
435 //
436 //   Instruction "I" is                Simplified into
437 // -------------------------------------------------------
438 //   (x * y) +/- (x * z)               x * (y +/- z)
439 //   (y / x) +/- (z / x)               (y +/- z) / x
440 //
441 Value *FAddCombine::performFactorization(Instruction *I) {
442   assert((I->getOpcode() == Instruction::FAdd ||
443           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
444
445   Instruction *I0 = dyn_cast<Instruction>(I->getOperand(0));
446   Instruction *I1 = dyn_cast<Instruction>(I->getOperand(1));
447
448   if (!I0 || !I1 || I0->getOpcode() != I1->getOpcode())
449     return nullptr;
450
451   bool isMpy = false;
452   if (I0->getOpcode() == Instruction::FMul)
453     isMpy = true;
454   else if (I0->getOpcode() != Instruction::FDiv)
455     return nullptr;
456
457   Value *Opnd0_0 = I0->getOperand(0);
458   Value *Opnd0_1 = I0->getOperand(1);
459   Value *Opnd1_0 = I1->getOperand(0);
460   Value *Opnd1_1 = I1->getOperand(1);
461
462   //  Input Instr I       Factor   AddSub0  AddSub1
463   //  ----------------------------------------------
464   // (x*y) +/- (x*z)        x        y         z
465   // (y/x) +/- (z/x)        x        y         z
466   //
467   Value *Factor = nullptr;
468   Value *AddSub0 = nullptr, *AddSub1 = nullptr;
469
470   if (isMpy) {
471     if (Opnd0_0 == Opnd1_0 || Opnd0_0 == Opnd1_1)
472       Factor = Opnd0_0;
473     else if (Opnd0_1 == Opnd1_0 || Opnd0_1 == Opnd1_1)
474       Factor = Opnd0_1;
475
476     if (Factor) {
477       AddSub0 = (Factor == Opnd0_0) ? Opnd0_1 : Opnd0_0;
478       AddSub1 = (Factor == Opnd1_0) ? Opnd1_1 : Opnd1_0;
479     }
480   } else if (Opnd0_1 == Opnd1_1) {
481     Factor = Opnd0_1;
482     AddSub0 = Opnd0_0;
483     AddSub1 = Opnd1_0;
484   }
485
486   if (!Factor)
487     return nullptr;
488
489   FastMathFlags Flags;
490   Flags.setUnsafeAlgebra();
491   if (I0) Flags &= I->getFastMathFlags();
492   if (I1) Flags &= I->getFastMathFlags();
493
494   // Create expression "NewAddSub = AddSub0 +/- AddsSub1"
495   Value *NewAddSub = (I->getOpcode() == Instruction::FAdd) ?
496                       createFAdd(AddSub0, AddSub1) :
497                       createFSub(AddSub0, AddSub1);
498   if (ConstantFP *CFP = dyn_cast<ConstantFP>(NewAddSub)) {
499     const APFloat &F = CFP->getValueAPF();
500     if (!F.isNormal())
501       return nullptr;
502   } else if (Instruction *II = dyn_cast<Instruction>(NewAddSub))
503     II->setFastMathFlags(Flags);
504
505   if (isMpy) {
506     Value *RI = createFMul(Factor, NewAddSub);
507     if (Instruction *II = dyn_cast<Instruction>(RI))
508       II->setFastMathFlags(Flags);
509     return RI;
510   }
511
512   Value *RI = createFDiv(NewAddSub, Factor);
513   if (Instruction *II = dyn_cast<Instruction>(RI))
514     II->setFastMathFlags(Flags);
515   return RI;
516 }
517
518 Value *FAddCombine::simplify(Instruction *I) {
519   assert(I->hasUnsafeAlgebra() && "Should be in unsafe mode");
520
521   // Currently we are not able to handle vector type.
522   if (I->getType()->isVectorTy())
523     return nullptr;
524
525   assert((I->getOpcode() == Instruction::FAdd ||
526           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
527
528   // Save the instruction before calling other member-functions.
529   Instr = I;
530
531   FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
532
533   unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
534
535   // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
536   unsigned Opnd0_ExpNum = 0;
537   unsigned Opnd1_ExpNum = 0;
538
539   if (!Opnd0.isConstant())
540     Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
541
542   // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
543   if (OpndNum == 2 && !Opnd1.isConstant())
544     Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
545
546   // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
547   if (Opnd0_ExpNum && Opnd1_ExpNum) {
548     AddendVect AllOpnds;
549     AllOpnds.push_back(&Opnd0_0);
550     AllOpnds.push_back(&Opnd1_0);
551     if (Opnd0_ExpNum == 2)
552       AllOpnds.push_back(&Opnd0_1);
553     if (Opnd1_ExpNum == 2)
554       AllOpnds.push_back(&Opnd1_1);
555
556     // Compute instruction quota. We should save at least one instruction.
557     unsigned InstQuota = 0;
558
559     Value *V0 = I->getOperand(0);
560     Value *V1 = I->getOperand(1);
561     InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
562                  (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
563
564     if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
565       return R;
566   }
567
568   if (OpndNum != 2) {
569     // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
570     // splitted into two addends, say "V = X - Y", the instruction would have
571     // been optimized into "I = Y - X" in the previous steps.
572     //
573     const FAddendCoef &CE = Opnd0.getCoef();
574     return CE.isOne() ? Opnd0.getSymVal() : nullptr;
575   }
576
577   // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
578   if (Opnd1_ExpNum) {
579     AddendVect AllOpnds;
580     AllOpnds.push_back(&Opnd0);
581     AllOpnds.push_back(&Opnd1_0);
582     if (Opnd1_ExpNum == 2)
583       AllOpnds.push_back(&Opnd1_1);
584
585     if (Value *R = simplifyFAdd(AllOpnds, 1))
586       return R;
587   }
588
589   // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
590   if (Opnd0_ExpNum) {
591     AddendVect AllOpnds;
592     AllOpnds.push_back(&Opnd1);
593     AllOpnds.push_back(&Opnd0_0);
594     if (Opnd0_ExpNum == 2)
595       AllOpnds.push_back(&Opnd0_1);
596
597     if (Value *R = simplifyFAdd(AllOpnds, 1))
598       return R;
599   }
600
601   // step 6: Try factorization as the last resort,
602   return performFactorization(I);
603 }
604
605 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
606   unsigned AddendNum = Addends.size();
607   assert(AddendNum <= 4 && "Too many addends");
608
609   // For saving intermediate results;
610   unsigned NextTmpIdx = 0;
611   FAddend TmpResult[3];
612
613   // Points to the constant addend of the resulting simplified expression.
614   // If the resulting expr has constant-addend, this constant-addend is
615   // desirable to reside at the top of the resulting expression tree. Placing
616   // constant close to supper-expr(s) will potentially reveal some optimization
617   // opportunities in super-expr(s).
618   //
619   const FAddend *ConstAdd = nullptr;
620
621   // Simplified addends are placed <SimpVect>.
622   AddendVect SimpVect;
623
624   // The outer loop works on one symbolic-value at a time. Suppose the input
625   // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
626   // The symbolic-values will be processed in this order: x, y, z.
627   //
628   for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
629
630     const FAddend *ThisAddend = Addends[SymIdx];
631     if (!ThisAddend) {
632       // This addend was processed before.
633       continue;
634     }
635
636     Value *Val = ThisAddend->getSymVal();
637     unsigned StartIdx = SimpVect.size();
638     SimpVect.push_back(ThisAddend);
639
640     // The inner loop collects addends sharing same symbolic-value, and these
641     // addends will be later on folded into a single addend. Following above
642     // example, if the symbolic value "y" is being processed, the inner loop
643     // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
644     // be later on folded into "<b1+b2, y>".
645     //
646     for (unsigned SameSymIdx = SymIdx + 1;
647          SameSymIdx < AddendNum; SameSymIdx++) {
648       const FAddend *T = Addends[SameSymIdx];
649       if (T && T->getSymVal() == Val) {
650         // Set null such that next iteration of the outer loop will not process
651         // this addend again.
652         Addends[SameSymIdx] = nullptr;
653         SimpVect.push_back(T);
654       }
655     }
656
657     // If multiple addends share same symbolic value, fold them together.
658     if (StartIdx + 1 != SimpVect.size()) {
659       FAddend &R = TmpResult[NextTmpIdx ++];
660       R = *SimpVect[StartIdx];
661       for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
662         R += *SimpVect[Idx];
663
664       // Pop all addends being folded and push the resulting folded addend.
665       SimpVect.resize(StartIdx);
666       if (Val) {
667         if (!R.isZero()) {
668           SimpVect.push_back(&R);
669         }
670       } else {
671         // Don't push constant addend at this time. It will be the last element
672         // of <SimpVect>.
673         ConstAdd = &R;
674       }
675     }
676   }
677
678   assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
679          "out-of-bound access");
680
681   if (ConstAdd)
682     SimpVect.push_back(ConstAdd);
683
684   Value *Result;
685   if (!SimpVect.empty())
686     Result = createNaryFAdd(SimpVect, InstrQuota);
687   else {
688     // The addition is folded to 0.0.
689     Result = ConstantFP::get(Instr->getType(), 0.0);
690   }
691
692   return Result;
693 }
694
695 Value *FAddCombine::createNaryFAdd
696   (const AddendVect &Opnds, unsigned InstrQuota) {
697   assert(!Opnds.empty() && "Expect at least one addend");
698
699   // Step 1: Check if the # of instructions needed exceeds the quota.
700   //
701   unsigned InstrNeeded = calcInstrNumber(Opnds);
702   if (InstrNeeded > InstrQuota)
703     return nullptr;
704
705   initCreateInstNum();
706
707   // step 2: Emit the N-ary addition.
708   // Note that at most three instructions are involved in Fadd-InstCombine: the
709   // addition in question, and at most two neighboring instructions.
710   // The resulting optimized addition should have at least one less instruction
711   // than the original addition expression tree. This implies that the resulting
712   // N-ary addition has at most two instructions, and we don't need to worry
713   // about tree-height when constructing the N-ary addition.
714
715   Value *LastVal = nullptr;
716   bool LastValNeedNeg = false;
717
718   // Iterate the addends, creating fadd/fsub using adjacent two addends.
719   for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
720        I != E; I++) {
721     bool NeedNeg;
722     Value *V = createAddendVal(**I, NeedNeg);
723     if (!LastVal) {
724       LastVal = V;
725       LastValNeedNeg = NeedNeg;
726       continue;
727     }
728
729     if (LastValNeedNeg == NeedNeg) {
730       LastVal = createFAdd(LastVal, V);
731       continue;
732     }
733
734     if (LastValNeedNeg)
735       LastVal = createFSub(V, LastVal);
736     else
737       LastVal = createFSub(LastVal, V);
738
739     LastValNeedNeg = false;
740   }
741
742   if (LastValNeedNeg) {
743     LastVal = createFNeg(LastVal);
744   }
745
746   #ifndef NDEBUG
747     assert(CreateInstrNum == InstrNeeded &&
748            "Inconsistent in instruction numbers");
749   #endif
750
751   return LastVal;
752 }
753
754 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
755   Value *V = Builder->CreateFSub(Opnd0, Opnd1);
756   if (Instruction *I = dyn_cast<Instruction>(V))
757     createInstPostProc(I);
758   return V;
759 }
760
761 Value *FAddCombine::createFNeg(Value *V) {
762   Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType()));
763   Value *NewV = createFSub(Zero, V);
764   if (Instruction *I = dyn_cast<Instruction>(NewV))
765     createInstPostProc(I, true); // fneg's don't receive instruction numbers.
766   return NewV;
767 }
768
769 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
770   Value *V = Builder->CreateFAdd(Opnd0, Opnd1);
771   if (Instruction *I = dyn_cast<Instruction>(V))
772     createInstPostProc(I);
773   return V;
774 }
775
776 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
777   Value *V = Builder->CreateFMul(Opnd0, Opnd1);
778   if (Instruction *I = dyn_cast<Instruction>(V))
779     createInstPostProc(I);
780   return V;
781 }
782
783 Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) {
784   Value *V = Builder->CreateFDiv(Opnd0, Opnd1);
785   if (Instruction *I = dyn_cast<Instruction>(V))
786     createInstPostProc(I);
787   return V;
788 }
789
790 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
791   NewInstr->setDebugLoc(Instr->getDebugLoc());
792
793   // Keep track of the number of instruction created.
794   if (!NoNumber)
795     incCreateInstNum();
796
797   // Propagate fast-math flags
798   NewInstr->setFastMathFlags(Instr->getFastMathFlags());
799 }
800
801 // Return the number of instruction needed to emit the N-ary addition.
802 // NOTE: Keep this function in sync with createAddendVal().
803 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
804   unsigned OpndNum = Opnds.size();
805   unsigned InstrNeeded = OpndNum - 1;
806
807   // The number of addends in the form of "(-1)*x".
808   unsigned NegOpndNum = 0;
809
810   // Adjust the number of instructions needed to emit the N-ary add.
811   for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
812        I != E; I++) {
813     const FAddend *Opnd = *I;
814     if (Opnd->isConstant())
815       continue;
816
817     const FAddendCoef &CE = Opnd->getCoef();
818     if (CE.isMinusOne() || CE.isMinusTwo())
819       NegOpndNum++;
820
821     // Let the addend be "c * x". If "c == +/-1", the value of the addend
822     // is immediately available; otherwise, it needs exactly one instruction
823     // to evaluate the value.
824     if (!CE.isMinusOne() && !CE.isOne())
825       InstrNeeded++;
826   }
827   if (NegOpndNum == OpndNum)
828     InstrNeeded++;
829   return InstrNeeded;
830 }
831
832 // Input Addend        Value           NeedNeg(output)
833 // ================================================================
834 // Constant C          C               false
835 // <+/-1, V>           V               coefficient is -1
836 // <2/-2, V>          "fadd V, V"      coefficient is -2
837 // <C, V>             "fmul V, C"      false
838 //
839 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
840 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
841   const FAddendCoef &Coeff = Opnd.getCoef();
842
843   if (Opnd.isConstant()) {
844     NeedNeg = false;
845     return Coeff.getValue(Instr->getType());
846   }
847
848   Value *OpndVal = Opnd.getSymVal();
849
850   if (Coeff.isMinusOne() || Coeff.isOne()) {
851     NeedNeg = Coeff.isMinusOne();
852     return OpndVal;
853   }
854
855   if (Coeff.isTwo() || Coeff.isMinusTwo()) {
856     NeedNeg = Coeff.isMinusTwo();
857     return createFAdd(OpndVal, OpndVal);
858   }
859
860   NeedNeg = false;
861   return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
862 }
863
864 // If one of the operands only has one non-zero bit, and if the other
865 // operand has a known-zero bit in a more significant place than it (not
866 // including the sign bit) the ripple may go up to and fill the zero, but
867 // won't change the sign. For example, (X & ~4) + 1.
868 static bool checkRippleForAdd(const APInt &Op0KnownZero,
869                               const APInt &Op1KnownZero) {
870   APInt Op1MaybeOne = ~Op1KnownZero;
871   // Make sure that one of the operand has at most one bit set to 1.
872   if (Op1MaybeOne.countPopulation() != 1)
873     return false;
874
875   // Find the most significant known 0 other than the sign bit.
876   int BitWidth = Op0KnownZero.getBitWidth();
877   APInt Op0KnownZeroTemp(Op0KnownZero);
878   Op0KnownZeroTemp.clearBit(BitWidth - 1);
879   int Op0ZeroPosition = BitWidth - Op0KnownZeroTemp.countLeadingZeros() - 1;
880
881   int Op1OnePosition = BitWidth - Op1MaybeOne.countLeadingZeros() - 1;
882   assert(Op1OnePosition >= 0);
883
884   // This also covers the case of no known zero, since in that case
885   // Op0ZeroPosition is -1.
886   return Op0ZeroPosition >= Op1OnePosition;
887 }
888
889 /// Return true if we can prove that:
890 ///    (sext (add LHS, RHS))  === (add (sext LHS), (sext RHS))
891 /// This basically requires proving that the add in the original type would not
892 /// overflow to change the sign bit or have a carry out.
893 bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS,
894                                             Instruction &CxtI) {
895   // There are different heuristics we can use for this.  Here are some simple
896   // ones.
897
898   // If LHS and RHS each have at least two sign bits, the addition will look
899   // like
900   //
901   // XX..... +
902   // YY.....
903   //
904   // If the carry into the most significant position is 0, X and Y can't both
905   // be 1 and therefore the carry out of the addition is also 0.
906   //
907   // If the carry into the most significant position is 1, X and Y can't both
908   // be 0 and therefore the carry out of the addition is also 1.
909   //
910   // Since the carry into the most significant position is always equal to
911   // the carry out of the addition, there is no signed overflow.
912   if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 &&
913       ComputeNumSignBits(RHS, 0, &CxtI) > 1)
914     return true;
915
916   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
917   APInt LHSKnownZero(BitWidth, 0);
918   APInt LHSKnownOne(BitWidth, 0);
919   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &CxtI);
920
921   APInt RHSKnownZero(BitWidth, 0);
922   APInt RHSKnownOne(BitWidth, 0);
923   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &CxtI);
924
925   // Addition of two 2's compliment numbers having opposite signs will never
926   // overflow.
927   if ((LHSKnownOne[BitWidth - 1] && RHSKnownZero[BitWidth - 1]) ||
928       (LHSKnownZero[BitWidth - 1] && RHSKnownOne[BitWidth - 1]))
929     return true;
930
931   // Check if carry bit of addition will not cause overflow.
932   if (checkRippleForAdd(LHSKnownZero, RHSKnownZero))
933     return true;
934   if (checkRippleForAdd(RHSKnownZero, LHSKnownZero))
935     return true;
936
937   return false;
938 }
939
940 /// \brief Return true if we can prove that:
941 ///    (sub LHS, RHS)  === (sub nsw LHS, RHS)
942 /// This basically requires proving that the add in the original type would not
943 /// overflow to change the sign bit or have a carry out.
944 /// TODO: Handle this for Vectors.
945 bool InstCombiner::WillNotOverflowSignedSub(Value *LHS, Value *RHS,
946                                             Instruction &CxtI) {
947   // If LHS and RHS each have at least two sign bits, the subtraction
948   // cannot overflow.
949   if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 &&
950       ComputeNumSignBits(RHS, 0, &CxtI) > 1)
951     return true;
952
953   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
954   APInt LHSKnownZero(BitWidth, 0);
955   APInt LHSKnownOne(BitWidth, 0);
956   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &CxtI);
957
958   APInt RHSKnownZero(BitWidth, 0);
959   APInt RHSKnownOne(BitWidth, 0);
960   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &CxtI);
961
962   // Subtraction of two 2's compliment numbers having identical signs will
963   // never overflow.
964   if ((LHSKnownOne[BitWidth - 1] && RHSKnownOne[BitWidth - 1]) ||
965       (LHSKnownZero[BitWidth - 1] && RHSKnownZero[BitWidth - 1]))
966     return true;
967
968   // TODO: implement logic similar to checkRippleForAdd
969   return false;
970 }
971
972 /// \brief Return true if we can prove that:
973 ///    (sub LHS, RHS)  === (sub nuw LHS, RHS)
974 bool InstCombiner::WillNotOverflowUnsignedSub(Value *LHS, Value *RHS,
975                                               Instruction &CxtI) {
976   // If the LHS is negative and the RHS is non-negative, no unsigned wrap.
977   bool LHSKnownNonNegative, LHSKnownNegative;
978   bool RHSKnownNonNegative, RHSKnownNegative;
979   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, /*Depth=*/0,
980                  &CxtI);
981   ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, /*Depth=*/0,
982                  &CxtI);
983   if (LHSKnownNegative && RHSKnownNonNegative)
984     return true;
985
986   return false;
987 }
988
989 // Checks if any operand is negative and we can convert add to sub.
990 // This function checks for following negative patterns
991 //   ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
992 //   ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
993 //   XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
994 static Value *checkForNegativeOperand(BinaryOperator &I,
995                                       InstCombiner::BuilderTy *Builder) {
996   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
997
998   // This function creates 2 instructions to replace ADD, we need at least one
999   // of LHS or RHS to have one use to ensure benefit in transform.
1000   if (!LHS->hasOneUse() && !RHS->hasOneUse())
1001     return nullptr;
1002
1003   Value *X = nullptr, *Y = nullptr, *Z = nullptr;
1004   const APInt *C1 = nullptr, *C2 = nullptr;
1005
1006   // if ONE is on other side, swap
1007   if (match(RHS, m_Add(m_Value(X), m_One())))
1008     std::swap(LHS, RHS);
1009
1010   if (match(LHS, m_Add(m_Value(X), m_One()))) {
1011     // if XOR on other side, swap
1012     if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
1013       std::swap(X, RHS);
1014
1015     if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
1016       // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
1017       // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
1018       if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
1019         Value *NewAnd = Builder->CreateAnd(Z, *C1);
1020         return Builder->CreateSub(RHS, NewAnd, "sub");
1021       } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
1022         // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
1023         // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
1024         Value *NewOr = Builder->CreateOr(Z, ~(*C1));
1025         return Builder->CreateSub(RHS, NewOr, "sub");
1026       }
1027     }
1028   }
1029
1030   // Restore LHS and RHS
1031   LHS = I.getOperand(0);
1032   RHS = I.getOperand(1);
1033
1034   // if XOR is on other side, swap
1035   if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
1036     std::swap(LHS, RHS);
1037
1038   // C2 is ODD
1039   // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
1040   // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
1041   if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
1042     if (C1->countTrailingZeros() == 0)
1043       if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
1044         Value *NewOr = Builder->CreateOr(Z, ~(*C2));
1045         return Builder->CreateSub(RHS, NewOr, "sub");
1046       }
1047   return nullptr;
1048 }
1049
1050 Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1051   bool Changed = SimplifyAssociativeOrCommutative(I);
1052   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1053
1054   if (Value *V = SimplifyVectorOp(I))
1055     return ReplaceInstUsesWith(I, V);
1056
1057   if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
1058                                  I.hasNoUnsignedWrap(), DL, TLI, DT, AC))
1059     return ReplaceInstUsesWith(I, V);
1060
1061    // (A*B)+(A*C) -> A*(B+C) etc
1062   if (Value *V = SimplifyUsingDistributiveLaws(I))
1063     return ReplaceInstUsesWith(I, V);
1064
1065   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1066     // X + (signbit) --> X ^ signbit
1067     const APInt &Val = CI->getValue();
1068     if (Val.isSignBit())
1069       return BinaryOperator::CreateXor(LHS, RHS);
1070
1071     // See if SimplifyDemandedBits can simplify this.  This handles stuff like
1072     // (X & 254)+1 -> (X&254)|1
1073     if (SimplifyDemandedInstructionBits(I))
1074       return &I;
1075
1076     // zext(bool) + C -> bool ? C + 1 : C
1077     if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
1078       if (ZI->getSrcTy()->isIntegerTy(1))
1079         return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
1080
1081     Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr;
1082     if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
1083       uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
1084       const APInt &RHSVal = CI->getValue();
1085       unsigned ExtendAmt = 0;
1086       // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
1087       // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
1088       if (XorRHS->getValue() == -RHSVal) {
1089         if (RHSVal.isPowerOf2())
1090           ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
1091         else if (XorRHS->getValue().isPowerOf2())
1092           ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
1093       }
1094
1095       if (ExtendAmt) {
1096         APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
1097         if (!MaskedValueIsZero(XorLHS, Mask, 0, &I))
1098           ExtendAmt = 0;
1099       }
1100
1101       if (ExtendAmt) {
1102         Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
1103         Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
1104         return BinaryOperator::CreateAShr(NewShl, ShAmt);
1105       }
1106
1107       // If this is a xor that was canonicalized from a sub, turn it back into
1108       // a sub and fuse this add with it.
1109       if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
1110         IntegerType *IT = cast<IntegerType>(I.getType());
1111         APInt LHSKnownOne(IT->getBitWidth(), 0);
1112         APInt LHSKnownZero(IT->getBitWidth(), 0);
1113         computeKnownBits(XorLHS, LHSKnownZero, LHSKnownOne, 0, &I);
1114         if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue())
1115           return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
1116                                            XorLHS);
1117       }
1118       // (X + signbit) + C could have gotten canonicalized to (X ^ signbit) + C,
1119       // transform them into (X + (signbit ^ C))
1120       if (XorRHS->getValue().isSignBit())
1121           return BinaryOperator::CreateAdd(XorLHS,
1122                                            ConstantExpr::getXor(XorRHS, CI));
1123     }
1124   }
1125
1126   if (isa<Constant>(RHS) && isa<PHINode>(LHS))
1127     if (Instruction *NV = FoldOpIntoPhi(I))
1128       return NV;
1129
1130   if (I.getType()->getScalarType()->isIntegerTy(1))
1131     return BinaryOperator::CreateXor(LHS, RHS);
1132
1133   // X + X --> X << 1
1134   if (LHS == RHS) {
1135     BinaryOperator *New =
1136       BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
1137     New->setHasNoSignedWrap(I.hasNoSignedWrap());
1138     New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1139     return New;
1140   }
1141
1142   // -A + B  -->  B - A
1143   // -A + -B  -->  -(A + B)
1144   if (Value *LHSV = dyn_castNegVal(LHS)) {
1145     if (!isa<Constant>(RHS))
1146       if (Value *RHSV = dyn_castNegVal(RHS)) {
1147         Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
1148         return BinaryOperator::CreateNeg(NewAdd);
1149       }
1150
1151     return BinaryOperator::CreateSub(RHS, LHSV);
1152   }
1153
1154   // A + -B  -->  A - B
1155   if (!isa<Constant>(RHS))
1156     if (Value *V = dyn_castNegVal(RHS))
1157       return BinaryOperator::CreateSub(LHS, V);
1158
1159   if (Value *V = checkForNegativeOperand(I, Builder))
1160     return ReplaceInstUsesWith(I, V);
1161
1162   // A+B --> A|B iff A and B have no bits set in common.
1163   if (haveNoCommonBitsSet(LHS, RHS, DL, AC, &I, DT))
1164     return BinaryOperator::CreateOr(LHS, RHS);
1165
1166   if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
1167     Value *X;
1168     if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
1169       return BinaryOperator::CreateSub(SubOne(CRHS), X);
1170   }
1171
1172   if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
1173     // (X & FF00) + xx00  -> (X+xx00) & FF00
1174     Value *X;
1175     ConstantInt *C2;
1176     if (LHS->hasOneUse() &&
1177         match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
1178         CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
1179       // See if all bits from the first bit set in the Add RHS up are included
1180       // in the mask.  First, get the rightmost bit.
1181       const APInt &AddRHSV = CRHS->getValue();
1182
1183       // Form a mask of all bits from the lowest bit added through the top.
1184       APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
1185
1186       // See if the and mask includes all of these bits.
1187       APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
1188
1189       if (AddRHSHighBits == AddRHSHighBitsAnd) {
1190         // Okay, the xform is safe.  Insert the new add pronto.
1191         Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
1192         return BinaryOperator::CreateAnd(NewAdd, C2);
1193       }
1194     }
1195
1196     // Try to fold constant add into select arguments.
1197     if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
1198       if (Instruction *R = FoldOpIntoSelect(I, SI))
1199         return R;
1200   }
1201
1202   // add (select X 0 (sub n A)) A  -->  select X A n
1203   {
1204     SelectInst *SI = dyn_cast<SelectInst>(LHS);
1205     Value *A = RHS;
1206     if (!SI) {
1207       SI = dyn_cast<SelectInst>(RHS);
1208       A = LHS;
1209     }
1210     if (SI && SI->hasOneUse()) {
1211       Value *TV = SI->getTrueValue();
1212       Value *FV = SI->getFalseValue();
1213       Value *N;
1214
1215       // Can we fold the add into the argument of the select?
1216       // We check both true and false select arguments for a matching subtract.
1217       if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
1218         // Fold the add into the true select value.
1219         return SelectInst::Create(SI->getCondition(), N, A);
1220
1221       if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
1222         // Fold the add into the false select value.
1223         return SelectInst::Create(SI->getCondition(), A, N);
1224     }
1225   }
1226
1227   // Check for (add (sext x), y), see if we can merge this into an
1228   // integer add followed by a sext.
1229   if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
1230     // (add (sext x), cst) --> (sext (add x, cst'))
1231     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
1232       Constant *CI =
1233         ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
1234       if (LHSConv->hasOneUse() &&
1235           ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
1236           WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) {
1237         // Insert the new, smaller add.
1238         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1239                                               CI, "addconv");
1240         return new SExtInst(NewAdd, I.getType());
1241       }
1242     }
1243
1244     // (add (sext x), (sext y)) --> (sext (add int x, y))
1245     if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
1246       // Only do this if x/y have the same type, if at last one of them has a
1247       // single use (so we don't increase the number of sexts), and if the
1248       // integer add will not overflow.
1249       if (LHSConv->getOperand(0)->getType() ==
1250               RHSConv->getOperand(0)->getType() &&
1251           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1252           WillNotOverflowSignedAdd(LHSConv->getOperand(0),
1253                                    RHSConv->getOperand(0), I)) {
1254         // Insert the new integer add.
1255         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1256                                              RHSConv->getOperand(0), "addconv");
1257         return new SExtInst(NewAdd, I.getType());
1258       }
1259     }
1260   }
1261
1262   // (add (xor A, B) (and A, B)) --> (or A, B)
1263   {
1264     Value *A = nullptr, *B = nullptr;
1265     if (match(RHS, m_Xor(m_Value(A), m_Value(B))) &&
1266         (match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
1267          match(LHS, m_And(m_Specific(B), m_Specific(A)))))
1268       return BinaryOperator::CreateOr(A, B);
1269
1270     if (match(LHS, m_Xor(m_Value(A), m_Value(B))) &&
1271         (match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
1272          match(RHS, m_And(m_Specific(B), m_Specific(A)))))
1273       return BinaryOperator::CreateOr(A, B);
1274   }
1275
1276   // (add (or A, B) (and A, B)) --> (add A, B)
1277   {
1278     Value *A = nullptr, *B = nullptr;
1279     if (match(RHS, m_Or(m_Value(A), m_Value(B))) &&
1280         (match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
1281          match(LHS, m_And(m_Specific(B), m_Specific(A))))) {
1282       auto *New = BinaryOperator::CreateAdd(A, B);
1283       New->setHasNoSignedWrap(I.hasNoSignedWrap());
1284       New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1285       return New;
1286     }
1287
1288     if (match(LHS, m_Or(m_Value(A), m_Value(B))) &&
1289         (match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
1290          match(RHS, m_And(m_Specific(B), m_Specific(A))))) {
1291       auto *New = BinaryOperator::CreateAdd(A, B);
1292       New->setHasNoSignedWrap(I.hasNoSignedWrap());
1293       New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1294       return New;
1295     }
1296   }
1297
1298   // TODO(jingyue): Consider WillNotOverflowSignedAdd and
1299   // WillNotOverflowUnsignedAdd to reduce the number of invocations of
1300   // computeKnownBits.
1301   if (!I.hasNoSignedWrap() && WillNotOverflowSignedAdd(LHS, RHS, I)) {
1302     Changed = true;
1303     I.setHasNoSignedWrap(true);
1304   }
1305   if (!I.hasNoUnsignedWrap() &&
1306       computeOverflowForUnsignedAdd(LHS, RHS, &I) ==
1307           OverflowResult::NeverOverflows) {
1308     Changed = true;
1309     I.setHasNoUnsignedWrap(true);
1310   }
1311
1312   return Changed ? &I : nullptr;
1313 }
1314
1315 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
1316   bool Changed = SimplifyAssociativeOrCommutative(I);
1317   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1318
1319   if (Value *V = SimplifyVectorOp(I))
1320     return ReplaceInstUsesWith(I, V);
1321
1322   if (Value *V =
1323           SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), DL, TLI, DT, AC))
1324     return ReplaceInstUsesWith(I, V);
1325
1326   if (isa<Constant>(RHS)) {
1327     if (isa<PHINode>(LHS))
1328       if (Instruction *NV = FoldOpIntoPhi(I))
1329         return NV;
1330
1331     if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
1332       if (Instruction *NV = FoldOpIntoSelect(I, SI))
1333         return NV;
1334   }
1335
1336   // -A + B  -->  B - A
1337   // -A + -B  -->  -(A + B)
1338   if (Value *LHSV = dyn_castFNegVal(LHS)) {
1339     Instruction *RI = BinaryOperator::CreateFSub(RHS, LHSV);
1340     RI->copyFastMathFlags(&I);
1341     return RI;
1342   }
1343
1344   // A + -B  -->  A - B
1345   if (!isa<Constant>(RHS))
1346     if (Value *V = dyn_castFNegVal(RHS)) {
1347       Instruction *RI = BinaryOperator::CreateFSub(LHS, V);
1348       RI->copyFastMathFlags(&I);
1349       return RI;
1350     }
1351
1352   // Check for (fadd double (sitofp x), y), see if we can merge this into an
1353   // integer add followed by a promotion.
1354   if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
1355     // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1356     // ... if the constant fits in the integer value.  This is useful for things
1357     // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1358     // requires a constant pool load, and generally allows the add to be better
1359     // instcombined.
1360     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
1361       Constant *CI =
1362       ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
1363       if (LHSConv->hasOneUse() &&
1364           ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
1365           WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) {
1366         // Insert the new integer add.
1367         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1368                                               CI, "addconv");
1369         return new SIToFPInst(NewAdd, I.getType());
1370       }
1371     }
1372
1373     // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1374     if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1375       // Only do this if x/y have the same type, if at last one of them has a
1376       // single use (so we don't increase the number of int->fp conversions),
1377       // and if the integer add will not overflow.
1378       if (LHSConv->getOperand(0)->getType() ==
1379               RHSConv->getOperand(0)->getType() &&
1380           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1381           WillNotOverflowSignedAdd(LHSConv->getOperand(0),
1382                                    RHSConv->getOperand(0), I)) {
1383         // Insert the new integer add.
1384         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1385                                               RHSConv->getOperand(0),"addconv");
1386         return new SIToFPInst(NewAdd, I.getType());
1387       }
1388     }
1389   }
1390
1391   // select C, 0, B + select C, A, 0 -> select C, A, B
1392   {
1393     Value *A1, *B1, *C1, *A2, *B2, *C2;
1394     if (match(LHS, m_Select(m_Value(C1), m_Value(A1), m_Value(B1))) &&
1395         match(RHS, m_Select(m_Value(C2), m_Value(A2), m_Value(B2)))) {
1396       if (C1 == C2) {
1397         Constant *Z1=nullptr, *Z2=nullptr;
1398         Value *A, *B, *C=C1;
1399         if (match(A1, m_AnyZero()) && match(B2, m_AnyZero())) {
1400             Z1 = dyn_cast<Constant>(A1); A = A2;
1401             Z2 = dyn_cast<Constant>(B2); B = B1;
1402         } else if (match(B1, m_AnyZero()) && match(A2, m_AnyZero())) {
1403             Z1 = dyn_cast<Constant>(B1); B = B2;
1404             Z2 = dyn_cast<Constant>(A2); A = A1;
1405         }
1406
1407         if (Z1 && Z2 &&
1408             (I.hasNoSignedZeros() ||
1409              (Z1->isNegativeZeroValue() && Z2->isNegativeZeroValue()))) {
1410           return SelectInst::Create(C, A, B);
1411         }
1412       }
1413     }
1414   }
1415
1416   if (I.hasUnsafeAlgebra()) {
1417     if (Value *V = FAddCombine(Builder).simplify(&I))
1418       return ReplaceInstUsesWith(I, V);
1419   }
1420
1421   return Changed ? &I : nullptr;
1422 }
1423
1424 /// Optimize pointer differences into the same array into a size.  Consider:
1425 ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
1426 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1427 ///
1428 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
1429                                                Type *Ty) {
1430   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1431   // this.
1432   bool Swapped = false;
1433   GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
1434
1435   // For now we require one side to be the base pointer "A" or a constant
1436   // GEP derived from it.
1437   if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1438     // (gep X, ...) - X
1439     if (LHSGEP->getOperand(0) == RHS) {
1440       GEP1 = LHSGEP;
1441       Swapped = false;
1442     } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1443       // (gep X, ...) - (gep X, ...)
1444       if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1445             RHSGEP->getOperand(0)->stripPointerCasts()) {
1446         GEP2 = RHSGEP;
1447         GEP1 = LHSGEP;
1448         Swapped = false;
1449       }
1450     }
1451   }
1452
1453   if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1454     // X - (gep X, ...)
1455     if (RHSGEP->getOperand(0) == LHS) {
1456       GEP1 = RHSGEP;
1457       Swapped = true;
1458     } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1459       // (gep X, ...) - (gep X, ...)
1460       if (RHSGEP->getOperand(0)->stripPointerCasts() ==
1461             LHSGEP->getOperand(0)->stripPointerCasts()) {
1462         GEP2 = LHSGEP;
1463         GEP1 = RHSGEP;
1464         Swapped = true;
1465       }
1466     }
1467   }
1468
1469   // Avoid duplicating the arithmetic if GEP2 has non-constant indices and
1470   // multiple users.
1471   if (!GEP1 ||
1472       (GEP2 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse()))
1473     return nullptr;
1474
1475   // Emit the offset of the GEP and an intptr_t.
1476   Value *Result = EmitGEPOffset(GEP1);
1477
1478   // If we had a constant expression GEP on the other side offsetting the
1479   // pointer, subtract it from the offset we have.
1480   if (GEP2) {
1481     Value *Offset = EmitGEPOffset(GEP2);
1482     Result = Builder->CreateSub(Result, Offset);
1483   }
1484
1485   // If we have p - gep(p, ...)  then we have to negate the result.
1486   if (Swapped)
1487     Result = Builder->CreateNeg(Result, "diff.neg");
1488
1489   return Builder->CreateIntCast(Result, Ty, true);
1490 }
1491
1492 Instruction *InstCombiner::visitSub(BinaryOperator &I) {
1493   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1494
1495   if (Value *V = SimplifyVectorOp(I))
1496     return ReplaceInstUsesWith(I, V);
1497
1498   if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(),
1499                                  I.hasNoUnsignedWrap(), DL, TLI, DT, AC))
1500     return ReplaceInstUsesWith(I, V);
1501
1502   // (A*B)-(A*C) -> A*(B-C) etc
1503   if (Value *V = SimplifyUsingDistributiveLaws(I))
1504     return ReplaceInstUsesWith(I, V);
1505
1506   // If this is a 'B = x-(-A)', change to B = x+A.
1507   if (Value *V = dyn_castNegVal(Op1)) {
1508     BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
1509
1510     if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
1511       assert(BO->getOpcode() == Instruction::Sub &&
1512              "Expected a subtraction operator!");
1513       if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
1514         Res->setHasNoSignedWrap(true);
1515     } else {
1516       if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
1517         Res->setHasNoSignedWrap(true);
1518     }
1519
1520     return Res;
1521   }
1522
1523   if (I.getType()->isIntegerTy(1))
1524     return BinaryOperator::CreateXor(Op0, Op1);
1525
1526   // Replace (-1 - A) with (~A).
1527   if (match(Op0, m_AllOnes()))
1528     return BinaryOperator::CreateNot(Op1);
1529
1530   if (Constant *C = dyn_cast<Constant>(Op0)) {
1531     // C - ~X == X + (1+C)
1532     Value *X = nullptr;
1533     if (match(Op1, m_Not(m_Value(X))))
1534       return BinaryOperator::CreateAdd(X, AddOne(C));
1535
1536     // Try to fold constant sub into select arguments.
1537     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1538       if (Instruction *R = FoldOpIntoSelect(I, SI))
1539         return R;
1540
1541     // C-(X+C2) --> (C-C2)-X
1542     Constant *C2;
1543     if (match(Op1, m_Add(m_Value(X), m_Constant(C2))))
1544       return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
1545
1546     if (SimplifyDemandedInstructionBits(I))
1547       return &I;
1548
1549     // Fold (sub 0, (zext bool to B)) --> (sext bool to B)
1550     if (C->isNullValue() && match(Op1, m_ZExt(m_Value(X))))
1551       if (X->getType()->getScalarType()->isIntegerTy(1))
1552         return CastInst::CreateSExtOrBitCast(X, Op1->getType());
1553
1554     // Fold (sub 0, (sext bool to B)) --> (zext bool to B)
1555     if (C->isNullValue() && match(Op1, m_SExt(m_Value(X))))
1556       if (X->getType()->getScalarType()->isIntegerTy(1))
1557         return CastInst::CreateZExtOrBitCast(X, Op1->getType());
1558   }
1559
1560   if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
1561     // -(X >>u 31) -> (X >>s 31)
1562     // -(X >>s 31) -> (X >>u 31)
1563     if (C->isZero()) {
1564       Value *X;
1565       ConstantInt *CI;
1566       if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) &&
1567           // Verify we are shifting out everything but the sign bit.
1568           CI->getValue() == I.getType()->getPrimitiveSizeInBits() - 1)
1569         return BinaryOperator::CreateAShr(X, CI);
1570
1571       if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) &&
1572           // Verify we are shifting out everything but the sign bit.
1573           CI->getValue() == I.getType()->getPrimitiveSizeInBits() - 1)
1574         return BinaryOperator::CreateLShr(X, CI);
1575     }
1576
1577     // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
1578     // zero.
1579     APInt IntVal = C->getValue();
1580     if ((IntVal + 1).isPowerOf2()) {
1581       unsigned BitWidth = I.getType()->getScalarSizeInBits();
1582       APInt KnownZero(BitWidth, 0);
1583       APInt KnownOne(BitWidth, 0);
1584       computeKnownBits(&I, KnownZero, KnownOne, 0, &I);
1585       if ((IntVal | KnownZero).isAllOnesValue()) {
1586         return BinaryOperator::CreateXor(Op1, C);
1587       }
1588     }
1589   }
1590
1591   {
1592     Value *Y;
1593     // X-(X+Y) == -Y    X-(Y+X) == -Y
1594     if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) ||
1595         match(Op1, m_Add(m_Value(Y), m_Specific(Op0))))
1596       return BinaryOperator::CreateNeg(Y);
1597
1598     // (X-Y)-X == -Y
1599     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
1600       return BinaryOperator::CreateNeg(Y);
1601   }
1602
1603   // (sub (or A, B) (xor A, B)) --> (and A, B)
1604   {
1605     Value *A = nullptr, *B = nullptr;
1606     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
1607         (match(Op0, m_Or(m_Specific(A), m_Specific(B))) ||
1608          match(Op0, m_Or(m_Specific(B), m_Specific(A)))))
1609       return BinaryOperator::CreateAnd(A, B);
1610   }
1611
1612   if (Op0->hasOneUse()) {
1613     Value *Y = nullptr;
1614     // ((X | Y) - X) --> (~X & Y)
1615     if (match(Op0, m_Or(m_Value(Y), m_Specific(Op1))) ||
1616         match(Op0, m_Or(m_Specific(Op1), m_Value(Y))))
1617       return BinaryOperator::CreateAnd(
1618           Y, Builder->CreateNot(Op1, Op1->getName() + ".not"));
1619   }
1620
1621   if (Op1->hasOneUse()) {
1622     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
1623     Constant *C = nullptr;
1624     Constant *CI = nullptr;
1625
1626     // (X - (Y - Z))  -->  (X + (Z - Y)).
1627     if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
1628       return BinaryOperator::CreateAdd(Op0,
1629                                       Builder->CreateSub(Z, Y, Op1->getName()));
1630
1631     // (X - (X & Y))   -->   (X & ~Y)
1632     //
1633     if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) ||
1634         match(Op1, m_And(m_Specific(Op0), m_Value(Y))))
1635       return BinaryOperator::CreateAnd(Op0,
1636                                   Builder->CreateNot(Y, Y->getName() + ".not"));
1637
1638     // 0 - (X sdiv C)  -> (X sdiv -C)  provided the negation doesn't overflow.
1639     if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && match(Op0, m_Zero()) &&
1640         C->isNotMinSignedValue() && !C->isOneValue())
1641       return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
1642
1643     // 0 - (X << Y)  -> (-X << Y)   when X is freely negatable.
1644     if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
1645       if (Value *XNeg = dyn_castNegVal(X))
1646         return BinaryOperator::CreateShl(XNeg, Y);
1647
1648     // X - A*-B -> X + A*B
1649     // X - -A*B -> X + A*B
1650     Value *A, *B;
1651     if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) ||
1652         match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B))))
1653       return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B));
1654
1655     // X - A*CI -> X + A*-CI
1656     // X - CI*A -> X + A*-CI
1657     if (match(Op1, m_Mul(m_Value(A), m_Constant(CI))) ||
1658         match(Op1, m_Mul(m_Constant(CI), m_Value(A)))) {
1659       Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI));
1660       return BinaryOperator::CreateAdd(Op0, NewMul);
1661     }
1662   }
1663
1664   // Optimize pointer differences into the same array into a size.  Consider:
1665   //  &A[10] - &A[0]: we should compile this to "10".
1666   Value *LHSOp, *RHSOp;
1667   if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
1668       match(Op1, m_PtrToInt(m_Value(RHSOp))))
1669     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1670       return ReplaceInstUsesWith(I, Res);
1671
1672   // trunc(p)-trunc(q) -> trunc(p-q)
1673   if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
1674       match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
1675     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1676       return ReplaceInstUsesWith(I, Res);
1677
1678   bool Changed = false;
1679   if (!I.hasNoSignedWrap() && WillNotOverflowSignedSub(Op0, Op1, I)) {
1680     Changed = true;
1681     I.setHasNoSignedWrap(true);
1682   }
1683   if (!I.hasNoUnsignedWrap() && WillNotOverflowUnsignedSub(Op0, Op1, I)) {
1684     Changed = true;
1685     I.setHasNoUnsignedWrap(true);
1686   }
1687
1688   return Changed ? &I : nullptr;
1689 }
1690
1691 Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
1692   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1693
1694   if (Value *V = SimplifyVectorOp(I))
1695     return ReplaceInstUsesWith(I, V);
1696
1697   if (Value *V =
1698           SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), DL, TLI, DT, AC))
1699     return ReplaceInstUsesWith(I, V);
1700
1701   // fsub nsz 0, X ==> fsub nsz -0.0, X
1702   if (I.getFastMathFlags().noSignedZeros() && match(Op0, m_Zero())) {
1703     // Subtraction from -0.0 is the canonical form of fneg.
1704     Instruction *NewI = BinaryOperator::CreateFNeg(Op1);
1705     NewI->copyFastMathFlags(&I);
1706     return NewI;
1707   }
1708
1709   if (isa<Constant>(Op0))
1710     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1711       if (Instruction *NV = FoldOpIntoSelect(I, SI))
1712         return NV;
1713
1714   // If this is a 'B = x-(-A)', change to B = x+A, potentially looking
1715   // through FP extensions/truncations along the way.
1716   if (Value *V = dyn_castFNegVal(Op1)) {
1717     Instruction *NewI = BinaryOperator::CreateFAdd(Op0, V);
1718     NewI->copyFastMathFlags(&I);
1719     return NewI;
1720   }
1721   if (FPTruncInst *FPTI = dyn_cast<FPTruncInst>(Op1)) {
1722     if (Value *V = dyn_castFNegVal(FPTI->getOperand(0))) {
1723       Value *NewTrunc = Builder->CreateFPTrunc(V, I.getType());
1724       Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewTrunc);
1725       NewI->copyFastMathFlags(&I);
1726       return NewI;
1727     }
1728   } else if (FPExtInst *FPEI = dyn_cast<FPExtInst>(Op1)) {
1729     if (Value *V = dyn_castFNegVal(FPEI->getOperand(0))) {
1730       Value *NewExt = Builder->CreateFPExt(V, I.getType());
1731       Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewExt);
1732       NewI->copyFastMathFlags(&I);
1733       return NewI;
1734     }
1735   }
1736
1737   if (I.hasUnsafeAlgebra()) {
1738     if (Value *V = FAddCombine(Builder).simplify(&I))
1739       return ReplaceInstUsesWith(I, V);
1740   }
1741
1742   return nullptr;
1743 }