Use create methods since msvc doesn't handle delegating constructors.
[oota-llvm.git] / lib / Transforms / IPO / MergeFunctions.cpp
1 //===- MergeFunctions.cpp - Merge identical functions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass looks for equivalent functions that are mergable and folds them.
11 //
12 // A hash is computed from the function, based on its type and number of
13 // basic blocks.
14 //
15 // Once all hashes are computed, we perform an expensive equality comparison
16 // on each function pair. This takes n^2/2 comparisons per bucket, so it's
17 // important that the hash function be high quality. The equality comparison
18 // iterates through each instruction in each basic block.
19 //
20 // When a match is found the functions are folded. If both functions are
21 // overridable, we move the functionality into a new internal function and
22 // leave two overridable thunks to it.
23 //
24 //===----------------------------------------------------------------------===//
25 //
26 // Future work:
27 //
28 // * virtual functions.
29 //
30 // Many functions have their address taken by the virtual function table for
31 // the object they belong to. However, as long as it's only used for a lookup
32 // and call, this is irrelevant, and we'd like to fold such functions.
33 //
34 // * switch from n^2 pair-wise comparisons to an n-way comparison for each
35 // bucket.
36 //
37 // * be smarter about bitcasts.
38 //
39 // In order to fold functions, we will sometimes add either bitcast instructions
40 // or bitcast constant expressions. Unfortunately, this can confound further
41 // analysis since the two functions differ where one has a bitcast and the
42 // other doesn't. We should learn to look through bitcasts.
43 //
44 //===----------------------------------------------------------------------===//
45
46 #include "llvm/Transforms/IPO.h"
47 #include "llvm/ADT/DenseSet.h"
48 #include "llvm/ADT/FoldingSet.h"
49 #include "llvm/ADT/STLExtras.h"
50 #include "llvm/ADT/SmallSet.h"
51 #include "llvm/ADT/Statistic.h"
52 #include "llvm/IR/CallSite.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/InlineAsm.h"
57 #include "llvm/IR/Instructions.h"
58 #include "llvm/IR/LLVMContext.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/IR/Operator.h"
61 #include "llvm/IR/ValueHandle.h"
62 #include "llvm/Pass.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include <vector>
67 using namespace llvm;
68
69 #define DEBUG_TYPE "mergefunc"
70
71 STATISTIC(NumFunctionsMerged, "Number of functions merged");
72 STATISTIC(NumThunksWritten, "Number of thunks generated");
73 STATISTIC(NumAliasesWritten, "Number of aliases generated");
74 STATISTIC(NumDoubleWeak, "Number of new functions created");
75
76 /// Returns the type id for a type to be hashed. We turn pointer types into
77 /// integers here because the actual compare logic below considers pointers and
78 /// integers of the same size as equal.
79 static Type::TypeID getTypeIDForHash(Type *Ty) {
80   if (Ty->isPointerTy())
81     return Type::IntegerTyID;
82   return Ty->getTypeID();
83 }
84
85 /// Creates a hash-code for the function which is the same for any two
86 /// functions that will compare equal, without looking at the instructions
87 /// inside the function.
88 static unsigned profileFunction(const Function *F) {
89   FunctionType *FTy = F->getFunctionType();
90
91   FoldingSetNodeID ID;
92   ID.AddInteger(F->size());
93   ID.AddInteger(F->getCallingConv());
94   ID.AddBoolean(F->hasGC());
95   ID.AddBoolean(FTy->isVarArg());
96   ID.AddInteger(getTypeIDForHash(FTy->getReturnType()));
97   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
98     ID.AddInteger(getTypeIDForHash(FTy->getParamType(i)));
99   return ID.ComputeHash();
100 }
101
102 namespace {
103
104 /// ComparableFunction - A struct that pairs together functions with a
105 /// DataLayout so that we can keep them together as elements in the DenseSet.
106 class ComparableFunction {
107 public:
108   static const ComparableFunction EmptyKey;
109   static const ComparableFunction TombstoneKey;
110   static DataLayout * const LookupOnly;
111
112   ComparableFunction(Function *Func, const DataLayout *DL)
113     : Func(Func), Hash(profileFunction(Func)), DL(DL) {}
114
115   Function *getFunc() const { return Func; }
116   unsigned getHash() const { return Hash; }
117   const DataLayout *getDataLayout() const { return DL; }
118
119   // Drops AssertingVH reference to the function. Outside of debug mode, this
120   // does nothing.
121   void release() {
122     assert(Func &&
123            "Attempted to release function twice, or release empty/tombstone!");
124     Func = nullptr;
125   }
126
127 private:
128   explicit ComparableFunction(unsigned Hash)
129     : Func(nullptr), Hash(Hash), DL(nullptr) {}
130
131   AssertingVH<Function> Func;
132   unsigned Hash;
133   const DataLayout *DL;
134 };
135
136 const ComparableFunction ComparableFunction::EmptyKey = ComparableFunction(0);
137 const ComparableFunction ComparableFunction::TombstoneKey =
138     ComparableFunction(1);
139 DataLayout *const ComparableFunction::LookupOnly = (DataLayout*)(-1);
140
141 }
142
143 namespace llvm {
144   template <>
145   struct DenseMapInfo<ComparableFunction> {
146     static ComparableFunction getEmptyKey() {
147       return ComparableFunction::EmptyKey;
148     }
149     static ComparableFunction getTombstoneKey() {
150       return ComparableFunction::TombstoneKey;
151     }
152     static unsigned getHashValue(const ComparableFunction &CF) {
153       return CF.getHash();
154     }
155     static bool isEqual(const ComparableFunction &LHS,
156                         const ComparableFunction &RHS);
157   };
158 }
159
160 namespace {
161
162 /// FunctionComparator - Compares two functions to determine whether or not
163 /// they will generate machine code with the same behaviour. DataLayout is
164 /// used if available. The comparator always fails conservatively (erring on the
165 /// side of claiming that two functions are different).
166 class FunctionComparator {
167 public:
168   FunctionComparator(const DataLayout *DL, const Function *F1,
169                      const Function *F2)
170     : F1(F1), F2(F2), DL(DL) {}
171
172   /// Test whether the two functions have equivalent behaviour.
173   bool compare();
174
175 private:
176   /// Test whether two basic blocks have equivalent behaviour.
177   bool compare(const BasicBlock *BB1, const BasicBlock *BB2);
178
179   /// Constants comparison.
180   /// Its analog to lexicographical comparison between hypothetical numbers
181   /// of next format:
182   /// <bitcastability-trait><raw-bit-contents>
183   ///
184   /// 1. Bitcastability.
185   /// Check whether L's type could be losslessly bitcasted to R's type.
186   /// On this stage method, in case when lossless bitcast is not possible
187   /// method returns -1 or 1, thus also defining which type is greater in
188   /// context of bitcastability.
189   /// Stage 0: If types are equal in terms of cmpTypes, then we can go straight
190   ///          to the contents comparison.
191   ///          If types differ, remember types comparison result and check
192   ///          whether we still can bitcast types.
193   /// Stage 1: Types that satisfies isFirstClassType conditions are always
194   ///          greater then others.
195   /// Stage 2: Vector is greater then non-vector.
196   ///          If both types are vectors, then vector with greater bitwidth is
197   ///          greater.
198   ///          If both types are vectors with the same bitwidth, then types
199   ///          are bitcastable, and we can skip other stages, and go to contents
200   ///          comparison.
201   /// Stage 3: Pointer types are greater than non-pointers. If both types are
202   ///          pointers of the same address space - go to contents comparison.
203   ///          Different address spaces: pointer with greater address space is
204   ///          greater.
205   /// Stage 4: Types are neither vectors, nor pointers. And they differ.
206   ///          We don't know how to bitcast them. So, we better don't do it,
207   ///          and return types comparison result (so it determines the
208   ///          relationship among constants we don't know how to bitcast).
209   ///
210   /// Just for clearance, let's see how the set of constants could look
211   /// on single dimension axis:
212   ///
213   /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
214   /// Where: NFCT - Not a FirstClassType
215   ///        FCT - FirstClassTyp:
216   ///
217   /// 2. Compare raw contents.
218   /// It ignores types on this stage and only compares bits from L and R.
219   /// Returns 0, if L and R has equivalent contents.
220   /// -1 or 1 if values are different.
221   /// Pretty trivial:
222   /// 2.1. If contents are numbers, compare numbers.
223   ///    Ints with greater bitwidth are greater. Ints with same bitwidths
224   ///    compared by their contents.
225   /// 2.2. "And so on". Just to avoid discrepancies with comments
226   /// perhaps it would be better to read the implementation itself.
227   /// 3. And again about overall picture. Let's look back at how the ordered set
228   /// of constants will look like:
229   /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
230   ///
231   /// Now look, what could be inside [FCT, "others"], for example:
232   /// [FCT, "others"] =
233   /// [
234   ///   [double 0.1], [double 1.23],
235   ///   [i32 1], [i32 2],
236   ///   { double 1.0 },       ; StructTyID, NumElements = 1
237   ///   { i32 1 },            ; StructTyID, NumElements = 1
238   ///   { double 1, i32 1 },  ; StructTyID, NumElements = 2
239   ///   { i32 1, double 1 }   ; StructTyID, NumElements = 2
240   /// ]
241   ///
242   /// Let's explain the order. Float numbers will be less than integers, just
243   /// because of cmpType terms: FloatTyID < IntegerTyID.
244   /// Floats (with same fltSemantics) are sorted according to their value.
245   /// Then you can see integers, and they are, like a floats,
246   /// could be easy sorted among each others.
247   /// The structures. Structures are grouped at the tail, again because of their
248   /// TypeID: StructTyID > IntegerTyID > FloatTyID.
249   /// Structures with greater number of elements are greater. Structures with
250   /// greater elements going first are greater.
251   /// The same logic with vectors, arrays and other possible complex types.
252   ///
253   /// Bitcastable constants.
254   /// Let's assume, that some constant, belongs to some group of
255   /// "so-called-equal" values with different types, and at the same time
256   /// belongs to another group of constants with equal types
257   /// and "really" equal values.
258   ///
259   /// Now, prove that this is impossible:
260   ///
261   /// If constant A with type TyA is bitcastable to B with type TyB, then:
262   /// 1. All constants with equal types to TyA, are bitcastable to B. Since
263   ///    those should be vectors (if TyA is vector), pointers
264   ///    (if TyA is pointer), or else (if TyA equal to TyB), those types should
265   ///    be equal to TyB.
266   /// 2. All constants with non-equal, but bitcastable types to TyA, are
267   ///    bitcastable to B.
268   ///    Once again, just because we allow it to vectors and pointers only.
269   ///    This statement could be expanded as below:
270   /// 2.1. All vectors with equal bitwidth to vector A, has equal bitwidth to
271   ///      vector B, and thus bitcastable to B as well.
272   /// 2.2. All pointers of the same address space, no matter what they point to,
273   ///      bitcastable. So if C is pointer, it could be bitcasted to A and to B.
274   /// So any constant equal or bitcastable to A is equal or bitcastable to B.
275   /// QED.
276   ///
277   /// In another words, for pointers and vectors, we ignore top-level type and
278   /// look at their particular properties (bit-width for vectors, and
279   /// address space for pointers).
280   /// If these properties are equal - compare their contents.
281   int cmpConstants(const Constant *L, const Constant *R);
282
283   /// Assign or look up previously assigned numbers for the two values, and
284   /// return whether the numbers are equal. Numbers are assigned in the order
285   /// visited.
286   /// Comparison order:
287   /// Stage 0: Value that is function itself is always greater then others.
288   ///          If left and right values are references to their functions, then
289   ///          they are equal.
290   /// Stage 1: Constants are greater than non-constants.
291   ///          If both left and right are constants, then the result of
292   ///          cmpConstants is used as cmpValues result.
293   /// Stage 2: InlineAsm instances are greater than others. If both left and
294   ///          right are InlineAsm instances, InlineAsm* pointers casted to
295   ///          integers and compared as numbers.
296   /// Stage 3: For all other cases we compare order we meet these values in
297   ///          their functions. If right value was met first during scanning,
298   ///          then left value is greater.
299   ///          In another words, we compare serial numbers, for more details
300   ///          see comments for sn_mapL and sn_mapR.
301   int cmpValues(const Value *L, const Value *R);
302
303   bool enumerate(const Value *V1, const Value *V2) {
304     return cmpValues(V1, V2) == 0;
305   }
306
307   /// Compare two Instructions for equivalence, similar to
308   /// Instruction::isSameOperationAs but with modifications to the type
309   /// comparison.
310   /// Stages are listed in "most significant stage first" order:
311   /// On each stage below, we do comparison between some left and right
312   /// operation parts. If parts are non-equal, we assign parts comparison
313   /// result to the operation comparison result and exit from method.
314   /// Otherwise we proceed to the next stage.
315   /// Stages:
316   /// 1. Operations opcodes. Compared as numbers.
317   /// 2. Number of operands.
318   /// 3. Operation types. Compared with cmpType method.
319   /// 4. Compare operation subclass optional data as stream of bytes:
320   /// just convert it to integers and call cmpNumbers.
321   /// 5. Compare in operation operand types with cmpType in
322   /// most significant operand first order.
323   /// 6. Last stage. Check operations for some specific attributes.
324   /// For example, for Load it would be:
325   /// 6.1.Load: volatile (as boolean flag)
326   /// 6.2.Load: alignment (as integer numbers)
327   /// 6.3.Load: synch-scope (as integer numbers)
328   /// On this stage its better to see the code, since its not more than 10-15
329   /// strings for particular instruction, and could change sometimes.
330   int cmpOperation(const Instruction *L, const Instruction *R) const;
331
332   bool isEquivalentOperation(const Instruction *I1,
333                              const Instruction *I2) const {
334     return cmpOperation(I1, I2) == 0;
335   }
336
337   /// Compare two GEPs for equivalent pointer arithmetic.
338   /// Parts to be compared for each comparison stage,
339   /// most significant stage first:
340   /// 1. Address space. As numbers.
341   /// 2. Constant offset, (if "DataLayout *DL" field is not NULL,
342   /// using GEPOperator::accumulateConstantOffset method).
343   /// 3. Pointer operand type (using cmpType method).
344   /// 4. Number of operands.
345   /// 5. Compare operands, using cmpValues method.
346   int cmpGEP(const GEPOperator *GEPL, const GEPOperator *GEPR);
347   int cmpGEP(const GetElementPtrInst *GEPL, const GetElementPtrInst *GEPR) {
348     return cmpGEP(cast<GEPOperator>(GEPL), cast<GEPOperator>(GEPR));
349   }
350
351   bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2) {
352     return cmpGEP(GEP1, GEP2) == 0;
353   }
354   bool isEquivalentGEP(const GetElementPtrInst *GEP1,
355                        const GetElementPtrInst *GEP2) {
356     return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2));
357   }
358
359   /// cmpType - compares two types,
360   /// defines total ordering among the types set.
361   ///
362   /// Return values:
363   /// 0 if types are equal,
364   /// -1 if Left is less than Right,
365   /// +1 if Left is greater than Right.
366   ///
367   /// Description:
368   /// Comparison is broken onto stages. Like in lexicographical comparison
369   /// stage coming first has higher priority.
370   /// On each explanation stage keep in mind total ordering properties.
371   ///
372   /// 0. Before comparison we coerce pointer types of 0 address space to
373   /// integer.
374   /// We also don't bother with same type at left and right, so
375   /// just return 0 in this case.
376   ///
377   /// 1. If types are of different kind (different type IDs).
378   ///    Return result of type IDs comparison, treating them as numbers.
379   /// 2. If types are vectors or integers, compare Type* values as numbers.
380   /// 3. Types has same ID, so check whether they belongs to the next group:
381   /// * Void
382   /// * Float
383   /// * Double
384   /// * X86_FP80
385   /// * FP128
386   /// * PPC_FP128
387   /// * Label
388   /// * Metadata
389   /// If so - return 0, yes - we can treat these types as equal only because
390   /// their IDs are same.
391   /// 4. If Left and Right are pointers, return result of address space
392   /// comparison (numbers comparison). We can treat pointer types of same
393   /// address space as equal.
394   /// 5. If types are complex.
395   /// Then both Left and Right are to be expanded and their element types will
396   /// be checked with the same way. If we get Res != 0 on some stage, return it.
397   /// Otherwise return 0.
398   /// 6. For all other cases put llvm_unreachable.
399   int cmpType(Type *TyL, Type *TyR) const;
400
401   bool isEquivalentType(Type *Ty1, Type *Ty2) const {
402     return cmpType(Ty1, Ty2) == 0;
403   }
404
405   int cmpNumbers(uint64_t L, uint64_t R) const;
406
407   int cmpAPInt(const APInt &L, const APInt &R) const;
408   int cmpAPFloat(const APFloat &L, const APFloat &R) const;
409   int cmpStrings(StringRef L, StringRef R) const;
410   int cmpAttrs(const AttributeSet L, const AttributeSet R) const;
411
412   // The two functions undergoing comparison.
413   const Function *F1, *F2;
414
415   const DataLayout *DL;
416
417   /// Assign serial numbers to values from left function, and values from
418   /// right function.
419   /// Explanation:
420   /// Being comparing functions we need to compare values we meet at left and
421   /// right sides.
422   /// Its easy to sort things out for external values. It just should be
423   /// the same value at left and right.
424   /// But for local values (those were introduced inside function body)
425   /// we have to ensure they were introduced at exactly the same place,
426   /// and plays the same role.
427   /// Let's assign serial number to each value when we meet it first time.
428   /// Values that were met at same place will be with same serial numbers.
429   /// In this case it would be good to explain few points about values assigned
430   /// to BBs and other ways of implementation (see below).
431   ///
432   /// 1. Safety of BB reordering.
433   /// It's safe to change the order of BasicBlocks in function.
434   /// Relationship with other functions and serial numbering will not be
435   /// changed in this case.
436   /// As follows from FunctionComparator::compare(), we do CFG walk: we start
437   /// from the entry, and then take each terminator. So it doesn't matter how in
438   /// fact BBs are ordered in function. And since cmpValues are called during
439   /// this walk, the numbering depends only on how BBs located inside the CFG.
440   /// So the answer is - yes. We will get the same numbering.
441   ///
442   /// 2. Impossibility to use dominance properties of values.
443   /// If we compare two instruction operands: first is usage of local
444   /// variable AL from function FL, and second is usage of local variable AR
445   /// from FR, we could compare their origins and check whether they are
446   /// defined at the same place.
447   /// But, we are still not able to compare operands of PHI nodes, since those
448   /// could be operands from further BBs we didn't scan yet.
449   /// So it's impossible to use dominance properties in general.
450   DenseMap<const Value*, int> sn_mapL, sn_mapR;
451 };
452
453 }
454
455 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
456   if (L < R) return -1;
457   if (L > R) return 1;
458   return 0;
459 }
460
461 int FunctionComparator::cmpAPInt(const APInt &L, const APInt &R) const {
462   if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
463     return Res;
464   if (L.ugt(R)) return 1;
465   if (R.ugt(L)) return -1;
466   return 0;
467 }
468
469 int FunctionComparator::cmpAPFloat(const APFloat &L, const APFloat &R) const {
470   if (int Res = cmpNumbers((uint64_t)&L.getSemantics(),
471                            (uint64_t)&R.getSemantics()))
472     return Res;
473   return cmpAPInt(L.bitcastToAPInt(), R.bitcastToAPInt());
474 }
475
476 int FunctionComparator::cmpStrings(StringRef L, StringRef R) const {
477   // Prevent heavy comparison, compare sizes first.
478   if (int Res = cmpNumbers(L.size(), R.size()))
479     return Res;
480
481   // Compare strings lexicographically only when it is necessary: only when
482   // strings are equal in size.
483   return L.compare(R);
484 }
485
486 int FunctionComparator::cmpAttrs(const AttributeSet L,
487                                  const AttributeSet R) const {
488   if (int Res = cmpNumbers(L.getNumSlots(), R.getNumSlots()))
489     return Res;
490
491   for (unsigned i = 0, e = L.getNumSlots(); i != e; ++i) {
492     AttributeSet::iterator LI = L.begin(i), LE = L.end(i), RI = R.begin(i),
493                            RE = R.end(i);
494     for (; LI != LE && RI != RE; ++LI, ++RI) {
495       Attribute LA = *LI;
496       Attribute RA = *RI;
497       if (LA < RA)
498         return -1;
499       if (RA < LA)
500         return 1;
501     }
502     if (LI != LE)
503       return 1;
504     if (RI != RE)
505       return -1;
506   }
507   return 0;
508 }
509
510 /// Constants comparison:
511 /// 1. Check whether type of L constant could be losslessly bitcasted to R
512 /// type.
513 /// 2. Compare constant contents.
514 /// For more details see declaration comments.
515 int FunctionComparator::cmpConstants(const Constant *L, const Constant *R) {
516
517   Type *TyL = L->getType();
518   Type *TyR = R->getType();
519
520   // Check whether types are bitcastable. This part is just re-factored
521   // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
522   // we also pack into result which type is "less" for us.
523   int TypesRes = cmpType(TyL, TyR);
524   if (TypesRes != 0) {
525     // Types are different, but check whether we can bitcast them.
526     if (!TyL->isFirstClassType()) {
527       if (TyR->isFirstClassType())
528         return -1;
529       // Neither TyL nor TyR are values of first class type. Return the result
530       // of comparing the types
531       return TypesRes;
532     }
533     if (!TyR->isFirstClassType()) {
534       if (TyL->isFirstClassType())
535         return 1;
536       return TypesRes;
537     }
538
539     // Vector -> Vector conversions are always lossless if the two vector types
540     // have the same size, otherwise not.
541     unsigned TyLWidth = 0;
542     unsigned TyRWidth = 0;
543
544     if (const VectorType *VecTyL = dyn_cast<VectorType>(TyL))
545       TyLWidth = VecTyL->getBitWidth();
546     if (const VectorType *VecTyR = dyn_cast<VectorType>(TyR))
547       TyRWidth = VecTyR->getBitWidth();
548
549     if (TyLWidth != TyRWidth)
550       return cmpNumbers(TyLWidth, TyRWidth);
551
552     // Zero bit-width means neither TyL nor TyR are vectors.
553     if (!TyLWidth) {
554       PointerType *PTyL = dyn_cast<PointerType>(TyL);
555       PointerType *PTyR = dyn_cast<PointerType>(TyR);
556       if (PTyL && PTyR) {
557         unsigned AddrSpaceL = PTyL->getAddressSpace();
558         unsigned AddrSpaceR = PTyR->getAddressSpace();
559         if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
560           return Res;
561       }
562       if (PTyL)
563         return 1;
564       if (PTyR)
565         return -1;
566
567       // TyL and TyR aren't vectors, nor pointers. We don't know how to
568       // bitcast them.
569       return TypesRes;
570     }
571   }
572
573   // OK, types are bitcastable, now check constant contents.
574
575   if (L->isNullValue() && R->isNullValue())
576     return TypesRes;
577   if (L->isNullValue() && !R->isNullValue())
578     return 1;
579   if (!L->isNullValue() && R->isNullValue())
580     return -1;
581
582   if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
583     return Res;
584
585   switch (L->getValueID()) {
586   case Value::UndefValueVal: return TypesRes;
587   case Value::ConstantIntVal: {
588     const APInt &LInt = cast<ConstantInt>(L)->getValue();
589     const APInt &RInt = cast<ConstantInt>(R)->getValue();
590     return cmpAPInt(LInt, RInt);
591   }
592   case Value::ConstantFPVal: {
593     const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
594     const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
595     return cmpAPFloat(LAPF, RAPF);
596   }
597   case Value::ConstantArrayVal: {
598     const ConstantArray *LA = cast<ConstantArray>(L);
599     const ConstantArray *RA = cast<ConstantArray>(R);
600     uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
601     uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
602     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
603       return Res;
604     for (uint64_t i = 0; i < NumElementsL; ++i) {
605       if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
606                                  cast<Constant>(RA->getOperand(i))))
607         return Res;
608     }
609     return 0;
610   }
611   case Value::ConstantStructVal: {
612     const ConstantStruct *LS = cast<ConstantStruct>(L);
613     const ConstantStruct *RS = cast<ConstantStruct>(R);
614     unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
615     unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
616     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
617       return Res;
618     for (unsigned i = 0; i != NumElementsL; ++i) {
619       if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
620                                  cast<Constant>(RS->getOperand(i))))
621         return Res;
622     }
623     return 0;
624   }
625   case Value::ConstantVectorVal: {
626     const ConstantVector *LV = cast<ConstantVector>(L);
627     const ConstantVector *RV = cast<ConstantVector>(R);
628     unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements();
629     unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements();
630     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
631       return Res;
632     for (uint64_t i = 0; i < NumElementsL; ++i) {
633       if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
634                                  cast<Constant>(RV->getOperand(i))))
635         return Res;
636     }
637     return 0;
638   }
639   case Value::ConstantExprVal: {
640     const ConstantExpr *LE = cast<ConstantExpr>(L);
641     const ConstantExpr *RE = cast<ConstantExpr>(R);
642     unsigned NumOperandsL = LE->getNumOperands();
643     unsigned NumOperandsR = RE->getNumOperands();
644     if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
645       return Res;
646     for (unsigned i = 0; i < NumOperandsL; ++i) {
647       if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
648                                  cast<Constant>(RE->getOperand(i))))
649         return Res;
650     }
651     return 0;
652   }
653   case Value::FunctionVal:
654   case Value::GlobalVariableVal:
655   case Value::GlobalAliasVal:
656   default: // Unknown constant, cast L and R pointers to numbers and compare.
657     return cmpNumbers((uint64_t)L, (uint64_t)R);
658   }
659 }
660
661 /// cmpType - compares two types,
662 /// defines total ordering among the types set.
663 /// See method declaration comments for more details.
664 int FunctionComparator::cmpType(Type *TyL, Type *TyR) const {
665
666   PointerType *PTyL = dyn_cast<PointerType>(TyL);
667   PointerType *PTyR = dyn_cast<PointerType>(TyR);
668
669   if (DL) {
670     if (PTyL && PTyL->getAddressSpace() == 0) TyL = DL->getIntPtrType(TyL);
671     if (PTyR && PTyR->getAddressSpace() == 0) TyR = DL->getIntPtrType(TyR);
672   }
673
674   if (TyL == TyR)
675     return 0;
676
677   if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
678     return Res;
679
680   switch (TyL->getTypeID()) {
681   default:
682     llvm_unreachable("Unknown type!");
683     // Fall through in Release mode.
684   case Type::IntegerTyID:
685   case Type::VectorTyID:
686     // TyL == TyR would have returned true earlier.
687     return cmpNumbers((uint64_t)TyL, (uint64_t)TyR);
688
689   case Type::VoidTyID:
690   case Type::FloatTyID:
691   case Type::DoubleTyID:
692   case Type::X86_FP80TyID:
693   case Type::FP128TyID:
694   case Type::PPC_FP128TyID:
695   case Type::LabelTyID:
696   case Type::MetadataTyID:
697     return 0;
698
699   case Type::PointerTyID: {
700     assert(PTyL && PTyR && "Both types must be pointers here.");
701     return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
702   }
703
704   case Type::StructTyID: {
705     StructType *STyL = cast<StructType>(TyL);
706     StructType *STyR = cast<StructType>(TyR);
707     if (STyL->getNumElements() != STyR->getNumElements())
708       return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
709
710     if (STyL->isPacked() != STyR->isPacked())
711       return cmpNumbers(STyL->isPacked(), STyR->isPacked());
712
713     for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
714       if (int Res = cmpType(STyL->getElementType(i),
715                             STyR->getElementType(i)))
716         return Res;
717     }
718     return 0;
719   }
720
721   case Type::FunctionTyID: {
722     FunctionType *FTyL = cast<FunctionType>(TyL);
723     FunctionType *FTyR = cast<FunctionType>(TyR);
724     if (FTyL->getNumParams() != FTyR->getNumParams())
725       return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
726
727     if (FTyL->isVarArg() != FTyR->isVarArg())
728       return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
729
730     if (int Res = cmpType(FTyL->getReturnType(), FTyR->getReturnType()))
731       return Res;
732
733     for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
734       if (int Res = cmpType(FTyL->getParamType(i), FTyR->getParamType(i)))
735         return Res;
736     }
737     return 0;
738   }
739
740   case Type::ArrayTyID: {
741     ArrayType *ATyL = cast<ArrayType>(TyL);
742     ArrayType *ATyR = cast<ArrayType>(TyR);
743     if (ATyL->getNumElements() != ATyR->getNumElements())
744       return cmpNumbers(ATyL->getNumElements(), ATyR->getNumElements());
745     return cmpType(ATyL->getElementType(), ATyR->getElementType());
746   }
747   }
748 }
749
750 // Determine whether the two operations are the same except that pointer-to-A
751 // and pointer-to-B are equivalent. This should be kept in sync with
752 // Instruction::isSameOperationAs.
753 // Read method declaration comments for more details.
754 int FunctionComparator::cmpOperation(const Instruction *L,
755                                      const Instruction *R) const {
756   // Differences from Instruction::isSameOperationAs:
757   //  * replace type comparison with calls to isEquivalentType.
758   //  * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top
759   //  * because of the above, we don't test for the tail bit on calls later on
760   if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
761     return Res;
762
763   if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
764     return Res;
765
766   if (int Res = cmpType(L->getType(), R->getType()))
767     return Res;
768
769   if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
770                            R->getRawSubclassOptionalData()))
771     return Res;
772
773   // We have two instructions of identical opcode and #operands.  Check to see
774   // if all operands are the same type
775   for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
776     if (int Res =
777             cmpType(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
778       return Res;
779   }
780
781   // Check special state that is a part of some instructions.
782   if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
783     if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
784       return Res;
785     if (int Res =
786             cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment()))
787       return Res;
788     if (int Res =
789             cmpNumbers(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
790       return Res;
791     return cmpNumbers(LI->getSynchScope(), cast<LoadInst>(R)->getSynchScope());
792   }
793   if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
794     if (int Res =
795             cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
796       return Res;
797     if (int Res =
798             cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment()))
799       return Res;
800     if (int Res =
801             cmpNumbers(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
802       return Res;
803     return cmpNumbers(SI->getSynchScope(), cast<StoreInst>(R)->getSynchScope());
804   }
805   if (const CmpInst *CI = dyn_cast<CmpInst>(L))
806     return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
807   if (const CallInst *CI = dyn_cast<CallInst>(L)) {
808     if (int Res = cmpNumbers(CI->getCallingConv(),
809                              cast<CallInst>(R)->getCallingConv()))
810       return Res;
811     return cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes());
812   }
813   if (const InvokeInst *CI = dyn_cast<InvokeInst>(L)) {
814     if (int Res = cmpNumbers(CI->getCallingConv(),
815                              cast<InvokeInst>(R)->getCallingConv()))
816       return Res;
817     return cmpAttrs(CI->getAttributes(), cast<InvokeInst>(R)->getAttributes());
818   }
819   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
820     ArrayRef<unsigned> LIndices = IVI->getIndices();
821     ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
822     if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
823       return Res;
824     for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
825       if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
826         return Res;
827     }
828   }
829   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
830     ArrayRef<unsigned> LIndices = EVI->getIndices();
831     ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
832     if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
833       return Res;
834     for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
835       if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
836         return Res;
837     }
838   }
839   if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
840     if (int Res =
841             cmpNumbers(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
842       return Res;
843     return cmpNumbers(FI->getSynchScope(), cast<FenceInst>(R)->getSynchScope());
844   }
845
846   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
847     if (int Res = cmpNumbers(CXI->isVolatile(),
848                              cast<AtomicCmpXchgInst>(R)->isVolatile()))
849       return Res;
850     if (int Res = cmpNumbers(CXI->getSuccessOrdering(),
851                              cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
852       return Res;
853     if (int Res = cmpNumbers(CXI->getFailureOrdering(),
854                              cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
855       return Res;
856     return cmpNumbers(CXI->getSynchScope(),
857                       cast<AtomicCmpXchgInst>(R)->getSynchScope());
858   }
859   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
860     if (int Res = cmpNumbers(RMWI->getOperation(),
861                              cast<AtomicRMWInst>(R)->getOperation()))
862       return Res;
863     if (int Res = cmpNumbers(RMWI->isVolatile(),
864                              cast<AtomicRMWInst>(R)->isVolatile()))
865       return Res;
866     if (int Res = cmpNumbers(RMWI->getOrdering(),
867                              cast<AtomicRMWInst>(R)->getOrdering()))
868       return Res;
869     return cmpNumbers(RMWI->getSynchScope(),
870                       cast<AtomicRMWInst>(R)->getSynchScope());
871   }
872   return 0;
873 }
874
875 // Determine whether two GEP operations perform the same underlying arithmetic.
876 // Read method declaration comments for more details.
877 int FunctionComparator::cmpGEP(const GEPOperator *GEPL,
878                                const GEPOperator *GEPR) {
879
880   unsigned int ASL = GEPL->getPointerAddressSpace();
881   unsigned int ASR = GEPR->getPointerAddressSpace();
882
883   if (int Res = cmpNumbers(ASL, ASR))
884     return Res;
885
886   // When we have target data, we can reduce the GEP down to the value in bytes
887   // added to the address.
888   if (DL) {
889     unsigned BitWidth = DL->getPointerSizeInBits(ASL);
890     APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
891     if (GEPL->accumulateConstantOffset(*DL, OffsetL) &&
892         GEPR->accumulateConstantOffset(*DL, OffsetR))
893       return cmpAPInt(OffsetL, OffsetR);
894   }
895
896   if (int Res = cmpNumbers((uint64_t)GEPL->getPointerOperand()->getType(),
897                            (uint64_t)GEPR->getPointerOperand()->getType()))
898     return Res;
899
900   if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
901     return Res;
902
903   for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
904     if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
905       return Res;
906   }
907
908   return 0;
909 }
910
911 /// Compare two values used by the two functions under pair-wise comparison. If
912 /// this is the first time the values are seen, they're added to the mapping so
913 /// that we will detect mismatches on next use.
914 /// See comments in declaration for more details.
915 int FunctionComparator::cmpValues(const Value *L, const Value *R) {
916   // Catch self-reference case.
917   if (L == F1) {
918     if (R == F2)
919       return 0;
920     return -1;
921   }
922   if (R == F2) {
923     if (L == F1)
924       return 0;
925     return 1;
926   }
927
928   const Constant *ConstL = dyn_cast<Constant>(L);
929   const Constant *ConstR = dyn_cast<Constant>(R);
930   if (ConstL && ConstR) {
931     if (L == R)
932       return 0;
933     return cmpConstants(ConstL, ConstR);
934   }
935
936   if (ConstL)
937     return 1;
938   if (ConstR)
939     return -1;
940
941   const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
942   const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
943
944   if (InlineAsmL && InlineAsmR)
945     return cmpNumbers((uint64_t)L, (uint64_t)R);
946   if (InlineAsmL)
947     return 1;
948   if (InlineAsmR)
949     return -1;
950
951   auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
952        RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
953
954   return cmpNumbers(LeftSN.first->second, RightSN.first->second);
955 }
956 // Test whether two basic blocks have equivalent behaviour.
957 bool FunctionComparator::compare(const BasicBlock *BB1, const BasicBlock *BB2) {
958   BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end();
959   BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end();
960
961   do {
962     if (!enumerate(F1I, F2I))
963       return false;
964
965     if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) {
966       const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I);
967       if (!GEP2)
968         return false;
969
970       if (!enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand()))
971         return false;
972
973       if (!isEquivalentGEP(GEP1, GEP2))
974         return false;
975     } else {
976       if (!isEquivalentOperation(F1I, F2I))
977         return false;
978
979       assert(F1I->getNumOperands() == F2I->getNumOperands());
980       for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) {
981         Value *OpF1 = F1I->getOperand(i);
982         Value *OpF2 = F2I->getOperand(i);
983
984         if (!enumerate(OpF1, OpF2))
985           return false;
986
987         if (OpF1->getValueID() != OpF2->getValueID() ||
988             !isEquivalentType(OpF1->getType(), OpF2->getType()))
989           return false;
990       }
991     }
992
993     ++F1I, ++F2I;
994   } while (F1I != F1E && F2I != F2E);
995
996   return F1I == F1E && F2I == F2E;
997 }
998
999 // Test whether the two functions have equivalent behaviour.
1000 bool FunctionComparator::compare() {
1001   // We need to recheck everything, but check the things that weren't included
1002   // in the hash first.
1003
1004   sn_mapL.clear();
1005   sn_mapR.clear();
1006
1007   if (F1->getAttributes() != F2->getAttributes())
1008     return false;
1009
1010   if (F1->hasGC() != F2->hasGC())
1011     return false;
1012
1013   if (F1->hasGC() && F1->getGC() != F2->getGC())
1014     return false;
1015
1016   if (F1->hasSection() != F2->hasSection())
1017     return false;
1018
1019   if (F1->hasSection() && F1->getSection() != F2->getSection())
1020     return false;
1021
1022   if (F1->isVarArg() != F2->isVarArg())
1023     return false;
1024
1025   // TODO: if it's internal and only used in direct calls, we could handle this
1026   // case too.
1027   if (F1->getCallingConv() != F2->getCallingConv())
1028     return false;
1029
1030   if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType()))
1031     return false;
1032
1033   assert(F1->arg_size() == F2->arg_size() &&
1034          "Identically typed functions have different numbers of args!");
1035
1036   // Visit the arguments so that they get enumerated in the order they're
1037   // passed in.
1038   for (Function::const_arg_iterator f1i = F1->arg_begin(),
1039          f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) {
1040     if (!enumerate(f1i, f2i))
1041       llvm_unreachable("Arguments repeat!");
1042   }
1043
1044   // We do a CFG-ordered walk since the actual ordering of the blocks in the
1045   // linked list is immaterial. Our walk starts at the entry block for both
1046   // functions, then takes each block from each terminator in order. As an
1047   // artifact, this also means that unreachable blocks are ignored.
1048   SmallVector<const BasicBlock *, 8> F1BBs, F2BBs;
1049   SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
1050
1051   F1BBs.push_back(&F1->getEntryBlock());
1052   F2BBs.push_back(&F2->getEntryBlock());
1053
1054   VisitedBBs.insert(F1BBs[0]);
1055   while (!F1BBs.empty()) {
1056     const BasicBlock *F1BB = F1BBs.pop_back_val();
1057     const BasicBlock *F2BB = F2BBs.pop_back_val();
1058
1059     if (!enumerate(F1BB, F2BB) || !compare(F1BB, F2BB))
1060       return false;
1061
1062     const TerminatorInst *F1TI = F1BB->getTerminator();
1063     const TerminatorInst *F2TI = F2BB->getTerminator();
1064
1065     assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors());
1066     for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) {
1067       if (!VisitedBBs.insert(F1TI->getSuccessor(i)))
1068         continue;
1069
1070       F1BBs.push_back(F1TI->getSuccessor(i));
1071       F2BBs.push_back(F2TI->getSuccessor(i));
1072     }
1073   }
1074   return true;
1075 }
1076
1077 namespace {
1078
1079 /// MergeFunctions finds functions which will generate identical machine code,
1080 /// by considering all pointer types to be equivalent. Once identified,
1081 /// MergeFunctions will fold them by replacing a call to one to a call to a
1082 /// bitcast of the other.
1083 ///
1084 class MergeFunctions : public ModulePass {
1085 public:
1086   static char ID;
1087   MergeFunctions()
1088     : ModulePass(ID), HasGlobalAliases(false) {
1089     initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
1090   }
1091
1092   bool runOnModule(Module &M) override;
1093
1094 private:
1095   typedef DenseSet<ComparableFunction> FnSetType;
1096
1097   /// A work queue of functions that may have been modified and should be
1098   /// analyzed again.
1099   std::vector<WeakVH> Deferred;
1100
1101   /// Insert a ComparableFunction into the FnSet, or merge it away if it's
1102   /// equal to one that's already present.
1103   bool insert(ComparableFunction &NewF);
1104
1105   /// Remove a Function from the FnSet and queue it up for a second sweep of
1106   /// analysis.
1107   void remove(Function *F);
1108
1109   /// Find the functions that use this Value and remove them from FnSet and
1110   /// queue the functions.
1111   void removeUsers(Value *V);
1112
1113   /// Replace all direct calls of Old with calls of New. Will bitcast New if
1114   /// necessary to make types match.
1115   void replaceDirectCallers(Function *Old, Function *New);
1116
1117   /// Merge two equivalent functions. Upon completion, G may be deleted, or may
1118   /// be converted into a thunk. In either case, it should never be visited
1119   /// again.
1120   void mergeTwoFunctions(Function *F, Function *G);
1121
1122   /// Replace G with a thunk or an alias to F. Deletes G.
1123   void writeThunkOrAlias(Function *F, Function *G);
1124
1125   /// Replace G with a simple tail call to bitcast(F). Also replace direct uses
1126   /// of G with bitcast(F). Deletes G.
1127   void writeThunk(Function *F, Function *G);
1128
1129   /// Replace G with an alias to F. Deletes G.
1130   void writeAlias(Function *F, Function *G);
1131
1132   /// The set of all distinct functions. Use the insert() and remove() methods
1133   /// to modify it.
1134   FnSetType FnSet;
1135
1136   /// DataLayout for more accurate GEP comparisons. May be NULL.
1137   const DataLayout *DL;
1138
1139   /// Whether or not the target supports global aliases.
1140   bool HasGlobalAliases;
1141 };
1142
1143 }  // end anonymous namespace
1144
1145 char MergeFunctions::ID = 0;
1146 INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
1147
1148 ModulePass *llvm::createMergeFunctionsPass() {
1149   return new MergeFunctions();
1150 }
1151
1152 bool MergeFunctions::runOnModule(Module &M) {
1153   bool Changed = false;
1154   DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
1155   DL = DLP ? &DLP->getDataLayout() : nullptr;
1156
1157   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1158     if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage())
1159       Deferred.push_back(WeakVH(I));
1160   }
1161   FnSet.resize(Deferred.size());
1162
1163   do {
1164     std::vector<WeakVH> Worklist;
1165     Deferred.swap(Worklist);
1166
1167     DEBUG(dbgs() << "size of module: " << M.size() << '\n');
1168     DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
1169
1170     // Insert only strong functions and merge them. Strong function merging
1171     // always deletes one of them.
1172     for (std::vector<WeakVH>::iterator I = Worklist.begin(),
1173            E = Worklist.end(); I != E; ++I) {
1174       if (!*I) continue;
1175       Function *F = cast<Function>(*I);
1176       if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
1177           !F->mayBeOverridden()) {
1178         ComparableFunction CF = ComparableFunction(F, DL);
1179         Changed |= insert(CF);
1180       }
1181     }
1182
1183     // Insert only weak functions and merge them. By doing these second we
1184     // create thunks to the strong function when possible. When two weak
1185     // functions are identical, we create a new strong function with two weak
1186     // weak thunks to it which are identical but not mergable.
1187     for (std::vector<WeakVH>::iterator I = Worklist.begin(),
1188            E = Worklist.end(); I != E; ++I) {
1189       if (!*I) continue;
1190       Function *F = cast<Function>(*I);
1191       if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
1192           F->mayBeOverridden()) {
1193         ComparableFunction CF = ComparableFunction(F, DL);
1194         Changed |= insert(CF);
1195       }
1196     }
1197     DEBUG(dbgs() << "size of FnSet: " << FnSet.size() << '\n');
1198   } while (!Deferred.empty());
1199
1200   FnSet.clear();
1201
1202   return Changed;
1203 }
1204
1205 bool DenseMapInfo<ComparableFunction>::isEqual(const ComparableFunction &LHS,
1206                                                const ComparableFunction &RHS) {
1207   if (LHS.getFunc() == RHS.getFunc() &&
1208       LHS.getHash() == RHS.getHash())
1209     return true;
1210   if (!LHS.getFunc() || !RHS.getFunc())
1211     return false;
1212
1213   // One of these is a special "underlying pointer comparison only" object.
1214   if (LHS.getDataLayout() == ComparableFunction::LookupOnly ||
1215       RHS.getDataLayout() == ComparableFunction::LookupOnly)
1216     return false;
1217
1218   assert(LHS.getDataLayout() == RHS.getDataLayout() &&
1219          "Comparing functions for different targets");
1220
1221   return FunctionComparator(LHS.getDataLayout(), LHS.getFunc(),
1222                             RHS.getFunc()).compare();
1223 }
1224
1225 // Replace direct callers of Old with New.
1226 void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
1227   Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
1228   for (auto UI = Old->use_begin(), UE = Old->use_end(); UI != UE;) {
1229     Use *U = &*UI;
1230     ++UI;
1231     CallSite CS(U->getUser());
1232     if (CS && CS.isCallee(U)) {
1233       remove(CS.getInstruction()->getParent()->getParent());
1234       U->set(BitcastNew);
1235     }
1236   }
1237 }
1238
1239 // Replace G with an alias to F if possible, or else a thunk to F. Deletes G.
1240 void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) {
1241   if (HasGlobalAliases && G->hasUnnamedAddr()) {
1242     if (G->hasExternalLinkage() || G->hasLocalLinkage() ||
1243         G->hasWeakLinkage()) {
1244       writeAlias(F, G);
1245       return;
1246     }
1247   }
1248
1249   writeThunk(F, G);
1250 }
1251
1252 // Helper for writeThunk,
1253 // Selects proper bitcast operation,
1254 // but a bit simpler then CastInst::getCastOpcode.
1255 static Value *createCast(IRBuilder<false> &Builder, Value *V, Type *DestTy) {
1256   Type *SrcTy = V->getType();
1257   if (SrcTy->isStructTy()) {
1258     assert(DestTy->isStructTy());
1259     assert(SrcTy->getStructNumElements() == DestTy->getStructNumElements());
1260     Value *Result = UndefValue::get(DestTy);
1261     for (unsigned int I = 0, E = SrcTy->getStructNumElements(); I < E; ++I) {
1262       Value *Element = createCast(
1263           Builder, Builder.CreateExtractValue(V, ArrayRef<unsigned int>(I)),
1264           DestTy->getStructElementType(I));
1265
1266       Result =
1267           Builder.CreateInsertValue(Result, Element, ArrayRef<unsigned int>(I));
1268     }
1269     return Result;
1270   }
1271   assert(!DestTy->isStructTy());
1272   if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
1273     return Builder.CreateIntToPtr(V, DestTy);
1274   else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
1275     return Builder.CreatePtrToInt(V, DestTy);
1276   else
1277     return Builder.CreateBitCast(V, DestTy);
1278 }
1279
1280 // Replace G with a simple tail call to bitcast(F). Also replace direct uses
1281 // of G with bitcast(F). Deletes G.
1282 void MergeFunctions::writeThunk(Function *F, Function *G) {
1283   if (!G->mayBeOverridden()) {
1284     // Redirect direct callers of G to F.
1285     replaceDirectCallers(G, F);
1286   }
1287
1288   // If G was internal then we may have replaced all uses of G with F. If so,
1289   // stop here and delete G. There's no need for a thunk.
1290   if (G->hasLocalLinkage() && G->use_empty()) {
1291     G->eraseFromParent();
1292     return;
1293   }
1294
1295   Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
1296                                     G->getParent());
1297   BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
1298   IRBuilder<false> Builder(BB);
1299
1300   SmallVector<Value *, 16> Args;
1301   unsigned i = 0;
1302   FunctionType *FFTy = F->getFunctionType();
1303   for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
1304        AI != AE; ++AI) {
1305     Args.push_back(createCast(Builder, (Value*)AI, FFTy->getParamType(i)));
1306     ++i;
1307   }
1308
1309   CallInst *CI = Builder.CreateCall(F, Args);
1310   CI->setTailCall();
1311   CI->setCallingConv(F->getCallingConv());
1312   if (NewG->getReturnType()->isVoidTy()) {
1313     Builder.CreateRetVoid();
1314   } else {
1315     Builder.CreateRet(createCast(Builder, CI, NewG->getReturnType()));
1316   }
1317
1318   NewG->copyAttributesFrom(G);
1319   NewG->takeName(G);
1320   removeUsers(G);
1321   G->replaceAllUsesWith(NewG);
1322   G->eraseFromParent();
1323
1324   DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n');
1325   ++NumThunksWritten;
1326 }
1327
1328 // Replace G with an alias to F and delete G.
1329 void MergeFunctions::writeAlias(Function *F, Function *G) {
1330   PointerType *PTy = G->getType();
1331   auto *GA = GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
1332                                  G->getLinkage(), "", F);
1333   F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
1334   GA->takeName(G);
1335   GA->setVisibility(G->getVisibility());
1336   removeUsers(G);
1337   G->replaceAllUsesWith(GA);
1338   G->eraseFromParent();
1339
1340   DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
1341   ++NumAliasesWritten;
1342 }
1343
1344 // Merge two equivalent functions. Upon completion, Function G is deleted.
1345 void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
1346   if (F->mayBeOverridden()) {
1347     assert(G->mayBeOverridden());
1348
1349     if (HasGlobalAliases) {
1350       // Make them both thunks to the same internal function.
1351       Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
1352                                      F->getParent());
1353       H->copyAttributesFrom(F);
1354       H->takeName(F);
1355       removeUsers(F);
1356       F->replaceAllUsesWith(H);
1357
1358       unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
1359
1360       writeAlias(F, G);
1361       writeAlias(F, H);
1362
1363       F->setAlignment(MaxAlignment);
1364       F->setLinkage(GlobalValue::PrivateLinkage);
1365     } else {
1366       // We can't merge them. Instead, pick one and update all direct callers
1367       // to call it and hope that we improve the instruction cache hit rate.
1368       replaceDirectCallers(G, F);
1369     }
1370
1371     ++NumDoubleWeak;
1372   } else {
1373     writeThunkOrAlias(F, G);
1374   }
1375
1376   ++NumFunctionsMerged;
1377 }
1378
1379 // Insert a ComparableFunction into the FnSet, or merge it away if equal to one
1380 // that was already inserted.
1381 bool MergeFunctions::insert(ComparableFunction &NewF) {
1382   std::pair<FnSetType::iterator, bool> Result = FnSet.insert(NewF);
1383   if (Result.second) {
1384     DEBUG(dbgs() << "Inserting as unique: " << NewF.getFunc()->getName() << '\n');
1385     return false;
1386   }
1387
1388   const ComparableFunction &OldF = *Result.first;
1389
1390   // Don't merge tiny functions, since it can just end up making the function
1391   // larger.
1392   // FIXME: Should still merge them if they are unnamed_addr and produce an
1393   // alias.
1394   if (NewF.getFunc()->size() == 1) {
1395     if (NewF.getFunc()->front().size() <= 2) {
1396       DEBUG(dbgs() << NewF.getFunc()->getName()
1397             << " is to small to bother merging\n");
1398       return false;
1399     }
1400   }
1401
1402   // Never thunk a strong function to a weak function.
1403   assert(!OldF.getFunc()->mayBeOverridden() ||
1404          NewF.getFunc()->mayBeOverridden());
1405
1406   DEBUG(dbgs() << "  " << OldF.getFunc()->getName() << " == "
1407                << NewF.getFunc()->getName() << '\n');
1408
1409   Function *DeleteF = NewF.getFunc();
1410   NewF.release();
1411   mergeTwoFunctions(OldF.getFunc(), DeleteF);
1412   return true;
1413 }
1414
1415 // Remove a function from FnSet. If it was already in FnSet, add it to Deferred
1416 // so that we'll look at it in the next round.
1417 void MergeFunctions::remove(Function *F) {
1418   // We need to make sure we remove F, not a function "equal" to F per the
1419   // function equality comparator.
1420   //
1421   // The special "lookup only" ComparableFunction bypasses the expensive
1422   // function comparison in favour of a pointer comparison on the underlying
1423   // Function*'s.
1424   ComparableFunction CF = ComparableFunction(F, ComparableFunction::LookupOnly);
1425   if (FnSet.erase(CF)) {
1426     DEBUG(dbgs() << "Removed " << F->getName() << " from set and deferred it.\n");
1427     Deferred.push_back(F);
1428   }
1429 }
1430
1431 // For each instruction used by the value, remove() the function that contains
1432 // the instruction. This should happen right before a call to RAUW.
1433 void MergeFunctions::removeUsers(Value *V) {
1434   std::vector<Value *> Worklist;
1435   Worklist.push_back(V);
1436   while (!Worklist.empty()) {
1437     Value *V = Worklist.back();
1438     Worklist.pop_back();
1439
1440     for (User *U : V->users()) {
1441       if (Instruction *I = dyn_cast<Instruction>(U)) {
1442         remove(I->getParent()->getParent());
1443       } else if (isa<GlobalValue>(U)) {
1444         // do nothing
1445       } else if (Constant *C = dyn_cast<Constant>(U)) {
1446         for (User *UU : C->users())
1447           Worklist.push_back(UU);
1448       }
1449     }
1450   }
1451 }