Initial revision
[oota-llvm.git] / lib / Transforms / IPO / InlineSimple.cpp
1 //===- MethodInlining.cpp - Code to perform method inlining ---------------===//
2 //
3 // This file implements inlining of methods.
4 //
5 // Specifically, this:
6 //   * Exports functionality to inline any method call
7 //   * Inlines methods that consist of a single basic block
8 //   * Is able to inline ANY method call
9 //   . Has a smart heuristic for when to inline a method
10 //
11 // Notice that:
12 //   * This pass has a habit of introducing duplicated constant pool entries, 
13 //     and also opens up a lot of opportunities for constant propogation.  It is
14 //     a good idea to to run a constant propogation pass, then a DCE pass 
15 //     sometime after running this pass.
16 //
17 // TODO: Currently this throws away all of the symbol names in the method being
18 //       inlined to try to avoid name clashes.  Use a name if it's not taken
19 //
20 //===----------------------------------------------------------------------===//
21
22 #include "llvm/Module.h"
23 #include "llvm/Method.h"
24 #include "llvm/BasicBlock.h"
25 #include "llvm/iTerminators.h"
26 #include "llvm/iOther.h"
27 #include "llvm/Opt/AllOpts.h"
28 #include <algorithm>
29 #include <map>
30
31 #include "llvm/Assembly/Writer.h"
32
33 // RemapInstruction - Convert the instruction operands from referencing the 
34 // current values into those specified by ValueMap.
35 //
36 static inline void RemapInstruction(Instruction *I, 
37                                     map<const Value *, Value*> &ValueMap) {
38
39   for (unsigned op = 0; const Value *Op = I->getOperand(op); op++) {
40     Value *V = ValueMap[Op];
41     if (!V && Op->getValueType() == Value::MethodVal) 
42       continue;  // Methods don't get relocated
43
44     if (!V) {
45       cerr << "Val = " << endl << Op << "Addr = " << (void*)Op << endl;
46       cerr << "Inst = " << I;
47     }
48     assert(V && "Referenced value not in value map!");
49     I->setOperand(op, V);
50   }
51 }
52
53 // InlineMethod - This function forcibly inlines the called method into the
54 // basic block of the caller.  This returns false if it is not possible to
55 // inline this call.  The program is still in a well defined state if this 
56 // occurs though.
57 //
58 // Note that this only does one level of inlining.  For example, if the 
59 // instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 
60 // exists in the instruction stream.  Similiarly this will inline a recursive
61 // method by one level.
62 //
63 bool InlineMethod(BasicBlock::InstListType::iterator CIIt) {
64   assert((*CIIt)->getInstType() == Instruction::Call && 
65          "InlineMethod only works on CallInst nodes!");
66   assert((*CIIt)->getParent() && "Instruction not embedded in basic block!");
67   assert((*CIIt)->getParent()->getParent() && "Instruction not in method!");
68
69   CallInst *CI = (CallInst*)*CIIt;
70   const Method *CalledMeth = CI->getCalledMethod();
71   Method *CurrentMeth = CI->getParent()->getParent();
72
73   //cerr << "Inlining " << CalledMeth->getName() << " into " 
74   //     << CurrentMeth->getName() << endl;
75
76   BasicBlock *OrigBB = CI->getParent();
77
78   // Call splitBasicBlock - The original basic block now ends at the instruction
79   // immediately before the call.  The original basic block now ends with an
80   // unconditional branch to NewBB, and NewBB starts with the call instruction.
81   //
82   BasicBlock *NewBB = OrigBB->splitBasicBlock(CIIt);
83
84   // Remove (unlink) the CallInst from the start of the new basic block.  
85   NewBB->getInstList().remove(CI);
86
87   // If we have a return value generated by this call, convert it into a PHI 
88   // node that gets values from each of the old RET instructions in the original
89   // method.
90   //
91   PHINode *PHI = 0;
92   if (CalledMeth->getReturnType() != Type::VoidTy) {
93     PHI = new PHINode(CalledMeth->getReturnType(), CI->getName());
94
95     // The PHI node should go at the front of the new basic block to merge all 
96     // possible incoming values.
97     //
98     NewBB->getInstList().push_front(PHI);
99
100     // Anything that used the result of the function call should now use the PHI
101     // node as their operand.
102     //
103     CI->replaceAllUsesWith(PHI);
104   }
105
106   // Keep a mapping between the original method's values and the new duplicated
107   // code's values.  This includes all of: Method arguments, instruction values,
108   // constant pool entries, and basic blocks.
109   //
110   map<const Value *, Value*> ValueMap;
111
112   // Add the method arguments to the mapping: (start counting at 1 to skip the
113   // method reference itself)
114   //
115   Method::ArgumentListType::const_iterator PTI = 
116     CalledMeth->getArgumentList().begin();
117   for (unsigned a = 1; Value *Operand = CI->getOperand(a); ++a, ++PTI) {
118     ValueMap[*PTI] = Operand;
119   }
120   
121
122   ValueMap[NewBB] = NewBB;  // Returns get converted to reference NewBB
123
124   // Loop over all of the basic blocks in the method, inlining them as 
125   // appropriate.  Keep track of the first basic block of the method...
126   //
127   for (Method::BasicBlocksType::const_iterator BI = 
128          CalledMeth->getBasicBlocks().begin(); 
129        BI != CalledMeth->getBasicBlocks().end(); BI++) {
130     const BasicBlock *BB = *BI;
131     assert(BB->getTerminator() && "BasicBlock doesn't have terminator!?!?");
132     
133     // Create a new basic block to copy instructions into!
134     BasicBlock *IBB = new BasicBlock("", NewBB->getParent());
135
136     ValueMap[*BI] = IBB;                       // Add basic block mapping.
137
138     // Make sure to capture the mapping that a return will use...
139     // TODO: This assumes that the RET is returning a value computed in the same
140     //       basic block as the return was issued from!
141     //
142     const TerminatorInst *TI = BB->getTerminator();
143    
144     // Loop over all instructions copying them over...
145     Instruction *NewInst;
146     for (BasicBlock::InstListType::const_iterator II = BB->getInstList().begin();
147          II != (BB->getInstList().end()-1); II++) {
148       IBB->getInstList().push_back((NewInst = (*II)->clone()));
149       ValueMap[*II] = NewInst;                  // Add instruction map to value.
150     }
151
152     // Copy over the terminator now...
153     switch (TI->getInstType()) {
154     case Instruction::Ret: {
155       const ReturnInst *RI = (const ReturnInst*)TI;
156
157       if (PHI) {   // The PHI node should include this value!
158         assert(RI->getReturnValue() && "Ret should have value!");
159         assert(RI->getReturnValue()->getType() == PHI->getType() && 
160                "Ret value not consistent in method!");
161         PHI->addIncoming((Value*)RI->getReturnValue());
162       }
163
164       // Add a branch to the code that was after the original Call.
165       IBB->getInstList().push_back(new BranchInst(NewBB));
166       break;
167     }
168     case Instruction::Br:
169       IBB->getInstList().push_back(TI->clone());
170       break;
171
172     default:
173       cerr << "MethodInlining: Don't know how to handle terminator: " << TI;
174       abort();
175     }
176   }
177
178
179   // Copy over the constant pool...
180   //
181   const ConstantPool &CP = CalledMeth->getConstantPool();
182   ConstantPool    &NewCP = CurrentMeth->getConstantPool();
183   for (ConstantPool::plane_const_iterator PI = CP.begin(); PI != CP.end(); ++PI){
184     ConstantPool::PlaneType &Plane = **PI;
185     for (ConstantPool::PlaneType::const_iterator I = Plane.begin(); 
186          I != Plane.end(); ++I) {
187       ConstPoolVal *NewVal = (*I)->clone(); // Copy existing constant
188       NewCP.insert(NewVal);         // Insert the new copy into local const pool
189       ValueMap[*I] = NewVal;        // Keep track of constant value mappings
190     }
191   }
192
193   // Loop over all of the instructions in the method, fixing up operand 
194   // references as we go.  This uses ValueMap to do all the hard work.
195   //
196   for (Method::BasicBlocksType::const_iterator BI = 
197          CalledMeth->getBasicBlocks().begin(); 
198        BI != CalledMeth->getBasicBlocks().end(); BI++) {
199     const BasicBlock *BB = *BI;
200     BasicBlock *NBB = (BasicBlock*)ValueMap[BB];
201
202     // Loop over all instructions, fixing each one as we find it...
203     //
204     for (BasicBlock::InstListType::iterator II = NBB->getInstList().begin();
205          II != NBB->getInstList().end(); II++)
206       RemapInstruction(*II, ValueMap);
207   }
208
209   if (PHI) RemapInstruction(PHI, ValueMap);  // Fix the PHI node also...
210
211   // Change the branch that used to go to NewBB to branch to the first basic 
212   // block of the inlined method.
213   //
214   TerminatorInst *Br = OrigBB->getTerminator();
215   assert(Br && Br->getInstType() == Instruction::Br && 
216          "splitBasicBlock broken!");
217   Br->setOperand(0, ValueMap[CalledMeth->getBasicBlocks().front()]);
218
219   // Since we are now done with the CallInst, we can finally delete it.
220   delete CI;
221   return true;
222 }
223
224 bool InlineMethod(CallInst *CI) {
225   assert(CI->getParent() && "CallInst not embeded in BasicBlock!");
226   BasicBlock *PBB = CI->getParent();
227
228   BasicBlock::InstListType::iterator CallIt = find(PBB->getInstList().begin(),
229                                                    PBB->getInstList().end(),
230                                                    CI);
231   assert(CallIt != PBB->getInstList().end() && 
232          "CallInst has parent that doesn't contain CallInst?!?");
233   return InlineMethod(CallIt);
234 }
235
236 static inline bool ShouldInlineMethod(const CallInst *CI, const Method *M) {
237   assert(CI->getParent() && CI->getParent()->getParent() && 
238          "Call not embedded into a method!");
239
240   // Don't inline a recursive call.
241   if (CI->getParent()->getParent() == M) return false;
242
243   // Don't inline something too big.  This is a really crappy heuristic
244   if (M->getBasicBlocks().size() > 3) return false;
245
246   // Don't inline into something too big. This is a **really** crappy heuristic
247   if (CI->getParent()->getParent()->getBasicBlocks().size() > 10) return false;
248
249   // Go ahead and try just about anything else.
250   return true;
251 }
252
253
254 static inline bool DoMethodInlining(BasicBlock *BB) {
255   for (BasicBlock::InstListType::iterator I = BB->getInstList().begin();
256        I != BB->getInstList().end(); I++) {
257     if ((*I)->getInstType() == Instruction::Call) {
258       // Check to see if we should inline this method
259       CallInst *CI = (CallInst*)*I;
260       Method *M = CI->getCalledMethod();
261       if (ShouldInlineMethod(CI, M))
262         return InlineMethod(I);
263     }
264   }
265   return false;
266 }
267
268 bool DoMethodInlining(Method *M) {
269   Method::BasicBlocksType &BBs = M->getBasicBlocks();
270   bool Changed = false;
271
272   // Loop through now and inline instructions a basic block at a time...
273   for (Method::BasicBlocksType::iterator I = BBs.begin(); I != BBs.end(); )
274     if (DoMethodInlining(*I)) {
275       Changed = true;
276       // Iterator is now invalidated by new basic blocks inserted
277       I = BBs.begin();
278     } else {
279       ++I;
280     }
281
282   return Changed;
283 }