DebugInfo: Delete subclasses of DIScope
[oota-llvm.git] / lib / Transforms / IPO / ArgumentPromotion.cpp
1 //===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass promotes "by reference" arguments to be "by value" arguments.  In
11 // practice, this means looking for internal functions that have pointer
12 // arguments.  If it can prove, through the use of alias analysis, that an
13 // argument is *only* loaded, then it can pass the value into the function
14 // instead of the address of the value.  This can cause recursive simplification
15 // of code and lead to the elimination of allocas (especially in C++ template
16 // code like the STL).
17 //
18 // This pass also handles aggregate arguments that are passed into a function,
19 // scalarizing them if the elements of the aggregate are only loaded.  Note that
20 // by default it refuses to scalarize aggregates which would require passing in
21 // more than three operands to the function, because passing thousands of
22 // operands for a large array or structure is unprofitable! This limit can be
23 // configured or disabled, however.
24 //
25 // Note that this transformation could also be done for arguments that are only
26 // stored to (returning the value instead), but does not currently.  This case
27 // would be best handled when and if LLVM begins supporting multiple return
28 // values from functions.
29 //
30 //===----------------------------------------------------------------------===//
31
32 #include "llvm/Transforms/IPO.h"
33 #include "llvm/ADT/DepthFirstIterator.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringExtras.h"
36 #include "llvm/Analysis/AliasAnalysis.h"
37 #include "llvm/Analysis/CallGraph.h"
38 #include "llvm/Analysis/CallGraphSCCPass.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/CallSite.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DebugInfo.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/LLVMContext.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <set>
51 using namespace llvm;
52
53 #define DEBUG_TYPE "argpromotion"
54
55 STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted");
56 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
57 STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted");
58 STATISTIC(NumArgumentsDead     , "Number of dead pointer args eliminated");
59
60 namespace {
61   /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
62   ///
63   struct ArgPromotion : public CallGraphSCCPass {
64     void getAnalysisUsage(AnalysisUsage &AU) const override {
65       AU.addRequired<AliasAnalysis>();
66       CallGraphSCCPass::getAnalysisUsage(AU);
67     }
68
69     bool runOnSCC(CallGraphSCC &SCC) override;
70     static char ID; // Pass identification, replacement for typeid
71     explicit ArgPromotion(unsigned maxElements = 3)
72         : CallGraphSCCPass(ID), maxElements(maxElements) {
73       initializeArgPromotionPass(*PassRegistry::getPassRegistry());
74     }
75
76     /// A vector used to hold the indices of a single GEP instruction
77     typedef std::vector<uint64_t> IndicesVector;
78
79   private:
80     bool isDenselyPacked(Type *type, const DataLayout &DL);
81     bool canPaddingBeAccessed(Argument *Arg);
82     CallGraphNode *PromoteArguments(CallGraphNode *CGN);
83     bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const;
84     CallGraphNode *DoPromotion(Function *F,
85                               SmallPtrSetImpl<Argument*> &ArgsToPromote,
86                               SmallPtrSetImpl<Argument*> &ByValArgsToTransform);
87     
88     using llvm::Pass::doInitialization;
89     bool doInitialization(CallGraph &CG) override;
90     /// The maximum number of elements to expand, or 0 for unlimited.
91     unsigned maxElements;
92     DenseMap<const Function *, MDSubprogram *> FunctionDIs;
93   };
94 }
95
96 char ArgPromotion::ID = 0;
97 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
98                 "Promote 'by reference' arguments to scalars", false, false)
99 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
100 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
101 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
102                 "Promote 'by reference' arguments to scalars", false, false)
103
104 Pass *llvm::createArgumentPromotionPass(unsigned maxElements) {
105   return new ArgPromotion(maxElements);
106 }
107
108 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
109   bool Changed = false, LocalChange;
110
111   do {  // Iterate until we stop promoting from this SCC.
112     LocalChange = false;
113     // Attempt to promote arguments from all functions in this SCC.
114     for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
115       if (CallGraphNode *CGN = PromoteArguments(*I)) {
116         LocalChange = true;
117         SCC.ReplaceNode(*I, CGN);
118       }
119     }
120     Changed |= LocalChange;               // Remember that we changed something.
121   } while (LocalChange);
122   
123   return Changed;
124 }
125
126 /// \brief Checks if a type could have padding bytes.
127 bool ArgPromotion::isDenselyPacked(Type *type, const DataLayout &DL) {
128
129   // There is no size information, so be conservative.
130   if (!type->isSized())
131     return false;
132
133   // If the alloc size is not equal to the storage size, then there are padding
134   // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
135   if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
136     return false;
137
138   if (!isa<CompositeType>(type))
139     return true;
140
141   // For homogenous sequential types, check for padding within members.
142   if (SequentialType *seqTy = dyn_cast<SequentialType>(type))
143     return isa<PointerType>(seqTy) ||
144            isDenselyPacked(seqTy->getElementType(), DL);
145
146   // Check for padding within and between elements of a struct.
147   StructType *StructTy = cast<StructType>(type);
148   const StructLayout *Layout = DL.getStructLayout(StructTy);
149   uint64_t StartPos = 0;
150   for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
151     Type *ElTy = StructTy->getElementType(i);
152     if (!isDenselyPacked(ElTy, DL))
153       return false;
154     if (StartPos != Layout->getElementOffsetInBits(i))
155       return false;
156     StartPos += DL.getTypeAllocSizeInBits(ElTy);
157   }
158
159   return true;
160 }
161
162 /// \brief Checks if the padding bytes of an argument could be accessed.
163 bool ArgPromotion::canPaddingBeAccessed(Argument *arg) {
164
165   assert(arg->hasByValAttr());
166
167   // Track all the pointers to the argument to make sure they are not captured.
168   SmallPtrSet<Value *, 16> PtrValues;
169   PtrValues.insert(arg);
170
171   // Track all of the stores.
172   SmallVector<StoreInst *, 16> Stores;
173
174   // Scan through the uses recursively to make sure the pointer is always used
175   // sanely.
176   SmallVector<Value *, 16> WorkList;
177   WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end());
178   while (!WorkList.empty()) {
179     Value *V = WorkList.back();
180     WorkList.pop_back();
181     if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
182       if (PtrValues.insert(V).second)
183         WorkList.insert(WorkList.end(), V->user_begin(), V->user_end());
184     } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
185       Stores.push_back(Store);
186     } else if (!isa<LoadInst>(V)) {
187       return true;
188     }
189   }
190
191 // Check to make sure the pointers aren't captured
192   for (StoreInst *Store : Stores)
193     if (PtrValues.count(Store->getValueOperand()))
194       return true;
195
196   return false;
197 }
198
199 /// PromoteArguments - This method checks the specified function to see if there
200 /// are any promotable arguments and if it is safe to promote the function (for
201 /// example, all callers are direct).  If safe to promote some arguments, it
202 /// calls the DoPromotion method.
203 ///
204 CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
205   Function *F = CGN->getFunction();
206
207   // Make sure that it is local to this module.
208   if (!F || !F->hasLocalLinkage()) return nullptr;
209
210   // Don't promote arguments for variadic functions. Adding, removing, or
211   // changing non-pack parameters can change the classification of pack
212   // parameters. Frontends encode that classification at the call site in the
213   // IR, while in the callee the classification is determined dynamically based
214   // on the number of registers consumed so far.
215   if (F->isVarArg()) return nullptr;
216
217   // First check: see if there are any pointer arguments!  If not, quick exit.
218   SmallVector<Argument*, 16> PointerArgs;
219   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
220     if (I->getType()->isPointerTy())
221       PointerArgs.push_back(I);
222   if (PointerArgs.empty()) return nullptr;
223
224   // Second check: make sure that all callers are direct callers.  We can't
225   // transform functions that have indirect callers.  Also see if the function
226   // is self-recursive.
227   bool isSelfRecursive = false;
228   for (Use &U : F->uses()) {
229     CallSite CS(U.getUser());
230     // Must be a direct call.
231     if (CS.getInstruction() == nullptr || !CS.isCallee(&U)) return nullptr;
232     
233     if (CS.getInstruction()->getParent()->getParent() == F)
234       isSelfRecursive = true;
235   }
236   
237   const DataLayout &DL = F->getParent()->getDataLayout();
238
239   // Check to see which arguments are promotable.  If an argument is promotable,
240   // add it to ArgsToPromote.
241   SmallPtrSet<Argument*, 8> ArgsToPromote;
242   SmallPtrSet<Argument*, 8> ByValArgsToTransform;
243   for (unsigned i = 0, e = PointerArgs.size(); i != e; ++i) {
244     Argument *PtrArg = PointerArgs[i];
245     Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
246
247     // If this is a byval argument, and if the aggregate type is small, just
248     // pass the elements, which is always safe, if the passed value is densely
249     // packed or if we can prove the padding bytes are never accessed. This does
250     // not apply to inalloca.
251     bool isSafeToPromote =
252         PtrArg->hasByValAttr() &&
253         (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg));
254     if (isSafeToPromote) {
255       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
256         if (maxElements > 0 && STy->getNumElements() > maxElements) {
257           DEBUG(dbgs() << "argpromotion disable promoting argument '"
258                 << PtrArg->getName() << "' because it would require adding more"
259                 << " than " << maxElements << " arguments to the function.\n");
260           continue;
261         }
262         
263         // If all the elements are single-value types, we can promote it.
264         bool AllSimple = true;
265         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
266           if (!STy->getElementType(i)->isSingleValueType()) {
267             AllSimple = false;
268             break;
269           }
270         }
271
272         // Safe to transform, don't even bother trying to "promote" it.
273         // Passing the elements as a scalar will allow scalarrepl to hack on
274         // the new alloca we introduce.
275         if (AllSimple) {
276           ByValArgsToTransform.insert(PtrArg);
277           continue;
278         }
279       }
280     }
281
282     // If the argument is a recursive type and we're in a recursive
283     // function, we could end up infinitely peeling the function argument.
284     if (isSelfRecursive) {
285       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
286         bool RecursiveType = false;
287         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
288           if (STy->getElementType(i) == PtrArg->getType()) {
289             RecursiveType = true;
290             break;
291           }
292         }
293         if (RecursiveType)
294           continue;
295       }
296     }
297     
298     // Otherwise, see if we can promote the pointer to its value.
299     if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValOrInAllocaAttr()))
300       ArgsToPromote.insert(PtrArg);
301   }
302
303   // No promotable pointer arguments.
304   if (ArgsToPromote.empty() && ByValArgsToTransform.empty()) 
305     return nullptr;
306
307   return DoPromotion(F, ArgsToPromote, ByValArgsToTransform);
308 }
309
310 /// AllCallersPassInValidPointerForArgument - Return true if we can prove that
311 /// all callees pass in a valid pointer for the specified function argument.
312 static bool AllCallersPassInValidPointerForArgument(Argument *Arg) {
313   Function *Callee = Arg->getParent();
314   const DataLayout &DL = Callee->getParent()->getDataLayout();
315
316   unsigned ArgNo = Arg->getArgNo();
317
318   // Look at all call sites of the function.  At this pointer we know we only
319   // have direct callees.
320   for (User *U : Callee->users()) {
321     CallSite CS(U);
322     assert(CS && "Should only have direct calls!");
323
324     if (!CS.getArgument(ArgNo)->isDereferenceablePointer(DL))
325       return false;
326   }
327   return true;
328 }
329
330 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
331 /// that is greater than or equal to the size of prefix, and each of the
332 /// elements in Prefix is the same as the corresponding elements in Longer.
333 ///
334 /// This means it also returns true when Prefix and Longer are equal!
335 static bool IsPrefix(const ArgPromotion::IndicesVector &Prefix,
336                      const ArgPromotion::IndicesVector &Longer) {
337   if (Prefix.size() > Longer.size())
338     return false;
339   return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
340 }
341
342
343 /// Checks if Indices, or a prefix of Indices, is in Set.
344 static bool PrefixIn(const ArgPromotion::IndicesVector &Indices,
345                      std::set<ArgPromotion::IndicesVector> &Set) {
346     std::set<ArgPromotion::IndicesVector>::iterator Low;
347     Low = Set.upper_bound(Indices);
348     if (Low != Set.begin())
349       Low--;
350     // Low is now the last element smaller than or equal to Indices. This means
351     // it points to a prefix of Indices (possibly Indices itself), if such
352     // prefix exists.
353     //
354     // This load is safe if any prefix of its operands is safe to load.
355     return Low != Set.end() && IsPrefix(*Low, Indices);
356 }
357
358 /// Mark the given indices (ToMark) as safe in the given set of indices
359 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
360 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
361 /// already. Furthermore, any indices that Indices is itself a prefix of, are
362 /// removed from Safe (since they are implicitely safe because of Indices now).
363 static void MarkIndicesSafe(const ArgPromotion::IndicesVector &ToMark,
364                             std::set<ArgPromotion::IndicesVector> &Safe) {
365   std::set<ArgPromotion::IndicesVector>::iterator Low;
366   Low = Safe.upper_bound(ToMark);
367   // Guard against the case where Safe is empty
368   if (Low != Safe.begin())
369     Low--;
370   // Low is now the last element smaller than or equal to Indices. This
371   // means it points to a prefix of Indices (possibly Indices itself), if
372   // such prefix exists.
373   if (Low != Safe.end()) {
374     if (IsPrefix(*Low, ToMark))
375       // If there is already a prefix of these indices (or exactly these
376       // indices) marked a safe, don't bother adding these indices
377       return;
378
379     // Increment Low, so we can use it as a "insert before" hint
380     ++Low;
381   }
382   // Insert
383   Low = Safe.insert(Low, ToMark);
384   ++Low;
385   // If there we're a prefix of longer index list(s), remove those
386   std::set<ArgPromotion::IndicesVector>::iterator End = Safe.end();
387   while (Low != End && IsPrefix(ToMark, *Low)) {
388     std::set<ArgPromotion::IndicesVector>::iterator Remove = Low;
389     ++Low;
390     Safe.erase(Remove);
391   }
392 }
393
394 /// isSafeToPromoteArgument - As you might guess from the name of this method,
395 /// it checks to see if it is both safe and useful to promote the argument.
396 /// This method limits promotion of aggregates to only promote up to three
397 /// elements of the aggregate in order to avoid exploding the number of
398 /// arguments passed in.
399 bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg,
400                                            bool isByValOrInAlloca) const {
401   typedef std::set<IndicesVector> GEPIndicesSet;
402
403   // Quick exit for unused arguments
404   if (Arg->use_empty())
405     return true;
406
407   // We can only promote this argument if all of the uses are loads, or are GEP
408   // instructions (with constant indices) that are subsequently loaded.
409   //
410   // Promoting the argument causes it to be loaded in the caller
411   // unconditionally. This is only safe if we can prove that either the load
412   // would have happened in the callee anyway (ie, there is a load in the entry
413   // block) or the pointer passed in at every call site is guaranteed to be
414   // valid.
415   // In the former case, invalid loads can happen, but would have happened
416   // anyway, in the latter case, invalid loads won't happen. This prevents us
417   // from introducing an invalid load that wouldn't have happened in the
418   // original code.
419   //
420   // This set will contain all sets of indices that are loaded in the entry
421   // block, and thus are safe to unconditionally load in the caller.
422   //
423   // This optimization is also safe for InAlloca parameters, because it verifies
424   // that the address isn't captured.
425   GEPIndicesSet SafeToUnconditionallyLoad;
426
427   // This set contains all the sets of indices that we are planning to promote.
428   // This makes it possible to limit the number of arguments added.
429   GEPIndicesSet ToPromote;
430
431   // If the pointer is always valid, any load with first index 0 is valid.
432   if (isByValOrInAlloca || AllCallersPassInValidPointerForArgument(Arg))
433     SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
434
435   // First, iterate the entry block and mark loads of (geps of) arguments as
436   // safe.
437   BasicBlock *EntryBlock = Arg->getParent()->begin();
438   // Declare this here so we can reuse it
439   IndicesVector Indices;
440   for (BasicBlock::iterator I = EntryBlock->begin(), E = EntryBlock->end();
441        I != E; ++I)
442     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
443       Value *V = LI->getPointerOperand();
444       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
445         V = GEP->getPointerOperand();
446         if (V == Arg) {
447           // This load actually loads (part of) Arg? Check the indices then.
448           Indices.reserve(GEP->getNumIndices());
449           for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
450                II != IE; ++II)
451             if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
452               Indices.push_back(CI->getSExtValue());
453             else
454               // We found a non-constant GEP index for this argument? Bail out
455               // right away, can't promote this argument at all.
456               return false;
457
458           // Indices checked out, mark them as safe
459           MarkIndicesSafe(Indices, SafeToUnconditionallyLoad);
460           Indices.clear();
461         }
462       } else if (V == Arg) {
463         // Direct loads are equivalent to a GEP with a single 0 index.
464         MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
465       }
466     }
467
468   // Now, iterate all uses of the argument to see if there are any uses that are
469   // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
470   SmallVector<LoadInst*, 16> Loads;
471   IndicesVector Operands;
472   for (Use &U : Arg->uses()) {
473     User *UR = U.getUser();
474     Operands.clear();
475     if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
476       // Don't hack volatile/atomic loads
477       if (!LI->isSimple()) return false;
478       Loads.push_back(LI);
479       // Direct loads are equivalent to a GEP with a zero index and then a load.
480       Operands.push_back(0);
481     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
482       if (GEP->use_empty()) {
483         // Dead GEP's cause trouble later.  Just remove them if we run into
484         // them.
485         getAnalysis<AliasAnalysis>().deleteValue(GEP);
486         GEP->eraseFromParent();
487         // TODO: This runs the above loop over and over again for dead GEPs
488         // Couldn't we just do increment the UI iterator earlier and erase the
489         // use?
490         return isSafeToPromoteArgument(Arg, isByValOrInAlloca);
491       }
492
493       // Ensure that all of the indices are constants.
494       for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end();
495         i != e; ++i)
496         if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
497           Operands.push_back(C->getSExtValue());
498         else
499           return false;  // Not a constant operand GEP!
500
501       // Ensure that the only users of the GEP are load instructions.
502       for (User *GEPU : GEP->users())
503         if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
504           // Don't hack volatile/atomic loads
505           if (!LI->isSimple()) return false;
506           Loads.push_back(LI);
507         } else {
508           // Other uses than load?
509           return false;
510         }
511     } else {
512       return false;  // Not a load or a GEP.
513     }
514
515     // Now, see if it is safe to promote this load / loads of this GEP. Loading
516     // is safe if Operands, or a prefix of Operands, is marked as safe.
517     if (!PrefixIn(Operands, SafeToUnconditionallyLoad))
518       return false;
519
520     // See if we are already promoting a load with these indices. If not, check
521     // to make sure that we aren't promoting too many elements.  If so, nothing
522     // to do.
523     if (ToPromote.find(Operands) == ToPromote.end()) {
524       if (maxElements > 0 && ToPromote.size() == maxElements) {
525         DEBUG(dbgs() << "argpromotion not promoting argument '"
526               << Arg->getName() << "' because it would require adding more "
527               << "than " << maxElements << " arguments to the function.\n");
528         // We limit aggregate promotion to only promoting up to a fixed number
529         // of elements of the aggregate.
530         return false;
531       }
532       ToPromote.insert(std::move(Operands));
533     }
534   }
535
536   if (Loads.empty()) return true;  // No users, this is a dead argument.
537
538   // Okay, now we know that the argument is only used by load instructions and
539   // it is safe to unconditionally perform all of them. Use alias analysis to
540   // check to see if the pointer is guaranteed to not be modified from entry of
541   // the function to each of the load instructions.
542
543   // Because there could be several/many load instructions, remember which
544   // blocks we know to be transparent to the load.
545   SmallPtrSet<BasicBlock*, 16> TranspBlocks;
546
547   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
548
549   for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
550     // Check to see if the load is invalidated from the start of the block to
551     // the load itself.
552     LoadInst *Load = Loads[i];
553     BasicBlock *BB = Load->getParent();
554
555     AliasAnalysis::Location Loc = AA.getLocation(Load);
556     if (AA.canInstructionRangeModRef(BB->front(), *Load, Loc,
557         AliasAnalysis::Mod))
558       return false;  // Pointer is invalidated!
559
560     // Now check every path from the entry block to the load for transparency.
561     // To do this, we perform a depth first search on the inverse CFG from the
562     // loading block.
563     for (BasicBlock *P : predecessors(BB)) {
564       for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
565         if (AA.canBasicBlockModify(*TranspBB, Loc))
566           return false;
567     }
568   }
569
570   // If the path from the entry of the function to each load is free of
571   // instructions that potentially invalidate the load, we can make the
572   // transformation!
573   return true;
574 }
575
576 /// DoPromotion - This method actually performs the promotion of the specified
577 /// arguments, and returns the new function.  At this point, we know that it's
578 /// safe to do so.
579 CallGraphNode *ArgPromotion::DoPromotion(Function *F,
580                              SmallPtrSetImpl<Argument*> &ArgsToPromote,
581                              SmallPtrSetImpl<Argument*> &ByValArgsToTransform) {
582
583   // Start by computing a new prototype for the function, which is the same as
584   // the old function, but has modified arguments.
585   FunctionType *FTy = F->getFunctionType();
586   std::vector<Type*> Params;
587
588   typedef std::set<std::pair<Type *, IndicesVector>> ScalarizeTable;
589
590   // ScalarizedElements - If we are promoting a pointer that has elements
591   // accessed out of it, keep track of which elements are accessed so that we
592   // can add one argument for each.
593   //
594   // Arguments that are directly loaded will have a zero element value here, to
595   // handle cases where there are both a direct load and GEP accesses.
596   //
597   std::map<Argument*, ScalarizeTable> ScalarizedElements;
598
599   // OriginalLoads - Keep track of a representative load instruction from the
600   // original function so that we can tell the alias analysis implementation
601   // what the new GEP/Load instructions we are inserting look like.
602   // We need to keep the original loads for each argument and the elements
603   // of the argument that are accessed.
604   std::map<std::pair<Argument*, IndicesVector>, LoadInst*> OriginalLoads;
605
606   // Attribute - Keep track of the parameter attributes for the arguments
607   // that we are *not* promoting. For the ones that we do promote, the parameter
608   // attributes are lost
609   SmallVector<AttributeSet, 8> AttributesVec;
610   const AttributeSet &PAL = F->getAttributes();
611
612   // Add any return attributes.
613   if (PAL.hasAttributes(AttributeSet::ReturnIndex))
614     AttributesVec.push_back(AttributeSet::get(F->getContext(),
615                                               PAL.getRetAttributes()));
616
617   // First, determine the new argument list
618   unsigned ArgIndex = 1;
619   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
620        ++I, ++ArgIndex) {
621     if (ByValArgsToTransform.count(I)) {
622       // Simple byval argument? Just add all the struct element types.
623       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
624       StructType *STy = cast<StructType>(AgTy);
625       Params.insert(Params.end(), STy->element_begin(), STy->element_end());
626       ++NumByValArgsPromoted;
627     } else if (!ArgsToPromote.count(I)) {
628       // Unchanged argument
629       Params.push_back(I->getType());
630       AttributeSet attrs = PAL.getParamAttributes(ArgIndex);
631       if (attrs.hasAttributes(ArgIndex)) {
632         AttrBuilder B(attrs, ArgIndex);
633         AttributesVec.
634           push_back(AttributeSet::get(F->getContext(), Params.size(), B));
635       }
636     } else if (I->use_empty()) {
637       // Dead argument (which are always marked as promotable)
638       ++NumArgumentsDead;
639     } else {
640       // Okay, this is being promoted. This means that the only uses are loads
641       // or GEPs which are only used by loads
642
643       // In this table, we will track which indices are loaded from the argument
644       // (where direct loads are tracked as no indices).
645       ScalarizeTable &ArgIndices = ScalarizedElements[I];
646       for (User *U : I->users()) {
647         Instruction *UI = cast<Instruction>(U);
648         Type *SrcTy;
649         if (LoadInst *L = dyn_cast<LoadInst>(UI))
650           SrcTy = L->getType();
651         else
652           SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
653         IndicesVector Indices;
654         Indices.reserve(UI->getNumOperands() - 1);
655         // Since loads will only have a single operand, and GEPs only a single
656         // non-index operand, this will record direct loads without any indices,
657         // and gep+loads with the GEP indices.
658         for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
659              II != IE; ++II)
660           Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
661         // GEPs with a single 0 index can be merged with direct loads
662         if (Indices.size() == 1 && Indices.front() == 0)
663           Indices.clear();
664         ArgIndices.insert(std::make_pair(SrcTy, Indices));
665         LoadInst *OrigLoad;
666         if (LoadInst *L = dyn_cast<LoadInst>(UI))
667           OrigLoad = L;
668         else
669           // Take any load, we will use it only to update Alias Analysis
670           OrigLoad = cast<LoadInst>(UI->user_back());
671         OriginalLoads[std::make_pair(I, Indices)] = OrigLoad;
672       }
673
674       // Add a parameter to the function for each element passed in.
675       for (ScalarizeTable::iterator SI = ArgIndices.begin(),
676              E = ArgIndices.end(); SI != E; ++SI) {
677         // not allowed to dereference ->begin() if size() is 0
678         Params.push_back(GetElementPtrInst::getIndexedType(
679             cast<PointerType>(I->getType()->getScalarType())->getElementType(),
680             SI->second));
681         assert(Params.back());
682       }
683
684       if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
685         ++NumArgumentsPromoted;
686       else
687         ++NumAggregatesPromoted;
688     }
689   }
690
691   // Add any function attributes.
692   if (PAL.hasAttributes(AttributeSet::FunctionIndex))
693     AttributesVec.push_back(AttributeSet::get(FTy->getContext(),
694                                               PAL.getFnAttributes()));
695
696   Type *RetTy = FTy->getReturnType();
697
698   // Construct the new function type using the new arguments.
699   FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
700
701   // Create the new function body and insert it into the module.
702   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
703   NF->copyAttributesFrom(F);
704
705   // Patch the pointer to LLVM function in debug info descriptor.
706   auto DI = FunctionDIs.find(F);
707   if (DI != FunctionDIs.end()) {
708     MDSubprogram *SP = DI->second;
709     SP->replaceFunction(NF);
710     // Ensure the map is updated so it can be reused on subsequent argument
711     // promotions of the same function.
712     FunctionDIs.erase(DI);
713     FunctionDIs[NF] = SP;
714   }
715
716   DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
717         << "From: " << *F);
718   
719   // Recompute the parameter attributes list based on the new arguments for
720   // the function.
721   NF->setAttributes(AttributeSet::get(F->getContext(), AttributesVec));
722   AttributesVec.clear();
723
724   F->getParent()->getFunctionList().insert(F, NF);
725   NF->takeName(F);
726
727   // Get the alias analysis information that we need to update to reflect our
728   // changes.
729   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
730
731   // Get the callgraph information that we need to update to reflect our
732   // changes.
733   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
734
735   // Get a new callgraph node for NF.
736   CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF);
737
738   // Loop over all of the callers of the function, transforming the call sites
739   // to pass in the loaded pointers.
740   //
741   SmallVector<Value*, 16> Args;
742   while (!F->use_empty()) {
743     CallSite CS(F->user_back());
744     assert(CS.getCalledFunction() == F);
745     Instruction *Call = CS.getInstruction();
746     const AttributeSet &CallPAL = CS.getAttributes();
747
748     // Add any return attributes.
749     if (CallPAL.hasAttributes(AttributeSet::ReturnIndex))
750       AttributesVec.push_back(AttributeSet::get(F->getContext(),
751                                                 CallPAL.getRetAttributes()));
752
753     // Loop over the operands, inserting GEP and loads in the caller as
754     // appropriate.
755     CallSite::arg_iterator AI = CS.arg_begin();
756     ArgIndex = 1;
757     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
758          I != E; ++I, ++AI, ++ArgIndex)
759       if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
760         Args.push_back(*AI);          // Unmodified argument
761
762         if (CallPAL.hasAttributes(ArgIndex)) {
763           AttrBuilder B(CallPAL, ArgIndex);
764           AttributesVec.
765             push_back(AttributeSet::get(F->getContext(), Args.size(), B));
766         }
767       } else if (ByValArgsToTransform.count(I)) {
768         // Emit a GEP and load for each element of the struct.
769         Type *AgTy = cast<PointerType>(I->getType())->getElementType();
770         StructType *STy = cast<StructType>(AgTy);
771         Value *Idxs[2] = {
772               ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr };
773         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
774           Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
775           Value *Idx = GetElementPtrInst::Create(
776               STy, *AI, Idxs, (*AI)->getName() + "." + utostr(i), Call);
777           // TODO: Tell AA about the new values?
778           Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
779         }
780       } else if (!I->use_empty()) {
781         // Non-dead argument: insert GEPs and loads as appropriate.
782         ScalarizeTable &ArgIndices = ScalarizedElements[I];
783         // Store the Value* version of the indices in here, but declare it now
784         // for reuse.
785         std::vector<Value*> Ops;
786         for (ScalarizeTable::iterator SI = ArgIndices.begin(),
787                E = ArgIndices.end(); SI != E; ++SI) {
788           Value *V = *AI;
789           LoadInst *OrigLoad = OriginalLoads[std::make_pair(I, SI->second)];
790           if (!SI->second.empty()) {
791             Ops.reserve(SI->second.size());
792             Type *ElTy = V->getType();
793             for (IndicesVector::const_iterator II = SI->second.begin(),
794                                                IE = SI->second.end();
795                  II != IE; ++II) {
796               // Use i32 to index structs, and i64 for others (pointers/arrays).
797               // This satisfies GEP constraints.
798               Type *IdxTy = (ElTy->isStructTy() ?
799                     Type::getInt32Ty(F->getContext()) : 
800                     Type::getInt64Ty(F->getContext()));
801               Ops.push_back(ConstantInt::get(IdxTy, *II));
802               // Keep track of the type we're currently indexing.
803               ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II);
804             }
805             // And create a GEP to extract those indices.
806             V = GetElementPtrInst::Create(SI->first, V, Ops,
807                                           V->getName() + ".idx", Call);
808             Ops.clear();
809             AA.copyValue(OrigLoad->getOperand(0), V);
810           }
811           // Since we're replacing a load make sure we take the alignment
812           // of the previous load.
813           LoadInst *newLoad = new LoadInst(V, V->getName()+".val", Call);
814           newLoad->setAlignment(OrigLoad->getAlignment());
815           // Transfer the AA info too.
816           AAMDNodes AAInfo;
817           OrigLoad->getAAMetadata(AAInfo);
818           newLoad->setAAMetadata(AAInfo);
819
820           Args.push_back(newLoad);
821           AA.copyValue(OrigLoad, Args.back());
822         }
823       }
824
825     // Push any varargs arguments on the list.
826     for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
827       Args.push_back(*AI);
828       if (CallPAL.hasAttributes(ArgIndex)) {
829         AttrBuilder B(CallPAL, ArgIndex);
830         AttributesVec.
831           push_back(AttributeSet::get(F->getContext(), Args.size(), B));
832       }
833     }
834
835     // Add any function attributes.
836     if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
837       AttributesVec.push_back(AttributeSet::get(Call->getContext(),
838                                                 CallPAL.getFnAttributes()));
839
840     Instruction *New;
841     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
842       New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
843                                Args, "", Call);
844       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
845       cast<InvokeInst>(New)->setAttributes(AttributeSet::get(II->getContext(),
846                                                             AttributesVec));
847     } else {
848       New = CallInst::Create(NF, Args, "", Call);
849       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
850       cast<CallInst>(New)->setAttributes(AttributeSet::get(New->getContext(),
851                                                           AttributesVec));
852       if (cast<CallInst>(Call)->isTailCall())
853         cast<CallInst>(New)->setTailCall();
854     }
855     New->setDebugLoc(Call->getDebugLoc());
856     Args.clear();
857     AttributesVec.clear();
858
859     // Update the alias analysis implementation to know that we are replacing
860     // the old call with a new one.
861     AA.replaceWithNewValue(Call, New);
862
863     // Update the callgraph to know that the callsite has been transformed.
864     CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()];
865     CalleeNode->replaceCallEdge(CS, CallSite(New), NF_CGN);
866
867     if (!Call->use_empty()) {
868       Call->replaceAllUsesWith(New);
869       New->takeName(Call);
870     }
871
872     // Finally, remove the old call from the program, reducing the use-count of
873     // F.
874     Call->eraseFromParent();
875   }
876
877   // Since we have now created the new function, splice the body of the old
878   // function right into the new function, leaving the old rotting hulk of the
879   // function empty.
880   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
881
882   // Loop over the argument list, transferring uses of the old arguments over to
883   // the new arguments, also transferring over the names as well.
884   //
885   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
886        I2 = NF->arg_begin(); I != E; ++I) {
887     if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
888       // If this is an unmodified argument, move the name and users over to the
889       // new version.
890       I->replaceAllUsesWith(I2);
891       I2->takeName(I);
892       AA.replaceWithNewValue(I, I2);
893       ++I2;
894       continue;
895     }
896
897     if (ByValArgsToTransform.count(I)) {
898       // In the callee, we create an alloca, and store each of the new incoming
899       // arguments into the alloca.
900       Instruction *InsertPt = NF->begin()->begin();
901
902       // Just add all the struct element types.
903       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
904       Value *TheAlloca = new AllocaInst(AgTy, nullptr, "", InsertPt);
905       StructType *STy = cast<StructType>(AgTy);
906       Value *Idxs[2] = {
907             ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr };
908
909       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
910         Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
911         Value *Idx = GetElementPtrInst::Create(
912             AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
913             InsertPt);
914         I2->setName(I->getName()+"."+Twine(i));
915         new StoreInst(I2++, Idx, InsertPt);
916       }
917
918       // Anything that used the arg should now use the alloca.
919       I->replaceAllUsesWith(TheAlloca);
920       TheAlloca->takeName(I);
921       AA.replaceWithNewValue(I, TheAlloca);
922
923       // If the alloca is used in a call, we must clear the tail flag since
924       // the callee now uses an alloca from the caller.
925       for (User *U : TheAlloca->users()) {
926         CallInst *Call = dyn_cast<CallInst>(U);
927         if (!Call)
928           continue;
929         Call->setTailCall(false);
930       }
931       continue;
932     }
933
934     if (I->use_empty()) {
935       AA.deleteValue(I);
936       continue;
937     }
938
939     // Otherwise, if we promoted this argument, then all users are load
940     // instructions (or GEPs with only load users), and all loads should be
941     // using the new argument that we added.
942     ScalarizeTable &ArgIndices = ScalarizedElements[I];
943
944     while (!I->use_empty()) {
945       if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
946         assert(ArgIndices.begin()->second.empty() &&
947                "Load element should sort to front!");
948         I2->setName(I->getName()+".val");
949         LI->replaceAllUsesWith(I2);
950         AA.replaceWithNewValue(LI, I2);
951         LI->eraseFromParent();
952         DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
953               << "' in function '" << F->getName() << "'\n");
954       } else {
955         GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
956         IndicesVector Operands;
957         Operands.reserve(GEP->getNumIndices());
958         for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
959              II != IE; ++II)
960           Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
961
962         // GEPs with a single 0 index can be merged with direct loads
963         if (Operands.size() == 1 && Operands.front() == 0)
964           Operands.clear();
965
966         Function::arg_iterator TheArg = I2;
967         for (ScalarizeTable::iterator It = ArgIndices.begin();
968              It->second != Operands; ++It, ++TheArg) {
969           assert(It != ArgIndices.end() && "GEP not handled??");
970         }
971
972         std::string NewName = I->getName();
973         for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
974             NewName += "." + utostr(Operands[i]);
975         }
976         NewName += ".val";
977         TheArg->setName(NewName);
978
979         DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
980               << "' of function '" << NF->getName() << "'\n");
981
982         // All of the uses must be load instructions.  Replace them all with
983         // the argument specified by ArgNo.
984         while (!GEP->use_empty()) {
985           LoadInst *L = cast<LoadInst>(GEP->user_back());
986           L->replaceAllUsesWith(TheArg);
987           AA.replaceWithNewValue(L, TheArg);
988           L->eraseFromParent();
989         }
990         AA.deleteValue(GEP);
991         GEP->eraseFromParent();
992       }
993     }
994
995     // Increment I2 past all of the arguments added for this promoted pointer.
996     std::advance(I2, ArgIndices.size());
997   }
998
999   // Tell the alias analysis that the old function is about to disappear.
1000   AA.replaceWithNewValue(F, NF);
1001
1002   
1003   NF_CGN->stealCalledFunctionsFrom(CG[F]);
1004   
1005   // Now that the old function is dead, delete it.  If there is a dangling
1006   // reference to the CallgraphNode, just leave the dead function around for
1007   // someone else to nuke.
1008   CallGraphNode *CGN = CG[F];
1009   if (CGN->getNumReferences() == 0)
1010     delete CG.removeFunctionFromModule(CGN);
1011   else
1012     F->setLinkage(Function::ExternalLinkage);
1013   
1014   return NF_CGN;
1015 }
1016
1017 bool ArgPromotion::doInitialization(CallGraph &CG) {
1018   FunctionDIs = makeSubprogramMap(CG.getModule());
1019   return CallGraphSCCPass::doInitialization(CG);
1020 }