[opaque pointer type] API migration for GEP constant factories
[oota-llvm.git] / lib / Target / XCore / XCoreISelLowering.cpp
1 //===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the XCoreTargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "XCoreISelLowering.h"
15 #include "XCore.h"
16 #include "XCoreMachineFunctionInfo.h"
17 #include "XCoreSubtarget.h"
18 #include "XCoreTargetMachine.h"
19 #include "XCoreTargetObjectFile.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineJumpTableInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/SelectionDAGISel.h"
27 #include "llvm/CodeGen/ValueTypes.h"
28 #include "llvm/IR/CallingConv.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalAlias.h"
33 #include "llvm/IR/GlobalVariable.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39
40 using namespace llvm;
41
42 #define DEBUG_TYPE "xcore-lower"
43
44 const char *XCoreTargetLowering::
45 getTargetNodeName(unsigned Opcode) const
46 {
47   switch (Opcode)
48   {
49     case XCoreISD::BL                : return "XCoreISD::BL";
50     case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper";
51     case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper";
52     case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper";
53     case XCoreISD::LDWSP             : return "XCoreISD::LDWSP";
54     case XCoreISD::STWSP             : return "XCoreISD::STWSP";
55     case XCoreISD::RETSP             : return "XCoreISD::RETSP";
56     case XCoreISD::LADD              : return "XCoreISD::LADD";
57     case XCoreISD::LSUB              : return "XCoreISD::LSUB";
58     case XCoreISD::LMUL              : return "XCoreISD::LMUL";
59     case XCoreISD::MACCU             : return "XCoreISD::MACCU";
60     case XCoreISD::MACCS             : return "XCoreISD::MACCS";
61     case XCoreISD::CRC8              : return "XCoreISD::CRC8";
62     case XCoreISD::BR_JT             : return "XCoreISD::BR_JT";
63     case XCoreISD::BR_JT32           : return "XCoreISD::BR_JT32";
64     case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET";
65     case XCoreISD::EH_RETURN         : return "XCoreISD::EH_RETURN";
66     case XCoreISD::MEMBARRIER        : return "XCoreISD::MEMBARRIER";
67     default                          : return nullptr;
68   }
69 }
70
71 XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM,
72                                          const XCoreSubtarget &Subtarget)
73     : TargetLowering(TM), TM(TM), Subtarget(Subtarget) {
74
75   // Set up the register classes.
76   addRegisterClass(MVT::i32, &XCore::GRRegsRegClass);
77
78   // Compute derived properties from the register classes
79   computeRegisterProperties(Subtarget.getRegisterInfo());
80
81   // Division is expensive
82   setIntDivIsCheap(false);
83
84   setStackPointerRegisterToSaveRestore(XCore::SP);
85
86   setSchedulingPreference(Sched::Source);
87
88   // Use i32 for setcc operations results (slt, sgt, ...).
89   setBooleanContents(ZeroOrOneBooleanContent);
90   setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
91
92   // XCore does not have the NodeTypes below.
93   setOperationAction(ISD::BR_CC,     MVT::i32,   Expand);
94   setOperationAction(ISD::SELECT_CC, MVT::i32,   Expand);
95   setOperationAction(ISD::ADDC, MVT::i32, Expand);
96   setOperationAction(ISD::ADDE, MVT::i32, Expand);
97   setOperationAction(ISD::SUBC, MVT::i32, Expand);
98   setOperationAction(ISD::SUBE, MVT::i32, Expand);
99
100   // 64bit
101   setOperationAction(ISD::ADD, MVT::i64, Custom);
102   setOperationAction(ISD::SUB, MVT::i64, Custom);
103   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
104   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
105   setOperationAction(ISD::MULHS, MVT::i32, Expand);
106   setOperationAction(ISD::MULHU, MVT::i32, Expand);
107   setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
108   setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
109   setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
110
111   // Bit Manipulation
112   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
113   setOperationAction(ISD::ROTL , MVT::i32, Expand);
114   setOperationAction(ISD::ROTR , MVT::i32, Expand);
115   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
116   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
117
118   setOperationAction(ISD::TRAP, MVT::Other, Legal);
119
120   // Jump tables.
121   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
122
123   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
124   setOperationAction(ISD::BlockAddress, MVT::i32 , Custom);
125
126   // Conversion of i64 -> double produces constantpool nodes
127   setOperationAction(ISD::ConstantPool, MVT::i32,   Custom);
128
129   // Loads
130   for (MVT VT : MVT::integer_valuetypes()) {
131     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
132     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
133     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
134
135     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
136     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Expand);
137   }
138
139   // Custom expand misaligned loads / stores.
140   setOperationAction(ISD::LOAD, MVT::i32, Custom);
141   setOperationAction(ISD::STORE, MVT::i32, Custom);
142
143   // Varargs
144   setOperationAction(ISD::VAEND, MVT::Other, Expand);
145   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
146   setOperationAction(ISD::VAARG, MVT::Other, Custom);
147   setOperationAction(ISD::VASTART, MVT::Other, Custom);
148
149   // Dynamic stack
150   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
151   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
152   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
153
154   // Exception handling
155   setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
156   setExceptionPointerRegister(XCore::R0);
157   setExceptionSelectorRegister(XCore::R1);
158   setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
159
160   // Atomic operations
161   // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic.
162   // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP.
163   setInsertFencesForAtomic(true);
164   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
165   setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
166   setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
167
168   // TRAMPOLINE is custom lowered.
169   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
170   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
171
172   // We want to custom lower some of our intrinsics.
173   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
174
175   MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4;
176   MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize
177     = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2;
178
179   // We have target-specific dag combine patterns for the following nodes:
180   setTargetDAGCombine(ISD::STORE);
181   setTargetDAGCombine(ISD::ADD);
182   setTargetDAGCombine(ISD::INTRINSIC_VOID);
183   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
184
185   setMinFunctionAlignment(1);
186   setPrefFunctionAlignment(2);
187 }
188
189 bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
190   if (Val.getOpcode() != ISD::LOAD)
191     return false;
192
193   EVT VT1 = Val.getValueType();
194   if (!VT1.isSimple() || !VT1.isInteger() ||
195       !VT2.isSimple() || !VT2.isInteger())
196     return false;
197
198   switch (VT1.getSimpleVT().SimpleTy) {
199   default: break;
200   case MVT::i8:
201     return true;
202   }
203
204   return false;
205 }
206
207 SDValue XCoreTargetLowering::
208 LowerOperation(SDValue Op, SelectionDAG &DAG) const {
209   switch (Op.getOpcode())
210   {
211   case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
212   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
213   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
214   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
215   case ISD::BR_JT:              return LowerBR_JT(Op, DAG);
216   case ISD::LOAD:               return LowerLOAD(Op, DAG);
217   case ISD::STORE:              return LowerSTORE(Op, DAG);
218   case ISD::VAARG:              return LowerVAARG(Op, DAG);
219   case ISD::VASTART:            return LowerVASTART(Op, DAG);
220   case ISD::SMUL_LOHI:          return LowerSMUL_LOHI(Op, DAG);
221   case ISD::UMUL_LOHI:          return LowerUMUL_LOHI(Op, DAG);
222   // FIXME: Remove these when LegalizeDAGTypes lands.
223   case ISD::ADD:
224   case ISD::SUB:                return ExpandADDSUB(Op.getNode(), DAG);
225   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
226   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
227   case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
228   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
229   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
230   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
231   case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
232   case ISD::ATOMIC_LOAD:        return LowerATOMIC_LOAD(Op, DAG);
233   case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op, DAG);
234   default:
235     llvm_unreachable("unimplemented operand");
236   }
237 }
238
239 /// ReplaceNodeResults - Replace the results of node with an illegal result
240 /// type with new values built out of custom code.
241 void XCoreTargetLowering::ReplaceNodeResults(SDNode *N,
242                                              SmallVectorImpl<SDValue>&Results,
243                                              SelectionDAG &DAG) const {
244   switch (N->getOpcode()) {
245   default:
246     llvm_unreachable("Don't know how to custom expand this!");
247   case ISD::ADD:
248   case ISD::SUB:
249     Results.push_back(ExpandADDSUB(N, DAG));
250     return;
251   }
252 }
253
254 //===----------------------------------------------------------------------===//
255 //  Misc Lower Operation implementation
256 //===----------------------------------------------------------------------===//
257
258 SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA,
259                                                      const GlobalValue *GV,
260                                                      SelectionDAG &DAG) const {
261   // FIXME there is no actual debug info here
262   SDLoc dl(GA);
263
264   if (GV->getType()->getElementType()->isFunctionTy())
265     return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA);
266
267   const auto *GVar = dyn_cast<GlobalVariable>(GV);
268   if ((GV->hasSection() && StringRef(GV->getSection()).startswith(".cp.")) ||
269       (GVar && GVar->isConstant() && GV->hasLocalLinkage()))
270     return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA);
271
272   return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA);
273 }
274
275 static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) {
276   if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small)
277     return true;
278
279   Type *ObjType = GV->getType()->getPointerElementType();
280   if (!ObjType->isSized())
281     return false;
282
283   unsigned ObjSize = XTL.getDataLayout()->getTypeAllocSize(ObjType);
284   return ObjSize < CodeModelLargeSize && ObjSize != 0;
285 }
286
287 SDValue XCoreTargetLowering::
288 LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const
289 {
290   const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
291   const GlobalValue *GV = GN->getGlobal();
292   SDLoc DL(GN);
293   int64_t Offset = GN->getOffset();
294   if (IsSmallObject(GV, *this)) {
295     // We can only fold positive offsets that are a multiple of the word size.
296     int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0);
297     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset);
298     GA = getGlobalAddressWrapper(GA, GV, DAG);
299     // Handle the rest of the offset.
300     if (Offset != FoldedOffset) {
301       SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, MVT::i32);
302       GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining);
303     }
304     return GA;
305   } else {
306     // Ideally we would not fold in offset with an index <= 11.
307     Type *Ty = Type::getInt8PtrTy(*DAG.getContext());
308     Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty);
309     Ty = Type::getInt32Ty(*DAG.getContext());
310     Constant *Idx = ConstantInt::get(Ty, Offset);
311     Constant *GAI = ConstantExpr::getGetElementPtr(
312         Type::getInt8Ty(*DAG.getContext()), GA, Idx);
313     SDValue CP = DAG.getConstantPool(GAI, MVT::i32);
314     return DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), CP,
315                        MachinePointerInfo(), false, false, false, 0);
316   }
317 }
318
319 SDValue XCoreTargetLowering::
320 LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const
321 {
322   SDLoc DL(Op);
323
324   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
325   SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy());
326
327   return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, getPointerTy(), Result);
328 }
329
330 SDValue XCoreTargetLowering::
331 LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
332 {
333   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
334   // FIXME there isn't really debug info here
335   SDLoc dl(CP);
336   EVT PtrVT = Op.getValueType();
337   SDValue Res;
338   if (CP->isMachineConstantPoolEntry()) {
339     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
340                                     CP->getAlignment(), CP->getOffset());
341   } else {
342     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
343                                     CP->getAlignment(), CP->getOffset());
344   }
345   return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res);
346 }
347
348 unsigned XCoreTargetLowering::getJumpTableEncoding() const {
349   return MachineJumpTableInfo::EK_Inline;
350 }
351
352 SDValue XCoreTargetLowering::
353 LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
354 {
355   SDValue Chain = Op.getOperand(0);
356   SDValue Table = Op.getOperand(1);
357   SDValue Index = Op.getOperand(2);
358   SDLoc dl(Op);
359   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
360   unsigned JTI = JT->getIndex();
361   MachineFunction &MF = DAG.getMachineFunction();
362   const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
363   SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
364
365   unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size();
366   if (NumEntries <= 32) {
367     return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index);
368   }
369   assert((NumEntries >> 31) == 0);
370   SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
371                                     DAG.getConstant(1, MVT::i32));
372   return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT,
373                      ScaledIndex);
374 }
375
376 SDValue XCoreTargetLowering::
377 lowerLoadWordFromAlignedBasePlusOffset(SDLoc DL, SDValue Chain, SDValue Base,
378                                        int64_t Offset, SelectionDAG &DAG) const
379 {
380   if ((Offset & 0x3) == 0) {
381     return DAG.getLoad(getPointerTy(), DL, Chain, Base, MachinePointerInfo(),
382                        false, false, false, 0);
383   }
384   // Lower to pair of consecutive word aligned loads plus some bit shifting.
385   int32_t HighOffset = RoundUpToAlignment(Offset, 4);
386   int32_t LowOffset = HighOffset - 4;
387   SDValue LowAddr, HighAddr;
388   if (GlobalAddressSDNode *GASD =
389         dyn_cast<GlobalAddressSDNode>(Base.getNode())) {
390     LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
391                                    LowOffset);
392     HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
393                                     HighOffset);
394   } else {
395     LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
396                           DAG.getConstant(LowOffset, MVT::i32));
397     HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
398                            DAG.getConstant(HighOffset, MVT::i32));
399   }
400   SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, MVT::i32);
401   SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, MVT::i32);
402
403   SDValue Low = DAG.getLoad(getPointerTy(), DL, Chain,
404                             LowAddr, MachinePointerInfo(),
405                             false, false, false, 0);
406   SDValue High = DAG.getLoad(getPointerTy(), DL, Chain,
407                              HighAddr, MachinePointerInfo(),
408                              false, false, false, 0);
409   SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift);
410   SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift);
411   SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted);
412   Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
413                       High.getValue(1));
414   SDValue Ops[] = { Result, Chain };
415   return DAG.getMergeValues(Ops, DL);
416 }
417
418 static bool isWordAligned(SDValue Value, SelectionDAG &DAG)
419 {
420   APInt KnownZero, KnownOne;
421   DAG.computeKnownBits(Value, KnownZero, KnownOne);
422   return KnownZero.countTrailingOnes() >= 2;
423 }
424
425 SDValue XCoreTargetLowering::
426 LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
427   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
428   LoadSDNode *LD = cast<LoadSDNode>(Op);
429   assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
430          "Unexpected extension type");
431   assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT");
432   if (allowsMisalignedMemoryAccesses(LD->getMemoryVT(),
433                                      LD->getAddressSpace(),
434                                      LD->getAlignment()))
435     return SDValue();
436
437   unsigned ABIAlignment = getDataLayout()->
438     getABITypeAlignment(LD->getMemoryVT().getTypeForEVT(*DAG.getContext()));
439   // Leave aligned load alone.
440   if (LD->getAlignment() >= ABIAlignment)
441     return SDValue();
442
443   SDValue Chain = LD->getChain();
444   SDValue BasePtr = LD->getBasePtr();
445   SDLoc DL(Op);
446
447   if (!LD->isVolatile()) {
448     const GlobalValue *GV;
449     int64_t Offset = 0;
450     if (DAG.isBaseWithConstantOffset(BasePtr) &&
451         isWordAligned(BasePtr->getOperand(0), DAG)) {
452       SDValue NewBasePtr = BasePtr->getOperand(0);
453       Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
454       return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
455                                                     Offset, DAG);
456     }
457     if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) &&
458         MinAlign(GV->getAlignment(), 4) == 4) {
459       SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL,
460                                                 BasePtr->getValueType(0));
461       return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
462                                                     Offset, DAG);
463     }
464   }
465
466   if (LD->getAlignment() == 2) {
467     SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain,
468                                  BasePtr, LD->getPointerInfo(), MVT::i16,
469                                  LD->isVolatile(), LD->isNonTemporal(),
470                                  LD->isInvariant(), 2);
471     SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
472                                    DAG.getConstant(2, MVT::i32));
473     SDValue High = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
474                                   HighAddr,
475                                   LD->getPointerInfo().getWithOffset(2),
476                                   MVT::i16, LD->isVolatile(),
477                                   LD->isNonTemporal(), LD->isInvariant(), 2);
478     SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High,
479                                       DAG.getConstant(16, MVT::i32));
480     SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted);
481     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
482                              High.getValue(1));
483     SDValue Ops[] = { Result, Chain };
484     return DAG.getMergeValues(Ops, DL);
485   }
486
487   // Lower to a call to __misaligned_load(BasePtr).
488   Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext());
489   TargetLowering::ArgListTy Args;
490   TargetLowering::ArgListEntry Entry;
491
492   Entry.Ty = IntPtrTy;
493   Entry.Node = BasePtr;
494   Args.push_back(Entry);
495
496   TargetLowering::CallLoweringInfo CLI(DAG);
497   CLI.setDebugLoc(DL).setChain(Chain)
498     .setCallee(CallingConv::C, IntPtrTy,
499                DAG.getExternalSymbol("__misaligned_load", getPointerTy()),
500                std::move(Args), 0);
501
502   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
503   SDValue Ops[] = { CallResult.first, CallResult.second };
504   return DAG.getMergeValues(Ops, DL);
505 }
506
507 SDValue XCoreTargetLowering::
508 LowerSTORE(SDValue Op, SelectionDAG &DAG) const
509 {
510   StoreSDNode *ST = cast<StoreSDNode>(Op);
511   assert(!ST->isTruncatingStore() && "Unexpected store type");
512   assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT");
513   if (allowsMisalignedMemoryAccesses(ST->getMemoryVT(),
514                                      ST->getAddressSpace(),
515                                      ST->getAlignment())) {
516     return SDValue();
517   }
518   unsigned ABIAlignment = getDataLayout()->
519     getABITypeAlignment(ST->getMemoryVT().getTypeForEVT(*DAG.getContext()));
520   // Leave aligned store alone.
521   if (ST->getAlignment() >= ABIAlignment) {
522     return SDValue();
523   }
524   SDValue Chain = ST->getChain();
525   SDValue BasePtr = ST->getBasePtr();
526   SDValue Value = ST->getValue();
527   SDLoc dl(Op);
528
529   if (ST->getAlignment() == 2) {
530     SDValue Low = Value;
531     SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value,
532                                       DAG.getConstant(16, MVT::i32));
533     SDValue StoreLow = DAG.getTruncStore(Chain, dl, Low, BasePtr,
534                                          ST->getPointerInfo(), MVT::i16,
535                                          ST->isVolatile(), ST->isNonTemporal(),
536                                          2);
537     SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr,
538                                    DAG.getConstant(2, MVT::i32));
539     SDValue StoreHigh = DAG.getTruncStore(Chain, dl, High, HighAddr,
540                                           ST->getPointerInfo().getWithOffset(2),
541                                           MVT::i16, ST->isVolatile(),
542                                           ST->isNonTemporal(), 2);
543     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh);
544   }
545
546   // Lower to a call to __misaligned_store(BasePtr, Value).
547   Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext());
548   TargetLowering::ArgListTy Args;
549   TargetLowering::ArgListEntry Entry;
550
551   Entry.Ty = IntPtrTy;
552   Entry.Node = BasePtr;
553   Args.push_back(Entry);
554
555   Entry.Node = Value;
556   Args.push_back(Entry);
557
558   TargetLowering::CallLoweringInfo CLI(DAG);
559   CLI.setDebugLoc(dl).setChain(Chain)
560     .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
561                DAG.getExternalSymbol("__misaligned_store", getPointerTy()),
562                std::move(Args), 0);
563
564   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
565   return CallResult.second;
566 }
567
568 SDValue XCoreTargetLowering::
569 LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
570 {
571   assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI &&
572          "Unexpected operand to lower!");
573   SDLoc dl(Op);
574   SDValue LHS = Op.getOperand(0);
575   SDValue RHS = Op.getOperand(1);
576   SDValue Zero = DAG.getConstant(0, MVT::i32);
577   SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
578                            DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero,
579                            LHS, RHS);
580   SDValue Lo(Hi.getNode(), 1);
581   SDValue Ops[] = { Lo, Hi };
582   return DAG.getMergeValues(Ops, dl);
583 }
584
585 SDValue XCoreTargetLowering::
586 LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
587 {
588   assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI &&
589          "Unexpected operand to lower!");
590   SDLoc dl(Op);
591   SDValue LHS = Op.getOperand(0);
592   SDValue RHS = Op.getOperand(1);
593   SDValue Zero = DAG.getConstant(0, MVT::i32);
594   SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
595                            DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS,
596                            Zero, Zero);
597   SDValue Lo(Hi.getNode(), 1);
598   SDValue Ops[] = { Lo, Hi };
599   return DAG.getMergeValues(Ops, dl);
600 }
601
602 /// isADDADDMUL - Return whether Op is in a form that is equivalent to
603 /// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then
604 /// each intermediate result in the calculation must also have a single use.
605 /// If the Op is in the correct form the constituent parts are written to Mul0,
606 /// Mul1, Addend0 and Addend1.
607 static bool
608 isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0,
609             SDValue &Addend1, bool requireIntermediatesHaveOneUse)
610 {
611   if (Op.getOpcode() != ISD::ADD)
612     return false;
613   SDValue N0 = Op.getOperand(0);
614   SDValue N1 = Op.getOperand(1);
615   SDValue AddOp;
616   SDValue OtherOp;
617   if (N0.getOpcode() == ISD::ADD) {
618     AddOp = N0;
619     OtherOp = N1;
620   } else if (N1.getOpcode() == ISD::ADD) {
621     AddOp = N1;
622     OtherOp = N0;
623   } else {
624     return false;
625   }
626   if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse())
627     return false;
628   if (OtherOp.getOpcode() == ISD::MUL) {
629     // add(add(a,b),mul(x,y))
630     if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse())
631       return false;
632     Mul0 = OtherOp.getOperand(0);
633     Mul1 = OtherOp.getOperand(1);
634     Addend0 = AddOp.getOperand(0);
635     Addend1 = AddOp.getOperand(1);
636     return true;
637   }
638   if (AddOp.getOperand(0).getOpcode() == ISD::MUL) {
639     // add(add(mul(x,y),a),b)
640     if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse())
641       return false;
642     Mul0 = AddOp.getOperand(0).getOperand(0);
643     Mul1 = AddOp.getOperand(0).getOperand(1);
644     Addend0 = AddOp.getOperand(1);
645     Addend1 = OtherOp;
646     return true;
647   }
648   if (AddOp.getOperand(1).getOpcode() == ISD::MUL) {
649     // add(add(a,mul(x,y)),b)
650     if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse())
651       return false;
652     Mul0 = AddOp.getOperand(1).getOperand(0);
653     Mul1 = AddOp.getOperand(1).getOperand(1);
654     Addend0 = AddOp.getOperand(0);
655     Addend1 = OtherOp;
656     return true;
657   }
658   return false;
659 }
660
661 SDValue XCoreTargetLowering::
662 TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const
663 {
664   SDValue Mul;
665   SDValue Other;
666   if (N->getOperand(0).getOpcode() == ISD::MUL) {
667     Mul = N->getOperand(0);
668     Other = N->getOperand(1);
669   } else if (N->getOperand(1).getOpcode() == ISD::MUL) {
670     Mul = N->getOperand(1);
671     Other = N->getOperand(0);
672   } else {
673     return SDValue();
674   }
675   SDLoc dl(N);
676   SDValue LL, RL, AddendL, AddendH;
677   LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
678                    Mul.getOperand(0),  DAG.getConstant(0, MVT::i32));
679   RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
680                    Mul.getOperand(1),  DAG.getConstant(0, MVT::i32));
681   AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
682                         Other,  DAG.getConstant(0, MVT::i32));
683   AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
684                         Other,  DAG.getConstant(1, MVT::i32));
685   APInt HighMask = APInt::getHighBitsSet(64, 32);
686   unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0));
687   unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1));
688   if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) &&
689       DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) {
690     // The inputs are both zero-extended.
691     SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
692                              DAG.getVTList(MVT::i32, MVT::i32), AddendH,
693                              AddendL, LL, RL);
694     SDValue Lo(Hi.getNode(), 1);
695     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
696   }
697   if (LHSSB > 32 && RHSSB > 32) {
698     // The inputs are both sign-extended.
699     SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
700                              DAG.getVTList(MVT::i32, MVT::i32), AddendH,
701                              AddendL, LL, RL);
702     SDValue Lo(Hi.getNode(), 1);
703     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
704   }
705   SDValue LH, RH;
706   LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
707                    Mul.getOperand(0),  DAG.getConstant(1, MVT::i32));
708   RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
709                    Mul.getOperand(1),  DAG.getConstant(1, MVT::i32));
710   SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
711                            DAG.getVTList(MVT::i32, MVT::i32), AddendH,
712                            AddendL, LL, RL);
713   SDValue Lo(Hi.getNode(), 1);
714   RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH);
715   LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL);
716   Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH);
717   Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH);
718   return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
719 }
720
721 SDValue XCoreTargetLowering::
722 ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const
723 {
724   assert(N->getValueType(0) == MVT::i64 &&
725          (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
726         "Unknown operand to lower!");
727
728   if (N->getOpcode() == ISD::ADD) {
729     SDValue Result = TryExpandADDWithMul(N, DAG);
730     if (Result.getNode())
731       return Result;
732   }
733
734   SDLoc dl(N);
735
736   // Extract components
737   SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
738                             N->getOperand(0),  DAG.getConstant(0, MVT::i32));
739   SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
740                             N->getOperand(0),  DAG.getConstant(1, MVT::i32));
741   SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
742                              N->getOperand(1), DAG.getConstant(0, MVT::i32));
743   SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
744                              N->getOperand(1), DAG.getConstant(1, MVT::i32));
745
746   // Expand
747   unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD :
748                                                    XCoreISD::LSUB;
749   SDValue Zero = DAG.getConstant(0, MVT::i32);
750   SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
751                            LHSL, RHSL, Zero);
752   SDValue Carry(Lo.getNode(), 1);
753
754   SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
755                            LHSH, RHSH, Carry);
756   SDValue Ignored(Hi.getNode(), 1);
757   // Merge the pieces
758   return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
759 }
760
761 SDValue XCoreTargetLowering::
762 LowerVAARG(SDValue Op, SelectionDAG &DAG) const
763 {
764   // Whist llvm does not support aggregate varargs we can ignore
765   // the possibility of the ValueType being an implicit byVal vararg.
766   SDNode *Node = Op.getNode();
767   EVT VT = Node->getValueType(0); // not an aggregate
768   SDValue InChain = Node->getOperand(0);
769   SDValue VAListPtr = Node->getOperand(1);
770   EVT PtrVT = VAListPtr.getValueType();
771   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
772   SDLoc dl(Node);
773   SDValue VAList = DAG.getLoad(PtrVT, dl, InChain,
774                                VAListPtr, MachinePointerInfo(SV),
775                                false, false, false, 0);
776   // Increment the pointer, VAList, to the next vararg
777   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList,
778                                 DAG.getIntPtrConstant(VT.getSizeInBits() / 8));
779   // Store the incremented VAList to the legalized pointer
780   InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr,
781                          MachinePointerInfo(SV), false, false, 0);
782   // Load the actual argument out of the pointer VAList
783   return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo(),
784                      false, false, false, 0);
785 }
786
787 SDValue XCoreTargetLowering::
788 LowerVASTART(SDValue Op, SelectionDAG &DAG) const
789 {
790   SDLoc dl(Op);
791   // vastart stores the address of the VarArgsFrameIndex slot into the
792   // memory location argument
793   MachineFunction &MF = DAG.getMachineFunction();
794   XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
795   SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32);
796   return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1),
797                       MachinePointerInfo(), false, false, 0);
798 }
799
800 SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op,
801                                             SelectionDAG &DAG) const {
802   // This nodes represent llvm.frameaddress on the DAG.
803   // It takes one operand, the index of the frame address to return.
804   // An index of zero corresponds to the current function's frame address.
805   // An index of one to the parent's frame address, and so on.
806   // Depths > 0 not supported yet!
807   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
808     return SDValue();
809
810   MachineFunction &MF = DAG.getMachineFunction();
811   const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
812   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op),
813                             RegInfo->getFrameRegister(MF), MVT::i32);
814 }
815
816 SDValue XCoreTargetLowering::
817 LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
818   // This nodes represent llvm.returnaddress on the DAG.
819   // It takes one operand, the index of the return address to return.
820   // An index of zero corresponds to the current function's return address.
821   // An index of one to the parent's return address, and so on.
822   // Depths > 0 not supported yet!
823   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
824     return SDValue();
825
826   MachineFunction &MF = DAG.getMachineFunction();
827   XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
828   int FI = XFI->createLRSpillSlot(MF);
829   SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
830   return DAG.getLoad(getPointerTy(), SDLoc(Op), DAG.getEntryNode(), FIN,
831                      MachinePointerInfo::getFixedStack(FI), false, false,
832                      false, 0);
833 }
834
835 SDValue XCoreTargetLowering::
836 LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const {
837   // This node represents offset from frame pointer to first on-stack argument.
838   // This is needed for correct stack adjustment during unwind.
839   // However, we don't know the offset until after the frame has be finalised.
840   // This is done during the XCoreFTAOElim pass.
841   return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32);
842 }
843
844 SDValue XCoreTargetLowering::
845 LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
846   // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER)
847   // This node represents 'eh_return' gcc dwarf builtin, which is used to
848   // return from exception. The general meaning is: adjust stack by OFFSET and
849   // pass execution to HANDLER.
850   MachineFunction &MF = DAG.getMachineFunction();
851   SDValue Chain     = Op.getOperand(0);
852   SDValue Offset    = Op.getOperand(1);
853   SDValue Handler   = Op.getOperand(2);
854   SDLoc dl(Op);
855
856   // Absolute SP = (FP + FrameToArgs) + Offset
857   const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
858   SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
859                             RegInfo->getFrameRegister(MF), MVT::i32);
860   SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl,
861                                     MVT::i32);
862   Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs);
863   Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset);
864
865   // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister
866   // which leaves 2 caller saved registers, R2 & R3 for us to use.
867   unsigned StackReg = XCore::R2;
868   unsigned HandlerReg = XCore::R3;
869
870   SDValue OutChains[] = {
871     DAG.getCopyToReg(Chain, dl, StackReg, Stack),
872     DAG.getCopyToReg(Chain, dl, HandlerReg, Handler)
873   };
874
875   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
876
877   return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain,
878                      DAG.getRegister(StackReg, MVT::i32),
879                      DAG.getRegister(HandlerReg, MVT::i32));
880
881 }
882
883 SDValue XCoreTargetLowering::
884 LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
885   return Op.getOperand(0);
886 }
887
888 SDValue XCoreTargetLowering::
889 LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
890   SDValue Chain = Op.getOperand(0);
891   SDValue Trmp = Op.getOperand(1); // trampoline
892   SDValue FPtr = Op.getOperand(2); // nested function
893   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
894
895   const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
896
897   // .align 4
898   // LDAPF_u10 r11, nest
899   // LDW_2rus r11, r11[0]
900   // STWSP_ru6 r11, sp[0]
901   // LDAPF_u10 r11, fptr
902   // LDW_2rus r11, r11[0]
903   // BAU_1r r11
904   // nest:
905   // .word nest
906   // fptr:
907   // .word fptr
908   SDValue OutChains[5];
909
910   SDValue Addr = Trmp;
911
912   SDLoc dl(Op);
913   OutChains[0] = DAG.getStore(Chain, dl, DAG.getConstant(0x0a3cd805, MVT::i32),
914                               Addr, MachinePointerInfo(TrmpAddr), false, false,
915                               0);
916
917   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
918                      DAG.getConstant(4, MVT::i32));
919   OutChains[1] = DAG.getStore(Chain, dl, DAG.getConstant(0xd80456c0, MVT::i32),
920                               Addr, MachinePointerInfo(TrmpAddr, 4), false,
921                               false, 0);
922
923   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
924                      DAG.getConstant(8, MVT::i32));
925   OutChains[2] = DAG.getStore(Chain, dl, DAG.getConstant(0x27fb0a3c, MVT::i32),
926                               Addr, MachinePointerInfo(TrmpAddr, 8), false,
927                               false, 0);
928
929   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
930                      DAG.getConstant(12, MVT::i32));
931   OutChains[3] = DAG.getStore(Chain, dl, Nest, Addr,
932                               MachinePointerInfo(TrmpAddr, 12), false, false,
933                               0);
934
935   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
936                      DAG.getConstant(16, MVT::i32));
937   OutChains[4] = DAG.getStore(Chain, dl, FPtr, Addr,
938                               MachinePointerInfo(TrmpAddr, 16), false, false,
939                               0);
940
941   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
942 }
943
944 SDValue XCoreTargetLowering::
945 LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
946   SDLoc DL(Op);
947   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
948   switch (IntNo) {
949     case Intrinsic::xcore_crc8:
950       EVT VT = Op.getValueType();
951       SDValue Data =
952         DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT),
953                     Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3));
954       SDValue Crc(Data.getNode(), 1);
955       SDValue Results[] = { Crc, Data };
956       return DAG.getMergeValues(Results, DL);
957   }
958   return SDValue();
959 }
960
961 SDValue XCoreTargetLowering::
962 LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const {
963   SDLoc DL(Op);
964   return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
965 }
966
967 SDValue XCoreTargetLowering::
968 LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const {
969   AtomicSDNode *N = cast<AtomicSDNode>(Op);
970   assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP");
971   assert(N->getOrdering() <= Monotonic &&
972          "setInsertFencesForAtomic(true) and yet greater than Monotonic");
973   if (N->getMemoryVT() == MVT::i32) {
974     if (N->getAlignment() < 4)
975       report_fatal_error("atomic load must be aligned");
976     return DAG.getLoad(getPointerTy(), SDLoc(Op), N->getChain(),
977                        N->getBasePtr(), N->getPointerInfo(),
978                        N->isVolatile(), N->isNonTemporal(),
979                        N->isInvariant(), N->getAlignment(),
980                        N->getAAInfo(), N->getRanges());
981   }
982   if (N->getMemoryVT() == MVT::i16) {
983     if (N->getAlignment() < 2)
984       report_fatal_error("atomic load must be aligned");
985     return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
986                           N->getBasePtr(), N->getPointerInfo(), MVT::i16,
987                           N->isVolatile(), N->isNonTemporal(),
988                           N->isInvariant(), N->getAlignment(), N->getAAInfo());
989   }
990   if (N->getMemoryVT() == MVT::i8)
991     return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
992                           N->getBasePtr(), N->getPointerInfo(), MVT::i8,
993                           N->isVolatile(), N->isNonTemporal(),
994                           N->isInvariant(), N->getAlignment(), N->getAAInfo());
995   return SDValue();
996 }
997
998 SDValue XCoreTargetLowering::
999 LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const {
1000   AtomicSDNode *N = cast<AtomicSDNode>(Op);
1001   assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP");
1002   assert(N->getOrdering() <= Monotonic &&
1003          "setInsertFencesForAtomic(true) and yet greater than Monotonic");
1004   if (N->getMemoryVT() == MVT::i32) {
1005     if (N->getAlignment() < 4)
1006       report_fatal_error("atomic store must be aligned");
1007     return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(),
1008                         N->getBasePtr(), N->getPointerInfo(),
1009                         N->isVolatile(), N->isNonTemporal(),
1010                         N->getAlignment(), N->getAAInfo());
1011   }
1012   if (N->getMemoryVT() == MVT::i16) {
1013     if (N->getAlignment() < 2)
1014       report_fatal_error("atomic store must be aligned");
1015     return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
1016                              N->getBasePtr(), N->getPointerInfo(), MVT::i16,
1017                              N->isVolatile(), N->isNonTemporal(),
1018                              N->getAlignment(), N->getAAInfo());
1019   }
1020   if (N->getMemoryVT() == MVT::i8)
1021     return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
1022                              N->getBasePtr(), N->getPointerInfo(), MVT::i8,
1023                              N->isVolatile(), N->isNonTemporal(),
1024                              N->getAlignment(), N->getAAInfo());
1025   return SDValue();
1026 }
1027
1028 //===----------------------------------------------------------------------===//
1029 //                      Calling Convention Implementation
1030 //===----------------------------------------------------------------------===//
1031
1032 #include "XCoreGenCallingConv.inc"
1033
1034 //===----------------------------------------------------------------------===//
1035 //                  Call Calling Convention Implementation
1036 //===----------------------------------------------------------------------===//
1037
1038 /// XCore call implementation
1039 SDValue
1040 XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1041                                SmallVectorImpl<SDValue> &InVals) const {
1042   SelectionDAG &DAG                     = CLI.DAG;
1043   SDLoc &dl                             = CLI.DL;
1044   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1045   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
1046   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
1047   SDValue Chain                         = CLI.Chain;
1048   SDValue Callee                        = CLI.Callee;
1049   bool &isTailCall                      = CLI.IsTailCall;
1050   CallingConv::ID CallConv              = CLI.CallConv;
1051   bool isVarArg                         = CLI.IsVarArg;
1052
1053   // XCore target does not yet support tail call optimization.
1054   isTailCall = false;
1055
1056   // For now, only CallingConv::C implemented
1057   switch (CallConv)
1058   {
1059     default:
1060       llvm_unreachable("Unsupported calling convention");
1061     case CallingConv::Fast:
1062     case CallingConv::C:
1063       return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
1064                             Outs, OutVals, Ins, dl, DAG, InVals);
1065   }
1066 }
1067
1068 /// LowerCallResult - Lower the result values of a call into the
1069 /// appropriate copies out of appropriate physical registers / memory locations.
1070 static SDValue
1071 LowerCallResult(SDValue Chain, SDValue InFlag,
1072                 const SmallVectorImpl<CCValAssign> &RVLocs,
1073                 SDLoc dl, SelectionDAG &DAG,
1074                 SmallVectorImpl<SDValue> &InVals) {
1075   SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs;
1076   // Copy results out of physical registers.
1077   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1078     const CCValAssign &VA = RVLocs[i];
1079     if (VA.isRegLoc()) {
1080       Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(),
1081                                  InFlag).getValue(1);
1082       InFlag = Chain.getValue(2);
1083       InVals.push_back(Chain.getValue(0));
1084     } else {
1085       assert(VA.isMemLoc());
1086       ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(),
1087                                              InVals.size()));
1088       // Reserve space for this result.
1089       InVals.push_back(SDValue());
1090     }
1091   }
1092
1093   // Copy results out of memory.
1094   SmallVector<SDValue, 4> MemOpChains;
1095   for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) {
1096     int offset = ResultMemLocs[i].first;
1097     unsigned index = ResultMemLocs[i].second;
1098     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
1099     SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, MVT::i32) };
1100     SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops);
1101     InVals[index] = load;
1102     MemOpChains.push_back(load.getValue(1));
1103   }
1104
1105   // Transform all loads nodes into one single node because
1106   // all load nodes are independent of each other.
1107   if (!MemOpChains.empty())
1108     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1109
1110   return Chain;
1111 }
1112
1113 /// LowerCCCCallTo - functions arguments are copied from virtual
1114 /// regs to (physical regs)/(stack frame), CALLSEQ_START and
1115 /// CALLSEQ_END are emitted.
1116 /// TODO: isTailCall, sret.
1117 SDValue
1118 XCoreTargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee,
1119                                     CallingConv::ID CallConv, bool isVarArg,
1120                                     bool isTailCall,
1121                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
1122                                     const SmallVectorImpl<SDValue> &OutVals,
1123                                     const SmallVectorImpl<ISD::InputArg> &Ins,
1124                                     SDLoc dl, SelectionDAG &DAG,
1125                                     SmallVectorImpl<SDValue> &InVals) const {
1126
1127   // Analyze operands of the call, assigning locations to each operand.
1128   SmallVector<CCValAssign, 16> ArgLocs;
1129   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1130                  *DAG.getContext());
1131
1132   // The ABI dictates there should be one stack slot available to the callee
1133   // on function entry (for saving lr).
1134   CCInfo.AllocateStack(4, 4);
1135
1136   CCInfo.AnalyzeCallOperands(Outs, CC_XCore);
1137
1138   SmallVector<CCValAssign, 16> RVLocs;
1139   // Analyze return values to determine the number of bytes of stack required.
1140   CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1141                     *DAG.getContext());
1142   RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), 4);
1143   RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore);
1144
1145   // Get a count of how many bytes are to be pushed on the stack.
1146   unsigned NumBytes = RetCCInfo.getNextStackOffset();
1147
1148   Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes,
1149                                  getPointerTy(), true), dl);
1150
1151   SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
1152   SmallVector<SDValue, 12> MemOpChains;
1153
1154   // Walk the register/memloc assignments, inserting copies/loads.
1155   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1156     CCValAssign &VA = ArgLocs[i];
1157     SDValue Arg = OutVals[i];
1158
1159     // Promote the value if needed.
1160     switch (VA.getLocInfo()) {
1161       default: llvm_unreachable("Unknown loc info!");
1162       case CCValAssign::Full: break;
1163       case CCValAssign::SExt:
1164         Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1165         break;
1166       case CCValAssign::ZExt:
1167         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1168         break;
1169       case CCValAssign::AExt:
1170         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1171         break;
1172     }
1173
1174     // Arguments that can be passed on register must be kept at
1175     // RegsToPass vector
1176     if (VA.isRegLoc()) {
1177       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1178     } else {
1179       assert(VA.isMemLoc());
1180
1181       int Offset = VA.getLocMemOffset();
1182
1183       MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other,
1184                                         Chain, Arg,
1185                                         DAG.getConstant(Offset/4, MVT::i32)));
1186     }
1187   }
1188
1189   // Transform all store nodes into one single node because
1190   // all store nodes are independent of each other.
1191   if (!MemOpChains.empty())
1192     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1193
1194   // Build a sequence of copy-to-reg nodes chained together with token
1195   // chain and flag operands which copy the outgoing args into registers.
1196   // The InFlag in necessary since all emitted instructions must be
1197   // stuck together.
1198   SDValue InFlag;
1199   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1200     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1201                              RegsToPass[i].second, InFlag);
1202     InFlag = Chain.getValue(1);
1203   }
1204
1205   // If the callee is a GlobalAddress node (quite common, every direct call is)
1206   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1207   // Likewise ExternalSymbol -> TargetExternalSymbol.
1208   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1209     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32);
1210   else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
1211     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
1212
1213   // XCoreBranchLink = #chain, #target_address, #opt_in_flags...
1214   //             = Chain, Callee, Reg#1, Reg#2, ...
1215   //
1216   // Returns a chain & a flag for retval copy to use.
1217   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1218   SmallVector<SDValue, 8> Ops;
1219   Ops.push_back(Chain);
1220   Ops.push_back(Callee);
1221
1222   // Add argument registers to the end of the list so that they are
1223   // known live into the call.
1224   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1225     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1226                                   RegsToPass[i].second.getValueType()));
1227
1228   if (InFlag.getNode())
1229     Ops.push_back(InFlag);
1230
1231   Chain  = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops);
1232   InFlag = Chain.getValue(1);
1233
1234   // Create the CALLSEQ_END node.
1235   Chain = DAG.getCALLSEQ_END(Chain,
1236                              DAG.getConstant(NumBytes, getPointerTy(), true),
1237                              DAG.getConstant(0, getPointerTy(), true),
1238                              InFlag, dl);
1239   InFlag = Chain.getValue(1);
1240
1241   // Handle result values, copying them out of physregs into vregs that we
1242   // return.
1243   return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals);
1244 }
1245
1246 //===----------------------------------------------------------------------===//
1247 //             Formal Arguments Calling Convention Implementation
1248 //===----------------------------------------------------------------------===//
1249
1250 namespace {
1251   struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; };
1252 }
1253
1254 /// XCore formal arguments implementation
1255 SDValue
1256 XCoreTargetLowering::LowerFormalArguments(SDValue Chain,
1257                                           CallingConv::ID CallConv,
1258                                           bool isVarArg,
1259                                       const SmallVectorImpl<ISD::InputArg> &Ins,
1260                                           SDLoc dl,
1261                                           SelectionDAG &DAG,
1262                                           SmallVectorImpl<SDValue> &InVals)
1263                                             const {
1264   switch (CallConv)
1265   {
1266     default:
1267       llvm_unreachable("Unsupported calling convention");
1268     case CallingConv::C:
1269     case CallingConv::Fast:
1270       return LowerCCCArguments(Chain, CallConv, isVarArg,
1271                                Ins, dl, DAG, InVals);
1272   }
1273 }
1274
1275 /// LowerCCCArguments - transform physical registers into
1276 /// virtual registers and generate load operations for
1277 /// arguments places on the stack.
1278 /// TODO: sret
1279 SDValue
1280 XCoreTargetLowering::LowerCCCArguments(SDValue Chain,
1281                                        CallingConv::ID CallConv,
1282                                        bool isVarArg,
1283                                        const SmallVectorImpl<ISD::InputArg>
1284                                          &Ins,
1285                                        SDLoc dl,
1286                                        SelectionDAG &DAG,
1287                                        SmallVectorImpl<SDValue> &InVals) const {
1288   MachineFunction &MF = DAG.getMachineFunction();
1289   MachineFrameInfo *MFI = MF.getFrameInfo();
1290   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1291   XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1292
1293   // Assign locations to all of the incoming arguments.
1294   SmallVector<CCValAssign, 16> ArgLocs;
1295   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1296                  *DAG.getContext());
1297
1298   CCInfo.AnalyzeFormalArguments(Ins, CC_XCore);
1299
1300   unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize();
1301
1302   unsigned LRSaveSize = StackSlotSize;
1303
1304   if (!isVarArg)
1305     XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize);
1306
1307   // All getCopyFromReg ops must precede any getMemcpys to prevent the
1308   // scheduler clobbering a register before it has been copied.
1309   // The stages are:
1310   // 1. CopyFromReg (and load) arg & vararg registers.
1311   // 2. Chain CopyFromReg nodes into a TokenFactor.
1312   // 3. Memcpy 'byVal' args & push final InVals.
1313   // 4. Chain mem ops nodes into a TokenFactor.
1314   SmallVector<SDValue, 4> CFRegNode;
1315   SmallVector<ArgDataPair, 4> ArgData;
1316   SmallVector<SDValue, 4> MemOps;
1317
1318   // 1a. CopyFromReg (and load) arg registers.
1319   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1320
1321     CCValAssign &VA = ArgLocs[i];
1322     SDValue ArgIn;
1323
1324     if (VA.isRegLoc()) {
1325       // Arguments passed in registers
1326       EVT RegVT = VA.getLocVT();
1327       switch (RegVT.getSimpleVT().SimpleTy) {
1328       default:
1329         {
1330 #ifndef NDEBUG
1331           errs() << "LowerFormalArguments Unhandled argument type: "
1332                  << RegVT.getSimpleVT().SimpleTy << "\n";
1333 #endif
1334           llvm_unreachable(nullptr);
1335         }
1336       case MVT::i32:
1337         unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1338         RegInfo.addLiveIn(VA.getLocReg(), VReg);
1339         ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
1340         CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1));
1341       }
1342     } else {
1343       // sanity check
1344       assert(VA.isMemLoc());
1345       // Load the argument to a virtual register
1346       unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
1347       if (ObjSize > StackSlotSize) {
1348         errs() << "LowerFormalArguments Unhandled argument type: "
1349                << EVT(VA.getLocVT()).getEVTString()
1350                << "\n";
1351       }
1352       // Create the frame index object for this incoming parameter...
1353       int FI = MFI->CreateFixedObject(ObjSize,
1354                                       LRSaveSize + VA.getLocMemOffset(),
1355                                       true);
1356
1357       // Create the SelectionDAG nodes corresponding to a load
1358       //from this parameter
1359       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1360       ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
1361                           MachinePointerInfo::getFixedStack(FI),
1362                           false, false, false, 0);
1363     }
1364     const ArgDataPair ADP = { ArgIn, Ins[i].Flags };
1365     ArgData.push_back(ADP);
1366   }
1367
1368   // 1b. CopyFromReg vararg registers.
1369   if (isVarArg) {
1370     // Argument registers
1371     static const MCPhysReg ArgRegs[] = {
1372       XCore::R0, XCore::R1, XCore::R2, XCore::R3
1373     };
1374     XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1375     unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs);
1376     if (FirstVAReg < array_lengthof(ArgRegs)) {
1377       int offset = 0;
1378       // Save remaining registers, storing higher register numbers at a higher
1379       // address
1380       for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) {
1381         // Create a stack slot
1382         int FI = MFI->CreateFixedObject(4, offset, true);
1383         if (i == (int)FirstVAReg) {
1384           XFI->setVarArgsFrameIndex(FI);
1385         }
1386         offset -= StackSlotSize;
1387         SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1388         // Move argument from phys reg -> virt reg
1389         unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1390         RegInfo.addLiveIn(ArgRegs[i], VReg);
1391         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1392         CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1));
1393         // Move argument from virt reg -> stack
1394         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1395                                      MachinePointerInfo(), false, false, 0);
1396         MemOps.push_back(Store);
1397       }
1398     } else {
1399       // This will point to the next argument passed via stack.
1400       XFI->setVarArgsFrameIndex(
1401         MFI->CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(),
1402                                true));
1403     }
1404   }
1405
1406   // 2. chain CopyFromReg nodes into a TokenFactor.
1407   if (!CFRegNode.empty())
1408     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode);
1409
1410   // 3. Memcpy 'byVal' args & push final InVals.
1411   // Aggregates passed "byVal" need to be copied by the callee.
1412   // The callee will use a pointer to this copy, rather than the original
1413   // pointer.
1414   for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(),
1415                                                     ArgDE = ArgData.end();
1416        ArgDI != ArgDE; ++ArgDI) {
1417     if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) {
1418       unsigned Size = ArgDI->Flags.getByValSize();
1419       unsigned Align = std::max(StackSlotSize, ArgDI->Flags.getByValAlign());
1420       // Create a new object on the stack and copy the pointee into it.
1421       int FI = MFI->CreateStackObject(Size, Align, false);
1422       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1423       InVals.push_back(FIN);
1424       MemOps.push_back(DAG.getMemcpy(Chain, dl, FIN, ArgDI->SDV,
1425                                      DAG.getConstant(Size, MVT::i32),
1426                                      Align, false, false,
1427                                      MachinePointerInfo(),
1428                                      MachinePointerInfo()));
1429     } else {
1430       InVals.push_back(ArgDI->SDV);
1431     }
1432   }
1433
1434   // 4, chain mem ops nodes into a TokenFactor.
1435   if (!MemOps.empty()) {
1436     MemOps.push_back(Chain);
1437     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
1438   }
1439
1440   return Chain;
1441 }
1442
1443 //===----------------------------------------------------------------------===//
1444 //               Return Value Calling Convention Implementation
1445 //===----------------------------------------------------------------------===//
1446
1447 bool XCoreTargetLowering::
1448 CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1449                bool isVarArg,
1450                const SmallVectorImpl<ISD::OutputArg> &Outs,
1451                LLVMContext &Context) const {
1452   SmallVector<CCValAssign, 16> RVLocs;
1453   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1454   if (!CCInfo.CheckReturn(Outs, RetCC_XCore))
1455     return false;
1456   if (CCInfo.getNextStackOffset() != 0 && isVarArg)
1457     return false;
1458   return true;
1459 }
1460
1461 SDValue
1462 XCoreTargetLowering::LowerReturn(SDValue Chain,
1463                                  CallingConv::ID CallConv, bool isVarArg,
1464                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
1465                                  const SmallVectorImpl<SDValue> &OutVals,
1466                                  SDLoc dl, SelectionDAG &DAG) const {
1467
1468   XCoreFunctionInfo *XFI =
1469     DAG.getMachineFunction().getInfo<XCoreFunctionInfo>();
1470   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1471
1472   // CCValAssign - represent the assignment of
1473   // the return value to a location
1474   SmallVector<CCValAssign, 16> RVLocs;
1475
1476   // CCState - Info about the registers and stack slot.
1477   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1478                  *DAG.getContext());
1479
1480   // Analyze return values.
1481   if (!isVarArg)
1482     CCInfo.AllocateStack(XFI->getReturnStackOffset(), 4);
1483
1484   CCInfo.AnalyzeReturn(Outs, RetCC_XCore);
1485
1486   SDValue Flag;
1487   SmallVector<SDValue, 4> RetOps(1, Chain);
1488
1489   // Return on XCore is always a "retsp 0"
1490   RetOps.push_back(DAG.getConstant(0, MVT::i32));
1491
1492   SmallVector<SDValue, 4> MemOpChains;
1493   // Handle return values that must be copied to memory.
1494   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1495     CCValAssign &VA = RVLocs[i];
1496     if (VA.isRegLoc())
1497       continue;
1498     assert(VA.isMemLoc());
1499     if (isVarArg) {
1500       report_fatal_error("Can't return value from vararg function in memory");
1501     }
1502
1503     int Offset = VA.getLocMemOffset();
1504     unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
1505     // Create the frame index object for the memory location.
1506     int FI = MFI->CreateFixedObject(ObjSize, Offset, false);
1507
1508     // Create a SelectionDAG node corresponding to a store
1509     // to this memory location.
1510     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1511     MemOpChains.push_back(DAG.getStore(Chain, dl, OutVals[i], FIN,
1512                           MachinePointerInfo::getFixedStack(FI), false, false,
1513                           0));
1514   }
1515
1516   // Transform all store nodes into one single node because
1517   // all stores are independent of each other.
1518   if (!MemOpChains.empty())
1519     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1520
1521   // Now handle return values copied to registers.
1522   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1523     CCValAssign &VA = RVLocs[i];
1524     if (!VA.isRegLoc())
1525       continue;
1526     // Copy the result values into the output registers.
1527     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
1528
1529     // guarantee that all emitted copies are
1530     // stuck together, avoiding something bad
1531     Flag = Chain.getValue(1);
1532     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1533   }
1534
1535   RetOps[0] = Chain;  // Update chain.
1536
1537   // Add the flag if we have it.
1538   if (Flag.getNode())
1539     RetOps.push_back(Flag);
1540
1541   return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps);
1542 }
1543
1544 //===----------------------------------------------------------------------===//
1545 //  Other Lowering Code
1546 //===----------------------------------------------------------------------===//
1547
1548 MachineBasicBlock *
1549 XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1550                                                  MachineBasicBlock *BB) const {
1551   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1552   DebugLoc dl = MI->getDebugLoc();
1553   assert((MI->getOpcode() == XCore::SELECT_CC) &&
1554          "Unexpected instr type to insert");
1555
1556   // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
1557   // control-flow pattern.  The incoming instruction knows the destination vreg
1558   // to set, the condition code register to branch on, the true/false values to
1559   // select between, and a branch opcode to use.
1560   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1561   MachineFunction::iterator It = BB;
1562   ++It;
1563
1564   //  thisMBB:
1565   //  ...
1566   //   TrueVal = ...
1567   //   cmpTY ccX, r1, r2
1568   //   bCC copy1MBB
1569   //   fallthrough --> copy0MBB
1570   MachineBasicBlock *thisMBB = BB;
1571   MachineFunction *F = BB->getParent();
1572   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1573   MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
1574   F->insert(It, copy0MBB);
1575   F->insert(It, sinkMBB);
1576
1577   // Transfer the remainder of BB and its successor edges to sinkMBB.
1578   sinkMBB->splice(sinkMBB->begin(), BB,
1579                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
1580   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1581
1582   // Next, add the true and fallthrough blocks as its successors.
1583   BB->addSuccessor(copy0MBB);
1584   BB->addSuccessor(sinkMBB);
1585
1586   BuildMI(BB, dl, TII.get(XCore::BRFT_lru6))
1587     .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
1588
1589   //  copy0MBB:
1590   //   %FalseValue = ...
1591   //   # fallthrough to sinkMBB
1592   BB = copy0MBB;
1593
1594   // Update machine-CFG edges
1595   BB->addSuccessor(sinkMBB);
1596
1597   //  sinkMBB:
1598   //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1599   //  ...
1600   BB = sinkMBB;
1601   BuildMI(*BB, BB->begin(), dl,
1602           TII.get(XCore::PHI), MI->getOperand(0).getReg())
1603     .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
1604     .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
1605
1606   MI->eraseFromParent();   // The pseudo instruction is gone now.
1607   return BB;
1608 }
1609
1610 //===----------------------------------------------------------------------===//
1611 // Target Optimization Hooks
1612 //===----------------------------------------------------------------------===//
1613
1614 SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
1615                                              DAGCombinerInfo &DCI) const {
1616   SelectionDAG &DAG = DCI.DAG;
1617   SDLoc dl(N);
1618   switch (N->getOpcode()) {
1619   default: break;
1620   case ISD::INTRINSIC_VOID:
1621     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
1622     case Intrinsic::xcore_outt:
1623     case Intrinsic::xcore_outct:
1624     case Intrinsic::xcore_chkct: {
1625       SDValue OutVal = N->getOperand(3);
1626       // These instructions ignore the high bits.
1627       if (OutVal.hasOneUse()) {
1628         unsigned BitWidth = OutVal.getValueSizeInBits();
1629         APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
1630         APInt KnownZero, KnownOne;
1631         TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1632                                               !DCI.isBeforeLegalizeOps());
1633         const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1634         if (TLO.ShrinkDemandedConstant(OutVal, DemandedMask) ||
1635             TLI.SimplifyDemandedBits(OutVal, DemandedMask, KnownZero, KnownOne,
1636                                      TLO))
1637           DCI.CommitTargetLoweringOpt(TLO);
1638       }
1639       break;
1640     }
1641     case Intrinsic::xcore_setpt: {
1642       SDValue Time = N->getOperand(3);
1643       // This instruction ignores the high bits.
1644       if (Time.hasOneUse()) {
1645         unsigned BitWidth = Time.getValueSizeInBits();
1646         APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
1647         APInt KnownZero, KnownOne;
1648         TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1649                                               !DCI.isBeforeLegalizeOps());
1650         const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1651         if (TLO.ShrinkDemandedConstant(Time, DemandedMask) ||
1652             TLI.SimplifyDemandedBits(Time, DemandedMask, KnownZero, KnownOne,
1653                                      TLO))
1654           DCI.CommitTargetLoweringOpt(TLO);
1655       }
1656       break;
1657     }
1658     }
1659     break;
1660   case XCoreISD::LADD: {
1661     SDValue N0 = N->getOperand(0);
1662     SDValue N1 = N->getOperand(1);
1663     SDValue N2 = N->getOperand(2);
1664     ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1665     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1666     EVT VT = N0.getValueType();
1667
1668     // canonicalize constant to RHS
1669     if (N0C && !N1C)
1670       return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2);
1671
1672     // fold (ladd 0, 0, x) -> 0, x & 1
1673     if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1674       SDValue Carry = DAG.getConstant(0, VT);
1675       SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2,
1676                                    DAG.getConstant(1, VT));
1677       SDValue Ops[] = { Result, Carry };
1678       return DAG.getMergeValues(Ops, dl);
1679     }
1680
1681     // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the
1682     // low bit set
1683     if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1684       APInt KnownZero, KnownOne;
1685       APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1686                                          VT.getSizeInBits() - 1);
1687       DAG.computeKnownBits(N2, KnownZero, KnownOne);
1688       if ((KnownZero & Mask) == Mask) {
1689         SDValue Carry = DAG.getConstant(0, VT);
1690         SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2);
1691         SDValue Ops[] = { Result, Carry };
1692         return DAG.getMergeValues(Ops, dl);
1693       }
1694     }
1695   }
1696   break;
1697   case XCoreISD::LSUB: {
1698     SDValue N0 = N->getOperand(0);
1699     SDValue N1 = N->getOperand(1);
1700     SDValue N2 = N->getOperand(2);
1701     ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1702     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1703     EVT VT = N0.getValueType();
1704
1705     // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set
1706     if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1707       APInt KnownZero, KnownOne;
1708       APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1709                                          VT.getSizeInBits() - 1);
1710       DAG.computeKnownBits(N2, KnownZero, KnownOne);
1711       if ((KnownZero & Mask) == Mask) {
1712         SDValue Borrow = N2;
1713         SDValue Result = DAG.getNode(ISD::SUB, dl, VT,
1714                                      DAG.getConstant(0, VT), N2);
1715         SDValue Ops[] = { Result, Borrow };
1716         return DAG.getMergeValues(Ops, dl);
1717       }
1718     }
1719
1720     // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the
1721     // low bit set
1722     if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1723       APInt KnownZero, KnownOne;
1724       APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1725                                          VT.getSizeInBits() - 1);
1726       DAG.computeKnownBits(N2, KnownZero, KnownOne);
1727       if ((KnownZero & Mask) == Mask) {
1728         SDValue Borrow = DAG.getConstant(0, VT);
1729         SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2);
1730         SDValue Ops[] = { Result, Borrow };
1731         return DAG.getMergeValues(Ops, dl);
1732       }
1733     }
1734   }
1735   break;
1736   case XCoreISD::LMUL: {
1737     SDValue N0 = N->getOperand(0);
1738     SDValue N1 = N->getOperand(1);
1739     SDValue N2 = N->getOperand(2);
1740     SDValue N3 = N->getOperand(3);
1741     ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1742     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1743     EVT VT = N0.getValueType();
1744     // Canonicalize multiplicative constant to RHS. If both multiplicative
1745     // operands are constant canonicalize smallest to RHS.
1746     if ((N0C && !N1C) ||
1747         (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue()))
1748       return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT),
1749                          N1, N0, N2, N3);
1750
1751     // lmul(x, 0, a, b)
1752     if (N1C && N1C->isNullValue()) {
1753       // If the high result is unused fold to add(a, b)
1754       if (N->hasNUsesOfValue(0, 0)) {
1755         SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3);
1756         SDValue Ops[] = { Lo, Lo };
1757         return DAG.getMergeValues(Ops, dl);
1758       }
1759       // Otherwise fold to ladd(a, b, 0)
1760       SDValue Result =
1761         DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1);
1762       SDValue Carry(Result.getNode(), 1);
1763       SDValue Ops[] = { Carry, Result };
1764       return DAG.getMergeValues(Ops, dl);
1765     }
1766   }
1767   break;
1768   case ISD::ADD: {
1769     // Fold 32 bit expressions such as add(add(mul(x,y),a),b) ->
1770     // lmul(x, y, a, b). The high result of lmul will be ignored.
1771     // This is only profitable if the intermediate results are unused
1772     // elsewhere.
1773     SDValue Mul0, Mul1, Addend0, Addend1;
1774     if (N->getValueType(0) == MVT::i32 &&
1775         isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) {
1776       SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl,
1777                                     DAG.getVTList(MVT::i32, MVT::i32), Mul0,
1778                                     Mul1, Addend0, Addend1);
1779       SDValue Result(Ignored.getNode(), 1);
1780       return Result;
1781     }
1782     APInt HighMask = APInt::getHighBitsSet(64, 32);
1783     // Fold 64 bit expression such as add(add(mul(x,y),a),b) ->
1784     // lmul(x, y, a, b) if all operands are zero-extended. We do this
1785     // before type legalization as it is messy to match the operands after
1786     // that.
1787     if (N->getValueType(0) == MVT::i64 &&
1788         isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) &&
1789         DAG.MaskedValueIsZero(Mul0, HighMask) &&
1790         DAG.MaskedValueIsZero(Mul1, HighMask) &&
1791         DAG.MaskedValueIsZero(Addend0, HighMask) &&
1792         DAG.MaskedValueIsZero(Addend1, HighMask)) {
1793       SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1794                                   Mul0, DAG.getConstant(0, MVT::i32));
1795       SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1796                                   Mul1, DAG.getConstant(0, MVT::i32));
1797       SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1798                                      Addend0, DAG.getConstant(0, MVT::i32));
1799       SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1800                                      Addend1, DAG.getConstant(0, MVT::i32));
1801       SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
1802                                DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L,
1803                                Addend0L, Addend1L);
1804       SDValue Lo(Hi.getNode(), 1);
1805       return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
1806     }
1807   }
1808   break;
1809   case ISD::STORE: {
1810     // Replace unaligned store of unaligned load with memmove.
1811     StoreSDNode *ST  = cast<StoreSDNode>(N);
1812     if (!DCI.isBeforeLegalize() ||
1813         allowsMisalignedMemoryAccesses(ST->getMemoryVT(),
1814                                        ST->getAddressSpace(),
1815                                        ST->getAlignment()) ||
1816         ST->isVolatile() || ST->isIndexed()) {
1817       break;
1818     }
1819     SDValue Chain = ST->getChain();
1820
1821     unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits();
1822     if (StoreBits % 8) {
1823       break;
1824     }
1825     unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(
1826         ST->getMemoryVT().getTypeForEVT(*DCI.DAG.getContext()));
1827     unsigned Alignment = ST->getAlignment();
1828     if (Alignment >= ABIAlignment) {
1829       break;
1830     }
1831
1832     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) {
1833       if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() &&
1834         LD->getAlignment() == Alignment &&
1835         !LD->isVolatile() && !LD->isIndexed() &&
1836         Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) {
1837         return DAG.getMemmove(Chain, dl, ST->getBasePtr(),
1838                               LD->getBasePtr(),
1839                               DAG.getConstant(StoreBits/8, MVT::i32),
1840                               Alignment, false, ST->getPointerInfo(),
1841                               LD->getPointerInfo());
1842       }
1843     }
1844     break;
1845   }
1846   }
1847   return SDValue();
1848 }
1849
1850 void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1851                                                         APInt &KnownZero,
1852                                                         APInt &KnownOne,
1853                                                         const SelectionDAG &DAG,
1854                                                         unsigned Depth) const {
1855   KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
1856   switch (Op.getOpcode()) {
1857   default: break;
1858   case XCoreISD::LADD:
1859   case XCoreISD::LSUB:
1860     if (Op.getResNo() == 1) {
1861       // Top bits of carry / borrow are clear.
1862       KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1863                                         KnownZero.getBitWidth() - 1);
1864     }
1865     break;
1866   case ISD::INTRINSIC_W_CHAIN:
1867     {
1868       unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1869       switch (IntNo) {
1870       case Intrinsic::xcore_getts:
1871         // High bits are known to be zero.
1872         KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1873                                           KnownZero.getBitWidth() - 16);
1874         break;
1875       case Intrinsic::xcore_int:
1876       case Intrinsic::xcore_inct:
1877         // High bits are known to be zero.
1878         KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1879                                           KnownZero.getBitWidth() - 8);
1880         break;
1881       case Intrinsic::xcore_testct:
1882         // Result is either 0 or 1.
1883         KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1884                                           KnownZero.getBitWidth() - 1);
1885         break;
1886       case Intrinsic::xcore_testwct:
1887         // Result is in the range 0 - 4.
1888         KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1889                                           KnownZero.getBitWidth() - 3);
1890         break;
1891       }
1892     }
1893     break;
1894   }
1895 }
1896
1897 //===----------------------------------------------------------------------===//
1898 //  Addressing mode description hooks
1899 //===----------------------------------------------------------------------===//
1900
1901 static inline bool isImmUs(int64_t val)
1902 {
1903   return (val >= 0 && val <= 11);
1904 }
1905
1906 static inline bool isImmUs2(int64_t val)
1907 {
1908   return (val%2 == 0 && isImmUs(val/2));
1909 }
1910
1911 static inline bool isImmUs4(int64_t val)
1912 {
1913   return (val%4 == 0 && isImmUs(val/4));
1914 }
1915
1916 /// isLegalAddressingMode - Return true if the addressing mode represented
1917 /// by AM is legal for this target, for a load/store of the specified type.
1918 bool
1919 XCoreTargetLowering::isLegalAddressingMode(const AddrMode &AM,
1920                                               Type *Ty) const {
1921   if (Ty->getTypeID() == Type::VoidTyID)
1922     return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs);
1923
1924   const DataLayout *TD = TM.getDataLayout();
1925   unsigned Size = TD->getTypeAllocSize(Ty);
1926   if (AM.BaseGV) {
1927     return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 &&
1928                  AM.BaseOffs%4 == 0;
1929   }
1930
1931   switch (Size) {
1932   case 1:
1933     // reg + imm
1934     if (AM.Scale == 0) {
1935       return isImmUs(AM.BaseOffs);
1936     }
1937     // reg + reg
1938     return AM.Scale == 1 && AM.BaseOffs == 0;
1939   case 2:
1940   case 3:
1941     // reg + imm
1942     if (AM.Scale == 0) {
1943       return isImmUs2(AM.BaseOffs);
1944     }
1945     // reg + reg<<1
1946     return AM.Scale == 2 && AM.BaseOffs == 0;
1947   default:
1948     // reg + imm
1949     if (AM.Scale == 0) {
1950       return isImmUs4(AM.BaseOffs);
1951     }
1952     // reg + reg<<2
1953     return AM.Scale == 4 && AM.BaseOffs == 0;
1954   }
1955 }
1956
1957 //===----------------------------------------------------------------------===//
1958 //                           XCore Inline Assembly Support
1959 //===----------------------------------------------------------------------===//
1960
1961 std::pair<unsigned, const TargetRegisterClass *>
1962 XCoreTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
1963                                                   const std::string &Constraint,
1964                                                   MVT VT) const {
1965   if (Constraint.size() == 1) {
1966     switch (Constraint[0]) {
1967     default : break;
1968     case 'r':
1969       return std::make_pair(0U, &XCore::GRRegsRegClass);
1970     }
1971   }
1972   // Use the default implementation in TargetLowering to convert the register
1973   // constraint into a member of a register class.
1974   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1975 }