[WebAssembly] Convert a regular for loop to a range-based for loop.
[oota-llvm.git] / lib / Target / XCore / XCoreISelLowering.cpp
1 //===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the XCoreTargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "XCoreISelLowering.h"
15 #include "XCore.h"
16 #include "XCoreMachineFunctionInfo.h"
17 #include "XCoreSubtarget.h"
18 #include "XCoreTargetMachine.h"
19 #include "XCoreTargetObjectFile.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineJumpTableInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/SelectionDAGISel.h"
27 #include "llvm/CodeGen/ValueTypes.h"
28 #include "llvm/IR/CallingConv.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalAlias.h"
33 #include "llvm/IR/GlobalVariable.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39
40 using namespace llvm;
41
42 #define DEBUG_TYPE "xcore-lower"
43
44 const char *XCoreTargetLowering::
45 getTargetNodeName(unsigned Opcode) const
46 {
47   switch ((XCoreISD::NodeType)Opcode)
48   {
49     case XCoreISD::FIRST_NUMBER      : break;
50     case XCoreISD::BL                : return "XCoreISD::BL";
51     case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper";
52     case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper";
53     case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper";
54     case XCoreISD::LDWSP             : return "XCoreISD::LDWSP";
55     case XCoreISD::STWSP             : return "XCoreISD::STWSP";
56     case XCoreISD::RETSP             : return "XCoreISD::RETSP";
57     case XCoreISD::LADD              : return "XCoreISD::LADD";
58     case XCoreISD::LSUB              : return "XCoreISD::LSUB";
59     case XCoreISD::LMUL              : return "XCoreISD::LMUL";
60     case XCoreISD::MACCU             : return "XCoreISD::MACCU";
61     case XCoreISD::MACCS             : return "XCoreISD::MACCS";
62     case XCoreISD::CRC8              : return "XCoreISD::CRC8";
63     case XCoreISD::BR_JT             : return "XCoreISD::BR_JT";
64     case XCoreISD::BR_JT32           : return "XCoreISD::BR_JT32";
65     case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET";
66     case XCoreISD::EH_RETURN         : return "XCoreISD::EH_RETURN";
67     case XCoreISD::MEMBARRIER        : return "XCoreISD::MEMBARRIER";
68   }
69   return nullptr;
70 }
71
72 XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM,
73                                          const XCoreSubtarget &Subtarget)
74     : TargetLowering(TM), TM(TM), Subtarget(Subtarget) {
75
76   // Set up the register classes.
77   addRegisterClass(MVT::i32, &XCore::GRRegsRegClass);
78
79   // Compute derived properties from the register classes
80   computeRegisterProperties(Subtarget.getRegisterInfo());
81
82   setStackPointerRegisterToSaveRestore(XCore::SP);
83
84   setSchedulingPreference(Sched::Source);
85
86   // Use i32 for setcc operations results (slt, sgt, ...).
87   setBooleanContents(ZeroOrOneBooleanContent);
88   setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
89
90   // XCore does not have the NodeTypes below.
91   setOperationAction(ISD::BR_CC,     MVT::i32,   Expand);
92   setOperationAction(ISD::SELECT_CC, MVT::i32,   Expand);
93   setOperationAction(ISD::ADDC, MVT::i32, Expand);
94   setOperationAction(ISD::ADDE, MVT::i32, Expand);
95   setOperationAction(ISD::SUBC, MVT::i32, Expand);
96   setOperationAction(ISD::SUBE, MVT::i32, Expand);
97
98   // 64bit
99   setOperationAction(ISD::ADD, MVT::i64, Custom);
100   setOperationAction(ISD::SUB, MVT::i64, Custom);
101   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
102   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
103   setOperationAction(ISD::MULHS, MVT::i32, Expand);
104   setOperationAction(ISD::MULHU, MVT::i32, Expand);
105   setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
106   setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
107   setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
108
109   // Bit Manipulation
110   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
111   setOperationAction(ISD::ROTL , MVT::i32, Expand);
112   setOperationAction(ISD::ROTR , MVT::i32, Expand);
113   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
114   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
115
116   setOperationAction(ISD::TRAP, MVT::Other, Legal);
117
118   // Jump tables.
119   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
120
121   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
122   setOperationAction(ISD::BlockAddress, MVT::i32 , Custom);
123
124   // Conversion of i64 -> double produces constantpool nodes
125   setOperationAction(ISD::ConstantPool, MVT::i32,   Custom);
126
127   // Loads
128   for (MVT VT : MVT::integer_valuetypes()) {
129     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
130     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
131     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
132
133     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
134     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Expand);
135   }
136
137   // Custom expand misaligned loads / stores.
138   setOperationAction(ISD::LOAD, MVT::i32, Custom);
139   setOperationAction(ISD::STORE, MVT::i32, Custom);
140
141   // Varargs
142   setOperationAction(ISD::VAEND, MVT::Other, Expand);
143   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
144   setOperationAction(ISD::VAARG, MVT::Other, Custom);
145   setOperationAction(ISD::VASTART, MVT::Other, Custom);
146
147   // Dynamic stack
148   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
149   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
150   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
151
152   // Exception handling
153   setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
154   setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
155
156   // Atomic operations
157   // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic.
158   // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP.
159   setInsertFencesForAtomic(true);
160   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
161   setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
162   setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
163
164   // TRAMPOLINE is custom lowered.
165   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
166   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
167
168   // We want to custom lower some of our intrinsics.
169   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
170
171   MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4;
172   MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize
173     = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2;
174
175   // We have target-specific dag combine patterns for the following nodes:
176   setTargetDAGCombine(ISD::STORE);
177   setTargetDAGCombine(ISD::ADD);
178   setTargetDAGCombine(ISD::INTRINSIC_VOID);
179   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
180
181   setMinFunctionAlignment(1);
182   setPrefFunctionAlignment(2);
183 }
184
185 bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
186   if (Val.getOpcode() != ISD::LOAD)
187     return false;
188
189   EVT VT1 = Val.getValueType();
190   if (!VT1.isSimple() || !VT1.isInteger() ||
191       !VT2.isSimple() || !VT2.isInteger())
192     return false;
193
194   switch (VT1.getSimpleVT().SimpleTy) {
195   default: break;
196   case MVT::i8:
197     return true;
198   }
199
200   return false;
201 }
202
203 SDValue XCoreTargetLowering::
204 LowerOperation(SDValue Op, SelectionDAG &DAG) const {
205   switch (Op.getOpcode())
206   {
207   case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
208   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
209   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
210   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
211   case ISD::BR_JT:              return LowerBR_JT(Op, DAG);
212   case ISD::LOAD:               return LowerLOAD(Op, DAG);
213   case ISD::STORE:              return LowerSTORE(Op, DAG);
214   case ISD::VAARG:              return LowerVAARG(Op, DAG);
215   case ISD::VASTART:            return LowerVASTART(Op, DAG);
216   case ISD::SMUL_LOHI:          return LowerSMUL_LOHI(Op, DAG);
217   case ISD::UMUL_LOHI:          return LowerUMUL_LOHI(Op, DAG);
218   // FIXME: Remove these when LegalizeDAGTypes lands.
219   case ISD::ADD:
220   case ISD::SUB:                return ExpandADDSUB(Op.getNode(), DAG);
221   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
222   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
223   case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
224   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
225   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
226   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
227   case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
228   case ISD::ATOMIC_LOAD:        return LowerATOMIC_LOAD(Op, DAG);
229   case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op, DAG);
230   default:
231     llvm_unreachable("unimplemented operand");
232   }
233 }
234
235 /// ReplaceNodeResults - Replace the results of node with an illegal result
236 /// type with new values built out of custom code.
237 void XCoreTargetLowering::ReplaceNodeResults(SDNode *N,
238                                              SmallVectorImpl<SDValue>&Results,
239                                              SelectionDAG &DAG) const {
240   switch (N->getOpcode()) {
241   default:
242     llvm_unreachable("Don't know how to custom expand this!");
243   case ISD::ADD:
244   case ISD::SUB:
245     Results.push_back(ExpandADDSUB(N, DAG));
246     return;
247   }
248 }
249
250 //===----------------------------------------------------------------------===//
251 //  Misc Lower Operation implementation
252 //===----------------------------------------------------------------------===//
253
254 SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA,
255                                                      const GlobalValue *GV,
256                                                      SelectionDAG &DAG) const {
257   // FIXME there is no actual debug info here
258   SDLoc dl(GA);
259
260   if (GV->getType()->getElementType()->isFunctionTy())
261     return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA);
262
263   const auto *GVar = dyn_cast<GlobalVariable>(GV);
264   if ((GV->hasSection() && StringRef(GV->getSection()).startswith(".cp.")) ||
265       (GVar && GVar->isConstant() && GV->hasLocalLinkage()))
266     return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA);
267
268   return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA);
269 }
270
271 static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) {
272   if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small)
273     return true;
274
275   Type *ObjType = GV->getType()->getPointerElementType();
276   if (!ObjType->isSized())
277     return false;
278
279   auto &DL = GV->getParent()->getDataLayout();
280   unsigned ObjSize = DL.getTypeAllocSize(ObjType);
281   return ObjSize < CodeModelLargeSize && ObjSize != 0;
282 }
283
284 SDValue XCoreTargetLowering::
285 LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const
286 {
287   const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
288   const GlobalValue *GV = GN->getGlobal();
289   SDLoc DL(GN);
290   int64_t Offset = GN->getOffset();
291   if (IsSmallObject(GV, *this)) {
292     // We can only fold positive offsets that are a multiple of the word size.
293     int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0);
294     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset);
295     GA = getGlobalAddressWrapper(GA, GV, DAG);
296     // Handle the rest of the offset.
297     if (Offset != FoldedOffset) {
298       SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, DL, MVT::i32);
299       GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining);
300     }
301     return GA;
302   } else {
303     // Ideally we would not fold in offset with an index <= 11.
304     Type *Ty = Type::getInt8PtrTy(*DAG.getContext());
305     Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty);
306     Ty = Type::getInt32Ty(*DAG.getContext());
307     Constant *Idx = ConstantInt::get(Ty, Offset);
308     Constant *GAI = ConstantExpr::getGetElementPtr(
309         Type::getInt8Ty(*DAG.getContext()), GA, Idx);
310     SDValue CP = DAG.getConstantPool(GAI, MVT::i32);
311     return DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL,
312                        DAG.getEntryNode(), CP, MachinePointerInfo(), false,
313                        false, false, 0);
314   }
315 }
316
317 SDValue XCoreTargetLowering::
318 LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const
319 {
320   SDLoc DL(Op);
321   auto PtrVT = getPointerTy(DAG.getDataLayout());
322   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
323   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT);
324
325   return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, PtrVT, Result);
326 }
327
328 SDValue XCoreTargetLowering::
329 LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
330 {
331   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
332   // FIXME there isn't really debug info here
333   SDLoc dl(CP);
334   EVT PtrVT = Op.getValueType();
335   SDValue Res;
336   if (CP->isMachineConstantPoolEntry()) {
337     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
338                                     CP->getAlignment(), CP->getOffset());
339   } else {
340     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
341                                     CP->getAlignment(), CP->getOffset());
342   }
343   return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res);
344 }
345
346 unsigned XCoreTargetLowering::getJumpTableEncoding() const {
347   return MachineJumpTableInfo::EK_Inline;
348 }
349
350 SDValue XCoreTargetLowering::
351 LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
352 {
353   SDValue Chain = Op.getOperand(0);
354   SDValue Table = Op.getOperand(1);
355   SDValue Index = Op.getOperand(2);
356   SDLoc dl(Op);
357   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
358   unsigned JTI = JT->getIndex();
359   MachineFunction &MF = DAG.getMachineFunction();
360   const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
361   SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
362
363   unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size();
364   if (NumEntries <= 32) {
365     return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index);
366   }
367   assert((NumEntries >> 31) == 0);
368   SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
369                                     DAG.getConstant(1, dl, MVT::i32));
370   return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT,
371                      ScaledIndex);
372 }
373
374 SDValue XCoreTargetLowering::
375 lowerLoadWordFromAlignedBasePlusOffset(SDLoc DL, SDValue Chain, SDValue Base,
376                                        int64_t Offset, SelectionDAG &DAG) const
377 {
378   auto PtrVT = getPointerTy(DAG.getDataLayout());
379   if ((Offset & 0x3) == 0) {
380     return DAG.getLoad(PtrVT, DL, Chain, Base, MachinePointerInfo(), false,
381                        false, false, 0);
382   }
383   // Lower to pair of consecutive word aligned loads plus some bit shifting.
384   int32_t HighOffset = RoundUpToAlignment(Offset, 4);
385   int32_t LowOffset = HighOffset - 4;
386   SDValue LowAddr, HighAddr;
387   if (GlobalAddressSDNode *GASD =
388         dyn_cast<GlobalAddressSDNode>(Base.getNode())) {
389     LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
390                                    LowOffset);
391     HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
392                                     HighOffset);
393   } else {
394     LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
395                           DAG.getConstant(LowOffset, DL, MVT::i32));
396     HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
397                            DAG.getConstant(HighOffset, DL, MVT::i32));
398   }
399   SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, DL, MVT::i32);
400   SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, DL, MVT::i32);
401
402   SDValue Low = DAG.getLoad(PtrVT, DL, Chain, LowAddr, MachinePointerInfo(),
403                             false, false, false, 0);
404   SDValue High = DAG.getLoad(PtrVT, DL, Chain, HighAddr, MachinePointerInfo(),
405                              false, false, false, 0);
406   SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift);
407   SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift);
408   SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted);
409   Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
410                       High.getValue(1));
411   SDValue Ops[] = { Result, Chain };
412   return DAG.getMergeValues(Ops, DL);
413 }
414
415 static bool isWordAligned(SDValue Value, SelectionDAG &DAG)
416 {
417   APInt KnownZero, KnownOne;
418   DAG.computeKnownBits(Value, KnownZero, KnownOne);
419   return KnownZero.countTrailingOnes() >= 2;
420 }
421
422 SDValue XCoreTargetLowering::
423 LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
424   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
425   LoadSDNode *LD = cast<LoadSDNode>(Op);
426   assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
427          "Unexpected extension type");
428   assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT");
429   if (allowsMisalignedMemoryAccesses(LD->getMemoryVT(),
430                                      LD->getAddressSpace(),
431                                      LD->getAlignment()))
432     return SDValue();
433
434   auto &TD = DAG.getDataLayout();
435   unsigned ABIAlignment = TD.getABITypeAlignment(
436       LD->getMemoryVT().getTypeForEVT(*DAG.getContext()));
437   // Leave aligned load alone.
438   if (LD->getAlignment() >= ABIAlignment)
439     return SDValue();
440
441   SDValue Chain = LD->getChain();
442   SDValue BasePtr = LD->getBasePtr();
443   SDLoc DL(Op);
444
445   if (!LD->isVolatile()) {
446     const GlobalValue *GV;
447     int64_t Offset = 0;
448     if (DAG.isBaseWithConstantOffset(BasePtr) &&
449         isWordAligned(BasePtr->getOperand(0), DAG)) {
450       SDValue NewBasePtr = BasePtr->getOperand(0);
451       Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
452       return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
453                                                     Offset, DAG);
454     }
455     if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) &&
456         MinAlign(GV->getAlignment(), 4) == 4) {
457       SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL,
458                                                 BasePtr->getValueType(0));
459       return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
460                                                     Offset, DAG);
461     }
462   }
463
464   if (LD->getAlignment() == 2) {
465     SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain,
466                                  BasePtr, LD->getPointerInfo(), MVT::i16,
467                                  LD->isVolatile(), LD->isNonTemporal(),
468                                  LD->isInvariant(), 2);
469     SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
470                                    DAG.getConstant(2, DL, MVT::i32));
471     SDValue High = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
472                                   HighAddr,
473                                   LD->getPointerInfo().getWithOffset(2),
474                                   MVT::i16, LD->isVolatile(),
475                                   LD->isNonTemporal(), LD->isInvariant(), 2);
476     SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High,
477                                       DAG.getConstant(16, DL, MVT::i32));
478     SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted);
479     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
480                              High.getValue(1));
481     SDValue Ops[] = { Result, Chain };
482     return DAG.getMergeValues(Ops, DL);
483   }
484
485   // Lower to a call to __misaligned_load(BasePtr).
486   Type *IntPtrTy = TD.getIntPtrType(*DAG.getContext());
487   TargetLowering::ArgListTy Args;
488   TargetLowering::ArgListEntry Entry;
489
490   Entry.Ty = IntPtrTy;
491   Entry.Node = BasePtr;
492   Args.push_back(Entry);
493
494   TargetLowering::CallLoweringInfo CLI(DAG);
495   CLI.setDebugLoc(DL).setChain(Chain).setCallee(
496       CallingConv::C, IntPtrTy,
497       DAG.getExternalSymbol("__misaligned_load",
498                             getPointerTy(DAG.getDataLayout())),
499       std::move(Args), 0);
500
501   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
502   SDValue Ops[] = { CallResult.first, CallResult.second };
503   return DAG.getMergeValues(Ops, DL);
504 }
505
506 SDValue XCoreTargetLowering::
507 LowerSTORE(SDValue Op, SelectionDAG &DAG) const
508 {
509   StoreSDNode *ST = cast<StoreSDNode>(Op);
510   assert(!ST->isTruncatingStore() && "Unexpected store type");
511   assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT");
512   if (allowsMisalignedMemoryAccesses(ST->getMemoryVT(),
513                                      ST->getAddressSpace(),
514                                      ST->getAlignment())) {
515     return SDValue();
516   }
517   unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(
518       ST->getMemoryVT().getTypeForEVT(*DAG.getContext()));
519   // Leave aligned store alone.
520   if (ST->getAlignment() >= ABIAlignment) {
521     return SDValue();
522   }
523   SDValue Chain = ST->getChain();
524   SDValue BasePtr = ST->getBasePtr();
525   SDValue Value = ST->getValue();
526   SDLoc dl(Op);
527
528   if (ST->getAlignment() == 2) {
529     SDValue Low = Value;
530     SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value,
531                                       DAG.getConstant(16, dl, MVT::i32));
532     SDValue StoreLow = DAG.getTruncStore(Chain, dl, Low, BasePtr,
533                                          ST->getPointerInfo(), MVT::i16,
534                                          ST->isVolatile(), ST->isNonTemporal(),
535                                          2);
536     SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr,
537                                    DAG.getConstant(2, dl, MVT::i32));
538     SDValue StoreHigh = DAG.getTruncStore(Chain, dl, High, HighAddr,
539                                           ST->getPointerInfo().getWithOffset(2),
540                                           MVT::i16, ST->isVolatile(),
541                                           ST->isNonTemporal(), 2);
542     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh);
543   }
544
545   // Lower to a call to __misaligned_store(BasePtr, Value).
546   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
547   TargetLowering::ArgListTy Args;
548   TargetLowering::ArgListEntry Entry;
549
550   Entry.Ty = IntPtrTy;
551   Entry.Node = BasePtr;
552   Args.push_back(Entry);
553
554   Entry.Node = Value;
555   Args.push_back(Entry);
556
557   TargetLowering::CallLoweringInfo CLI(DAG);
558   CLI.setDebugLoc(dl).setChain(Chain).setCallee(
559       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
560       DAG.getExternalSymbol("__misaligned_store",
561                             getPointerTy(DAG.getDataLayout())),
562       std::move(Args), 0);
563
564   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
565   return CallResult.second;
566 }
567
568 SDValue XCoreTargetLowering::
569 LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
570 {
571   assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI &&
572          "Unexpected operand to lower!");
573   SDLoc dl(Op);
574   SDValue LHS = Op.getOperand(0);
575   SDValue RHS = Op.getOperand(1);
576   SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
577   SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
578                            DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero,
579                            LHS, RHS);
580   SDValue Lo(Hi.getNode(), 1);
581   SDValue Ops[] = { Lo, Hi };
582   return DAG.getMergeValues(Ops, dl);
583 }
584
585 SDValue XCoreTargetLowering::
586 LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
587 {
588   assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI &&
589          "Unexpected operand to lower!");
590   SDLoc dl(Op);
591   SDValue LHS = Op.getOperand(0);
592   SDValue RHS = Op.getOperand(1);
593   SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
594   SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
595                            DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS,
596                            Zero, Zero);
597   SDValue Lo(Hi.getNode(), 1);
598   SDValue Ops[] = { Lo, Hi };
599   return DAG.getMergeValues(Ops, dl);
600 }
601
602 /// isADDADDMUL - Return whether Op is in a form that is equivalent to
603 /// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then
604 /// each intermediate result in the calculation must also have a single use.
605 /// If the Op is in the correct form the constituent parts are written to Mul0,
606 /// Mul1, Addend0 and Addend1.
607 static bool
608 isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0,
609             SDValue &Addend1, bool requireIntermediatesHaveOneUse)
610 {
611   if (Op.getOpcode() != ISD::ADD)
612     return false;
613   SDValue N0 = Op.getOperand(0);
614   SDValue N1 = Op.getOperand(1);
615   SDValue AddOp;
616   SDValue OtherOp;
617   if (N0.getOpcode() == ISD::ADD) {
618     AddOp = N0;
619     OtherOp = N1;
620   } else if (N1.getOpcode() == ISD::ADD) {
621     AddOp = N1;
622     OtherOp = N0;
623   } else {
624     return false;
625   }
626   if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse())
627     return false;
628   if (OtherOp.getOpcode() == ISD::MUL) {
629     // add(add(a,b),mul(x,y))
630     if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse())
631       return false;
632     Mul0 = OtherOp.getOperand(0);
633     Mul1 = OtherOp.getOperand(1);
634     Addend0 = AddOp.getOperand(0);
635     Addend1 = AddOp.getOperand(1);
636     return true;
637   }
638   if (AddOp.getOperand(0).getOpcode() == ISD::MUL) {
639     // add(add(mul(x,y),a),b)
640     if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse())
641       return false;
642     Mul0 = AddOp.getOperand(0).getOperand(0);
643     Mul1 = AddOp.getOperand(0).getOperand(1);
644     Addend0 = AddOp.getOperand(1);
645     Addend1 = OtherOp;
646     return true;
647   }
648   if (AddOp.getOperand(1).getOpcode() == ISD::MUL) {
649     // add(add(a,mul(x,y)),b)
650     if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse())
651       return false;
652     Mul0 = AddOp.getOperand(1).getOperand(0);
653     Mul1 = AddOp.getOperand(1).getOperand(1);
654     Addend0 = AddOp.getOperand(0);
655     Addend1 = OtherOp;
656     return true;
657   }
658   return false;
659 }
660
661 SDValue XCoreTargetLowering::
662 TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const
663 {
664   SDValue Mul;
665   SDValue Other;
666   if (N->getOperand(0).getOpcode() == ISD::MUL) {
667     Mul = N->getOperand(0);
668     Other = N->getOperand(1);
669   } else if (N->getOperand(1).getOpcode() == ISD::MUL) {
670     Mul = N->getOperand(1);
671     Other = N->getOperand(0);
672   } else {
673     return SDValue();
674   }
675   SDLoc dl(N);
676   SDValue LL, RL, AddendL, AddendH;
677   LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
678                    Mul.getOperand(0), DAG.getConstant(0, dl, MVT::i32));
679   RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
680                    Mul.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
681   AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
682                         Other, DAG.getConstant(0, dl, MVT::i32));
683   AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
684                         Other, DAG.getConstant(1, dl, MVT::i32));
685   APInt HighMask = APInt::getHighBitsSet(64, 32);
686   unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0));
687   unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1));
688   if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) &&
689       DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) {
690     // The inputs are both zero-extended.
691     SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
692                              DAG.getVTList(MVT::i32, MVT::i32), AddendH,
693                              AddendL, LL, RL);
694     SDValue Lo(Hi.getNode(), 1);
695     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
696   }
697   if (LHSSB > 32 && RHSSB > 32) {
698     // The inputs are both sign-extended.
699     SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
700                              DAG.getVTList(MVT::i32, MVT::i32), AddendH,
701                              AddendL, LL, RL);
702     SDValue Lo(Hi.getNode(), 1);
703     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
704   }
705   SDValue LH, RH;
706   LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
707                    Mul.getOperand(0), DAG.getConstant(1, dl, MVT::i32));
708   RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
709                    Mul.getOperand(1), DAG.getConstant(1, dl, MVT::i32));
710   SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
711                            DAG.getVTList(MVT::i32, MVT::i32), AddendH,
712                            AddendL, LL, RL);
713   SDValue Lo(Hi.getNode(), 1);
714   RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH);
715   LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL);
716   Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH);
717   Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH);
718   return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
719 }
720
721 SDValue XCoreTargetLowering::
722 ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const
723 {
724   assert(N->getValueType(0) == MVT::i64 &&
725          (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
726         "Unknown operand to lower!");
727
728   if (N->getOpcode() == ISD::ADD) {
729     SDValue Result = TryExpandADDWithMul(N, DAG);
730     if (Result.getNode())
731       return Result;
732   }
733
734   SDLoc dl(N);
735
736   // Extract components
737   SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
738                              N->getOperand(0),
739                              DAG.getConstant(0, dl, MVT::i32));
740   SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
741                              N->getOperand(0),
742                              DAG.getConstant(1, dl, MVT::i32));
743   SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
744                              N->getOperand(1),
745                              DAG.getConstant(0, dl, MVT::i32));
746   SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
747                              N->getOperand(1),
748                              DAG.getConstant(1, dl, MVT::i32));
749
750   // Expand
751   unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD :
752                                                    XCoreISD::LSUB;
753   SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
754   SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
755                            LHSL, RHSL, Zero);
756   SDValue Carry(Lo.getNode(), 1);
757
758   SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
759                            LHSH, RHSH, Carry);
760   SDValue Ignored(Hi.getNode(), 1);
761   // Merge the pieces
762   return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
763 }
764
765 SDValue XCoreTargetLowering::
766 LowerVAARG(SDValue Op, SelectionDAG &DAG) const
767 {
768   // Whist llvm does not support aggregate varargs we can ignore
769   // the possibility of the ValueType being an implicit byVal vararg.
770   SDNode *Node = Op.getNode();
771   EVT VT = Node->getValueType(0); // not an aggregate
772   SDValue InChain = Node->getOperand(0);
773   SDValue VAListPtr = Node->getOperand(1);
774   EVT PtrVT = VAListPtr.getValueType();
775   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
776   SDLoc dl(Node);
777   SDValue VAList = DAG.getLoad(PtrVT, dl, InChain,
778                                VAListPtr, MachinePointerInfo(SV),
779                                false, false, false, 0);
780   // Increment the pointer, VAList, to the next vararg
781   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList,
782                                 DAG.getIntPtrConstant(VT.getSizeInBits() / 8,
783                                                       dl));
784   // Store the incremented VAList to the legalized pointer
785   InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr,
786                          MachinePointerInfo(SV), false, false, 0);
787   // Load the actual argument out of the pointer VAList
788   return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo(),
789                      false, false, false, 0);
790 }
791
792 SDValue XCoreTargetLowering::
793 LowerVASTART(SDValue Op, SelectionDAG &DAG) const
794 {
795   SDLoc dl(Op);
796   // vastart stores the address of the VarArgsFrameIndex slot into the
797   // memory location argument
798   MachineFunction &MF = DAG.getMachineFunction();
799   XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
800   SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32);
801   return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1),
802                       MachinePointerInfo(), false, false, 0);
803 }
804
805 SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op,
806                                             SelectionDAG &DAG) const {
807   // This nodes represent llvm.frameaddress on the DAG.
808   // It takes one operand, the index of the frame address to return.
809   // An index of zero corresponds to the current function's frame address.
810   // An index of one to the parent's frame address, and so on.
811   // Depths > 0 not supported yet!
812   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
813     return SDValue();
814
815   MachineFunction &MF = DAG.getMachineFunction();
816   const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
817   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op),
818                             RegInfo->getFrameRegister(MF), MVT::i32);
819 }
820
821 SDValue XCoreTargetLowering::
822 LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
823   // This nodes represent llvm.returnaddress on the DAG.
824   // It takes one operand, the index of the return address to return.
825   // An index of zero corresponds to the current function's return address.
826   // An index of one to the parent's return address, and so on.
827   // Depths > 0 not supported yet!
828   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
829     return SDValue();
830
831   MachineFunction &MF = DAG.getMachineFunction();
832   XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
833   int FI = XFI->createLRSpillSlot(MF);
834   SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
835   return DAG.getLoad(
836       getPointerTy(DAG.getDataLayout()), SDLoc(Op), DAG.getEntryNode(), FIN,
837       MachinePointerInfo::getFixedStack(MF, FI), false, false, false, 0);
838 }
839
840 SDValue XCoreTargetLowering::
841 LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const {
842   // This node represents offset from frame pointer to first on-stack argument.
843   // This is needed for correct stack adjustment during unwind.
844   // However, we don't know the offset until after the frame has be finalised.
845   // This is done during the XCoreFTAOElim pass.
846   return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32);
847 }
848
849 SDValue XCoreTargetLowering::
850 LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
851   // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER)
852   // This node represents 'eh_return' gcc dwarf builtin, which is used to
853   // return from exception. The general meaning is: adjust stack by OFFSET and
854   // pass execution to HANDLER.
855   MachineFunction &MF = DAG.getMachineFunction();
856   SDValue Chain     = Op.getOperand(0);
857   SDValue Offset    = Op.getOperand(1);
858   SDValue Handler   = Op.getOperand(2);
859   SDLoc dl(Op);
860
861   // Absolute SP = (FP + FrameToArgs) + Offset
862   const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
863   SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
864                             RegInfo->getFrameRegister(MF), MVT::i32);
865   SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl,
866                                     MVT::i32);
867   Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs);
868   Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset);
869
870   // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister
871   // which leaves 2 caller saved registers, R2 & R3 for us to use.
872   unsigned StackReg = XCore::R2;
873   unsigned HandlerReg = XCore::R3;
874
875   SDValue OutChains[] = {
876     DAG.getCopyToReg(Chain, dl, StackReg, Stack),
877     DAG.getCopyToReg(Chain, dl, HandlerReg, Handler)
878   };
879
880   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
881
882   return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain,
883                      DAG.getRegister(StackReg, MVT::i32),
884                      DAG.getRegister(HandlerReg, MVT::i32));
885
886 }
887
888 SDValue XCoreTargetLowering::
889 LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
890   return Op.getOperand(0);
891 }
892
893 SDValue XCoreTargetLowering::
894 LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
895   SDValue Chain = Op.getOperand(0);
896   SDValue Trmp = Op.getOperand(1); // trampoline
897   SDValue FPtr = Op.getOperand(2); // nested function
898   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
899
900   const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
901
902   // .align 4
903   // LDAPF_u10 r11, nest
904   // LDW_2rus r11, r11[0]
905   // STWSP_ru6 r11, sp[0]
906   // LDAPF_u10 r11, fptr
907   // LDW_2rus r11, r11[0]
908   // BAU_1r r11
909   // nest:
910   // .word nest
911   // fptr:
912   // .word fptr
913   SDValue OutChains[5];
914
915   SDValue Addr = Trmp;
916
917   SDLoc dl(Op);
918   OutChains[0] = DAG.getStore(Chain, dl,
919                               DAG.getConstant(0x0a3cd805, dl, MVT::i32), Addr,
920                               MachinePointerInfo(TrmpAddr), false, false, 0);
921
922   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
923                      DAG.getConstant(4, dl, MVT::i32));
924   OutChains[1] = DAG.getStore(Chain, dl,
925                               DAG.getConstant(0xd80456c0, dl, MVT::i32), Addr,
926                               MachinePointerInfo(TrmpAddr, 4), false, false, 0);
927
928   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
929                      DAG.getConstant(8, dl, MVT::i32));
930   OutChains[2] = DAG.getStore(Chain, dl,
931                               DAG.getConstant(0x27fb0a3c, dl, MVT::i32), Addr,
932                               MachinePointerInfo(TrmpAddr, 8), false, false, 0);
933
934   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
935                      DAG.getConstant(12, dl, MVT::i32));
936   OutChains[3] = DAG.getStore(Chain, dl, Nest, Addr,
937                               MachinePointerInfo(TrmpAddr, 12), false, false,
938                               0);
939
940   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
941                      DAG.getConstant(16, dl, MVT::i32));
942   OutChains[4] = DAG.getStore(Chain, dl, FPtr, Addr,
943                               MachinePointerInfo(TrmpAddr, 16), false, false,
944                               0);
945
946   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
947 }
948
949 SDValue XCoreTargetLowering::
950 LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
951   SDLoc DL(Op);
952   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
953   switch (IntNo) {
954     case Intrinsic::xcore_crc8:
955       EVT VT = Op.getValueType();
956       SDValue Data =
957         DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT),
958                     Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3));
959       SDValue Crc(Data.getNode(), 1);
960       SDValue Results[] = { Crc, Data };
961       return DAG.getMergeValues(Results, DL);
962   }
963   return SDValue();
964 }
965
966 SDValue XCoreTargetLowering::
967 LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const {
968   SDLoc DL(Op);
969   return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
970 }
971
972 SDValue XCoreTargetLowering::
973 LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const {
974   AtomicSDNode *N = cast<AtomicSDNode>(Op);
975   assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP");
976   assert(N->getOrdering() <= Monotonic &&
977          "setInsertFencesForAtomic(true) and yet greater than Monotonic");
978   if (N->getMemoryVT() == MVT::i32) {
979     if (N->getAlignment() < 4)
980       report_fatal_error("atomic load must be aligned");
981     return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op),
982                        N->getChain(), N->getBasePtr(), N->getPointerInfo(),
983                        N->isVolatile(), N->isNonTemporal(), N->isInvariant(),
984                        N->getAlignment(), N->getAAInfo(), N->getRanges());
985   }
986   if (N->getMemoryVT() == MVT::i16) {
987     if (N->getAlignment() < 2)
988       report_fatal_error("atomic load must be aligned");
989     return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
990                           N->getBasePtr(), N->getPointerInfo(), MVT::i16,
991                           N->isVolatile(), N->isNonTemporal(),
992                           N->isInvariant(), N->getAlignment(), N->getAAInfo());
993   }
994   if (N->getMemoryVT() == MVT::i8)
995     return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
996                           N->getBasePtr(), N->getPointerInfo(), MVT::i8,
997                           N->isVolatile(), N->isNonTemporal(),
998                           N->isInvariant(), N->getAlignment(), N->getAAInfo());
999   return SDValue();
1000 }
1001
1002 SDValue XCoreTargetLowering::
1003 LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const {
1004   AtomicSDNode *N = cast<AtomicSDNode>(Op);
1005   assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP");
1006   assert(N->getOrdering() <= Monotonic &&
1007          "setInsertFencesForAtomic(true) and yet greater than Monotonic");
1008   if (N->getMemoryVT() == MVT::i32) {
1009     if (N->getAlignment() < 4)
1010       report_fatal_error("atomic store must be aligned");
1011     return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(),
1012                         N->getBasePtr(), N->getPointerInfo(),
1013                         N->isVolatile(), N->isNonTemporal(),
1014                         N->getAlignment(), N->getAAInfo());
1015   }
1016   if (N->getMemoryVT() == MVT::i16) {
1017     if (N->getAlignment() < 2)
1018       report_fatal_error("atomic store must be aligned");
1019     return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
1020                              N->getBasePtr(), N->getPointerInfo(), MVT::i16,
1021                              N->isVolatile(), N->isNonTemporal(),
1022                              N->getAlignment(), N->getAAInfo());
1023   }
1024   if (N->getMemoryVT() == MVT::i8)
1025     return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
1026                              N->getBasePtr(), N->getPointerInfo(), MVT::i8,
1027                              N->isVolatile(), N->isNonTemporal(),
1028                              N->getAlignment(), N->getAAInfo());
1029   return SDValue();
1030 }
1031
1032 //===----------------------------------------------------------------------===//
1033 //                      Calling Convention Implementation
1034 //===----------------------------------------------------------------------===//
1035
1036 #include "XCoreGenCallingConv.inc"
1037
1038 //===----------------------------------------------------------------------===//
1039 //                  Call Calling Convention Implementation
1040 //===----------------------------------------------------------------------===//
1041
1042 /// XCore call implementation
1043 SDValue
1044 XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1045                                SmallVectorImpl<SDValue> &InVals) const {
1046   SelectionDAG &DAG                     = CLI.DAG;
1047   SDLoc &dl                             = CLI.DL;
1048   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1049   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
1050   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
1051   SDValue Chain                         = CLI.Chain;
1052   SDValue Callee                        = CLI.Callee;
1053   bool &isTailCall                      = CLI.IsTailCall;
1054   CallingConv::ID CallConv              = CLI.CallConv;
1055   bool isVarArg                         = CLI.IsVarArg;
1056
1057   // XCore target does not yet support tail call optimization.
1058   isTailCall = false;
1059
1060   // For now, only CallingConv::C implemented
1061   switch (CallConv)
1062   {
1063     default:
1064       llvm_unreachable("Unsupported calling convention");
1065     case CallingConv::Fast:
1066     case CallingConv::C:
1067       return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
1068                             Outs, OutVals, Ins, dl, DAG, InVals);
1069   }
1070 }
1071
1072 /// LowerCallResult - Lower the result values of a call into the
1073 /// appropriate copies out of appropriate physical registers / memory locations.
1074 static SDValue
1075 LowerCallResult(SDValue Chain, SDValue InFlag,
1076                 const SmallVectorImpl<CCValAssign> &RVLocs,
1077                 SDLoc dl, SelectionDAG &DAG,
1078                 SmallVectorImpl<SDValue> &InVals) {
1079   SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs;
1080   // Copy results out of physical registers.
1081   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1082     const CCValAssign &VA = RVLocs[i];
1083     if (VA.isRegLoc()) {
1084       Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(),
1085                                  InFlag).getValue(1);
1086       InFlag = Chain.getValue(2);
1087       InVals.push_back(Chain.getValue(0));
1088     } else {
1089       assert(VA.isMemLoc());
1090       ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(),
1091                                              InVals.size()));
1092       // Reserve space for this result.
1093       InVals.push_back(SDValue());
1094     }
1095   }
1096
1097   // Copy results out of memory.
1098   SmallVector<SDValue, 4> MemOpChains;
1099   for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) {
1100     int offset = ResultMemLocs[i].first;
1101     unsigned index = ResultMemLocs[i].second;
1102     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
1103     SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, dl, MVT::i32) };
1104     SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops);
1105     InVals[index] = load;
1106     MemOpChains.push_back(load.getValue(1));
1107   }
1108
1109   // Transform all loads nodes into one single node because
1110   // all load nodes are independent of each other.
1111   if (!MemOpChains.empty())
1112     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1113
1114   return Chain;
1115 }
1116
1117 /// LowerCCCCallTo - functions arguments are copied from virtual
1118 /// regs to (physical regs)/(stack frame), CALLSEQ_START and
1119 /// CALLSEQ_END are emitted.
1120 /// TODO: isTailCall, sret.
1121 SDValue
1122 XCoreTargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee,
1123                                     CallingConv::ID CallConv, bool isVarArg,
1124                                     bool isTailCall,
1125                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
1126                                     const SmallVectorImpl<SDValue> &OutVals,
1127                                     const SmallVectorImpl<ISD::InputArg> &Ins,
1128                                     SDLoc dl, SelectionDAG &DAG,
1129                                     SmallVectorImpl<SDValue> &InVals) const {
1130
1131   // Analyze operands of the call, assigning locations to each operand.
1132   SmallVector<CCValAssign, 16> ArgLocs;
1133   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1134                  *DAG.getContext());
1135
1136   // The ABI dictates there should be one stack slot available to the callee
1137   // on function entry (for saving lr).
1138   CCInfo.AllocateStack(4, 4);
1139
1140   CCInfo.AnalyzeCallOperands(Outs, CC_XCore);
1141
1142   SmallVector<CCValAssign, 16> RVLocs;
1143   // Analyze return values to determine the number of bytes of stack required.
1144   CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1145                     *DAG.getContext());
1146   RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), 4);
1147   RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore);
1148
1149   // Get a count of how many bytes are to be pushed on the stack.
1150   unsigned NumBytes = RetCCInfo.getNextStackOffset();
1151   auto PtrVT = getPointerTy(DAG.getDataLayout());
1152
1153   Chain = DAG.getCALLSEQ_START(Chain,
1154                                DAG.getConstant(NumBytes, dl, PtrVT, true), dl);
1155
1156   SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
1157   SmallVector<SDValue, 12> MemOpChains;
1158
1159   // Walk the register/memloc assignments, inserting copies/loads.
1160   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1161     CCValAssign &VA = ArgLocs[i];
1162     SDValue Arg = OutVals[i];
1163
1164     // Promote the value if needed.
1165     switch (VA.getLocInfo()) {
1166       default: llvm_unreachable("Unknown loc info!");
1167       case CCValAssign::Full: break;
1168       case CCValAssign::SExt:
1169         Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1170         break;
1171       case CCValAssign::ZExt:
1172         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1173         break;
1174       case CCValAssign::AExt:
1175         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1176         break;
1177     }
1178
1179     // Arguments that can be passed on register must be kept at
1180     // RegsToPass vector
1181     if (VA.isRegLoc()) {
1182       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1183     } else {
1184       assert(VA.isMemLoc());
1185
1186       int Offset = VA.getLocMemOffset();
1187
1188       MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other,
1189                                         Chain, Arg,
1190                                         DAG.getConstant(Offset/4, dl,
1191                                                         MVT::i32)));
1192     }
1193   }
1194
1195   // Transform all store nodes into one single node because
1196   // all store nodes are independent of each other.
1197   if (!MemOpChains.empty())
1198     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1199
1200   // Build a sequence of copy-to-reg nodes chained together with token
1201   // chain and flag operands which copy the outgoing args into registers.
1202   // The InFlag in necessary since all emitted instructions must be
1203   // stuck together.
1204   SDValue InFlag;
1205   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1206     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1207                              RegsToPass[i].second, InFlag);
1208     InFlag = Chain.getValue(1);
1209   }
1210
1211   // If the callee is a GlobalAddress node (quite common, every direct call is)
1212   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1213   // Likewise ExternalSymbol -> TargetExternalSymbol.
1214   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1215     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32);
1216   else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
1217     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
1218
1219   // XCoreBranchLink = #chain, #target_address, #opt_in_flags...
1220   //             = Chain, Callee, Reg#1, Reg#2, ...
1221   //
1222   // Returns a chain & a flag for retval copy to use.
1223   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1224   SmallVector<SDValue, 8> Ops;
1225   Ops.push_back(Chain);
1226   Ops.push_back(Callee);
1227
1228   // Add argument registers to the end of the list so that they are
1229   // known live into the call.
1230   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1231     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1232                                   RegsToPass[i].second.getValueType()));
1233
1234   if (InFlag.getNode())
1235     Ops.push_back(InFlag);
1236
1237   Chain  = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops);
1238   InFlag = Chain.getValue(1);
1239
1240   // Create the CALLSEQ_END node.
1241   Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, dl, PtrVT, true),
1242                              DAG.getConstant(0, dl, PtrVT, true), InFlag, dl);
1243   InFlag = Chain.getValue(1);
1244
1245   // Handle result values, copying them out of physregs into vregs that we
1246   // return.
1247   return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals);
1248 }
1249
1250 //===----------------------------------------------------------------------===//
1251 //             Formal Arguments Calling Convention Implementation
1252 //===----------------------------------------------------------------------===//
1253
1254 namespace {
1255   struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; };
1256 }
1257
1258 /// XCore formal arguments implementation
1259 SDValue
1260 XCoreTargetLowering::LowerFormalArguments(SDValue Chain,
1261                                           CallingConv::ID CallConv,
1262                                           bool isVarArg,
1263                                       const SmallVectorImpl<ISD::InputArg> &Ins,
1264                                           SDLoc dl,
1265                                           SelectionDAG &DAG,
1266                                           SmallVectorImpl<SDValue> &InVals)
1267                                             const {
1268   switch (CallConv)
1269   {
1270     default:
1271       llvm_unreachable("Unsupported calling convention");
1272     case CallingConv::C:
1273     case CallingConv::Fast:
1274       return LowerCCCArguments(Chain, CallConv, isVarArg,
1275                                Ins, dl, DAG, InVals);
1276   }
1277 }
1278
1279 /// LowerCCCArguments - transform physical registers into
1280 /// virtual registers and generate load operations for
1281 /// arguments places on the stack.
1282 /// TODO: sret
1283 SDValue
1284 XCoreTargetLowering::LowerCCCArguments(SDValue Chain,
1285                                        CallingConv::ID CallConv,
1286                                        bool isVarArg,
1287                                        const SmallVectorImpl<ISD::InputArg>
1288                                          &Ins,
1289                                        SDLoc dl,
1290                                        SelectionDAG &DAG,
1291                                        SmallVectorImpl<SDValue> &InVals) const {
1292   MachineFunction &MF = DAG.getMachineFunction();
1293   MachineFrameInfo *MFI = MF.getFrameInfo();
1294   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1295   XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1296
1297   // Assign locations to all of the incoming arguments.
1298   SmallVector<CCValAssign, 16> ArgLocs;
1299   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1300                  *DAG.getContext());
1301
1302   CCInfo.AnalyzeFormalArguments(Ins, CC_XCore);
1303
1304   unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize();
1305
1306   unsigned LRSaveSize = StackSlotSize;
1307
1308   if (!isVarArg)
1309     XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize);
1310
1311   // All getCopyFromReg ops must precede any getMemcpys to prevent the
1312   // scheduler clobbering a register before it has been copied.
1313   // The stages are:
1314   // 1. CopyFromReg (and load) arg & vararg registers.
1315   // 2. Chain CopyFromReg nodes into a TokenFactor.
1316   // 3. Memcpy 'byVal' args & push final InVals.
1317   // 4. Chain mem ops nodes into a TokenFactor.
1318   SmallVector<SDValue, 4> CFRegNode;
1319   SmallVector<ArgDataPair, 4> ArgData;
1320   SmallVector<SDValue, 4> MemOps;
1321
1322   // 1a. CopyFromReg (and load) arg registers.
1323   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1324
1325     CCValAssign &VA = ArgLocs[i];
1326     SDValue ArgIn;
1327
1328     if (VA.isRegLoc()) {
1329       // Arguments passed in registers
1330       EVT RegVT = VA.getLocVT();
1331       switch (RegVT.getSimpleVT().SimpleTy) {
1332       default:
1333         {
1334 #ifndef NDEBUG
1335           errs() << "LowerFormalArguments Unhandled argument type: "
1336                  << RegVT.getSimpleVT().SimpleTy << "\n";
1337 #endif
1338           llvm_unreachable(nullptr);
1339         }
1340       case MVT::i32:
1341         unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1342         RegInfo.addLiveIn(VA.getLocReg(), VReg);
1343         ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
1344         CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1));
1345       }
1346     } else {
1347       // sanity check
1348       assert(VA.isMemLoc());
1349       // Load the argument to a virtual register
1350       unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
1351       if (ObjSize > StackSlotSize) {
1352         errs() << "LowerFormalArguments Unhandled argument type: "
1353                << EVT(VA.getLocVT()).getEVTString()
1354                << "\n";
1355       }
1356       // Create the frame index object for this incoming parameter...
1357       int FI = MFI->CreateFixedObject(ObjSize,
1358                                       LRSaveSize + VA.getLocMemOffset(),
1359                                       true);
1360
1361       // Create the SelectionDAG nodes corresponding to a load
1362       //from this parameter
1363       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1364       ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
1365                           MachinePointerInfo::getFixedStack(MF, FI), false,
1366                           false, false, 0);
1367     }
1368     const ArgDataPair ADP = { ArgIn, Ins[i].Flags };
1369     ArgData.push_back(ADP);
1370   }
1371
1372   // 1b. CopyFromReg vararg registers.
1373   if (isVarArg) {
1374     // Argument registers
1375     static const MCPhysReg ArgRegs[] = {
1376       XCore::R0, XCore::R1, XCore::R2, XCore::R3
1377     };
1378     XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1379     unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs);
1380     if (FirstVAReg < array_lengthof(ArgRegs)) {
1381       int offset = 0;
1382       // Save remaining registers, storing higher register numbers at a higher
1383       // address
1384       for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) {
1385         // Create a stack slot
1386         int FI = MFI->CreateFixedObject(4, offset, true);
1387         if (i == (int)FirstVAReg) {
1388           XFI->setVarArgsFrameIndex(FI);
1389         }
1390         offset -= StackSlotSize;
1391         SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1392         // Move argument from phys reg -> virt reg
1393         unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1394         RegInfo.addLiveIn(ArgRegs[i], VReg);
1395         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1396         CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1));
1397         // Move argument from virt reg -> stack
1398         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1399                                      MachinePointerInfo(), false, false, 0);
1400         MemOps.push_back(Store);
1401       }
1402     } else {
1403       // This will point to the next argument passed via stack.
1404       XFI->setVarArgsFrameIndex(
1405         MFI->CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(),
1406                                true));
1407     }
1408   }
1409
1410   // 2. chain CopyFromReg nodes into a TokenFactor.
1411   if (!CFRegNode.empty())
1412     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode);
1413
1414   // 3. Memcpy 'byVal' args & push final InVals.
1415   // Aggregates passed "byVal" need to be copied by the callee.
1416   // The callee will use a pointer to this copy, rather than the original
1417   // pointer.
1418   for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(),
1419                                                     ArgDE = ArgData.end();
1420        ArgDI != ArgDE; ++ArgDI) {
1421     if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) {
1422       unsigned Size = ArgDI->Flags.getByValSize();
1423       unsigned Align = std::max(StackSlotSize, ArgDI->Flags.getByValAlign());
1424       // Create a new object on the stack and copy the pointee into it.
1425       int FI = MFI->CreateStackObject(Size, Align, false);
1426       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1427       InVals.push_back(FIN);
1428       MemOps.push_back(DAG.getMemcpy(Chain, dl, FIN, ArgDI->SDV,
1429                                      DAG.getConstant(Size, dl, MVT::i32),
1430                                      Align, false, false, false,
1431                                      MachinePointerInfo(),
1432                                      MachinePointerInfo()));
1433     } else {
1434       InVals.push_back(ArgDI->SDV);
1435     }
1436   }
1437
1438   // 4, chain mem ops nodes into a TokenFactor.
1439   if (!MemOps.empty()) {
1440     MemOps.push_back(Chain);
1441     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
1442   }
1443
1444   return Chain;
1445 }
1446
1447 //===----------------------------------------------------------------------===//
1448 //               Return Value Calling Convention Implementation
1449 //===----------------------------------------------------------------------===//
1450
1451 bool XCoreTargetLowering::
1452 CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1453                bool isVarArg,
1454                const SmallVectorImpl<ISD::OutputArg> &Outs,
1455                LLVMContext &Context) const {
1456   SmallVector<CCValAssign, 16> RVLocs;
1457   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1458   if (!CCInfo.CheckReturn(Outs, RetCC_XCore))
1459     return false;
1460   if (CCInfo.getNextStackOffset() != 0 && isVarArg)
1461     return false;
1462   return true;
1463 }
1464
1465 SDValue
1466 XCoreTargetLowering::LowerReturn(SDValue Chain,
1467                                  CallingConv::ID CallConv, bool isVarArg,
1468                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
1469                                  const SmallVectorImpl<SDValue> &OutVals,
1470                                  SDLoc dl, SelectionDAG &DAG) const {
1471
1472   XCoreFunctionInfo *XFI =
1473     DAG.getMachineFunction().getInfo<XCoreFunctionInfo>();
1474   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1475
1476   // CCValAssign - represent the assignment of
1477   // the return value to a location
1478   SmallVector<CCValAssign, 16> RVLocs;
1479
1480   // CCState - Info about the registers and stack slot.
1481   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1482                  *DAG.getContext());
1483
1484   // Analyze return values.
1485   if (!isVarArg)
1486     CCInfo.AllocateStack(XFI->getReturnStackOffset(), 4);
1487
1488   CCInfo.AnalyzeReturn(Outs, RetCC_XCore);
1489
1490   SDValue Flag;
1491   SmallVector<SDValue, 4> RetOps(1, Chain);
1492
1493   // Return on XCore is always a "retsp 0"
1494   RetOps.push_back(DAG.getConstant(0, dl, MVT::i32));
1495
1496   SmallVector<SDValue, 4> MemOpChains;
1497   // Handle return values that must be copied to memory.
1498   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1499     CCValAssign &VA = RVLocs[i];
1500     if (VA.isRegLoc())
1501       continue;
1502     assert(VA.isMemLoc());
1503     if (isVarArg) {
1504       report_fatal_error("Can't return value from vararg function in memory");
1505     }
1506
1507     int Offset = VA.getLocMemOffset();
1508     unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
1509     // Create the frame index object for the memory location.
1510     int FI = MFI->CreateFixedObject(ObjSize, Offset, false);
1511
1512     // Create a SelectionDAG node corresponding to a store
1513     // to this memory location.
1514     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1515     MemOpChains.push_back(DAG.getStore(
1516         Chain, dl, OutVals[i], FIN,
1517         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false,
1518         false, 0));
1519   }
1520
1521   // Transform all store nodes into one single node because
1522   // all stores are independent of each other.
1523   if (!MemOpChains.empty())
1524     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1525
1526   // Now handle return values copied to registers.
1527   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1528     CCValAssign &VA = RVLocs[i];
1529     if (!VA.isRegLoc())
1530       continue;
1531     // Copy the result values into the output registers.
1532     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
1533
1534     // guarantee that all emitted copies are
1535     // stuck together, avoiding something bad
1536     Flag = Chain.getValue(1);
1537     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1538   }
1539
1540   RetOps[0] = Chain;  // Update chain.
1541
1542   // Add the flag if we have it.
1543   if (Flag.getNode())
1544     RetOps.push_back(Flag);
1545
1546   return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps);
1547 }
1548
1549 //===----------------------------------------------------------------------===//
1550 //  Other Lowering Code
1551 //===----------------------------------------------------------------------===//
1552
1553 MachineBasicBlock *
1554 XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1555                                                  MachineBasicBlock *BB) const {
1556   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1557   DebugLoc dl = MI->getDebugLoc();
1558   assert((MI->getOpcode() == XCore::SELECT_CC) &&
1559          "Unexpected instr type to insert");
1560
1561   // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
1562   // control-flow pattern.  The incoming instruction knows the destination vreg
1563   // to set, the condition code register to branch on, the true/false values to
1564   // select between, and a branch opcode to use.
1565   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1566   MachineFunction::iterator It = ++BB->getIterator();
1567
1568   //  thisMBB:
1569   //  ...
1570   //   TrueVal = ...
1571   //   cmpTY ccX, r1, r2
1572   //   bCC copy1MBB
1573   //   fallthrough --> copy0MBB
1574   MachineBasicBlock *thisMBB = BB;
1575   MachineFunction *F = BB->getParent();
1576   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1577   MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
1578   F->insert(It, copy0MBB);
1579   F->insert(It, sinkMBB);
1580
1581   // Transfer the remainder of BB and its successor edges to sinkMBB.
1582   sinkMBB->splice(sinkMBB->begin(), BB,
1583                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
1584   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1585
1586   // Next, add the true and fallthrough blocks as its successors.
1587   BB->addSuccessor(copy0MBB);
1588   BB->addSuccessor(sinkMBB);
1589
1590   BuildMI(BB, dl, TII.get(XCore::BRFT_lru6))
1591     .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
1592
1593   //  copy0MBB:
1594   //   %FalseValue = ...
1595   //   # fallthrough to sinkMBB
1596   BB = copy0MBB;
1597
1598   // Update machine-CFG edges
1599   BB->addSuccessor(sinkMBB);
1600
1601   //  sinkMBB:
1602   //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1603   //  ...
1604   BB = sinkMBB;
1605   BuildMI(*BB, BB->begin(), dl,
1606           TII.get(XCore::PHI), MI->getOperand(0).getReg())
1607     .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
1608     .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
1609
1610   MI->eraseFromParent();   // The pseudo instruction is gone now.
1611   return BB;
1612 }
1613
1614 //===----------------------------------------------------------------------===//
1615 // Target Optimization Hooks
1616 //===----------------------------------------------------------------------===//
1617
1618 SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
1619                                              DAGCombinerInfo &DCI) const {
1620   SelectionDAG &DAG = DCI.DAG;
1621   SDLoc dl(N);
1622   switch (N->getOpcode()) {
1623   default: break;
1624   case ISD::INTRINSIC_VOID:
1625     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
1626     case Intrinsic::xcore_outt:
1627     case Intrinsic::xcore_outct:
1628     case Intrinsic::xcore_chkct: {
1629       SDValue OutVal = N->getOperand(3);
1630       // These instructions ignore the high bits.
1631       if (OutVal.hasOneUse()) {
1632         unsigned BitWidth = OutVal.getValueSizeInBits();
1633         APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
1634         APInt KnownZero, KnownOne;
1635         TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1636                                               !DCI.isBeforeLegalizeOps());
1637         const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1638         if (TLO.ShrinkDemandedConstant(OutVal, DemandedMask) ||
1639             TLI.SimplifyDemandedBits(OutVal, DemandedMask, KnownZero, KnownOne,
1640                                      TLO))
1641           DCI.CommitTargetLoweringOpt(TLO);
1642       }
1643       break;
1644     }
1645     case Intrinsic::xcore_setpt: {
1646       SDValue Time = N->getOperand(3);
1647       // This instruction ignores the high bits.
1648       if (Time.hasOneUse()) {
1649         unsigned BitWidth = Time.getValueSizeInBits();
1650         APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
1651         APInt KnownZero, KnownOne;
1652         TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1653                                               !DCI.isBeforeLegalizeOps());
1654         const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1655         if (TLO.ShrinkDemandedConstant(Time, DemandedMask) ||
1656             TLI.SimplifyDemandedBits(Time, DemandedMask, KnownZero, KnownOne,
1657                                      TLO))
1658           DCI.CommitTargetLoweringOpt(TLO);
1659       }
1660       break;
1661     }
1662     }
1663     break;
1664   case XCoreISD::LADD: {
1665     SDValue N0 = N->getOperand(0);
1666     SDValue N1 = N->getOperand(1);
1667     SDValue N2 = N->getOperand(2);
1668     ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1669     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1670     EVT VT = N0.getValueType();
1671
1672     // canonicalize constant to RHS
1673     if (N0C && !N1C)
1674       return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2);
1675
1676     // fold (ladd 0, 0, x) -> 0, x & 1
1677     if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1678       SDValue Carry = DAG.getConstant(0, dl, VT);
1679       SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2,
1680                                    DAG.getConstant(1, dl, VT));
1681       SDValue Ops[] = { Result, Carry };
1682       return DAG.getMergeValues(Ops, dl);
1683     }
1684
1685     // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the
1686     // low bit set
1687     if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1688       APInt KnownZero, KnownOne;
1689       APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1690                                          VT.getSizeInBits() - 1);
1691       DAG.computeKnownBits(N2, KnownZero, KnownOne);
1692       if ((KnownZero & Mask) == Mask) {
1693         SDValue Carry = DAG.getConstant(0, dl, VT);
1694         SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2);
1695         SDValue Ops[] = { Result, Carry };
1696         return DAG.getMergeValues(Ops, dl);
1697       }
1698     }
1699   }
1700   break;
1701   case XCoreISD::LSUB: {
1702     SDValue N0 = N->getOperand(0);
1703     SDValue N1 = N->getOperand(1);
1704     SDValue N2 = N->getOperand(2);
1705     ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1706     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1707     EVT VT = N0.getValueType();
1708
1709     // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set
1710     if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1711       APInt KnownZero, KnownOne;
1712       APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1713                                          VT.getSizeInBits() - 1);
1714       DAG.computeKnownBits(N2, KnownZero, KnownOne);
1715       if ((KnownZero & Mask) == Mask) {
1716         SDValue Borrow = N2;
1717         SDValue Result = DAG.getNode(ISD::SUB, dl, VT,
1718                                      DAG.getConstant(0, dl, VT), N2);
1719         SDValue Ops[] = { Result, Borrow };
1720         return DAG.getMergeValues(Ops, dl);
1721       }
1722     }
1723
1724     // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the
1725     // low bit set
1726     if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1727       APInt KnownZero, KnownOne;
1728       APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1729                                          VT.getSizeInBits() - 1);
1730       DAG.computeKnownBits(N2, KnownZero, KnownOne);
1731       if ((KnownZero & Mask) == Mask) {
1732         SDValue Borrow = DAG.getConstant(0, dl, VT);
1733         SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2);
1734         SDValue Ops[] = { Result, Borrow };
1735         return DAG.getMergeValues(Ops, dl);
1736       }
1737     }
1738   }
1739   break;
1740   case XCoreISD::LMUL: {
1741     SDValue N0 = N->getOperand(0);
1742     SDValue N1 = N->getOperand(1);
1743     SDValue N2 = N->getOperand(2);
1744     SDValue N3 = N->getOperand(3);
1745     ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1746     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1747     EVT VT = N0.getValueType();
1748     // Canonicalize multiplicative constant to RHS. If both multiplicative
1749     // operands are constant canonicalize smallest to RHS.
1750     if ((N0C && !N1C) ||
1751         (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue()))
1752       return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT),
1753                          N1, N0, N2, N3);
1754
1755     // lmul(x, 0, a, b)
1756     if (N1C && N1C->isNullValue()) {
1757       // If the high result is unused fold to add(a, b)
1758       if (N->hasNUsesOfValue(0, 0)) {
1759         SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3);
1760         SDValue Ops[] = { Lo, Lo };
1761         return DAG.getMergeValues(Ops, dl);
1762       }
1763       // Otherwise fold to ladd(a, b, 0)
1764       SDValue Result =
1765         DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1);
1766       SDValue Carry(Result.getNode(), 1);
1767       SDValue Ops[] = { Carry, Result };
1768       return DAG.getMergeValues(Ops, dl);
1769     }
1770   }
1771   break;
1772   case ISD::ADD: {
1773     // Fold 32 bit expressions such as add(add(mul(x,y),a),b) ->
1774     // lmul(x, y, a, b). The high result of lmul will be ignored.
1775     // This is only profitable if the intermediate results are unused
1776     // elsewhere.
1777     SDValue Mul0, Mul1, Addend0, Addend1;
1778     if (N->getValueType(0) == MVT::i32 &&
1779         isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) {
1780       SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl,
1781                                     DAG.getVTList(MVT::i32, MVT::i32), Mul0,
1782                                     Mul1, Addend0, Addend1);
1783       SDValue Result(Ignored.getNode(), 1);
1784       return Result;
1785     }
1786     APInt HighMask = APInt::getHighBitsSet(64, 32);
1787     // Fold 64 bit expression such as add(add(mul(x,y),a),b) ->
1788     // lmul(x, y, a, b) if all operands are zero-extended. We do this
1789     // before type legalization as it is messy to match the operands after
1790     // that.
1791     if (N->getValueType(0) == MVT::i64 &&
1792         isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) &&
1793         DAG.MaskedValueIsZero(Mul0, HighMask) &&
1794         DAG.MaskedValueIsZero(Mul1, HighMask) &&
1795         DAG.MaskedValueIsZero(Addend0, HighMask) &&
1796         DAG.MaskedValueIsZero(Addend1, HighMask)) {
1797       SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1798                                   Mul0, DAG.getConstant(0, dl, MVT::i32));
1799       SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1800                                   Mul1, DAG.getConstant(0, dl, MVT::i32));
1801       SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1802                                      Addend0, DAG.getConstant(0, dl, MVT::i32));
1803       SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1804                                      Addend1, DAG.getConstant(0, dl, MVT::i32));
1805       SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
1806                                DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L,
1807                                Addend0L, Addend1L);
1808       SDValue Lo(Hi.getNode(), 1);
1809       return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
1810     }
1811   }
1812   break;
1813   case ISD::STORE: {
1814     // Replace unaligned store of unaligned load with memmove.
1815     StoreSDNode *ST  = cast<StoreSDNode>(N);
1816     if (!DCI.isBeforeLegalize() ||
1817         allowsMisalignedMemoryAccesses(ST->getMemoryVT(),
1818                                        ST->getAddressSpace(),
1819                                        ST->getAlignment()) ||
1820         ST->isVolatile() || ST->isIndexed()) {
1821       break;
1822     }
1823     SDValue Chain = ST->getChain();
1824
1825     unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits();
1826     assert((StoreBits % 8) == 0 &&
1827            "Store size in bits must be a multiple of 8");
1828     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(
1829         ST->getMemoryVT().getTypeForEVT(*DCI.DAG.getContext()));
1830     unsigned Alignment = ST->getAlignment();
1831     if (Alignment >= ABIAlignment) {
1832       break;
1833     }
1834
1835     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) {
1836       if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() &&
1837         LD->getAlignment() == Alignment &&
1838         !LD->isVolatile() && !LD->isIndexed() &&
1839         Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) {
1840         bool isTail = isInTailCallPosition(DAG, ST, Chain);
1841         return DAG.getMemmove(Chain, dl, ST->getBasePtr(),
1842                               LD->getBasePtr(),
1843                               DAG.getConstant(StoreBits/8, dl, MVT::i32),
1844                               Alignment, false, isTail, ST->getPointerInfo(),
1845                               LD->getPointerInfo());
1846       }
1847     }
1848     break;
1849   }
1850   }
1851   return SDValue();
1852 }
1853
1854 void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1855                                                         APInt &KnownZero,
1856                                                         APInt &KnownOne,
1857                                                         const SelectionDAG &DAG,
1858                                                         unsigned Depth) const {
1859   KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
1860   switch (Op.getOpcode()) {
1861   default: break;
1862   case XCoreISD::LADD:
1863   case XCoreISD::LSUB:
1864     if (Op.getResNo() == 1) {
1865       // Top bits of carry / borrow are clear.
1866       KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1867                                         KnownZero.getBitWidth() - 1);
1868     }
1869     break;
1870   case ISD::INTRINSIC_W_CHAIN:
1871     {
1872       unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1873       switch (IntNo) {
1874       case Intrinsic::xcore_getts:
1875         // High bits are known to be zero.
1876         KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1877                                           KnownZero.getBitWidth() - 16);
1878         break;
1879       case Intrinsic::xcore_int:
1880       case Intrinsic::xcore_inct:
1881         // High bits are known to be zero.
1882         KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1883                                           KnownZero.getBitWidth() - 8);
1884         break;
1885       case Intrinsic::xcore_testct:
1886         // Result is either 0 or 1.
1887         KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1888                                           KnownZero.getBitWidth() - 1);
1889         break;
1890       case Intrinsic::xcore_testwct:
1891         // Result is in the range 0 - 4.
1892         KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1893                                           KnownZero.getBitWidth() - 3);
1894         break;
1895       }
1896     }
1897     break;
1898   }
1899 }
1900
1901 //===----------------------------------------------------------------------===//
1902 //  Addressing mode description hooks
1903 //===----------------------------------------------------------------------===//
1904
1905 static inline bool isImmUs(int64_t val)
1906 {
1907   return (val >= 0 && val <= 11);
1908 }
1909
1910 static inline bool isImmUs2(int64_t val)
1911 {
1912   return (val%2 == 0 && isImmUs(val/2));
1913 }
1914
1915 static inline bool isImmUs4(int64_t val)
1916 {
1917   return (val%4 == 0 && isImmUs(val/4));
1918 }
1919
1920 /// isLegalAddressingMode - Return true if the addressing mode represented
1921 /// by AM is legal for this target, for a load/store of the specified type.
1922 bool XCoreTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1923                                                 const AddrMode &AM, Type *Ty,
1924                                                 unsigned AS) const {
1925   if (Ty->getTypeID() == Type::VoidTyID)
1926     return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs);
1927
1928   unsigned Size = DL.getTypeAllocSize(Ty);
1929   if (AM.BaseGV) {
1930     return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 &&
1931                  AM.BaseOffs%4 == 0;
1932   }
1933
1934   switch (Size) {
1935   case 1:
1936     // reg + imm
1937     if (AM.Scale == 0) {
1938       return isImmUs(AM.BaseOffs);
1939     }
1940     // reg + reg
1941     return AM.Scale == 1 && AM.BaseOffs == 0;
1942   case 2:
1943   case 3:
1944     // reg + imm
1945     if (AM.Scale == 0) {
1946       return isImmUs2(AM.BaseOffs);
1947     }
1948     // reg + reg<<1
1949     return AM.Scale == 2 && AM.BaseOffs == 0;
1950   default:
1951     // reg + imm
1952     if (AM.Scale == 0) {
1953       return isImmUs4(AM.BaseOffs);
1954     }
1955     // reg + reg<<2
1956     return AM.Scale == 4 && AM.BaseOffs == 0;
1957   }
1958 }
1959
1960 //===----------------------------------------------------------------------===//
1961 //                           XCore Inline Assembly Support
1962 //===----------------------------------------------------------------------===//
1963
1964 std::pair<unsigned, const TargetRegisterClass *>
1965 XCoreTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
1966                                                   StringRef Constraint,
1967                                                   MVT VT) const {
1968   if (Constraint.size() == 1) {
1969     switch (Constraint[0]) {
1970     default : break;
1971     case 'r':
1972       return std::make_pair(0U, &XCore::GRRegsRegClass);
1973     }
1974   }
1975   // Use the default implementation in TargetLowering to convert the register
1976   // constraint into a member of a register class.
1977   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1978 }