- Eliminate MCCodeEmitter's dependency on TargetMachine. It now uses MCInstrInfo
[oota-llvm.git] / lib / Target / X86 / X86TargetMachine.cpp
1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the X86 specific subclass of TargetMachine.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "X86MCAsmInfo.h"
15 #include "X86TargetMachine.h"
16 #include "X86.h"
17 #include "llvm/PassManager.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/Passes.h"
20 #include "llvm/MC/MCCodeEmitter.h"
21 #include "llvm/MC/MCStreamer.h"
22 #include "llvm/Support/FormattedStream.h"
23 #include "llvm/Target/TargetOptions.h"
24 #include "llvm/Target/TargetRegistry.h"
25 using namespace llvm;
26
27 static MCAsmInfo *createMCAsmInfo(const Target &T, StringRef TT) {
28   Triple TheTriple(TT);
29
30   if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO) {
31     if (TheTriple.getArch() == Triple::x86_64)
32       return new X86_64MCAsmInfoDarwin(TheTriple);
33     else
34       return new X86MCAsmInfoDarwin(TheTriple);
35   }
36
37   if (TheTriple.isOSWindows())
38     return new X86MCAsmInfoCOFF(TheTriple);
39
40   return new X86ELFMCAsmInfo(TheTriple);
41 }
42
43 static MCStreamer *createMCStreamer(const Target &T, const std::string &TT,
44                                     MCContext &Ctx, TargetAsmBackend &TAB,
45                                     raw_ostream &_OS,
46                                     MCCodeEmitter *_Emitter,
47                                     bool RelaxAll,
48                                     bool NoExecStack) {
49   Triple TheTriple(TT);
50
51   if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
52     return createMachOStreamer(Ctx, TAB, _OS, _Emitter, RelaxAll);
53
54   if (TheTriple.isOSWindows())
55     return createWinCOFFStreamer(Ctx, TAB, *_Emitter, _OS, RelaxAll);
56
57   return createELFStreamer(Ctx, TAB, _OS, _Emitter, RelaxAll, NoExecStack);
58 }
59
60 extern "C" void LLVMInitializeX86Target() {
61   // Register the target.
62   RegisterTargetMachine<X86_32TargetMachine> X(TheX86_32Target);
63   RegisterTargetMachine<X86_64TargetMachine> Y(TheX86_64Target);
64
65   // Register the target asm info.
66   RegisterAsmInfoFn A(TheX86_32Target, createMCAsmInfo);
67   RegisterAsmInfoFn B(TheX86_64Target, createMCAsmInfo);
68
69   // Register the code emitter.
70   TargetRegistry::RegisterCodeEmitter(TheX86_32Target,
71                                       createX86MCCodeEmitter);
72   TargetRegistry::RegisterCodeEmitter(TheX86_64Target,
73                                       createX86MCCodeEmitter);
74
75   // Register the asm backend.
76   TargetRegistry::RegisterAsmBackend(TheX86_32Target,
77                                      createX86_32AsmBackend);
78   TargetRegistry::RegisterAsmBackend(TheX86_64Target,
79                                      createX86_64AsmBackend);
80
81   // Register the object streamer.
82   TargetRegistry::RegisterObjectStreamer(TheX86_32Target,
83                                          createMCStreamer);
84   TargetRegistry::RegisterObjectStreamer(TheX86_64Target,
85                                          createMCStreamer);
86 }
87
88
89 X86_32TargetMachine::X86_32TargetMachine(const Target &T, const std::string &TT,
90                                          const std::string &CPU,
91                                          const std::string &FS)
92   : X86TargetMachine(T, TT, CPU, FS, false),
93     DataLayout(getSubtargetImpl()->isTargetDarwin() ?
94                "e-p:32:32-f64:32:64-i64:32:64-f80:128:128-f128:128:128-n8:16:32" :
95                (getSubtargetImpl()->isTargetCygMing() ||
96                 getSubtargetImpl()->isTargetWindows()) ?
97                "e-p:32:32-f64:64:64-i64:64:64-f80:32:32-f128:128:128-n8:16:32" :
98                "e-p:32:32-f64:32:64-i64:32:64-f80:32:32-f128:128:128-n8:16:32"),
99     InstrInfo(*this),
100     TSInfo(*this),
101     TLInfo(*this),
102     JITInfo(*this) {
103 }
104
105
106 X86_64TargetMachine::X86_64TargetMachine(const Target &T, const std::string &TT,
107                                          const std::string &CPU, 
108                                          const std::string &FS)
109   : X86TargetMachine(T, TT, CPU, FS, true),
110     DataLayout("e-p:64:64-s:64-f64:64:64-i64:64:64-f80:128:128-f128:128:128-n8:16:32:64"),
111     InstrInfo(*this),
112     TSInfo(*this),
113     TLInfo(*this),
114     JITInfo(*this) {
115 }
116
117 /// X86TargetMachine ctor - Create an X86 target.
118 ///
119 X86TargetMachine::X86TargetMachine(const Target &T, const std::string &TT,
120                                    const std::string &CPU,
121                                    const std::string &FS, bool is64Bit)
122   : LLVMTargetMachine(T, TT, CPU, FS),
123     Subtarget(TT, CPU, FS, StackAlignmentOverride, is64Bit),
124     FrameLowering(*this, Subtarget),
125     ELFWriterInfo(is64Bit, true) {
126   DefRelocModel = getRelocationModel();
127
128   // If no relocation model was picked, default as appropriate for the target.
129   if (getRelocationModel() == Reloc::Default) {
130     // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
131     // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
132     // use static relocation model by default.
133     if (Subtarget.isTargetDarwin()) {
134       if (Subtarget.is64Bit())
135         setRelocationModel(Reloc::PIC_);
136       else
137         setRelocationModel(Reloc::DynamicNoPIC);
138     } else if (Subtarget.isTargetWin64())
139       setRelocationModel(Reloc::PIC_);
140     else
141       setRelocationModel(Reloc::Static);
142   }
143
144   assert(getRelocationModel() != Reloc::Default &&
145          "Relocation mode not picked");
146
147   // ELF and X86-64 don't have a distinct DynamicNoPIC model.  DynamicNoPIC
148   // is defined as a model for code which may be used in static or dynamic
149   // executables but not necessarily a shared library. On X86-32 we just
150   // compile in -static mode, in x86-64 we use PIC.
151   if (getRelocationModel() == Reloc::DynamicNoPIC) {
152     if (is64Bit)
153       setRelocationModel(Reloc::PIC_);
154     else if (!Subtarget.isTargetDarwin())
155       setRelocationModel(Reloc::Static);
156   }
157
158   // If we are on Darwin, disallow static relocation model in X86-64 mode, since
159   // the Mach-O file format doesn't support it.
160   if (getRelocationModel() == Reloc::Static &&
161       Subtarget.isTargetDarwin() &&
162       is64Bit)
163     setRelocationModel(Reloc::PIC_);
164
165   // Determine the PICStyle based on the target selected.
166   if (getRelocationModel() == Reloc::Static) {
167     // Unless we're in PIC or DynamicNoPIC mode, set the PIC style to None.
168     Subtarget.setPICStyle(PICStyles::None);
169   } else if (Subtarget.is64Bit()) {
170     // PIC in 64 bit mode is always rip-rel.
171     Subtarget.setPICStyle(PICStyles::RIPRel);
172   } else if (Subtarget.isTargetCygMing()) {
173     Subtarget.setPICStyle(PICStyles::None);
174   } else if (Subtarget.isTargetDarwin()) {
175     if (getRelocationModel() == Reloc::PIC_)
176       Subtarget.setPICStyle(PICStyles::StubPIC);
177     else {
178       assert(getRelocationModel() == Reloc::DynamicNoPIC);
179       Subtarget.setPICStyle(PICStyles::StubDynamicNoPIC);
180     }
181   } else if (Subtarget.isTargetELF()) {
182     Subtarget.setPICStyle(PICStyles::GOT);
183   }
184
185   // Finally, if we have "none" as our PIC style, force to static mode.
186   if (Subtarget.getPICStyle() == PICStyles::None)
187     setRelocationModel(Reloc::Static);
188
189   // default to hard float ABI
190   if (FloatABIType == FloatABI::Default)
191     FloatABIType = FloatABI::Hard;    
192 }
193
194 //===----------------------------------------------------------------------===//
195 // Pass Pipeline Configuration
196 //===----------------------------------------------------------------------===//
197
198 bool X86TargetMachine::addInstSelector(PassManagerBase &PM,
199                                        CodeGenOpt::Level OptLevel) {
200   // Install an instruction selector.
201   PM.add(createX86ISelDag(*this, OptLevel));
202
203   // For 32-bit, prepend instructions to set the "global base reg" for PIC.
204   if (!Subtarget.is64Bit())
205     PM.add(createGlobalBaseRegPass());
206
207   return false;
208 }
209
210 bool X86TargetMachine::addPreRegAlloc(PassManagerBase &PM,
211                                       CodeGenOpt::Level OptLevel) {
212   PM.add(createX86MaxStackAlignmentHeuristicPass());
213   return false;  // -print-machineinstr shouldn't print after this.
214 }
215
216 bool X86TargetMachine::addPostRegAlloc(PassManagerBase &PM,
217                                        CodeGenOpt::Level OptLevel) {
218   PM.add(createX86FloatingPointStackifierPass());
219   return true;  // -print-machineinstr should print after this.
220 }
221
222 bool X86TargetMachine::addPreEmitPass(PassManagerBase &PM,
223                                       CodeGenOpt::Level OptLevel) {
224   if (OptLevel != CodeGenOpt::None && Subtarget.hasSSE2()) {
225     PM.add(createSSEDomainFixPass());
226     return true;
227   }
228   return false;
229 }
230
231 bool X86TargetMachine::addCodeEmitter(PassManagerBase &PM,
232                                       CodeGenOpt::Level OptLevel,
233                                       JITCodeEmitter &JCE) {
234   // FIXME: Move this to TargetJITInfo!
235   // On Darwin, do not override 64-bit setting made in X86TargetMachine().
236   if (DefRelocModel == Reloc::Default &&
237       (!Subtarget.isTargetDarwin() || !Subtarget.is64Bit())) {
238     setRelocationModel(Reloc::Static);
239     Subtarget.setPICStyle(PICStyles::None);
240   }
241
242
243   PM.add(createX86JITCodeEmitterPass(*this, JCE));
244
245   return false;
246 }
247
248 void X86TargetMachine::setCodeModelForStatic() {
249
250     if (getCodeModel() != CodeModel::Default) return;
251
252     // For static codegen, if we're not already set, use Small codegen.
253     setCodeModel(CodeModel::Small);
254 }
255
256
257 void X86TargetMachine::setCodeModelForJIT() {
258
259   if (getCodeModel() != CodeModel::Default) return;
260
261   // 64-bit JIT places everything in the same buffer except external functions.
262   if (Subtarget.is64Bit())
263     setCodeModel(CodeModel::Large);
264   else
265     setCodeModel(CodeModel::Small);
266 }