Add relax all support to the COFF object streamer.
[oota-llvm.git] / lib / Target / X86 / X86TargetMachine.cpp
1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the X86 specific subclass of TargetMachine.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "X86MCAsmInfo.h"
15 #include "X86TargetMachine.h"
16 #include "X86.h"
17 #include "llvm/PassManager.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/Passes.h"
20 #include "llvm/MC/MCCodeEmitter.h"
21 #include "llvm/MC/MCStreamer.h"
22 #include "llvm/Support/FormattedStream.h"
23 #include "llvm/Target/TargetOptions.h"
24 #include "llvm/Target/TargetRegistry.h"
25 using namespace llvm;
26
27 static MCAsmInfo *createMCAsmInfo(const Target &T, StringRef TT) {
28   Triple TheTriple(TT);
29   switch (TheTriple.getOS()) {
30   case Triple::Darwin:
31     return new X86MCAsmInfoDarwin(TheTriple);
32   case Triple::MinGW32:
33   case Triple::MinGW64:
34   case Triple::Cygwin:
35   case Triple::Win32:
36     return new X86MCAsmInfoCOFF(TheTriple);
37   default:
38     return new X86ELFMCAsmInfo(TheTriple);
39   }
40 }
41
42 static MCStreamer *createMCStreamer(const Target &T, const std::string &TT,
43                                     MCContext &Ctx, TargetAsmBackend &TAB,
44                                     raw_ostream &_OS,
45                                     MCCodeEmitter *_Emitter,
46                                     bool RelaxAll) {
47   Triple TheTriple(TT);
48   switch (TheTriple.getOS()) {
49   case Triple::Win32:
50     return createWinCOFFStreamer(Ctx, TAB, *_Emitter, _OS, RelaxAll);
51   default:
52     return createMachOStreamer(Ctx, TAB, _OS, _Emitter, RelaxAll);
53   }
54 }
55
56 extern "C" void LLVMInitializeX86Target() { 
57   // Register the target.
58   RegisterTargetMachine<X86_32TargetMachine> X(TheX86_32Target);
59   RegisterTargetMachine<X86_64TargetMachine> Y(TheX86_64Target);
60
61   // Register the target asm info.
62   RegisterAsmInfoFn A(TheX86_32Target, createMCAsmInfo);
63   RegisterAsmInfoFn B(TheX86_64Target, createMCAsmInfo);
64
65   // Register the code emitter.
66   TargetRegistry::RegisterCodeEmitter(TheX86_32Target,
67                                       createX86_32MCCodeEmitter);
68   TargetRegistry::RegisterCodeEmitter(TheX86_64Target,
69                                       createX86_64MCCodeEmitter);
70
71   // Register the asm backend.
72   TargetRegistry::RegisterAsmBackend(TheX86_32Target,
73                                      createX86_32AsmBackend);
74   TargetRegistry::RegisterAsmBackend(TheX86_64Target,
75                                      createX86_64AsmBackend);
76
77   // Register the object streamer.
78   TargetRegistry::RegisterObjectStreamer(TheX86_32Target,
79                                          createMCStreamer);
80   TargetRegistry::RegisterObjectStreamer(TheX86_64Target,
81                                          createMCStreamer);
82 }
83
84
85 X86_32TargetMachine::X86_32TargetMachine(const Target &T, const std::string &TT,
86                                          const std::string &FS)
87   : X86TargetMachine(T, TT, FS, false) {
88 }
89
90
91 X86_64TargetMachine::X86_64TargetMachine(const Target &T, const std::string &TT,
92                                          const std::string &FS)
93   : X86TargetMachine(T, TT, FS, true) {
94 }
95
96 /// X86TargetMachine ctor - Create an X86 target.
97 ///
98 X86TargetMachine::X86TargetMachine(const Target &T, const std::string &TT, 
99                                    const std::string &FS, bool is64Bit)
100   : LLVMTargetMachine(T, TT), 
101     Subtarget(TT, FS, is64Bit),
102     DataLayout(Subtarget.getDataLayout()),
103     FrameInfo(TargetFrameInfo::StackGrowsDown,
104               Subtarget.getStackAlignment(),
105               (Subtarget.isTargetWin64() ? -40 :
106                (Subtarget.is64Bit() ? -8 : -4))),
107     InstrInfo(*this), JITInfo(*this), TLInfo(*this), TSInfo(*this),
108     ELFWriterInfo(*this) {
109   DefRelocModel = getRelocationModel();
110       
111   // If no relocation model was picked, default as appropriate for the target.
112   if (getRelocationModel() == Reloc::Default) {
113     if (!Subtarget.isTargetDarwin())
114       setRelocationModel(Reloc::Static);
115     else if (Subtarget.is64Bit())
116       setRelocationModel(Reloc::PIC_);
117     else
118       setRelocationModel(Reloc::DynamicNoPIC);
119   }
120
121   assert(getRelocationModel() != Reloc::Default &&
122          "Relocation mode not picked");
123
124   // ELF and X86-64 don't have a distinct DynamicNoPIC model.  DynamicNoPIC
125   // is defined as a model for code which may be used in static or dynamic
126   // executables but not necessarily a shared library. On X86-32 we just
127   // compile in -static mode, in x86-64 we use PIC.
128   if (getRelocationModel() == Reloc::DynamicNoPIC) {
129     if (is64Bit)
130       setRelocationModel(Reloc::PIC_);
131     else if (!Subtarget.isTargetDarwin())
132       setRelocationModel(Reloc::Static);
133   }
134
135   // If we are on Darwin, disallow static relocation model in X86-64 mode, since
136   // the Mach-O file format doesn't support it.
137   if (getRelocationModel() == Reloc::Static &&
138       Subtarget.isTargetDarwin() &&
139       is64Bit)
140     setRelocationModel(Reloc::PIC_);
141       
142   // Determine the PICStyle based on the target selected.
143   if (getRelocationModel() == Reloc::Static) {
144     // Unless we're in PIC or DynamicNoPIC mode, set the PIC style to None.
145     Subtarget.setPICStyle(PICStyles::None);
146   } else if (Subtarget.isTargetCygMing()) {
147     Subtarget.setPICStyle(PICStyles::None);
148   } else if (Subtarget.isTargetDarwin()) {
149     if (Subtarget.is64Bit())
150       Subtarget.setPICStyle(PICStyles::RIPRel);
151     else if (getRelocationModel() == Reloc::PIC_)
152       Subtarget.setPICStyle(PICStyles::StubPIC);
153     else {
154       assert(getRelocationModel() == Reloc::DynamicNoPIC);
155       Subtarget.setPICStyle(PICStyles::StubDynamicNoPIC);
156     }
157   } else if (Subtarget.isTargetELF()) {
158     if (Subtarget.is64Bit())
159       Subtarget.setPICStyle(PICStyles::RIPRel);
160     else
161       Subtarget.setPICStyle(PICStyles::GOT);
162   }
163       
164   // Finally, if we have "none" as our PIC style, force to static mode.
165   if (Subtarget.getPICStyle() == PICStyles::None)
166     setRelocationModel(Reloc::Static);
167 }
168
169 //===----------------------------------------------------------------------===//
170 // Pass Pipeline Configuration
171 //===----------------------------------------------------------------------===//
172
173 bool X86TargetMachine::addInstSelector(PassManagerBase &PM,
174                                        CodeGenOpt::Level OptLevel) {
175   // Install an instruction selector.
176   PM.add(createX86ISelDag(*this, OptLevel));
177
178   // For 32-bit, prepend instructions to set the "global base reg" for PIC.
179   if (!Subtarget.is64Bit())
180     PM.add(createGlobalBaseRegPass());
181
182   return false;
183 }
184
185 bool X86TargetMachine::addPreRegAlloc(PassManagerBase &PM,
186                                       CodeGenOpt::Level OptLevel) {
187   PM.add(createX86MaxStackAlignmentHeuristicPass());
188   return false;  // -print-machineinstr shouldn't print after this.
189 }
190
191 bool X86TargetMachine::addPostRegAlloc(PassManagerBase &PM,
192                                        CodeGenOpt::Level OptLevel) {
193   PM.add(createX86FloatingPointStackifierPass());
194   return true;  // -print-machineinstr should print after this.
195 }
196
197 bool X86TargetMachine::addPreEmitPass(PassManagerBase &PM,
198                                       CodeGenOpt::Level OptLevel) {
199   if (OptLevel != CodeGenOpt::None && Subtarget.hasSSE2()) {
200     PM.add(createSSEDomainFixPass());
201     return true;
202   }
203   return false;
204 }
205
206 bool X86TargetMachine::addCodeEmitter(PassManagerBase &PM,
207                                       CodeGenOpt::Level OptLevel,
208                                       JITCodeEmitter &JCE) {
209   // FIXME: Move this to TargetJITInfo!
210   // On Darwin, do not override 64-bit setting made in X86TargetMachine().
211   if (DefRelocModel == Reloc::Default && 
212       (!Subtarget.isTargetDarwin() || !Subtarget.is64Bit())) {
213     setRelocationModel(Reloc::Static);
214     Subtarget.setPICStyle(PICStyles::None);
215   }
216   
217
218   PM.add(createX86JITCodeEmitterPass(*this, JCE));
219
220   return false;
221 }
222
223 void X86TargetMachine::setCodeModelForStatic() {
224
225     if (getCodeModel() != CodeModel::Default) return;
226
227     // For static codegen, if we're not already set, use Small codegen.
228     setCodeModel(CodeModel::Small);
229 }
230
231
232 void X86TargetMachine::setCodeModelForJIT() {
233
234   if (getCodeModel() != CodeModel::Default) return;
235
236   // 64-bit JIT places everything in the same buffer except external functions.
237   if (Subtarget.is64Bit())
238     setCodeModel(CodeModel::Large);
239   else
240     setCodeModel(CodeModel::Small);
241 }