Add Ivy Bridge 16-bit floating point conversion instructions for the X86 disassembler.
[oota-llvm.git] / lib / Target / X86 / X86Subtarget.cpp
1 //===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the X86 specific subclass of TargetSubtargetInfo.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "subtarget"
15 #include "X86Subtarget.h"
16 #include "X86InstrInfo.h"
17 #include "llvm/GlobalValue.h"
18 #include "llvm/Support/Debug.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include "llvm/Support/raw_ostream.h"
21 #include "llvm/Support/Host.h"
22 #include "llvm/Target/TargetMachine.h"
23 #include "llvm/Target/TargetOptions.h"
24 #include "llvm/ADT/SmallVector.h"
25
26 #define GET_SUBTARGETINFO_TARGET_DESC
27 #define GET_SUBTARGETINFO_CTOR
28 #include "X86GenSubtargetInfo.inc"
29
30 using namespace llvm;
31
32 #if defined(_MSC_VER)
33 #include <intrin.h>
34 #endif
35
36 /// ClassifyBlockAddressReference - Classify a blockaddress reference for the
37 /// current subtarget according to how we should reference it in a non-pcrel
38 /// context.
39 unsigned char X86Subtarget::
40 ClassifyBlockAddressReference() const {
41   if (isPICStyleGOT())    // 32-bit ELF targets.
42     return X86II::MO_GOTOFF;
43   
44   if (isPICStyleStubPIC())   // Darwin/32 in PIC mode.
45     return X86II::MO_PIC_BASE_OFFSET;
46   
47   // Direct static reference to label.
48   return X86II::MO_NO_FLAG;
49 }
50
51 /// ClassifyGlobalReference - Classify a global variable reference for the
52 /// current subtarget according to how we should reference it in a non-pcrel
53 /// context.
54 unsigned char X86Subtarget::
55 ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const {
56   // DLLImport only exists on windows, it is implemented as a load from a
57   // DLLIMPORT stub.
58   if (GV->hasDLLImportLinkage())
59     return X86II::MO_DLLIMPORT;
60
61   // Determine whether this is a reference to a definition or a declaration.
62   // Materializable GVs (in JIT lazy compilation mode) do not require an extra
63   // load from stub.
64   bool isDecl = GV->hasAvailableExternallyLinkage();
65   if (GV->isDeclaration() && !GV->isMaterializable())
66     isDecl = true;
67
68   // X86-64 in PIC mode.
69   if (isPICStyleRIPRel()) {
70     // Large model never uses stubs.
71     if (TM.getCodeModel() == CodeModel::Large)
72       return X86II::MO_NO_FLAG;
73       
74     if (isTargetDarwin()) {
75       // If symbol visibility is hidden, the extra load is not needed if
76       // target is x86-64 or the symbol is definitely defined in the current
77       // translation unit.
78       if (GV->hasDefaultVisibility() &&
79           (isDecl || GV->isWeakForLinker()))
80         return X86II::MO_GOTPCREL;
81     } else if (!isTargetWin64()) {
82       assert(isTargetELF() && "Unknown rip-relative target");
83
84       // Extra load is needed for all externally visible.
85       if (!GV->hasLocalLinkage() && GV->hasDefaultVisibility())
86         return X86II::MO_GOTPCREL;
87     }
88
89     return X86II::MO_NO_FLAG;
90   }
91   
92   if (isPICStyleGOT()) {   // 32-bit ELF targets.
93     // Extra load is needed for all externally visible.
94     if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
95       return X86II::MO_GOTOFF;
96     return X86II::MO_GOT;
97   }
98   
99   if (isPICStyleStubPIC()) {  // Darwin/32 in PIC mode.
100     // Determine whether we have a stub reference and/or whether the reference
101     // is relative to the PIC base or not.
102     
103     // If this is a strong reference to a definition, it is definitely not
104     // through a stub.
105     if (!isDecl && !GV->isWeakForLinker())
106       return X86II::MO_PIC_BASE_OFFSET;
107
108     // Unless we have a symbol with hidden visibility, we have to go through a
109     // normal $non_lazy_ptr stub because this symbol might be resolved late.
110     if (!GV->hasHiddenVisibility())  // Non-hidden $non_lazy_ptr reference.
111       return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
112     
113     // If symbol visibility is hidden, we have a stub for common symbol
114     // references and external declarations.
115     if (isDecl || GV->hasCommonLinkage()) {
116       // Hidden $non_lazy_ptr reference.
117       return X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE;
118     }
119     
120     // Otherwise, no stub.
121     return X86II::MO_PIC_BASE_OFFSET;
122   }
123   
124   if (isPICStyleStubNoDynamic()) {  // Darwin/32 in -mdynamic-no-pic mode.
125     // Determine whether we have a stub reference.
126     
127     // If this is a strong reference to a definition, it is definitely not
128     // through a stub.
129     if (!isDecl && !GV->isWeakForLinker())
130       return X86II::MO_NO_FLAG;
131     
132     // Unless we have a symbol with hidden visibility, we have to go through a
133     // normal $non_lazy_ptr stub because this symbol might be resolved late.
134     if (!GV->hasHiddenVisibility())  // Non-hidden $non_lazy_ptr reference.
135       return X86II::MO_DARWIN_NONLAZY;
136
137     // Otherwise, no stub.
138     return X86II::MO_NO_FLAG;
139   }
140   
141   // Direct static reference to global.
142   return X86II::MO_NO_FLAG;
143 }
144
145
146 /// getBZeroEntry - This function returns the name of a function which has an
147 /// interface like the non-standard bzero function, if such a function exists on
148 /// the current subtarget and it is considered prefereable over memset with zero
149 /// passed as the second argument. Otherwise it returns null.
150 const char *X86Subtarget::getBZeroEntry() const {
151   // Darwin 10 has a __bzero entry point for this purpose.
152   if (getTargetTriple().isMacOSX() &&
153       !getTargetTriple().isMacOSXVersionLT(10, 6))
154     return "__bzero";
155
156   return 0;
157 }
158
159 /// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls
160 /// to immediate address.
161 bool X86Subtarget::IsLegalToCallImmediateAddr(const TargetMachine &TM) const {
162   if (In64BitMode)
163     return false;
164   return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
165 }
166
167 /// getSpecialAddressLatency - For targets where it is beneficial to
168 /// backschedule instructions that compute addresses, return a value
169 /// indicating the number of scheduling cycles of backscheduling that
170 /// should be attempted.
171 unsigned X86Subtarget::getSpecialAddressLatency() const {
172   // For x86 out-of-order targets, back-schedule address computations so
173   // that loads and stores aren't blocked.
174   // This value was chosen arbitrarily.
175   return 200;
176 }
177
178 void X86Subtarget::AutoDetectSubtargetFeatures() {
179   unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
180   union {
181     unsigned u[3];
182     char     c[12];
183   } text;
184   
185   if (X86_MC::GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1))
186     return;
187
188   X86_MC::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
189   
190   if ((EDX >> 15) & 1) HasCMov = true;      ToggleFeature(X86::FeatureCMOV);
191   if ((EDX >> 23) & 1) X86SSELevel = MMX;   ToggleFeature(X86::FeatureMMX);
192   if ((EDX >> 25) & 1) X86SSELevel = SSE1;  ToggleFeature(X86::FeatureSSE1);
193   if ((EDX >> 26) & 1) X86SSELevel = SSE2;  ToggleFeature(X86::FeatureSSE2);
194   if (ECX & 0x1)       X86SSELevel = SSE3;  ToggleFeature(X86::FeatureSSE3);
195   if ((ECX >> 9)  & 1) X86SSELevel = SSSE3; ToggleFeature(X86::FeatureSSSE3);
196   if ((ECX >> 19) & 1) X86SSELevel = SSE41; ToggleFeature(X86::FeatureSSE41);
197   if ((ECX >> 20) & 1) X86SSELevel = SSE42; ToggleFeature(X86::FeatureSSE42);
198   // FIXME: AVX codegen support is not ready.
199   //if ((ECX >> 28) & 1) { HasAVX = true; } ToggleFeature(X86::FeatureAVX);
200
201   bool IsIntel = memcmp(text.c, "GenuineIntel", 12) == 0;
202   bool IsAMD   = !IsIntel && memcmp(text.c, "AuthenticAMD", 12) == 0;
203
204   HasCLMUL = IsIntel && ((ECX >> 1) & 0x1);   ToggleFeature(X86::FeatureCLMUL);
205   HasFMA3  = IsIntel && ((ECX >> 12) & 0x1);  ToggleFeature(X86::FeatureFMA3);
206   HasMOVBE = IsIntel && ((ECX >> 22) & 0x1);  ToggleFeature(X86::FeatureMOVBE);
207   HasPOPCNT = IsIntel && ((ECX >> 23) & 0x1); ToggleFeature(X86::FeaturePOPCNT);
208   HasAES   = IsIntel && ((ECX >> 25) & 0x1);  ToggleFeature(X86::FeatureAES);
209   HasF16C  = IsIntel && ((ECX >> 29) & 0x1);  ToggleFeature(X86::FeatureF16C);
210   HasRDRAND = IsIntel && ((ECX >> 30) & 0x1); ToggleFeature(X86::FeatureRDRAND);
211   HasCmpxchg16b = ((ECX >> 13) & 0x1); ToggleFeature(X86::FeatureCMPXCHG16B);
212
213   if (IsIntel || IsAMD) {
214     // Determine if bit test memory instructions are slow.
215     unsigned Family = 0;
216     unsigned Model  = 0;
217     X86_MC::DetectFamilyModel(EAX, Family, Model);
218     if (IsAMD || (Family == 6 && Model >= 13)) {
219       IsBTMemSlow = true;
220       ToggleFeature(X86::FeatureSlowBTMem);
221     }
222     // If it's Nehalem, unaligned memory access is fast.
223     if (Family == 15 && Model == 26) {
224       IsUAMemFast = true;
225       ToggleFeature(X86::FeatureFastUAMem);
226     }
227
228     X86_MC::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
229     if ((EDX >> 29) & 0x1) {
230       HasX86_64 = true;
231       ToggleFeature(X86::Feature64Bit);
232     }
233     if (IsAMD && ((ECX >> 6) & 0x1)) {
234       HasSSE4A = true;
235       ToggleFeature(X86::FeatureSSE4A);
236     }
237     if (IsAMD && ((ECX >> 16) & 0x1)) {
238       HasFMA4 = true;
239       ToggleFeature(X86::FeatureFMA4);
240     }
241   }
242 }
243
244 X86Subtarget::X86Subtarget(const std::string &TT, const std::string &CPU,
245                            const std::string &FS, 
246                            unsigned StackAlignOverride, bool is64Bit)
247   : X86GenSubtargetInfo(TT, CPU, FS)
248   , PICStyle(PICStyles::None)
249   , X86SSELevel(NoMMXSSE)
250   , X863DNowLevel(NoThreeDNow)
251   , HasCMov(false)
252   , HasX86_64(false)
253   , HasPOPCNT(false)
254   , HasSSE4A(false)
255   , HasAVX(false)
256   , HasAES(false)
257   , HasCLMUL(false)
258   , HasFMA3(false)
259   , HasFMA4(false)
260   , HasMOVBE(false)
261   , HasRDRAND(false)
262   , HasF16C(false)
263   , IsBTMemSlow(false)
264   , IsUAMemFast(false)
265   , HasVectorUAMem(false)
266   , HasCmpxchg16b(false)
267   , stackAlignment(8)
268   // FIXME: this is a known good value for Yonah. How about others?
269   , MaxInlineSizeThreshold(128)
270   , TargetTriple(TT)
271   , In64BitMode(is64Bit)
272   , InNaClMode(false) {
273   // Determine default and user specified characteristics
274   if (!FS.empty() || !CPU.empty()) {
275     std::string CPUName = CPU;
276     if (CPUName.empty()) {
277 #if defined (__x86_64__) || defined(__i386__)
278       CPUName = sys::getHostCPUName();
279 #else
280       CPUName = "generic";
281 #endif
282     }
283
284     // Make sure 64-bit features are available in 64-bit mode. (But make sure
285     // SSE2 can be turned off explicitly.)
286     std::string FullFS = FS;
287     if (In64BitMode) {
288       if (!FullFS.empty())
289         FullFS = "+64bit,+sse2," + FullFS;
290       else
291         FullFS = "+64bit,+sse2";
292     }
293
294     // If feature string is not empty, parse features string.
295     ParseSubtargetFeatures(CPUName, FullFS);
296   } else {
297     // Otherwise, use CPUID to auto-detect feature set.
298     AutoDetectSubtargetFeatures();
299
300     // Make sure 64-bit features are available in 64-bit mode.
301     if (In64BitMode) {
302       HasX86_64 = true; ToggleFeature(X86::Feature64Bit);
303       HasCMov = true;   ToggleFeature(X86::FeatureCMOV);
304
305       if (!HasAVX && X86SSELevel < SSE2) {
306         X86SSELevel = SSE2;
307         ToggleFeature(X86::FeatureSSE1);
308         ToggleFeature(X86::FeatureSSE2);
309       }
310     }
311   }
312
313   // It's important to keep the MCSubtargetInfo feature bits in sync with
314   // target data structure which is shared with MC code emitter, etc.
315   if (In64BitMode)
316     ToggleFeature(X86::Mode64Bit);
317
318   if (isTargetNaCl()) {
319     InNaClMode = true;
320     ToggleFeature(X86::ModeNaCl);
321   }
322
323   if (HasAVX)
324     X86SSELevel = NoMMXSSE;
325     
326   DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
327                << ", 3DNowLevel " << X863DNowLevel
328                << ", 64bit " << HasX86_64 << "\n");
329   assert((!In64BitMode || HasX86_64) &&
330          "64-bit code requested on a subtarget that doesn't support it!");
331
332   if(EnableSegmentedStacks && !isTargetELF())
333     report_fatal_error("Segmented stacks are only implemented on ELF.");
334
335   // Stack alignment is 16 bytes on Darwin, FreeBSD, Linux and Solaris (both
336   // 32 and 64 bit) and for all 64-bit targets.
337   if (StackAlignOverride)
338     stackAlignment = StackAlignOverride;
339   else if (isTargetDarwin() || isTargetFreeBSD() || isTargetLinux() ||
340            isTargetSolaris() || In64BitMode)
341     stackAlignment = 16;
342 }