Fix IMULX machine model. Multiple def operands require multiple SchedWrites.
[oota-llvm.git] / lib / Target / X86 / X86SchedHaswell.td
1 //=- X86SchedHaswell.td - X86 Haswell Scheduling -------------*- tablegen -*-=//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the machine model for Haswell to support instruction
11 // scheduling and other instruction cost heuristics.
12 //
13 //===----------------------------------------------------------------------===//
14
15 def HaswellModel : SchedMachineModel {
16   // All x86 instructions are modeled as a single micro-op, and HW can decode 4
17   // instructions per cycle.
18   let IssueWidth = 4;
19   let MicroOpBufferSize = 192; // Based on the reorder buffer.
20   let LoadLatency = 4;
21   let MispredictPenalty = 16;
22 }
23
24 let SchedModel = HaswellModel in {
25
26 // Haswell can issue micro-ops to 8 different ports in one cycle.
27
28 // Ports 0, 1, 5, 6 and 7 handle all computation.
29 // Port 4 gets the data half of stores. Store data can be available later than
30 // the store address, but since we don't model the latency of stores, we can
31 // ignore that.
32 // Ports 2 and 3 are identical. They handle loads and the address half of
33 // stores. Port 7 can handle address calculations.
34 def HWPort0 : ProcResource<1>;
35 def HWPort1 : ProcResource<1>;
36 def HWPort2 : ProcResource<1>;
37 def HWPort3 : ProcResource<1>;
38 def HWPort4 : ProcResource<1>;
39 def HWPort5 : ProcResource<1>;
40 def HWPort6 : ProcResource<1>;
41 def HWPort7 : ProcResource<1>;
42
43 // Many micro-ops are capable of issuing on multiple ports.
44 def HWPort23  : ProcResGroup<[HWPort2, HWPort3]>;
45 def HWPort237 : ProcResGroup<[HWPort2, HWPort3, HWPort7]>;
46 def HWPort05  : ProcResGroup<[HWPort0, HWPort5]>;
47 def HWPort056 : ProcResGroup<[HWPort0, HWPort5, HWPort6]>;
48 def HWPort15  : ProcResGroup<[HWPort1, HWPort5]>;
49 def HWPort015 : ProcResGroup<[HWPort0, HWPort1, HWPort5]>;
50 def HWPort0156: ProcResGroup<[HWPort0, HWPort1, HWPort5, HWPort6]>;
51
52 // 60 Entry Unified Scheduler
53 def HWPortAny : ProcResGroup<[HWPort0, HWPort1, HWPort2, HWPort3, HWPort4,
54                               HWPort5, HWPort6, HWPort7]> {
55   let BufferSize=60;
56 }
57
58 // Integer division issued on port 0.
59 def HWDivider : ProcResource<1>;
60
61 // Loads are 4 cycles, so ReadAfterLd registers needn't be available until 4
62 // cycles after the memory operand.
63 def : ReadAdvance<ReadAfterLd, 4>;
64
65 // Many SchedWrites are defined in pairs with and without a folded load.
66 // Instructions with folded loads are usually micro-fused, so they only appear
67 // as two micro-ops when queued in the reservation station.
68 // This multiclass defines the resource usage for variants with and without
69 // folded loads.
70 multiclass HWWriteResPair<X86FoldableSchedWrite SchedRW,
71                           ProcResourceKind ExePort,
72                           int Lat> {
73   // Register variant is using a single cycle on ExePort.
74   def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; }
75
76   // Memory variant also uses a cycle on port 2/3 and adds 4 cycles to the
77   // latency.
78   def : WriteRes<SchedRW.Folded, [HWPort23, ExePort]> {
79      let Latency = !add(Lat, 4);
80   }
81 }
82
83 // A folded store needs a cycle on port 4 for the store data, but it does not
84 // need an extra port 2/3 cycle to recompute the address.
85 def : WriteRes<WriteRMW, [HWPort4]>;
86
87 def : WriteRes<WriteStore, [HWPort237, HWPort4]>;
88 def : WriteRes<WriteLoad,  [HWPort23]> { let Latency = 4; }
89 def : WriteRes<WriteMove,  [HWPort0156]>;
90 def : WriteRes<WriteZero,  []>;
91
92 defm : HWWriteResPair<WriteALU,   HWPort0156, 1>;
93 defm : HWWriteResPair<WriteIMul,  HWPort1,   3>;
94 def  : WriteRes<WriteIMulH, []> { let Latency = 3; }
95 defm : HWWriteResPair<WriteShift, HWPort056,  1>;
96 defm : HWWriteResPair<WriteJump,  HWPort5,   1>;
97
98 // This is for simple LEAs with one or two input operands.
99 // The complex ones can only execute on port 1, and they require two cycles on
100 // the port to read all inputs. We don't model that.
101 def : WriteRes<WriteLEA, [HWPort15]>;
102
103 // This is quite rough, latency depends on the dividend.
104 def : WriteRes<WriteIDiv, [HWPort0, HWDivider]> {
105   let Latency = 25;
106   let ResourceCycles = [1, 10];
107 }
108 def : WriteRes<WriteIDivLd, [HWPort23, HWPort0, HWDivider]> {
109   let Latency = 29;
110   let ResourceCycles = [1, 1, 10];
111 }
112
113 // Scalar and vector floating point.
114 defm : HWWriteResPair<WriteFAdd,   HWPort1, 3>;
115 defm : HWWriteResPair<WriteFMul,   HWPort0, 5>;
116 defm : HWWriteResPair<WriteFDiv,   HWPort0, 12>; // 10-14 cycles.
117 defm : HWWriteResPair<WriteFRcp,   HWPort0, 5>;
118 defm : HWWriteResPair<WriteFSqrt,  HWPort0, 15>;
119 defm : HWWriteResPair<WriteCvtF2I, HWPort1, 3>;
120 defm : HWWriteResPair<WriteCvtI2F, HWPort1, 4>;
121 defm : HWWriteResPair<WriteCvtF2F, HWPort1, 3>;
122
123 // Vector integer operations.
124 defm : HWWriteResPair<WriteVecShift, HWPort05,  1>;
125 defm : HWWriteResPair<WriteVecLogic, HWPort015, 1>;
126 defm : HWWriteResPair<WriteVecALU,   HWPort15,  1>;
127 defm : HWWriteResPair<WriteVecIMul,  HWPort0,   5>;
128 defm : HWWriteResPair<WriteShuffle,  HWPort15,  1>;
129
130 def : WriteRes<WriteSystem,     [HWPort0156]> { let Latency = 100; }
131 def : WriteRes<WriteMicrocoded, [HWPort0156]> { let Latency = 100; }
132 } // SchedModel