Remove the X86 sub_ss and sub_sd sub-register indexes completely.
[oota-llvm.git] / lib / Target / X86 / X86RegisterInfo.td
1 //===- X86RegisterInfo.td - Describe the X86 Register File --*- tablegen -*-==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes the X86 Register file, defining the registers themselves,
11 // aliases between the registers, and the register classes built out of the
12 // registers.
13 //
14 //===----------------------------------------------------------------------===//
15
16 //===----------------------------------------------------------------------===//
17 //  Register definitions...
18 //
19 let Namespace = "X86" in {
20
21   // Subregister indices.
22   def sub_8bit    : SubRegIndex;
23   def sub_8bit_hi : SubRegIndex;
24   def sub_16bit   : SubRegIndex;
25   def sub_32bit   : SubRegIndex;
26   def sub_xmm : SubRegIndex;
27
28
29   // In the register alias definitions below, we define which registers alias
30   // which others.  We only specify which registers the small registers alias,
31   // because the register file generator is smart enough to figure out that
32   // AL aliases AX if we tell it that AX aliased AL (for example).
33
34   // Dwarf numbering is different for 32-bit and 64-bit, and there are
35   // variations by target as well. Currently the first entry is for X86-64,
36   // second - for EH on X86-32/Darwin and third is 'generic' one (X86-32/Linux
37   // and debug information on X86-32/Darwin)
38
39   // 8-bit registers
40   // Low registers
41   def AL : Register<"al">;
42   def DL : Register<"dl">;
43   def CL : Register<"cl">;
44   def BL : Register<"bl">;
45
46   // X86-64 only, requires REX.
47   let CostPerUse = 1 in {
48   def SIL : Register<"sil">;
49   def DIL : Register<"dil">;
50   def BPL : Register<"bpl">;
51   def SPL : Register<"spl">;
52   def R8B  : Register<"r8b">;
53   def R9B  : Register<"r9b">;
54   def R10B : Register<"r10b">;
55   def R11B : Register<"r11b">;
56   def R12B : Register<"r12b">;
57   def R13B : Register<"r13b">;
58   def R14B : Register<"r14b">;
59   def R15B : Register<"r15b">;
60   }
61
62   // High registers. On x86-64, these cannot be used in any instruction
63   // with a REX prefix.
64   def AH : Register<"ah">;
65   def DH : Register<"dh">;
66   def CH : Register<"ch">;
67   def BH : Register<"bh">;
68
69   // 16-bit registers
70   let SubRegIndices = [sub_8bit, sub_8bit_hi], CoveredBySubRegs = 1 in {
71   def AX : RegisterWithSubRegs<"ax", [AL,AH]>;
72   def DX : RegisterWithSubRegs<"dx", [DL,DH]>;
73   def CX : RegisterWithSubRegs<"cx", [CL,CH]>;
74   def BX : RegisterWithSubRegs<"bx", [BL,BH]>;
75   }
76   let SubRegIndices = [sub_8bit] in {
77   def SI : RegisterWithSubRegs<"si", [SIL]>;
78   def DI : RegisterWithSubRegs<"di", [DIL]>;
79   def BP : RegisterWithSubRegs<"bp", [BPL]>;
80   def SP : RegisterWithSubRegs<"sp", [SPL]>;
81   }
82   def IP : Register<"ip">;
83
84   // X86-64 only, requires REX.
85   let SubRegIndices = [sub_8bit], CostPerUse = 1 in {
86   def R8W  : RegisterWithSubRegs<"r8w", [R8B]>;
87   def R9W  : RegisterWithSubRegs<"r9w", [R9B]>;
88   def R10W : RegisterWithSubRegs<"r10w", [R10B]>;
89   def R11W : RegisterWithSubRegs<"r11w", [R11B]>;
90   def R12W : RegisterWithSubRegs<"r12w", [R12B]>;
91   def R13W : RegisterWithSubRegs<"r13w", [R13B]>;
92   def R14W : RegisterWithSubRegs<"r14w", [R14B]>;
93   def R15W : RegisterWithSubRegs<"r15w", [R15B]>;
94   }
95   // 32-bit registers
96   let SubRegIndices = [sub_16bit] in {
97   def EAX : RegisterWithSubRegs<"eax", [AX]>, DwarfRegNum<[-2, 0, 0]>;
98   def EDX : RegisterWithSubRegs<"edx", [DX]>, DwarfRegNum<[-2, 2, 2]>;
99   def ECX : RegisterWithSubRegs<"ecx", [CX]>, DwarfRegNum<[-2, 1, 1]>;
100   def EBX : RegisterWithSubRegs<"ebx", [BX]>, DwarfRegNum<[-2, 3, 3]>;
101   def ESI : RegisterWithSubRegs<"esi", [SI]>, DwarfRegNum<[-2, 6, 6]>;
102   def EDI : RegisterWithSubRegs<"edi", [DI]>, DwarfRegNum<[-2, 7, 7]>;
103   def EBP : RegisterWithSubRegs<"ebp", [BP]>, DwarfRegNum<[-2, 4, 5]>;
104   def ESP : RegisterWithSubRegs<"esp", [SP]>, DwarfRegNum<[-2, 5, 4]>;
105   def EIP : RegisterWithSubRegs<"eip", [IP]>, DwarfRegNum<[-2, 8, 8]>;
106
107   // X86-64 only, requires REX
108   let CostPerUse = 1 in {
109   def R8D  : RegisterWithSubRegs<"r8d", [R8W]>;
110   def R9D  : RegisterWithSubRegs<"r9d", [R9W]>;
111   def R10D : RegisterWithSubRegs<"r10d", [R10W]>;
112   def R11D : RegisterWithSubRegs<"r11d", [R11W]>;
113   def R12D : RegisterWithSubRegs<"r12d", [R12W]>;
114   def R13D : RegisterWithSubRegs<"r13d", [R13W]>;
115   def R14D : RegisterWithSubRegs<"r14d", [R14W]>;
116   def R15D : RegisterWithSubRegs<"r15d", [R15W]>;
117   }}
118
119   // 64-bit registers, X86-64 only
120   let SubRegIndices = [sub_32bit] in {
121   def RAX : RegisterWithSubRegs<"rax", [EAX]>, DwarfRegNum<[0, -2, -2]>;
122   def RDX : RegisterWithSubRegs<"rdx", [EDX]>, DwarfRegNum<[1, -2, -2]>;
123   def RCX : RegisterWithSubRegs<"rcx", [ECX]>, DwarfRegNum<[2, -2, -2]>;
124   def RBX : RegisterWithSubRegs<"rbx", [EBX]>, DwarfRegNum<[3, -2, -2]>;
125   def RSI : RegisterWithSubRegs<"rsi", [ESI]>, DwarfRegNum<[4, -2, -2]>;
126   def RDI : RegisterWithSubRegs<"rdi", [EDI]>, DwarfRegNum<[5, -2, -2]>;
127   def RBP : RegisterWithSubRegs<"rbp", [EBP]>, DwarfRegNum<[6, -2, -2]>;
128   def RSP : RegisterWithSubRegs<"rsp", [ESP]>, DwarfRegNum<[7, -2, -2]>;
129
130   // These also require REX.
131   let CostPerUse = 1 in {
132   def R8  : RegisterWithSubRegs<"r8", [R8D]>, DwarfRegNum<[8, -2, -2]>;
133   def R9  : RegisterWithSubRegs<"r9", [R9D]>, DwarfRegNum<[9, -2, -2]>;
134   def R10 : RegisterWithSubRegs<"r10", [R10D]>, DwarfRegNum<[10, -2, -2]>;
135   def R11 : RegisterWithSubRegs<"r11", [R11D]>, DwarfRegNum<[11, -2, -2]>;
136   def R12 : RegisterWithSubRegs<"r12", [R12D]>, DwarfRegNum<[12, -2, -2]>;
137   def R13 : RegisterWithSubRegs<"r13", [R13D]>, DwarfRegNum<[13, -2, -2]>;
138   def R14 : RegisterWithSubRegs<"r14", [R14D]>, DwarfRegNum<[14, -2, -2]>;
139   def R15 : RegisterWithSubRegs<"r15", [R15D]>, DwarfRegNum<[15, -2, -2]>;
140   def RIP : RegisterWithSubRegs<"rip", [EIP]>,  DwarfRegNum<[16, -2, -2]>;
141   }}
142
143   // MMX Registers. These are actually aliased to ST0 .. ST7
144   def MM0 : Register<"mm0">, DwarfRegNum<[41, 29, 29]>;
145   def MM1 : Register<"mm1">, DwarfRegNum<[42, 30, 30]>;
146   def MM2 : Register<"mm2">, DwarfRegNum<[43, 31, 31]>;
147   def MM3 : Register<"mm3">, DwarfRegNum<[44, 32, 32]>;
148   def MM4 : Register<"mm4">, DwarfRegNum<[45, 33, 33]>;
149   def MM5 : Register<"mm5">, DwarfRegNum<[46, 34, 34]>;
150   def MM6 : Register<"mm6">, DwarfRegNum<[47, 35, 35]>;
151   def MM7 : Register<"mm7">, DwarfRegNum<[48, 36, 36]>;
152
153   // Pseudo Floating Point registers
154   def FP0 : Register<"fp0">;
155   def FP1 : Register<"fp1">;
156   def FP2 : Register<"fp2">;
157   def FP3 : Register<"fp3">;
158   def FP4 : Register<"fp4">;
159   def FP5 : Register<"fp5">;
160   def FP6 : Register<"fp6">;
161
162   // XMM Registers, used by the various SSE instruction set extensions.
163   def XMM0: Register<"xmm0">, DwarfRegNum<[17, 21, 21]>;
164   def XMM1: Register<"xmm1">, DwarfRegNum<[18, 22, 22]>;
165   def XMM2: Register<"xmm2">, DwarfRegNum<[19, 23, 23]>;
166   def XMM3: Register<"xmm3">, DwarfRegNum<[20, 24, 24]>;
167   def XMM4: Register<"xmm4">, DwarfRegNum<[21, 25, 25]>;
168   def XMM5: Register<"xmm5">, DwarfRegNum<[22, 26, 26]>;
169   def XMM6: Register<"xmm6">, DwarfRegNum<[23, 27, 27]>;
170   def XMM7: Register<"xmm7">, DwarfRegNum<[24, 28, 28]>;
171
172   // X86-64 only
173   let CostPerUse = 1 in {
174   def XMM8:  Register<"xmm8">,  DwarfRegNum<[25, -2, -2]>;
175   def XMM9:  Register<"xmm9">,  DwarfRegNum<[26, -2, -2]>;
176   def XMM10: Register<"xmm10">, DwarfRegNum<[27, -2, -2]>;
177   def XMM11: Register<"xmm11">, DwarfRegNum<[28, -2, -2]>;
178   def XMM12: Register<"xmm12">, DwarfRegNum<[29, -2, -2]>;
179   def XMM13: Register<"xmm13">, DwarfRegNum<[30, -2, -2]>;
180   def XMM14: Register<"xmm14">, DwarfRegNum<[31, -2, -2]>;
181   def XMM15: Register<"xmm15">, DwarfRegNum<[32, -2, -2]>;
182   } // CostPerUse
183
184   // YMM Registers, used by AVX instructions
185   let SubRegIndices = [sub_xmm] in {
186   def YMM0: RegisterWithSubRegs<"ymm0", [XMM0]>, DwarfRegAlias<XMM0>;
187   def YMM1: RegisterWithSubRegs<"ymm1", [XMM1]>, DwarfRegAlias<XMM1>;
188   def YMM2: RegisterWithSubRegs<"ymm2", [XMM2]>, DwarfRegAlias<XMM2>;
189   def YMM3: RegisterWithSubRegs<"ymm3", [XMM3]>, DwarfRegAlias<XMM3>;
190   def YMM4: RegisterWithSubRegs<"ymm4", [XMM4]>, DwarfRegAlias<XMM4>;
191   def YMM5: RegisterWithSubRegs<"ymm5", [XMM5]>, DwarfRegAlias<XMM5>;
192   def YMM6: RegisterWithSubRegs<"ymm6", [XMM6]>, DwarfRegAlias<XMM6>;
193   def YMM7: RegisterWithSubRegs<"ymm7", [XMM7]>, DwarfRegAlias<XMM7>;
194   def YMM8:  RegisterWithSubRegs<"ymm8", [XMM8]>, DwarfRegAlias<XMM8>;
195   def YMM9:  RegisterWithSubRegs<"ymm9", [XMM9]>, DwarfRegAlias<XMM9>;
196   def YMM10: RegisterWithSubRegs<"ymm10", [XMM10]>, DwarfRegAlias<XMM10>;
197   def YMM11: RegisterWithSubRegs<"ymm11", [XMM11]>, DwarfRegAlias<XMM11>;
198   def YMM12: RegisterWithSubRegs<"ymm12", [XMM12]>, DwarfRegAlias<XMM12>;
199   def YMM13: RegisterWithSubRegs<"ymm13", [XMM13]>, DwarfRegAlias<XMM13>;
200   def YMM14: RegisterWithSubRegs<"ymm14", [XMM14]>, DwarfRegAlias<XMM14>;
201   def YMM15: RegisterWithSubRegs<"ymm15", [XMM15]>, DwarfRegAlias<XMM15>;
202   }
203
204   class STRegister<string Name, list<Register> A> : Register<Name> {
205     let Aliases = A;
206   }
207
208   // Floating point stack registers. These don't map one-to-one to the FP
209   // pseudo registers, but we still mark them as aliasing FP registers. That
210   // way both kinds can be live without exceeding the stack depth. ST registers
211   // are only live around inline assembly.
212   def ST0 : STRegister<"st(0)", []>, DwarfRegNum<[33, 12, 11]>;
213   def ST1 : STRegister<"st(1)", [FP6]>, DwarfRegNum<[34, 13, 12]>;
214   def ST2 : STRegister<"st(2)", [FP5]>, DwarfRegNum<[35, 14, 13]>;
215   def ST3 : STRegister<"st(3)", [FP4]>, DwarfRegNum<[36, 15, 14]>;
216   def ST4 : STRegister<"st(4)", [FP3]>, DwarfRegNum<[37, 16, 15]>;
217   def ST5 : STRegister<"st(5)", [FP2]>, DwarfRegNum<[38, 17, 16]>;
218   def ST6 : STRegister<"st(6)", [FP1]>, DwarfRegNum<[39, 18, 17]>;
219   def ST7 : STRegister<"st(7)", [FP0]>, DwarfRegNum<[40, 19, 18]>;
220
221   // Floating-point status word
222   def FPSW : Register<"fpsw">;
223
224   // Status flags register
225   def EFLAGS : Register<"flags">;
226
227   // Segment registers
228   def CS : Register<"cs">;
229   def DS : Register<"ds">;
230   def SS : Register<"ss">;
231   def ES : Register<"es">;
232   def FS : Register<"fs">;
233   def GS : Register<"gs">;
234
235   // Debug registers
236   def DR0 : Register<"dr0">;
237   def DR1 : Register<"dr1">;
238   def DR2 : Register<"dr2">;
239   def DR3 : Register<"dr3">;
240   def DR4 : Register<"dr4">;
241   def DR5 : Register<"dr5">;
242   def DR6 : Register<"dr6">;
243   def DR7 : Register<"dr7">;
244
245   // Control registers
246   def CR0 : Register<"cr0">;
247   def CR1 : Register<"cr1">;
248   def CR2 : Register<"cr2">;
249   def CR3 : Register<"cr3">;
250   def CR4 : Register<"cr4">;
251   def CR5 : Register<"cr5">;
252   def CR6 : Register<"cr6">;
253   def CR7 : Register<"cr7">;
254   def CR8 : Register<"cr8">;
255   def CR9 : Register<"cr9">;
256   def CR10 : Register<"cr10">;
257   def CR11 : Register<"cr11">;
258   def CR12 : Register<"cr12">;
259   def CR13 : Register<"cr13">;
260   def CR14 : Register<"cr14">;
261   def CR15 : Register<"cr15">;
262
263   // Pseudo index registers
264   def EIZ : Register<"eiz">;
265   def RIZ : Register<"riz">;
266 }
267
268
269 //===----------------------------------------------------------------------===//
270 // Register Class Definitions... now that we have all of the pieces, define the
271 // top-level register classes.  The order specified in the register list is
272 // implicitly defined to be the register allocation order.
273 //
274
275 // List call-clobbered registers before callee-save registers. RBX, RBP, (and
276 // R12, R13, R14, and R15 for X86-64) are callee-save registers.
277 // In 64-mode, there are 12 additional i8 registers, SIL, DIL, BPL, SPL, and
278 // R8B, ... R15B.
279 // Allocate R12 and R13 last, as these require an extra byte when
280 // encoded in x86_64 instructions.
281 // FIXME: Allow AH, CH, DH, BH to be used as general-purpose registers in
282 // 64-bit mode. The main complication is that they cannot be encoded in an
283 // instruction requiring a REX prefix, while SIL, DIL, BPL, R8D, etc.
284 // require a REX prefix. For example, "addb %ah, %dil" and "movzbl %ah, %r8d"
285 // cannot be encoded.
286 def GR8 : RegisterClass<"X86", [i8],  8,
287                         (add AL, CL, DL, AH, CH, DH, BL, BH, SIL, DIL, BPL, SPL,
288                              R8B, R9B, R10B, R11B, R14B, R15B, R12B, R13B)> {
289   let AltOrders = [(sub GR8, AH, BH, CH, DH)];
290   let AltOrderSelect = [{
291     return MF.getTarget().getSubtarget<X86Subtarget>().is64Bit();
292   }];
293 }
294
295 def GR16 : RegisterClass<"X86", [i16], 16,
296                          (add AX, CX, DX, SI, DI, BX, BP, SP,
297                               R8W, R9W, R10W, R11W, R14W, R15W, R12W, R13W)>;
298
299 def GR32 : RegisterClass<"X86", [i32], 32,
300                          (add EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP,
301                               R8D, R9D, R10D, R11D, R14D, R15D, R12D, R13D)>;
302
303 // GR64 - 64-bit GPRs. This oddly includes RIP, which isn't accurate, since
304 // RIP isn't really a register and it can't be used anywhere except in an
305 // address, but it doesn't cause trouble.
306 def GR64 : RegisterClass<"X86", [i64], 64,
307                          (add RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
308                               RBX, R14, R15, R12, R13, RBP, RSP, RIP)>;
309
310 // Segment registers for use by MOV instructions (and others) that have a
311 //   segment register as one operand.  Always contain a 16-bit segment
312 //   descriptor.
313 def SEGMENT_REG : RegisterClass<"X86", [i16], 16, (add CS, DS, SS, ES, FS, GS)>;
314
315 // Debug registers.
316 def DEBUG_REG : RegisterClass<"X86", [i32], 32, (sequence "DR%u", 0, 7)>;
317
318 // Control registers.
319 def CONTROL_REG : RegisterClass<"X86", [i64], 64, (sequence "CR%u", 0, 15)>;
320
321 // GR8_ABCD_L, GR8_ABCD_H, GR16_ABCD, GR32_ABCD, GR64_ABCD - Subclasses of
322 // GR8, GR16, GR32, and GR64 which contain just the "a" "b", "c", and "d"
323 // registers. On x86-32, GR16_ABCD and GR32_ABCD are classes for registers
324 // that support 8-bit subreg operations. On x86-64, GR16_ABCD, GR32_ABCD,
325 // and GR64_ABCD are classes for registers that support 8-bit h-register
326 // operations.
327 def GR8_ABCD_L : RegisterClass<"X86", [i8], 8, (add AL, CL, DL, BL)>;
328 def GR8_ABCD_H : RegisterClass<"X86", [i8], 8, (add AH, CH, DH, BH)>;
329 def GR16_ABCD : RegisterClass<"X86", [i16], 16, (add AX, CX, DX, BX)>;
330 def GR32_ABCD : RegisterClass<"X86", [i32], 32, (add EAX, ECX, EDX, EBX)>;
331 def GR64_ABCD : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX, RBX)>;
332 def GR32_TC   : RegisterClass<"X86", [i32], 32, (add EAX, ECX, EDX)>;
333 def GR64_TC   : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX, RSI, RDI,
334                                                      R8, R9, R11, RIP)>;
335 def GR64_TCW64 : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX,
336                                                       R8, R9, R11)>;
337
338 // GR8_NOREX - GR8 registers which do not require a REX prefix.
339 def GR8_NOREX : RegisterClass<"X86", [i8], 8,
340                               (add AL, CL, DL, AH, CH, DH, BL, BH)> {
341   let AltOrders = [(sub GR8_NOREX, AH, BH, CH, DH)];
342   let AltOrderSelect = [{
343     return MF.getTarget().getSubtarget<X86Subtarget>().is64Bit();
344   }];
345 }
346 // GR16_NOREX - GR16 registers which do not require a REX prefix.
347 def GR16_NOREX : RegisterClass<"X86", [i16], 16,
348                                (add AX, CX, DX, SI, DI, BX, BP, SP)>;
349 // GR32_NOREX - GR32 registers which do not require a REX prefix.
350 def GR32_NOREX : RegisterClass<"X86", [i32], 32,
351                                (add EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP)>;
352 // GR64_NOREX - GR64 registers which do not require a REX prefix.
353 def GR64_NOREX : RegisterClass<"X86", [i64], 64,
354                             (add RAX, RCX, RDX, RSI, RDI, RBX, RBP, RSP, RIP)>;
355
356 // GR32_NOAX - GR32 registers except EAX. Used by AddRegFrm of XCHG32 in 64-bit
357 // mode to prevent encoding using the 0x90 NOP encoding. xchg %eax, %eax needs
358 // to clear upper 32-bits of RAX so is not a NOP.
359 def GR32_NOAX : RegisterClass<"X86", [i32], 32, (sub GR32, EAX)>;
360
361 // GR32_NOSP - GR32 registers except ESP.
362 def GR32_NOSP : RegisterClass<"X86", [i32], 32, (sub GR32, ESP)>;
363
364 // GR64_NOSP - GR64 registers except RSP (and RIP).
365 def GR64_NOSP : RegisterClass<"X86", [i64], 64, (sub GR64, RSP, RIP)>;
366
367 // GR32_NOREX_NOSP - GR32 registers which do not require a REX prefix except
368 // ESP.
369 def GR32_NOREX_NOSP : RegisterClass<"X86", [i32], 32,
370                                     (and GR32_NOREX, GR32_NOSP)>;
371
372 // GR64_NOREX_NOSP - GR64_NOREX registers except RSP.
373 def GR64_NOREX_NOSP : RegisterClass<"X86", [i64], 64,
374                                     (and GR64_NOREX, GR64_NOSP)>;
375
376 // A class to support the 'A' assembler constraint: EAX then EDX.
377 def GR32_AD : RegisterClass<"X86", [i32], 32, (add EAX, EDX)>;
378
379 // Scalar SSE2 floating point registers.
380 def FR32 : RegisterClass<"X86", [f32], 32, (sequence "XMM%u", 0, 15)>;
381
382 def FR64 : RegisterClass<"X86", [f64], 64, (add FR32)>;
383
384
385 // FIXME: This sets up the floating point register files as though they are f64
386 // values, though they really are f80 values.  This will cause us to spill
387 // values as 64-bit quantities instead of 80-bit quantities, which is much much
388 // faster on common hardware.  In reality, this should be controlled by a
389 // command line option or something.
390
391 def RFP32 : RegisterClass<"X86",[f32], 32, (sequence "FP%u", 0, 6)>;
392 def RFP64 : RegisterClass<"X86",[f64], 32, (add RFP32)>;
393 def RFP80 : RegisterClass<"X86",[f80], 32, (add RFP32)>;
394
395 // Floating point stack registers (these are not allocatable by the
396 // register allocator - the floating point stackifier is responsible
397 // for transforming FPn allocations to STn registers)
398 def RST : RegisterClass<"X86", [f80, f64, f32], 32, (sequence "ST%u", 0, 7)> {
399   let isAllocatable = 0;
400 }
401
402 // Generic vector registers: VR64 and VR128.
403 def VR64: RegisterClass<"X86", [x86mmx], 64, (sequence "MM%u", 0, 7)>;
404 def VR128 : RegisterClass<"X86", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
405                           128, (add FR32)>;
406 def VR256 : RegisterClass<"X86", [v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
407                           256, (sequence "YMM%u", 0, 15)>;
408
409 // Status flags registers.
410 def CCR : RegisterClass<"X86", [i32], 32, (add EFLAGS)> {
411   let CopyCost = -1;  // Don't allow copying of status registers.
412   let isAllocatable = 0;
413 }
414 def FPCCR : RegisterClass<"X86", [i16], 16, (add FPSW)> {
415   let CopyCost = -1;  // Don't allow copying of status registers.
416   let isAllocatable = 0;
417 }