rename FpGETRESULT32 -> FpGET_ST0_32 etc. Add support for
[oota-llvm.git] / lib / Target / X86 / X86InstrFPStack.td
1 //==- X86InstrFPStack.td - Describe the X86 Instruction Set --*- tablegen -*-=//
2 // 
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 // 
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes the X86 x87 FPU instruction set, defining the
11 // instructions, and properties of the instructions which are needed for code
12 // generation, machine code emission, and analysis.
13 //
14 //===----------------------------------------------------------------------===//
15
16 //===----------------------------------------------------------------------===//
17 // FPStack specific DAG Nodes.
18 //===----------------------------------------------------------------------===//
19
20 def SDTX86FpGet     : SDTypeProfile<1, 0, [SDTCisFP<0>]>;
21 def SDTX86FpGet2    : SDTypeProfile<2, 0, [SDTCisVT<0, f80>, 
22                                            SDTCisVT<1, f80>]>;
23 def SDTX86FpSet     : SDTypeProfile<0, 1, [SDTCisFP<0>]>;
24 def SDTX86Fld       : SDTypeProfile<1, 2, [SDTCisFP<0>,
25                                            SDTCisPtrTy<1>, 
26                                            SDTCisVT<2, OtherVT>]>;
27 def SDTX86Fst       : SDTypeProfile<0, 3, [SDTCisFP<0>,
28                                            SDTCisPtrTy<1>, 
29                                            SDTCisVT<2, OtherVT>]>;
30 def SDTX86Fild      : SDTypeProfile<1, 2, [SDTCisFP<0>, SDTCisPtrTy<1>,
31                                            SDTCisVT<2, OtherVT>]>;
32 def SDTX86FpToIMem  : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisPtrTy<1>]>;
33
34 def SDTX86CwdStore  : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
35
36 def X86fpget_st0    : SDNode<"X86ISD::FP_GET_ST0", SDTX86FpGet,
37                              [SDNPHasChain, SDNPInFlag, SDNPOutFlag]>;
38 def X86fpset        : SDNode<"X86ISD::FP_SET_RESULT", SDTX86FpSet,
39                              [SDNPHasChain, SDNPOutFlag]>;
40 def X86fld          : SDNode<"X86ISD::FLD", SDTX86Fld,
41                              [SDNPHasChain, SDNPMayLoad]>;
42 def X86fst          : SDNode<"X86ISD::FST", SDTX86Fst,
43                              [SDNPHasChain, SDNPInFlag, SDNPMayStore]>;
44 def X86fild         : SDNode<"X86ISD::FILD", SDTX86Fild,
45                              [SDNPHasChain, SDNPMayLoad]>;
46 def X86fildflag     : SDNode<"X86ISD::FILD_FLAG", SDTX86Fild,
47                              [SDNPHasChain, SDNPOutFlag, SDNPMayLoad]>;
48 def X86fp_to_i16mem : SDNode<"X86ISD::FP_TO_INT16_IN_MEM", SDTX86FpToIMem,
49                              [SDNPHasChain, SDNPMayStore]>;
50 def X86fp_to_i32mem : SDNode<"X86ISD::FP_TO_INT32_IN_MEM", SDTX86FpToIMem,
51                              [SDNPHasChain, SDNPMayStore]>;
52 def X86fp_to_i64mem : SDNode<"X86ISD::FP_TO_INT64_IN_MEM", SDTX86FpToIMem,
53                              [SDNPHasChain, SDNPMayStore]>;
54 def X86fp_cwd_get16 : SDNode<"X86ISD::FNSTCW16m",          SDTX86CwdStore,
55                              [SDNPHasChain, SDNPMayStore, SDNPSideEffect]>;
56
57 //===----------------------------------------------------------------------===//
58 // FPStack pattern fragments
59 //===----------------------------------------------------------------------===//
60
61 def fpimm0 : PatLeaf<(fpimm), [{
62   return N->isExactlyValue(+0.0);
63 }]>;
64
65 def fpimmneg0 : PatLeaf<(fpimm), [{
66   return N->isExactlyValue(-0.0);
67 }]>;
68
69 def fpimm1 : PatLeaf<(fpimm), [{
70   return N->isExactlyValue(+1.0);
71 }]>;
72
73 def fpimmneg1 : PatLeaf<(fpimm), [{
74   return N->isExactlyValue(-1.0);
75 }]>;
76
77 // Some 'special' instructions
78 let usesCustomDAGSchedInserter = 1 in {  // Expanded by the scheduler.
79   def FP32_TO_INT16_IN_MEM : I<0, Pseudo,
80                               (outs), (ins i16mem:$dst, RFP32:$src),
81                               "#FP32_TO_INT16_IN_MEM PSEUDO!",
82                               [(X86fp_to_i16mem RFP32:$src, addr:$dst)]>;
83   def FP32_TO_INT32_IN_MEM : I<0, Pseudo,
84                               (outs), (ins i32mem:$dst, RFP32:$src),
85                               "#FP32_TO_INT32_IN_MEM PSEUDO!",
86                               [(X86fp_to_i32mem RFP32:$src, addr:$dst)]>;
87   def FP32_TO_INT64_IN_MEM : I<0, Pseudo,
88                               (outs), (ins i64mem:$dst, RFP32:$src),
89                               "#FP32_TO_INT64_IN_MEM PSEUDO!",
90                               [(X86fp_to_i64mem RFP32:$src, addr:$dst)]>;
91   def FP64_TO_INT16_IN_MEM : I<0, Pseudo,
92                               (outs), (ins i16mem:$dst, RFP64:$src),
93                               "#FP64_TO_INT16_IN_MEM PSEUDO!",
94                               [(X86fp_to_i16mem RFP64:$src, addr:$dst)]>;
95   def FP64_TO_INT32_IN_MEM : I<0, Pseudo,
96                               (outs), (ins i32mem:$dst, RFP64:$src),
97                               "#FP64_TO_INT32_IN_MEM PSEUDO!",
98                               [(X86fp_to_i32mem RFP64:$src, addr:$dst)]>;
99   def FP64_TO_INT64_IN_MEM : I<0, Pseudo,
100                               (outs), (ins i64mem:$dst, RFP64:$src),
101                               "#FP64_TO_INT64_IN_MEM PSEUDO!",
102                               [(X86fp_to_i64mem RFP64:$src, addr:$dst)]>;
103   def FP80_TO_INT16_IN_MEM : I<0, Pseudo,
104                               (outs), (ins i16mem:$dst, RFP80:$src),
105                               "#FP80_TO_INT16_IN_MEM PSEUDO!",
106                               [(X86fp_to_i16mem RFP80:$src, addr:$dst)]>;
107   def FP80_TO_INT32_IN_MEM : I<0, Pseudo,
108                               (outs), (ins i32mem:$dst, RFP80:$src),
109                               "#FP80_TO_INT32_IN_MEM PSEUDO!",
110                               [(X86fp_to_i32mem RFP80:$src, addr:$dst)]>;
111   def FP80_TO_INT64_IN_MEM : I<0, Pseudo,
112                               (outs), (ins i64mem:$dst, RFP80:$src),
113                               "#FP80_TO_INT64_IN_MEM PSEUDO!",
114                               [(X86fp_to_i64mem RFP80:$src, addr:$dst)]>;
115 }
116
117 let isTerminator = 1 in
118   let Defs = [FP0, FP1, FP2, FP3, FP4, FP5, FP6] in
119     def FP_REG_KILL  : I<0, Pseudo, (outs), (ins), "#FP_REG_KILL", []>;
120
121 // All FP Stack operations are represented with four instructions here.  The
122 // first three instructions, generated by the instruction selector, use "RFP32"
123 // "RFP64" or "RFP80" registers: traditional register files to reference 32-bit,
124 // 64-bit or 80-bit floating point values.  These sizes apply to the values, 
125 // not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be
126 // copied to each other without losing information.  These instructions are all
127 // pseudo instructions and use the "_Fp" suffix.
128 // In some cases there are additional variants with a mixture of different
129 // register sizes.
130 // The second instruction is defined with FPI, which is the actual instruction
131 // emitted by the assembler.  These use "RST" registers, although frequently
132 // the actual register(s) used are implicit.  These are always 80 bits.
133 // The FP stackifier pass converts one to the other after register allocation 
134 // occurs.
135 //
136 // Note that the FpI instruction should have instruction selection info (e.g.
137 // a pattern) and the FPI instruction should have emission info (e.g. opcode
138 // encoding and asm printing info).
139
140 // Pseudo Instructions for FP stack return values.
141 def FpGET_ST0_32 : FpI_<(outs RFP32:$dst), (ins), SpecialFP,
142                         [(set RFP32:$dst, X86fpget_st0)]>;       // FPR = ST(0)
143 def FpGET_ST0_64 : FpI_<(outs RFP64:$dst), (ins), SpecialFP,
144                         [(set RFP64:$dst, X86fpget_st0)]>;       // FPR = ST(0)
145 def FpGET_ST0_80 : FpI_<(outs RFP80:$dst), (ins), SpecialFP,
146                         [(set RFP80:$dst, X86fpget_st0)]>;       // FPR = ST(0)
147
148 def FpGET_ST0_ST1 : FpI_<(outs RFP80:$dst1, RFP80:$dst2), (ins), SpecialFP,
149                          []>;                        // FPR = ST(0), FPR = ST(1)
150
151
152 let Defs = [ST0] in {
153 def FpSETRESULT32 : FpI_<(outs), (ins RFP32:$src), SpecialFP,
154                       [(X86fpset RFP32:$src)]>;// ST(0) = FPR
155
156 def FpSETRESULT64 : FpI_<(outs), (ins RFP64:$src), SpecialFP,
157                       [(X86fpset RFP64:$src)]>;// ST(0) = FPR
158
159 def FpSETRESULT80 : FpI_<(outs), (ins RFP80:$src), SpecialFP,
160                       [(X86fpset RFP80:$src)]>;// ST(0) = FPR
161 }
162
163 // FpIf32, FpIf64 - Floating Point Psuedo Instruction template.
164 // f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1.
165 // f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2.
166 // f80 instructions cannot use SSE and use neither of these.
167 class FpIf32<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
168   FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32]>;
169 class FpIf64<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
170   FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64]>;
171
172 // Register copies.  Just copies, the shortening ones do not truncate.
173 let neverHasSideEffects = 1 in {
174   def MOV_Fp3232 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), SpecialFP, []>; 
175   def MOV_Fp3264 : FpIf32<(outs RFP64:$dst), (ins RFP32:$src), SpecialFP, []>; 
176   def MOV_Fp6432 : FpIf32<(outs RFP32:$dst), (ins RFP64:$src), SpecialFP, []>; 
177   def MOV_Fp6464 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), SpecialFP, []>; 
178   def MOV_Fp8032 : FpIf32<(outs RFP32:$dst), (ins RFP80:$src), SpecialFP, []>; 
179   def MOV_Fp3280 : FpIf32<(outs RFP80:$dst), (ins RFP32:$src), SpecialFP, []>; 
180   def MOV_Fp8064 : FpIf64<(outs RFP64:$dst), (ins RFP80:$src), SpecialFP, []>; 
181   def MOV_Fp6480 : FpIf64<(outs RFP80:$dst), (ins RFP64:$src), SpecialFP, []>; 
182   def MOV_Fp8080 : FpI_  <(outs RFP80:$dst), (ins RFP80:$src), SpecialFP, []>; 
183 }
184
185 // Factoring for arithmetic.
186 multiclass FPBinary_rr<SDNode OpNode> {
187 // Register op register -> register
188 // These are separated out because they have no reversed form.
189 def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP,
190                 [(set RFP32:$dst, (OpNode RFP32:$src1, RFP32:$src2))]>;
191 def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP,
192                 [(set RFP64:$dst, (OpNode RFP64:$src1, RFP64:$src2))]>;
193 def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP,
194                 [(set RFP80:$dst, (OpNode RFP80:$src1, RFP80:$src2))]>;
195 }
196 // The FopST0 series are not included here because of the irregularities
197 // in where the 'r' goes in assembly output.
198 // These instructions cannot address 80-bit memory.
199 multiclass FPBinary<SDNode OpNode, Format fp, string asmstring> {
200 // ST(0) = ST(0) + [mem]
201 def _Fp32m  : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, f32mem:$src2), OneArgFPRW,
202                   [(set RFP32:$dst, 
203                     (OpNode RFP32:$src1, (loadf32 addr:$src2)))]>;
204 def _Fp64m  : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, f64mem:$src2), OneArgFPRW,
205                   [(set RFP64:$dst, 
206                     (OpNode RFP64:$src1, (loadf64 addr:$src2)))]>;
207 def _Fp64m32: FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, f32mem:$src2), OneArgFPRW,
208                   [(set RFP64:$dst, 
209                     (OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2))))]>;
210 def _Fp80m32: FpI_<(outs RFP80:$dst), (ins RFP80:$src1, f32mem:$src2), OneArgFPRW,
211                   [(set RFP80:$dst, 
212                     (OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2))))]>;
213 def _Fp80m64: FpI_<(outs RFP80:$dst), (ins RFP80:$src1, f64mem:$src2), OneArgFPRW,
214                   [(set RFP80:$dst, 
215                     (OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2))))]>;
216 def _F32m  : FPI<0xD8, fp, (outs), (ins f32mem:$src), 
217                  !strconcat("f", !strconcat(asmstring, "{s}\t$src"))> { let mayLoad = 1; }
218 def _F64m  : FPI<0xDC, fp, (outs), (ins f64mem:$src), 
219                  !strconcat("f", !strconcat(asmstring, "{l}\t$src"))> { let mayLoad = 1; }
220 // ST(0) = ST(0) + [memint]
221 def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2), OneArgFPRW,
222                     [(set RFP32:$dst, (OpNode RFP32:$src1,
223                                        (X86fild addr:$src2, i16)))]>;
224 def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2), OneArgFPRW,
225                     [(set RFP32:$dst, (OpNode RFP32:$src1,
226                                        (X86fild addr:$src2, i32)))]>;
227 def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2), OneArgFPRW,
228                     [(set RFP64:$dst, (OpNode RFP64:$src1,
229                                        (X86fild addr:$src2, i16)))]>;
230 def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2), OneArgFPRW,
231                     [(set RFP64:$dst, (OpNode RFP64:$src1,
232                                        (X86fild addr:$src2, i32)))]>;
233 def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2), OneArgFPRW,
234                     [(set RFP80:$dst, (OpNode RFP80:$src1,
235                                        (X86fild addr:$src2, i16)))]>;
236 def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2), OneArgFPRW,
237                     [(set RFP80:$dst, (OpNode RFP80:$src1,
238                                        (X86fild addr:$src2, i32)))]>;
239 def _FI16m  : FPI<0xDE, fp, (outs), (ins i16mem:$src), 
240                   !strconcat("fi", !strconcat(asmstring, "{s}\t$src"))> { let mayLoad = 1; }
241 def _FI32m  : FPI<0xDA, fp, (outs), (ins i32mem:$src), 
242                   !strconcat("fi", !strconcat(asmstring, "{l}\t$src"))> { let mayLoad = 1; }
243 }
244
245 defm ADD : FPBinary_rr<fadd>;
246 defm SUB : FPBinary_rr<fsub>;
247 defm MUL : FPBinary_rr<fmul>;
248 defm DIV : FPBinary_rr<fdiv>;
249 defm ADD : FPBinary<fadd, MRM0m, "add">;
250 defm SUB : FPBinary<fsub, MRM4m, "sub">;
251 defm SUBR: FPBinary<fsub ,MRM5m, "subr">;
252 defm MUL : FPBinary<fmul, MRM1m, "mul">;
253 defm DIV : FPBinary<fdiv, MRM6m, "div">;
254 defm DIVR: FPBinary<fdiv, MRM7m, "divr">;
255
256 class FPST0rInst<bits<8> o, string asm>
257   : FPI<o, AddRegFrm, (outs), (ins RST:$op), asm>, D8;
258 class FPrST0Inst<bits<8> o, string asm>
259   : FPI<o, AddRegFrm, (outs), (ins RST:$op), asm>, DC;
260 class FPrST0PInst<bits<8> o, string asm>
261   : FPI<o, AddRegFrm, (outs), (ins RST:$op), asm>, DE;
262
263 // NOTE: GAS and apparently all other AT&T style assemblers have a broken notion
264 // of some of the 'reverse' forms of the fsub and fdiv instructions.  As such,
265 // we have to put some 'r's in and take them out of weird places.
266 def ADD_FST0r   : FPST0rInst <0xC0, "fadd\t$op">;
267 def ADD_FrST0   : FPrST0Inst <0xC0, "fadd\t{%st(0), $op|$op, %ST(0)}">;
268 def ADD_FPrST0  : FPrST0PInst<0xC0, "faddp\t$op">;
269 def SUBR_FST0r  : FPST0rInst <0xE8, "fsubr\t$op">;
270 def SUB_FrST0   : FPrST0Inst <0xE8, "fsub{r}\t{%st(0), $op|$op, %ST(0)}">;
271 def SUB_FPrST0  : FPrST0PInst<0xE8, "fsub{r}p\t$op">;
272 def SUB_FST0r   : FPST0rInst <0xE0, "fsub\t$op">;
273 def SUBR_FrST0  : FPrST0Inst <0xE0, "fsub{|r}\t{%st(0), $op|$op, %ST(0)}">;
274 def SUBR_FPrST0 : FPrST0PInst<0xE0, "fsub{|r}p\t$op">;
275 def MUL_FST0r   : FPST0rInst <0xC8, "fmul\t$op">;
276 def MUL_FrST0   : FPrST0Inst <0xC8, "fmul\t{%st(0), $op|$op, %ST(0)}">;
277 def MUL_FPrST0  : FPrST0PInst<0xC8, "fmulp\t$op">;
278 def DIVR_FST0r  : FPST0rInst <0xF8, "fdivr\t$op">;
279 def DIV_FrST0   : FPrST0Inst <0xF8, "fdiv{r}\t{%st(0), $op|$op, %ST(0)}">;
280 def DIV_FPrST0  : FPrST0PInst<0xF8, "fdiv{r}p\t$op">;
281 def DIV_FST0r   : FPST0rInst <0xF0, "fdiv\t$op">;
282 def DIVR_FrST0  : FPrST0Inst <0xF0, "fdiv{|r}\t{%st(0), $op|$op, %ST(0)}">;
283 def DIVR_FPrST0 : FPrST0PInst<0xF0, "fdiv{|r}p\t$op">;
284
285 // Unary operations.
286 multiclass FPUnary<SDNode OpNode, bits<8> opcode, string asmstring> {
287 def _Fp32  : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW,
288                  [(set RFP32:$dst, (OpNode RFP32:$src))]>;
289 def _Fp64  : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW,
290                  [(set RFP64:$dst, (OpNode RFP64:$src))]>;
291 def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW,
292                  [(set RFP80:$dst, (OpNode RFP80:$src))]>;
293 def _F     : FPI<opcode, RawFrm, (outs), (ins), asmstring>, D9;
294 }
295
296 defm CHS : FPUnary<fneg, 0xE0, "fchs">;
297 defm ABS : FPUnary<fabs, 0xE1, "fabs">;
298 defm SQRT: FPUnary<fsqrt,0xFA, "fsqrt">;
299 defm SIN : FPUnary<fsin, 0xFE, "fsin">;
300 defm COS : FPUnary<fcos, 0xFF, "fcos">;
301
302 let neverHasSideEffects = 1 in {
303 def TST_Fp32  : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>;
304 def TST_Fp64  : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>;
305 def TST_Fp80  : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>;
306 }
307 def TST_F  : FPI<0xE4, RawFrm, (outs), (ins), "ftst">, D9;
308
309 // Floating point cmovs.
310 multiclass FPCMov<PatLeaf cc> {
311   def _Fp32  : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2),
312                        CondMovFP,
313                      [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2,
314                                         cc, EFLAGS))]>;
315   def _Fp64  : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2),
316                        CondMovFP,
317                      [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2,
318                                         cc, EFLAGS))]>;
319   def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2),
320                      CondMovFP,
321                      [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2,
322                                         cc, EFLAGS))]>;
323 }
324 let Uses = [EFLAGS], isTwoAddress = 1 in {
325 defm CMOVB  : FPCMov<X86_COND_B>;
326 defm CMOVBE : FPCMov<X86_COND_BE>;
327 defm CMOVE  : FPCMov<X86_COND_E>;
328 defm CMOVP  : FPCMov<X86_COND_P>;
329 defm CMOVNB : FPCMov<X86_COND_AE>;
330 defm CMOVNBE: FPCMov<X86_COND_A>;
331 defm CMOVNE : FPCMov<X86_COND_NE>;
332 defm CMOVNP : FPCMov<X86_COND_NP>;
333 }
334
335 // These are not factored because there's no clean way to pass DA/DB.
336 def CMOVB_F  : FPI<0xC0, AddRegFrm, (outs RST:$op), (ins),
337                   "fcmovb\t{$op, %st(0)|%ST(0), $op}">, DA;
338 def CMOVBE_F : FPI<0xD0, AddRegFrm, (outs RST:$op), (ins),
339                   "fcmovbe\t{$op, %st(0)|%ST(0), $op}">, DA;
340 def CMOVE_F  : FPI<0xC8, AddRegFrm, (outs RST:$op), (ins),
341                   "fcmove\t{$op, %st(0)|%ST(0), $op}">, DA;
342 def CMOVP_F  : FPI<0xD8, AddRegFrm, (outs RST:$op), (ins),
343                   "fcmovu\t {$op, %st(0)|%ST(0), $op}">, DA;
344 def CMOVNB_F : FPI<0xC0, AddRegFrm, (outs RST:$op), (ins),
345                   "fcmovnb\t{$op, %st(0)|%ST(0), $op}">, DB;
346 def CMOVNBE_F: FPI<0xD0, AddRegFrm, (outs RST:$op), (ins),
347                   "fcmovnbe\t{$op, %st(0)|%ST(0), $op}">, DB;
348 def CMOVNE_F : FPI<0xC8, AddRegFrm, (outs RST:$op), (ins),
349                   "fcmovne\t{$op, %st(0)|%ST(0), $op}">, DB;
350 def CMOVNP_F : FPI<0xD8, AddRegFrm, (outs RST:$op), (ins),
351                   "fcmovnu\t{$op, %st(0)|%ST(0), $op}">, DB;
352
353 // Floating point loads & stores.
354 let isSimpleLoad = 1 in {
355 def LD_Fp32m   : FpIf32<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP,
356                   [(set RFP32:$dst, (loadf32 addr:$src))]>;
357 let isReMaterializable = 1, mayHaveSideEffects = 1 in
358   def LD_Fp64m : FpIf64<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP,
359                   [(set RFP64:$dst, (loadf64 addr:$src))]>;
360 def LD_Fp80m   : FpI_<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP,
361                   [(set RFP80:$dst, (loadf80 addr:$src))]>;
362 }
363 def LD_Fp32m64 : FpIf64<(outs RFP64:$dst), (ins f32mem:$src), ZeroArgFP,
364                   [(set RFP64:$dst, (f64 (extloadf32 addr:$src)))]>;
365 def LD_Fp64m80 : FpI_<(outs RFP80:$dst), (ins f64mem:$src), ZeroArgFP,
366                   [(set RFP80:$dst, (f80 (extloadf64 addr:$src)))]>;
367 def LD_Fp32m80 : FpI_<(outs RFP80:$dst), (ins f32mem:$src), ZeroArgFP,
368                   [(set RFP80:$dst, (f80 (extloadf32 addr:$src)))]>;
369 def ILD_Fp16m32: FpIf32<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP,
370                   [(set RFP32:$dst, (X86fild addr:$src, i16))]>;
371 def ILD_Fp32m32: FpIf32<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP,
372                   [(set RFP32:$dst, (X86fild addr:$src, i32))]>;
373 def ILD_Fp64m32: FpIf32<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP,
374                   [(set RFP32:$dst, (X86fild addr:$src, i64))]>;
375 def ILD_Fp16m64: FpIf64<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP,
376                   [(set RFP64:$dst, (X86fild addr:$src, i16))]>;
377 def ILD_Fp32m64: FpIf64<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP,
378                   [(set RFP64:$dst, (X86fild addr:$src, i32))]>;
379 def ILD_Fp64m64: FpIf64<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP,
380                   [(set RFP64:$dst, (X86fild addr:$src, i64))]>;
381 def ILD_Fp16m80: FpI_<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP,
382                   [(set RFP80:$dst, (X86fild addr:$src, i16))]>;
383 def ILD_Fp32m80: FpI_<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP,
384                   [(set RFP80:$dst, (X86fild addr:$src, i32))]>;
385 def ILD_Fp64m80: FpI_<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP,
386                   [(set RFP80:$dst, (X86fild addr:$src, i64))]>;
387
388 def ST_Fp32m   : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP,
389                   [(store RFP32:$src, addr:$op)]>;
390 def ST_Fp64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP,
391                   [(truncstoref32 RFP64:$src, addr:$op)]>;
392 def ST_Fp64m   : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP,
393                   [(store RFP64:$src, addr:$op)]>;
394 def ST_Fp80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP,
395                   [(truncstoref32 RFP80:$src, addr:$op)]>;
396 def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP,
397                   [(truncstoref64 RFP80:$src, addr:$op)]>;
398 // FST does not support 80-bit memory target; FSTP must be used.
399
400 let mayStore = 1, neverHasSideEffects = 1 in {
401 def ST_FpP32m    : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>;
402 def ST_FpP64m32  : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>;
403 def ST_FpP64m    : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>;
404 def ST_FpP80m32  : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>;
405 def ST_FpP80m64  : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>;
406 }
407 def ST_FpP80m    : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP,
408                     [(store RFP80:$src, addr:$op)]>;
409 let mayStore = 1, neverHasSideEffects = 1 in {
410 def IST_Fp16m32  : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>;
411 def IST_Fp32m32  : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, []>;
412 def IST_Fp64m32  : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, []>;
413 def IST_Fp16m64  : FpIf64<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>;
414 def IST_Fp32m64  : FpIf64<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, []>;
415 def IST_Fp64m64  : FpIf64<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, []>;
416 def IST_Fp16m80  : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>;
417 def IST_Fp32m80  : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, []>;
418 def IST_Fp64m80  : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, []>;
419 }
420
421 let mayLoad = 1 in {
422 def LD_F32m   : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src">;
423 def LD_F64m   : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src">;
424 def LD_F80m   : FPI<0xDB, MRM5m, (outs), (ins f80mem:$src), "fld{t}\t$src">;
425 def ILD_F16m  : FPI<0xDF, MRM0m, (outs), (ins i16mem:$src), "fild{s}\t$src">;
426 def ILD_F32m  : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src">;
427 def ILD_F64m  : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src">;
428 }
429 let mayStore = 1 in {
430 def ST_F32m   : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst">;
431 def ST_F64m   : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst">;
432 def ST_FP32m  : FPI<0xD9, MRM3m, (outs), (ins f32mem:$dst), "fstp{s}\t$dst">;
433 def ST_FP64m  : FPI<0xDD, MRM3m, (outs), (ins f64mem:$dst), "fstp{l}\t$dst">;
434 def ST_FP80m  : FPI<0xDB, MRM7m, (outs), (ins f80mem:$dst), "fstp{t}\t$dst">;
435 def IST_F16m  : FPI<0xDF, MRM2m, (outs), (ins i16mem:$dst), "fist{s}\t$dst">;
436 def IST_F32m  : FPI<0xDB, MRM2m, (outs), (ins i32mem:$dst), "fist{l}\t$dst">;
437 def IST_FP16m : FPI<0xDF, MRM3m, (outs), (ins i16mem:$dst), "fistp{s}\t$dst">;
438 def IST_FP32m : FPI<0xDB, MRM3m, (outs), (ins i32mem:$dst), "fistp{l}\t$dst">;
439 def IST_FP64m : FPI<0xDF, MRM7m, (outs), (ins i64mem:$dst), "fistp{ll}\t$dst">;
440 }
441
442 // FISTTP requires SSE3 even though it's a FPStack op.
443 def ISTT_Fp16m32 : FpI_<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP,
444                     [(X86fp_to_i16mem RFP32:$src, addr:$op)]>,
445                     Requires<[HasSSE3]>;
446 def ISTT_Fp32m32 : FpI_<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP,
447                     [(X86fp_to_i32mem RFP32:$src, addr:$op)]>,
448                     Requires<[HasSSE3]>;
449 def ISTT_Fp64m32 : FpI_<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP,
450                     [(X86fp_to_i64mem RFP32:$src, addr:$op)]>,
451                     Requires<[HasSSE3]>;
452 def ISTT_Fp16m64 : FpI_<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP,
453                     [(X86fp_to_i16mem RFP64:$src, addr:$op)]>,
454                     Requires<[HasSSE3]>;
455 def ISTT_Fp32m64 : FpI_<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP,
456                     [(X86fp_to_i32mem RFP64:$src, addr:$op)]>,
457                     Requires<[HasSSE3]>;
458 def ISTT_Fp64m64 : FpI_<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP,
459                     [(X86fp_to_i64mem RFP64:$src, addr:$op)]>,
460                     Requires<[HasSSE3]>;
461 def ISTT_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP,
462                     [(X86fp_to_i16mem RFP80:$src, addr:$op)]>,
463                     Requires<[HasSSE3]>;
464 def ISTT_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP,
465                     [(X86fp_to_i32mem RFP80:$src, addr:$op)]>,
466                     Requires<[HasSSE3]>;
467 def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP,
468                     [(X86fp_to_i64mem RFP80:$src, addr:$op)]>,
469                     Requires<[HasSSE3]>;
470
471 let mayStore = 1 in {
472 def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst">;
473 def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst">;
474 def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst), "fisttp{ll}\t$dst">;
475 }
476
477 // FP Stack manipulation instructions.
478 def LD_Frr   : FPI<0xC0, AddRegFrm, (outs), (ins RST:$op), "fld\t$op">, D9;
479 def ST_Frr   : FPI<0xD0, AddRegFrm, (outs), (ins RST:$op), "fst\t$op">, DD;
480 def ST_FPrr  : FPI<0xD8, AddRegFrm, (outs), (ins RST:$op), "fstp\t$op">, DD;
481 def XCH_F    : FPI<0xC8, AddRegFrm, (outs), (ins RST:$op), "fxch\t$op">, D9;
482
483 // Floating point constant loads.
484 let isReMaterializable = 1 in {
485 def LD_Fp032 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
486                 [(set RFP32:$dst, fpimm0)]>;
487 def LD_Fp132 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
488                 [(set RFP32:$dst, fpimm1)]>;
489 def LD_Fp064 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
490                 [(set RFP64:$dst, fpimm0)]>;
491 def LD_Fp164 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
492                 [(set RFP64:$dst, fpimm1)]>;
493 def LD_Fp080 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
494                 [(set RFP80:$dst, fpimm0)]>;
495 def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
496                 [(set RFP80:$dst, fpimm1)]>;
497 }
498
499 def LD_F0 : FPI<0xEE, RawFrm, (outs), (ins), "fldz">, D9;
500 def LD_F1 : FPI<0xE8, RawFrm, (outs), (ins), "fld1">, D9;
501
502
503 // Floating point compares.
504 let Defs = [EFLAGS] in {
505 def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
506                         []>;  // FPSW = cmp ST(0) with ST(i)
507 def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
508                         []>;  // FPSW = cmp ST(0) with ST(i)
509 def UCOM_Fpr80 : FpI_  <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
510                         []>;  // FPSW = cmp ST(0) with ST(i)
511                         
512 def UCOM_FpIr32: FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
513                   [(X86cmp RFP32:$lhs, RFP32:$rhs),
514                    (implicit EFLAGS)]>; // CC = ST(0) cmp ST(i)
515 def UCOM_FpIr64: FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
516                   [(X86cmp RFP64:$lhs, RFP64:$rhs),
517                    (implicit EFLAGS)]>; // CC = ST(0) cmp ST(i)
518 def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
519                   [(X86cmp RFP80:$lhs, RFP80:$rhs),
520                    (implicit EFLAGS)]>; // CC = ST(0) cmp ST(i)
521 }
522
523 let Defs = [EFLAGS], Uses = [ST0] in {
524 def UCOM_Fr    : FPI<0xE0, AddRegFrm,    // FPSW = cmp ST(0) with ST(i)
525                     (outs), (ins RST:$reg),
526                     "fucom\t$reg">, DD;
527 def UCOM_FPr   : FPI<0xE8, AddRegFrm,    // FPSW = cmp ST(0) with ST(i), pop
528                     (outs), (ins RST:$reg),
529                     "fucomp\t$reg">, DD;
530 def UCOM_FPPr  : FPI<0xE9, RawFrm,       // cmp ST(0) with ST(1), pop, pop
531                     (outs), (ins),
532                     "fucompp">, DA;
533
534 def UCOM_FIr   : FPI<0xE8, AddRegFrm,     // CC = cmp ST(0) with ST(i)
535                     (outs), (ins RST:$reg),
536                     "fucomi\t{$reg, %st(0)|%ST(0), $reg}">, DB;
537 def UCOM_FIPr  : FPI<0xE8, AddRegFrm,     // CC = cmp ST(0) with ST(i), pop
538                     (outs), (ins RST:$reg),
539                     "fucomip\t{$reg, %st(0)|%ST(0), $reg}">, DF;
540 }
541
542 // Floating point flag ops.
543 let Defs = [AX] in
544 def FNSTSW8r  : I<0xE0, RawFrm,                  // AX = fp flags
545                   (outs), (ins), "fnstsw", []>, DF;
546
547 def FNSTCW16m : I<0xD9, MRM7m,                   // [mem16] = X87 control world
548                   (outs), (ins i16mem:$dst), "fnstcw\t$dst",
549                   [(X86fp_cwd_get16 addr:$dst)]>;
550                   
551 let mayLoad = 1 in
552 def FLDCW16m  : I<0xD9, MRM5m,                   // X87 control world = [mem16]
553                   (outs), (ins i16mem:$dst), "fldcw\t$dst", []>;
554
555 //===----------------------------------------------------------------------===//
556 // Non-Instruction Patterns
557 //===----------------------------------------------------------------------===//
558
559 // Required for RET of f32 / f64 / f80 values.
560 def : Pat<(X86fld addr:$src, f32), (LD_Fp32m addr:$src)>;
561 def : Pat<(X86fld addr:$src, f64), (LD_Fp64m addr:$src)>;
562 def : Pat<(X86fld addr:$src, f80), (LD_Fp80m addr:$src)>;
563
564 // Required for CALL which return f32 / f64 / f80 values.
565 def : Pat<(X86fst RFP32:$src, addr:$op, f32), (ST_Fp32m addr:$op, RFP32:$src)>;
566 def : Pat<(X86fst RFP64:$src, addr:$op, f32), (ST_Fp64m32 addr:$op, RFP64:$src)>;
567 def : Pat<(X86fst RFP64:$src, addr:$op, f64), (ST_Fp64m addr:$op, RFP64:$src)>;
568 def : Pat<(X86fst RFP80:$src, addr:$op, f32), (ST_Fp80m32 addr:$op, RFP80:$src)>;
569 def : Pat<(X86fst RFP80:$src, addr:$op, f64), (ST_Fp80m64 addr:$op, RFP80:$src)>;
570 def : Pat<(X86fst RFP80:$src, addr:$op, f80), (ST_FpP80m addr:$op, RFP80:$src)>;
571
572 // Floating point constant -0.0 and -1.0
573 def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStackf32]>;
574 def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStackf32]>;
575 def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStackf64]>;
576 def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStackf64]>;
577 def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>;
578 def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>;
579
580 // Used to conv. i64 to f64 since there isn't a SSE version.
581 def : Pat<(X86fildflag addr:$src, i64), (ILD_Fp64m64 addr:$src)>;
582
583 // FP extensions map onto simple pseudo-value conversions if they are to/from
584 // the FP stack.
585 def : Pat<(f64 (fextend RFP32:$src)), (MOV_Fp3264 RFP32:$src)>,
586           Requires<[FPStackf32]>;
587 def : Pat<(f80 (fextend RFP32:$src)), (MOV_Fp3280 RFP32:$src)>,
588            Requires<[FPStackf32]>;
589 def : Pat<(f80 (fextend RFP64:$src)), (MOV_Fp6480 RFP64:$src)>,
590            Requires<[FPStackf64]>;
591
592 // FP truncations map onto simple pseudo-value conversions if they are to/from
593 // the FP stack.  We have validated that only value-preserving truncations make
594 // it through isel.
595 def : Pat<(f32 (fround RFP64:$src)), (MOV_Fp6432 RFP64:$src)>,
596           Requires<[FPStackf32]>;
597 def : Pat<(f32 (fround RFP80:$src)), (MOV_Fp8032 RFP80:$src)>,
598            Requires<[FPStackf32]>;
599 def : Pat<(f64 (fround RFP80:$src)), (MOV_Fp8064 RFP80:$src)>,
600            Requires<[FPStackf64]>;