Remove some extraneous whitespace.
[oota-llvm.git] / lib / Target / X86 / X86InstrCompiler.td
1 //===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes the various pseudo instructions used by the compiler,
11 // as well as Pat patterns used during instruction selection.
12 //
13 //===----------------------------------------------------------------------===//
14
15 //===----------------------------------------------------------------------===//
16 // Pattern Matching Support
17
18 def GetLo32XForm : SDNodeXForm<imm, [{
19   // Transformation function: get the low 32 bits.
20   return getI32Imm((unsigned)N->getZExtValue());
21 }]>;
22
23 def GetLo8XForm : SDNodeXForm<imm, [{
24   // Transformation function: get the low 8 bits.
25   return getI8Imm((uint8_t)N->getZExtValue());
26 }]>;
27
28
29 //===----------------------------------------------------------------------===//
30 // Random Pseudo Instructions.
31
32 // PIC base construction.  This expands to code that looks like this:
33 //     call  $next_inst
34 //     popl %destreg"
35 let neverHasSideEffects = 1, isNotDuplicable = 1, Uses = [ESP] in
36   def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
37                       "", []>;
38
39
40 // ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
41 // a stack adjustment and the codegen must know that they may modify the stack
42 // pointer before prolog-epilog rewriting occurs.
43 // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
44 // sub / add which can clobber EFLAGS.
45 let Defs = [ESP, EFLAGS], Uses = [ESP] in {
46 def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt),
47                            "#ADJCALLSTACKDOWN",
48                            [(X86callseq_start timm:$amt)]>,
49                           Requires<[In32BitMode]>;
50 def ADJCALLSTACKUP32   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
51                            "#ADJCALLSTACKUP",
52                            [(X86callseq_end timm:$amt1, timm:$amt2)]>,
53                           Requires<[In32BitMode]>;
54 }
55
56 // ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
57 // a stack adjustment and the codegen must know that they may modify the stack
58 // pointer before prolog-epilog rewriting occurs.
59 // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
60 // sub / add which can clobber EFLAGS.
61 let Defs = [RSP, EFLAGS], Uses = [RSP] in {
62 def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt),
63                            "#ADJCALLSTACKDOWN",
64                            [(X86callseq_start timm:$amt)]>,
65                           Requires<[In64BitMode]>;
66 def ADJCALLSTACKUP64   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
67                            "#ADJCALLSTACKUP",
68                            [(X86callseq_end timm:$amt1, timm:$amt2)]>,
69                           Requires<[In64BitMode]>;
70 }
71
72
73
74 // x86-64 va_start lowering magic.
75 let usesCustomInserter = 1 in {
76 def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
77                               (outs),
78                               (ins GR8:$al,
79                                    i64imm:$regsavefi, i64imm:$offset,
80                                    variable_ops),
81                               "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
82                               [(X86vastart_save_xmm_regs GR8:$al,
83                                                          imm:$regsavefi,
84                                                          imm:$offset)]>;
85
86 // The VAARG_64 pseudo-instruction takes the address of the va_list,
87 // and places the address of the next argument into a register.
88 let Defs = [EFLAGS] in
89 def VAARG_64 : I<0, Pseudo,
90                  (outs GR64:$dst),
91                  (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
92                  "#VAARG_64 $dst, $ap, $size, $mode, $align",
93                  [(set GR64:$dst,
94                     (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
95                   (implicit EFLAGS)]>;
96
97 // Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
98 // targets.  These calls are needed to probe the stack when allocating more than
99 // 4k bytes in one go. Touching the stack at 4K increments is necessary to
100 // ensure that the guard pages used by the OS virtual memory manager are
101 // allocated in correct sequence.
102 // The main point of having separate instruction are extra unmodelled effects
103 // (compared to ordinary calls) like stack pointer change.
104
105 let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
106   def WIN_ALLOCA : I<0, Pseudo, (outs), (ins),
107                      "# dynamic stack allocation",
108                      [(X86WinAlloca)]>;
109
110 // When using segmented stacks these are lowered into instructions which first
111 // check if the current stacklet has enough free memory. If it does, memory is
112 // allocated by bumping the stack pointer. Otherwise memory is allocated from 
113 // the heap.
114
115 let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
116 def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
117                       "# variable sized alloca for segmented stacks",
118                       [(set GR32:$dst,
119                          (X86SegAlloca GR32:$size))]>,
120                     Requires<[In32BitMode]>;
121
122 let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
123 def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
124                       "# variable sized alloca for segmented stacks",
125                       [(set GR64:$dst,
126                          (X86SegAlloca GR64:$size))]>,
127                     Requires<[In64BitMode]>;
128 }
129
130 // The MSVC runtime contains an _ftol2 routine for converting floating-point
131 // to integer values. It has a strange calling convention: the input is
132 // popped from the x87 stack, and the return value is given in EDX:EAX. ECX is
133 // used as a temporary register. No other registers (aside from flags) are
134 // touched.
135 // Microsoft toolchains do not support 80-bit precision, so a WIN_FTOL_80
136 // variant is unnecessary.
137
138 let Defs = [EAX, EDX, ECX, EFLAGS], FPForm = SpecialFP in {
139   def WIN_FTOL_32 : I<0, Pseudo, (outs), (ins RFP32:$src),
140                       "# win32 fptoui",
141                       [(X86WinFTOL RFP32:$src)]>,
142                     Requires<[In32BitMode]>;
143
144   def WIN_FTOL_64 : I<0, Pseudo, (outs), (ins RFP64:$src),
145                       "# win32 fptoui",
146                       [(X86WinFTOL RFP64:$src)]>,
147                     Requires<[In32BitMode]>;
148 }
149
150 //===----------------------------------------------------------------------===//
151 // EH Pseudo Instructions
152 //
153 let SchedRW = [WriteSystem] in {
154 let isTerminator = 1, isReturn = 1, isBarrier = 1,
155     hasCtrlDep = 1, isCodeGenOnly = 1 in {
156 def EH_RETURN   : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
157                     "ret\t#eh_return, addr: $addr",
158                     [(X86ehret GR32:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
159
160 }
161
162 let isTerminator = 1, isReturn = 1, isBarrier = 1,
163     hasCtrlDep = 1, isCodeGenOnly = 1 in {
164 def EH_RETURN64   : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
165                      "ret\t#eh_return, addr: $addr",
166                      [(X86ehret GR64:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
167
168 }
169
170 let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
171     usesCustomInserter = 1 in {
172   def EH_SjLj_SetJmp32  : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
173                             "#EH_SJLJ_SETJMP32",
174                             [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
175                           Requires<[In32BitMode]>;
176   def EH_SjLj_SetJmp64  : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
177                             "#EH_SJLJ_SETJMP64",
178                             [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
179                           Requires<[In64BitMode]>;
180   let isTerminator = 1 in {
181   def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
182                             "#EH_SJLJ_LONGJMP32",
183                             [(X86eh_sjlj_longjmp addr:$buf)]>,
184                           Requires<[In32BitMode]>;
185   def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
186                             "#EH_SJLJ_LONGJMP64",
187                             [(X86eh_sjlj_longjmp addr:$buf)]>,
188                           Requires<[In64BitMode]>;
189   }
190 }
191 } // SchedRW
192
193 let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
194   def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
195                         "#EH_SjLj_Setup\t$dst", []>;
196 }
197
198 //===----------------------------------------------------------------------===//
199 // Pseudo instructions used by segmented stacks.
200 //
201
202 // This is lowered into a RET instruction by MCInstLower.  We need
203 // this so that we don't have to have a MachineBasicBlock which ends
204 // with a RET and also has successors.
205 let isPseudo = 1 in {
206 def MORESTACK_RET: I<0, Pseudo, (outs), (ins),
207                           "", []>;
208
209 // This instruction is lowered to a RET followed by a MOV.  The two
210 // instructions are not generated on a higher level since then the
211 // verifier sees a MachineBasicBlock ending with a non-terminator.
212 def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins),
213                                   "", []>;
214 }
215
216 //===----------------------------------------------------------------------===//
217 // Alias Instructions
218 //===----------------------------------------------------------------------===//
219
220 // Alias instruction mapping movr0 to xor.
221 // FIXME: remove when we can teach regalloc that xor reg, reg is ok.
222 // FIXME: Set encoding to pseudo.
223 let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
224     isCodeGenOnly = 1 in
225 def MOV32r0  : I<0x31, MRMInitReg, (outs GR32:$dst), (ins), "",
226                  [(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>;
227
228 // Other widths can also make use of the 32-bit xor, which may have a smaller
229 // encoding and avoid partial register updates.
230 def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
231 def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
232 def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)> {
233   let AddedComplexity = 20;
234 }
235
236 // Materialize i64 constant where top 32-bits are zero. This could theoretically
237 // use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
238 // that would make it more difficult to rematerialize.
239 let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1,
240     isCodeGenOnly = 1, neverHasSideEffects = 1 in
241 def MOV32ri64 : Ii32<0xb8, AddRegFrm, (outs GR32:$dst), (ins i64i32imm:$src),
242                      "", [], IIC_ALU_NONMEM>, Sched<[WriteALU]>;
243
244 // This 64-bit pseudo-move can be used for both a 64-bit constant that is
245 // actually the zero-extension of a 32-bit constant, and for labels in the
246 // x86-64 small code model.
247 def mov64imm32 : ComplexPattern<i64, 1, "SelectMOV64Imm32", [imm, X86Wrapper]>;
248
249 let AddedComplexity = 1 in
250 def : Pat<(i64 mov64imm32:$src),
251           (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>;
252
253 // Use sbb to materialize carry bit.
254 let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in {
255 // FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
256 // However, Pat<> can't replicate the destination reg into the inputs of the
257 // result.
258 def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "",
259                  [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
260 def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "",
261                  [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
262 def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "",
263                  [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
264 def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "",
265                  [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
266 } // isCodeGenOnly
267
268
269 def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
270           (SETB_C16r)>;
271 def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
272           (SETB_C32r)>;
273 def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
274           (SETB_C64r)>;
275
276 def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
277           (SETB_C16r)>;
278 def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
279           (SETB_C32r)>;
280 def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
281           (SETB_C64r)>;
282
283 // We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
284 // will be eliminated and that the sbb can be extended up to a wider type.  When
285 // this happens, it is great.  However, if we are left with an 8-bit sbb and an
286 // and, we might as well just match it as a setb.
287 def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
288           (SETBr)>;
289
290 // (add OP, SETB) -> (adc OP, 0)
291 def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op),
292           (ADC8ri GR8:$op, 0)>;
293 def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op),
294           (ADC32ri8 GR32:$op, 0)>;
295 def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op),
296           (ADC64ri8 GR64:$op, 0)>;
297
298 // (sub OP, SETB) -> (sbb OP, 0)
299 def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
300           (SBB8ri GR8:$op, 0)>;
301 def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
302           (SBB32ri8 GR32:$op, 0)>;
303 def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
304           (SBB64ri8 GR64:$op, 0)>;
305
306 // (sub OP, SETCC_CARRY) -> (adc OP, 0)
307 def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))),
308           (ADC8ri GR8:$op, 0)>;
309 def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))),
310           (ADC32ri8 GR32:$op, 0)>;
311 def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))),
312           (ADC64ri8 GR64:$op, 0)>;
313
314 //===----------------------------------------------------------------------===//
315 // String Pseudo Instructions
316 //
317 let SchedRW = [WriteMicrocoded] in {
318 let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
319 def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
320                     [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
321                    Requires<[In32BitMode]>;
322 def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
323                     [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize,
324                    Requires<[In32BitMode]>;
325 def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
326                     [(X86rep_movs i32)], IIC_REP_MOVS>, REP,
327                    Requires<[In32BitMode]>;
328 }
329
330 let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
331 def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
332                     [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
333                    Requires<[In64BitMode]>;
334 def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
335                     [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize,
336                    Requires<[In64BitMode]>;
337 def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
338                     [(X86rep_movs i32)], IIC_REP_MOVS>, REP,
339                    Requires<[In64BitMode]>;
340 def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
341                     [(X86rep_movs i64)], IIC_REP_MOVS>, REP,
342                    Requires<[In64BitMode]>;
343 }
344
345 // FIXME: Should use "(X86rep_stos AL)" as the pattern.
346 let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
347   let Uses = [AL,ECX,EDI] in
348   def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
349                       [(X86rep_stos i8)], IIC_REP_STOS>, REP,
350                      Requires<[In32BitMode]>;
351   let Uses = [AX,ECX,EDI] in
352   def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
353                       [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize,
354                      Requires<[In32BitMode]>;
355   let Uses = [EAX,ECX,EDI] in
356   def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
357                       [(X86rep_stos i32)], IIC_REP_STOS>, REP,
358                      Requires<[In32BitMode]>;
359 }
360
361 let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
362   let Uses = [AL,RCX,RDI] in
363   def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
364                       [(X86rep_stos i8)], IIC_REP_STOS>, REP,
365                      Requires<[In64BitMode]>;
366   let Uses = [AX,RCX,RDI] in
367   def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
368                       [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize,
369                      Requires<[In64BitMode]>;
370   let Uses = [RAX,RCX,RDI] in
371   def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
372                       [(X86rep_stos i32)], IIC_REP_STOS>, REP,
373                      Requires<[In64BitMode]>;
374  
375   let Uses = [RAX,RCX,RDI] in
376   def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
377                       [(X86rep_stos i64)], IIC_REP_STOS>, REP,
378                      Requires<[In64BitMode]>;
379 }
380 } // SchedRW
381
382 //===----------------------------------------------------------------------===//
383 // Thread Local Storage Instructions
384 //
385
386 // ELF TLS Support
387 // All calls clobber the non-callee saved registers. ESP is marked as
388 // a use to prevent stack-pointer assignments that appear immediately
389 // before calls from potentially appearing dead.
390 let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
391             MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
392             XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
393             XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
394     Uses = [ESP] in {
395 def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
396                   "# TLS_addr32",
397                   [(X86tlsaddr tls32addr:$sym)]>,
398                   Requires<[In32BitMode]>;
399 def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
400                   "# TLS_base_addr32",
401                   [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
402                   Requires<[In32BitMode]>;
403 }
404
405 // All calls clobber the non-callee saved registers. RSP is marked as
406 // a use to prevent stack-pointer assignments that appear immediately
407 // before calls from potentially appearing dead.
408 let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
409             FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1,
410             MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
411             XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
412             XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
413     Uses = [RSP] in {
414 def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
415                    "# TLS_addr64",
416                   [(X86tlsaddr tls64addr:$sym)]>,
417                   Requires<[In64BitMode]>;
418 def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
419                    "# TLS_base_addr64",
420                   [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
421                   Requires<[In64BitMode]>;
422 }
423
424 // Darwin TLS Support
425 // For i386, the address of the thunk is passed on the stack, on return the
426 // address of the variable is in %eax.  %ecx is trashed during the function
427 // call.  All other registers are preserved.
428 let Defs = [EAX, ECX, EFLAGS],
429     Uses = [ESP],
430     usesCustomInserter = 1 in
431 def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
432                 "# TLSCall_32",
433                 [(X86TLSCall addr:$sym)]>,
434                 Requires<[In32BitMode]>;
435
436 // For x86_64, the address of the thunk is passed in %rdi, on return
437 // the address of the variable is in %rax.  All other registers are preserved.
438 let Defs = [RAX, EFLAGS],
439     Uses = [RSP, RDI],
440     usesCustomInserter = 1 in
441 def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
442                   "# TLSCall_64",
443                   [(X86TLSCall addr:$sym)]>,
444                   Requires<[In64BitMode]>;
445
446
447 //===----------------------------------------------------------------------===//
448 // Conditional Move Pseudo Instructions
449
450 // X86 doesn't have 8-bit conditional moves. Use a customInserter to
451 // emit control flow. An alternative to this is to mark i8 SELECT as Promote,
452 // however that requires promoting the operands, and can induce additional
453 // i8 register pressure.
454 let usesCustomInserter = 1, Uses = [EFLAGS] in {
455 def CMOV_GR8 : I<0, Pseudo,
456                  (outs GR8:$dst), (ins GR8:$src1, GR8:$src2, i8imm:$cond),
457                  "#CMOV_GR8 PSEUDO!",
458                  [(set GR8:$dst, (X86cmov GR8:$src1, GR8:$src2,
459                                           imm:$cond, EFLAGS))]>;
460
461 let Predicates = [NoCMov] in {
462 def CMOV_GR32 : I<0, Pseudo,
463                     (outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$cond),
464                     "#CMOV_GR32* PSEUDO!",
465                     [(set GR32:$dst,
466                       (X86cmov GR32:$src1, GR32:$src2, imm:$cond, EFLAGS))]>;
467 def CMOV_GR16 : I<0, Pseudo,
468                     (outs GR16:$dst), (ins GR16:$src1, GR16:$src2, i8imm:$cond),
469                     "#CMOV_GR16* PSEUDO!",
470                     [(set GR16:$dst,
471                       (X86cmov GR16:$src1, GR16:$src2, imm:$cond, EFLAGS))]>;
472 } // Predicates = [NoCMov]
473
474 // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
475 // SSE1.
476 let Predicates = [FPStackf32] in
477 def CMOV_RFP32 : I<0, Pseudo,
478                     (outs RFP32:$dst),
479                     (ins RFP32:$src1, RFP32:$src2, i8imm:$cond),
480                     "#CMOV_RFP32 PSEUDO!",
481                     [(set RFP32:$dst,
482                       (X86cmov RFP32:$src1, RFP32:$src2, imm:$cond,
483                                                   EFLAGS))]>;
484 // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
485 // SSE2.
486 let Predicates = [FPStackf64] in
487 def CMOV_RFP64 : I<0, Pseudo,
488                     (outs RFP64:$dst),
489                     (ins RFP64:$src1, RFP64:$src2, i8imm:$cond),
490                     "#CMOV_RFP64 PSEUDO!",
491                     [(set RFP64:$dst,
492                       (X86cmov RFP64:$src1, RFP64:$src2, imm:$cond,
493                                                   EFLAGS))]>;
494 def CMOV_RFP80 : I<0, Pseudo,
495                     (outs RFP80:$dst),
496                     (ins RFP80:$src1, RFP80:$src2, i8imm:$cond),
497                     "#CMOV_RFP80 PSEUDO!",
498                     [(set RFP80:$dst,
499                       (X86cmov RFP80:$src1, RFP80:$src2, imm:$cond,
500                                                   EFLAGS))]>;
501 } // UsesCustomInserter = 1, Uses = [EFLAGS]
502
503
504 //===----------------------------------------------------------------------===//
505 // Atomic Instruction Pseudo Instructions
506 //===----------------------------------------------------------------------===//
507
508 // Pseudo atomic instructions
509
510 multiclass PSEUDO_ATOMIC_LOAD_BINOP<string mnemonic> {
511   let usesCustomInserter = 1, mayLoad = 1, mayStore = 1 in {
512     let Defs = [EFLAGS, AL] in
513     def NAME#8  : I<0, Pseudo, (outs GR8:$dst),
514                     (ins i8mem:$ptr, GR8:$val),
515                     !strconcat(mnemonic, "8 PSEUDO!"), []>;
516     let Defs = [EFLAGS, AX] in
517     def NAME#16 : I<0, Pseudo,(outs GR16:$dst),
518                     (ins i16mem:$ptr, GR16:$val),
519                     !strconcat(mnemonic, "16 PSEUDO!"), []>;
520     let Defs = [EFLAGS, EAX] in
521     def NAME#32 : I<0, Pseudo, (outs GR32:$dst),
522                     (ins i32mem:$ptr, GR32:$val),
523                     !strconcat(mnemonic, "32 PSEUDO!"), []>;
524     let Defs = [EFLAGS, RAX] in
525     def NAME#64 : I<0, Pseudo, (outs GR64:$dst),
526                     (ins i64mem:$ptr, GR64:$val),
527                     !strconcat(mnemonic, "64 PSEUDO!"), []>;
528   }
529 }
530
531 multiclass PSEUDO_ATOMIC_LOAD_BINOP_PATS<string name, string frag> {
532   def : Pat<(!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val),
533             (!cast<Instruction>(name # "8") addr:$ptr, GR8:$val)>;
534   def : Pat<(!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val),
535             (!cast<Instruction>(name # "16") addr:$ptr, GR16:$val)>;
536   def : Pat<(!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val),
537             (!cast<Instruction>(name # "32") addr:$ptr, GR32:$val)>;
538   def : Pat<(!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val),
539             (!cast<Instruction>(name # "64") addr:$ptr, GR64:$val)>;
540 }
541
542 // Atomic exchange, and, or, xor
543 defm ATOMAND  : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMAND">;
544 defm ATOMOR   : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMOR">;
545 defm ATOMXOR  : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMXOR">;
546 defm ATOMNAND : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMNAND">;
547 defm ATOMMAX  : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMMAX">;
548 defm ATOMMIN  : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMMIN">;
549 defm ATOMUMAX : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMUMAX">;
550 defm ATOMUMIN : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMUMIN">;
551
552 defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMAND",  "atomic_load_and">;
553 defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMOR",   "atomic_load_or">;
554 defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMXOR",  "atomic_load_xor">;
555 defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMNAND", "atomic_load_nand">;
556 defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMMAX",  "atomic_load_max">;
557 defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMMIN",  "atomic_load_min">;
558 defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMUMAX", "atomic_load_umax">;
559 defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMUMIN", "atomic_load_umin">;
560
561 multiclass PSEUDO_ATOMIC_LOAD_BINOP6432<string mnemonic> {
562   let usesCustomInserter = 1, Defs = [EFLAGS, EAX, EDX],
563       mayLoad = 1, mayStore = 1, hasSideEffects = 0 in
564     def NAME#6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
565                       (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
566                       !strconcat(mnemonic, "6432 PSEUDO!"), []>;
567 }
568
569 defm ATOMAND  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMAND">;
570 defm ATOMOR   : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMOR">;
571 defm ATOMXOR  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMXOR">;
572 defm ATOMNAND : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMNAND">;
573 defm ATOMADD  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMADD">;
574 defm ATOMSUB  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMSUB">;
575 defm ATOMMAX  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMMAX">;
576 defm ATOMMIN  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMMIN">;
577 defm ATOMUMAX : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMUMAX">;
578 defm ATOMUMIN : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMUMIN">;
579 defm ATOMSWAP : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMSWAP">;
580
581 //===----------------------------------------------------------------------===//
582 // Normal-Instructions-With-Lock-Prefix Pseudo Instructions
583 //===----------------------------------------------------------------------===//
584
585 // FIXME: Use normal instructions and add lock prefix dynamically.
586
587 // Memory barriers
588
589 // TODO: Get this to fold the constant into the instruction.
590 let isCodeGenOnly = 1, Defs = [EFLAGS] in
591 def OR32mrLocked  : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
592                       "or{l}\t{$zero, $dst|$dst, $zero}",
593                       [], IIC_ALU_MEM>, Requires<[In32BitMode]>, LOCK,
594                     Sched<[WriteALULd, WriteRMW]>;
595
596 let hasSideEffects = 1 in
597 def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
598                      "#MEMBARRIER",
599                      [(X86MemBarrier)]>, Sched<[WriteLoad]>;
600
601 // RegOpc corresponds to the mr version of the instruction
602 // ImmOpc corresponds to the mi version of the instruction
603 // ImmOpc8 corresponds to the mi8 version of the instruction
604 // ImmMod corresponds to the instruction format of the mi and mi8 versions
605 multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
606                            Format ImmMod, string mnemonic> {
607 let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
608     SchedRW = [WriteALULd, WriteRMW] in {
609
610 def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
611                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
612                   MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
613                   !strconcat(mnemonic, "{b}\t",
614                              "{$src2, $dst|$dst, $src2}"),
615                   [], IIC_ALU_NONMEM>, LOCK;
616 def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
617                    RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
618                    MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
619                    !strconcat(mnemonic, "{w}\t",
620                               "{$src2, $dst|$dst, $src2}"),
621                    [], IIC_ALU_NONMEM>, OpSize, LOCK;
622 def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
623                    RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
624                    MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
625                    !strconcat(mnemonic, "{l}\t",
626                               "{$src2, $dst|$dst, $src2}"),
627                    [], IIC_ALU_NONMEM>, LOCK;
628 def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
629                     RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
630                     MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
631                     !strconcat(mnemonic, "{q}\t",
632                                "{$src2, $dst|$dst, $src2}"),
633                     [], IIC_ALU_NONMEM>, LOCK;
634
635 def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
636                     ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
637                     ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
638                     !strconcat(mnemonic, "{b}\t",
639                                "{$src2, $dst|$dst, $src2}"),
640                     [], IIC_ALU_MEM>, LOCK;
641
642 def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
643                       ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
644                       ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
645                       !strconcat(mnemonic, "{w}\t",
646                                  "{$src2, $dst|$dst, $src2}"),
647                       [], IIC_ALU_MEM>, OpSize, LOCK;
648
649 def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
650                       ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
651                       ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
652                       !strconcat(mnemonic, "{l}\t",
653                                  "{$src2, $dst|$dst, $src2}"),
654                       [], IIC_ALU_MEM>, LOCK;
655
656 def NAME#64mi32 : RIi32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
657                          ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
658                          ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
659                          !strconcat(mnemonic, "{q}\t",
660                                     "{$src2, $dst|$dst, $src2}"),
661                          [], IIC_ALU_MEM>, LOCK;
662
663 def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
664                       ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
665                       ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
666                       !strconcat(mnemonic, "{w}\t",
667                                  "{$src2, $dst|$dst, $src2}"),
668                       [], IIC_ALU_MEM>, OpSize, LOCK;
669 def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
670                       ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
671                       ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
672                       !strconcat(mnemonic, "{l}\t",
673                                  "{$src2, $dst|$dst, $src2}"),
674                       [], IIC_ALU_MEM>, LOCK;
675 def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
676                        ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
677                        ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
678                        !strconcat(mnemonic, "{q}\t",
679                                   "{$src2, $dst|$dst, $src2}"),
680                        [], IIC_ALU_MEM>, LOCK;
681
682 }
683
684 }
685
686 defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, "add">;
687 defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, "sub">;
688 defm LOCK_OR  : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, "or">;
689 defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, "and">;
690 defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, "xor">;
691
692 // Optimized codegen when the non-memory output is not used.
693 multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form,
694                           string mnemonic> {
695 let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
696     SchedRW = [WriteALULd, WriteRMW] in {
697
698 def NAME#8m  : I<Opc8, Form, (outs), (ins i8mem :$dst),
699                  !strconcat(mnemonic, "{b}\t$dst"),
700                  [], IIC_UNARY_MEM>, LOCK;
701 def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst),
702                  !strconcat(mnemonic, "{w}\t$dst"),
703                  [], IIC_UNARY_MEM>, OpSize, LOCK;
704 def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst),
705                  !strconcat(mnemonic, "{l}\t$dst"),
706                  [], IIC_UNARY_MEM>, LOCK;
707 def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst),
708                   !strconcat(mnemonic, "{q}\t$dst"),
709                   [], IIC_UNARY_MEM>, LOCK;
710 }
711 }
712
713 defm LOCK_INC    : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "inc">;
714 defm LOCK_DEC    : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "dec">;
715
716 // Atomic compare and swap.
717 multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
718                          SDPatternOperator frag, X86MemOperand x86memop,
719                          InstrItinClass itin> {
720 let isCodeGenOnly = 1 in {
721   def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
722                !strconcat(mnemonic, "\t$ptr"),
723                [(frag addr:$ptr)], itin>, TB, LOCK;
724 }
725 }
726
727 multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
728                           string mnemonic, SDPatternOperator frag,
729                           InstrItinClass itin8, InstrItinClass itin> {
730 let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in {
731   let Defs = [AL, EFLAGS], Uses = [AL] in
732   def NAME#8  : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
733                   !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
734                   [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK;
735   let Defs = [AX, EFLAGS], Uses = [AX] in
736   def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
737                   !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
738                   [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize, LOCK;
739   let Defs = [EAX, EFLAGS], Uses = [EAX] in
740   def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
741                   !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
742                   [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, LOCK;
743   let Defs = [RAX, EFLAGS], Uses = [RAX] in
744   def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
745                    !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
746                    [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK;
747 }
748 }
749
750 let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
751     SchedRW = [WriteALULd, WriteRMW] in {
752 defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b",
753                                 X86cas8, i64mem,
754                                 IIC_CMPX_LOCK_8B>;
755 }
756
757 let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
758     Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in {
759 defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
760                                  X86cas16, i128mem,
761                                  IIC_CMPX_LOCK_16B>, REX_W;
762 }
763
764 defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg",
765                                X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>;
766
767 // Atomic exchange and add
768 multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
769                              string frag,
770                              InstrItinClass itin8, InstrItinClass itin> {
771   let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1,
772       SchedRW = [WriteALULd, WriteRMW] in {
773     def NAME#8  : I<opc8, MRMSrcMem, (outs GR8:$dst),
774                     (ins GR8:$val, i8mem:$ptr),
775                     !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
776                     [(set GR8:$dst,
777                           (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))],
778                     itin8>;
779     def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
780                     (ins GR16:$val, i16mem:$ptr),
781                     !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
782                     [(set
783                        GR16:$dst,
784                        (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))],
785                     itin>, OpSize;
786     def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
787                     (ins GR32:$val, i32mem:$ptr),
788                     !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
789                     [(set
790                        GR32:$dst,
791                        (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))],
792                     itin>;
793     def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
794                      (ins GR64:$val, i64mem:$ptr),
795                      !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
796                      [(set
797                         GR64:$dst,
798                         (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))],
799                      itin>;
800   }
801 }
802
803 defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add",
804                                IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>,
805              TB, LOCK;
806
807 def ACQUIRE_MOV8rm  : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
808                       "#ACQUIRE_MOV PSEUDO!",
809                       [(set GR8:$dst,  (atomic_load_8  addr:$src))]>;
810 def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
811                       "#ACQUIRE_MOV PSEUDO!",
812                       [(set GR16:$dst, (atomic_load_16 addr:$src))]>;
813 def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
814                       "#ACQUIRE_MOV PSEUDO!",
815                       [(set GR32:$dst, (atomic_load_32 addr:$src))]>;
816 def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
817                       "#ACQUIRE_MOV PSEUDO!",
818                       [(set GR64:$dst, (atomic_load_64 addr:$src))]>;
819
820 def RELEASE_MOV8mr  : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
821                         "#RELEASE_MOV PSEUDO!",
822                         [(atomic_store_8  addr:$dst, GR8 :$src)]>;
823 def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src),
824                         "#RELEASE_MOV PSEUDO!",
825                         [(atomic_store_16 addr:$dst, GR16:$src)]>;
826 def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
827                         "#RELEASE_MOV PSEUDO!",
828                         [(atomic_store_32 addr:$dst, GR32:$src)]>;
829 def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
830                         "#RELEASE_MOV PSEUDO!",
831                         [(atomic_store_64 addr:$dst, GR64:$src)]>;
832
833 //===----------------------------------------------------------------------===//
834 // Conditional Move Pseudo Instructions.
835 //===----------------------------------------------------------------------===//
836
837
838 // CMOV* - Used to implement the SSE SELECT DAG operation.  Expanded after
839 // instruction selection into a branch sequence.
840 let Uses = [EFLAGS], usesCustomInserter = 1 in {
841   def CMOV_FR32 : I<0, Pseudo,
842                     (outs FR32:$dst), (ins FR32:$t, FR32:$f, i8imm:$cond),
843                     "#CMOV_FR32 PSEUDO!",
844                     [(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond,
845                                                   EFLAGS))]>;
846   def CMOV_FR64 : I<0, Pseudo,
847                     (outs FR64:$dst), (ins FR64:$t, FR64:$f, i8imm:$cond),
848                     "#CMOV_FR64 PSEUDO!",
849                     [(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond,
850                                                   EFLAGS))]>;
851   def CMOV_V4F32 : I<0, Pseudo,
852                     (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
853                     "#CMOV_V4F32 PSEUDO!",
854                     [(set VR128:$dst,
855                       (v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond,
856                                           EFLAGS)))]>;
857   def CMOV_V2F64 : I<0, Pseudo,
858                     (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
859                     "#CMOV_V2F64 PSEUDO!",
860                     [(set VR128:$dst,
861                       (v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
862                                           EFLAGS)))]>;
863   def CMOV_V2I64 : I<0, Pseudo,
864                     (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
865                     "#CMOV_V2I64 PSEUDO!",
866                     [(set VR128:$dst,
867                       (v2i64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
868                                           EFLAGS)))]>;
869   def CMOV_V8F32 : I<0, Pseudo,
870                     (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
871                     "#CMOV_V8F32 PSEUDO!",
872                     [(set VR256:$dst,
873                       (v8f32 (X86cmov VR256:$t, VR256:$f, imm:$cond,
874                                           EFLAGS)))]>;
875   def CMOV_V4F64 : I<0, Pseudo,
876                     (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
877                     "#CMOV_V4F64 PSEUDO!",
878                     [(set VR256:$dst,
879                       (v4f64 (X86cmov VR256:$t, VR256:$f, imm:$cond,
880                                           EFLAGS)))]>;
881   def CMOV_V4I64 : I<0, Pseudo,
882                     (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
883                     "#CMOV_V4I64 PSEUDO!",
884                     [(set VR256:$dst,
885                       (v4i64 (X86cmov VR256:$t, VR256:$f, imm:$cond,
886                                           EFLAGS)))]>;
887 }
888
889
890 //===----------------------------------------------------------------------===//
891 // DAG Pattern Matching Rules
892 //===----------------------------------------------------------------------===//
893
894 // ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
895 def : Pat<(i32 (X86Wrapper tconstpool  :$dst)), (MOV32ri tconstpool  :$dst)>;
896 def : Pat<(i32 (X86Wrapper tjumptable  :$dst)), (MOV32ri tjumptable  :$dst)>;
897 def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
898 def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
899 def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
900 def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
901
902 def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
903           (ADD32ri GR32:$src1, tconstpool:$src2)>;
904 def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
905           (ADD32ri GR32:$src1, tjumptable:$src2)>;
906 def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
907           (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
908 def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
909           (ADD32ri GR32:$src1, texternalsym:$src2)>;
910 def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
911           (ADD32ri GR32:$src1, tblockaddress:$src2)>;
912
913 def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
914           (MOV32mi addr:$dst, tglobaladdr:$src)>;
915 def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
916           (MOV32mi addr:$dst, texternalsym:$src)>;
917 def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
918           (MOV32mi addr:$dst, tblockaddress:$src)>;
919
920 // ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
921 // code model mode, should use 'movabs'.  FIXME: This is really a hack, the
922 //  'movabs' predicate should handle this sort of thing.
923 def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
924           (MOV64ri tconstpool  :$dst)>, Requires<[FarData]>;
925 def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
926           (MOV64ri tjumptable  :$dst)>, Requires<[FarData]>;
927 def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
928           (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
929 def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
930           (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
931 def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
932           (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
933
934 // In kernel code model, we can get the address of a label
935 // into a register with 'movq'.  FIXME: This is a hack, the 'imm' predicate of
936 // the MOV64ri32 should accept these.
937 def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
938           (MOV64ri32 tconstpool  :$dst)>, Requires<[KernelCode]>;
939 def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
940           (MOV64ri32 tjumptable  :$dst)>, Requires<[KernelCode]>;
941 def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
942           (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
943 def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
944           (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
945 def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
946           (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
947
948 // If we have small model and -static mode, it is safe to store global addresses
949 // directly as immediates.  FIXME: This is really a hack, the 'imm' predicate
950 // for MOV64mi32 should handle this sort of thing.
951 def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
952           (MOV64mi32 addr:$dst, tconstpool:$src)>,
953           Requires<[NearData, IsStatic]>;
954 def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
955           (MOV64mi32 addr:$dst, tjumptable:$src)>,
956           Requires<[NearData, IsStatic]>;
957 def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
958           (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
959           Requires<[NearData, IsStatic]>;
960 def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
961           (MOV64mi32 addr:$dst, texternalsym:$src)>,
962           Requires<[NearData, IsStatic]>;
963 def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
964           (MOV64mi32 addr:$dst, tblockaddress:$src)>,
965           Requires<[NearData, IsStatic]>;
966
967 // Calls
968
969 // tls has some funny stuff here...
970 // This corresponds to movabs $foo@tpoff, %rax
971 def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
972           (MOV64ri tglobaltlsaddr :$dst)>;
973 // This corresponds to add $foo@tpoff, %rax
974 def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
975           (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
976
977
978 // Direct PC relative function call for small code model. 32-bit displacement
979 // sign extended to 64-bit.
980 def : Pat<(X86call (i64 tglobaladdr:$dst)),
981           (CALL64pcrel32 tglobaladdr:$dst)>;
982 def : Pat<(X86call (i64 texternalsym:$dst)),
983           (CALL64pcrel32 texternalsym:$dst)>;
984
985 // Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
986 // can never use callee-saved registers. That is the purpose of the GR64_TC
987 // register classes.
988 //
989 // The only volatile register that is never used by the calling convention is
990 // %r11. This happens when calling a vararg function with 6 arguments.
991 //
992 // Match an X86tcret that uses less than 7 volatile registers.
993 def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
994                              (X86tcret node:$ptr, node:$off), [{
995   // X86tcret args: (*chain, ptr, imm, regs..., glue)
996   unsigned NumRegs = 0;
997   for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
998     if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
999       return false;
1000   return true;
1001 }]>;
1002
1003 def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1004           (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
1005           Requires<[In32BitMode]>;
1006
1007 // FIXME: This is disabled for 32-bit PIC mode because the global base
1008 // register which is part of the address mode may be assigned a
1009 // callee-saved register.
1010 def : Pat<(X86tcret (load addr:$dst), imm:$off),
1011           (TCRETURNmi addr:$dst, imm:$off)>,
1012           Requires<[In32BitMode, IsNotPIC]>;
1013
1014 def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
1015           (TCRETURNdi texternalsym:$dst, imm:$off)>,
1016           Requires<[In32BitMode]>;
1017
1018 def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
1019           (TCRETURNdi texternalsym:$dst, imm:$off)>,
1020           Requires<[In32BitMode]>;
1021
1022 def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1023           (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
1024           Requires<[In64BitMode]>;
1025
1026 // Don't fold loads into X86tcret requiring more than 6 regs.
1027 // There wouldn't be enough scratch registers for base+index.
1028 def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
1029           (TCRETURNmi64 addr:$dst, imm:$off)>,
1030           Requires<[In64BitMode]>;
1031
1032 def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
1033           (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
1034           Requires<[In64BitMode]>;
1035
1036 def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
1037           (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
1038           Requires<[In64BitMode]>;
1039
1040 // Normal calls, with various flavors of addresses.
1041 def : Pat<(X86call (i32 tglobaladdr:$dst)),
1042           (CALLpcrel32 tglobaladdr:$dst)>;
1043 def : Pat<(X86call (i32 texternalsym:$dst)),
1044           (CALLpcrel32 texternalsym:$dst)>;
1045 def : Pat<(X86call (i32 imm:$dst)),
1046           (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
1047
1048 // Comparisons.
1049
1050 // TEST R,R is smaller than CMP R,0
1051 def : Pat<(X86cmp GR8:$src1, 0),
1052           (TEST8rr GR8:$src1, GR8:$src1)>;
1053 def : Pat<(X86cmp GR16:$src1, 0),
1054           (TEST16rr GR16:$src1, GR16:$src1)>;
1055 def : Pat<(X86cmp GR32:$src1, 0),
1056           (TEST32rr GR32:$src1, GR32:$src1)>;
1057 def : Pat<(X86cmp GR64:$src1, 0),
1058           (TEST64rr GR64:$src1, GR64:$src1)>;
1059
1060 // Conditional moves with folded loads with operands swapped and conditions
1061 // inverted.
1062 multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
1063                   Instruction Inst64> {
1064   let Predicates = [HasCMov] in {
1065     def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
1066               (Inst16 GR16:$src2, addr:$src1)>;
1067     def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
1068               (Inst32 GR32:$src2, addr:$src1)>;
1069     def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
1070               (Inst64 GR64:$src2, addr:$src1)>;
1071   }
1072 }
1073
1074 defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
1075 defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
1076 defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
1077 defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
1078 defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
1079 defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
1080 defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
1081 defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
1082 defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
1083 defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
1084 defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
1085 defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
1086 defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
1087 defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
1088 defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
1089 defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
1090
1091 // zextload bool -> zextload byte
1092 def : Pat<(zextloadi8i1  addr:$src), (MOV8rm     addr:$src)>;
1093 def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
1094 def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
1095 def : Pat<(zextloadi64i1 addr:$src),
1096           (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1097
1098 // extload bool -> extload byte
1099 // When extloading from 16-bit and smaller memory locations into 64-bit
1100 // registers, use zero-extending loads so that the entire 64-bit register is
1101 // defined, avoiding partial-register updates.
1102
1103 def : Pat<(extloadi8i1 addr:$src),   (MOV8rm      addr:$src)>;
1104 def : Pat<(extloadi16i1 addr:$src),  (MOVZX16rm8  addr:$src)>;
1105 def : Pat<(extloadi32i1 addr:$src),  (MOVZX32rm8  addr:$src)>;
1106 def : Pat<(extloadi16i8 addr:$src),  (MOVZX16rm8  addr:$src)>;
1107 def : Pat<(extloadi32i8 addr:$src),  (MOVZX32rm8  addr:$src)>;
1108 def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
1109
1110 // For other extloads, use subregs, since the high contents of the register are
1111 // defined after an extload.
1112 def : Pat<(extloadi64i1 addr:$src),
1113           (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1114 def : Pat<(extloadi64i8 addr:$src),
1115           (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1116 def : Pat<(extloadi64i16 addr:$src),
1117           (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
1118 def : Pat<(extloadi64i32 addr:$src),
1119           (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
1120
1121 // anyext. Define these to do an explicit zero-extend to
1122 // avoid partial-register updates.
1123 def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
1124                                      (MOVZX32rr8 GR8 :$src), sub_16bit)>;
1125 def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8  GR8 :$src)>;
1126
1127 // Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
1128 def : Pat<(i32 (anyext GR16:$src)),
1129           (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
1130
1131 def : Pat<(i64 (anyext GR8 :$src)),
1132           (SUBREG_TO_REG (i64 0), (MOVZX32rr8  GR8  :$src), sub_32bit)>;
1133 def : Pat<(i64 (anyext GR16:$src)),
1134           (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
1135 def : Pat<(i64 (anyext GR32:$src)),
1136           (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1137
1138
1139 // Any instruction that defines a 32-bit result leaves the high half of the
1140 // register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
1141 // be copying from a truncate. And x86's cmov doesn't do anything if the
1142 // condition is false. But any other 32-bit operation will zero-extend
1143 // up to 64 bits.
1144 def def32 : PatLeaf<(i32 GR32:$src), [{
1145   return N->getOpcode() != ISD::TRUNCATE &&
1146          N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
1147          N->getOpcode() != ISD::CopyFromReg &&
1148          N->getOpcode() != X86ISD::CMOV;
1149 }]>;
1150
1151 // In the case of a 32-bit def that is known to implicitly zero-extend,
1152 // we can use a SUBREG_TO_REG.
1153 def : Pat<(i64 (zext def32:$src)),
1154           (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1155
1156 //===----------------------------------------------------------------------===//
1157 // Pattern match OR as ADD
1158 //===----------------------------------------------------------------------===//
1159
1160 // If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
1161 // 3-addressified into an LEA instruction to avoid copies.  However, we also
1162 // want to finally emit these instructions as an or at the end of the code
1163 // generator to make the generated code easier to read.  To do this, we select
1164 // into "disjoint bits" pseudo ops.
1165
1166 // Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
1167 def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
1168   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1169     return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
1170
1171   APInt KnownZero0, KnownOne0;
1172   CurDAG->ComputeMaskedBits(N->getOperand(0), KnownZero0, KnownOne0, 0);
1173   APInt KnownZero1, KnownOne1;
1174   CurDAG->ComputeMaskedBits(N->getOperand(1), KnownZero1, KnownOne1, 0);
1175   return (~KnownZero0 & ~KnownZero1) == 0;
1176 }]>;
1177
1178
1179 // (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1180 // Try this before the selecting to OR.
1181 let AddedComplexity = 5, SchedRW = [WriteALU] in {
1182
1183 let isConvertibleToThreeAddress = 1,
1184     Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
1185 let isCommutable = 1 in {
1186 def ADD16rr_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
1187                     "", // orw/addw REG, REG
1188                     [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
1189 def ADD32rr_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
1190                     "", // orl/addl REG, REG
1191                     [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
1192 def ADD64rr_DB  : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1193                     "", // orq/addq REG, REG
1194                     [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
1195 } // isCommutable
1196
1197 // NOTE: These are order specific, we want the ri8 forms to be listed
1198 // first so that they are slightly preferred to the ri forms.
1199
1200 def ADD16ri8_DB : I<0, Pseudo,
1201                     (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
1202                     "", // orw/addw REG, imm8
1203                     [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
1204 def ADD16ri_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
1205                     "", // orw/addw REG, imm
1206                     [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
1207
1208 def ADD32ri8_DB : I<0, Pseudo,
1209                     (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
1210                     "", // orl/addl REG, imm8
1211                     [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
1212 def ADD32ri_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
1213                     "", // orl/addl REG, imm
1214                     [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
1215
1216
1217 def ADD64ri8_DB : I<0, Pseudo,
1218                     (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
1219                     "", // orq/addq REG, imm8
1220                     [(set GR64:$dst, (or_is_add GR64:$src1,
1221                                                 i64immSExt8:$src2))]>;
1222 def ADD64ri32_DB : I<0, Pseudo,
1223                      (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
1224                       "", // orq/addq REG, imm
1225                       [(set GR64:$dst, (or_is_add GR64:$src1,
1226                                                   i64immSExt32:$src2))]>;
1227 }
1228 } // AddedComplexity, SchedRW
1229
1230
1231 //===----------------------------------------------------------------------===//
1232 // Some peepholes
1233 //===----------------------------------------------------------------------===//
1234
1235 // Odd encoding trick: -128 fits into an 8-bit immediate field while
1236 // +128 doesn't, so in this special case use a sub instead of an add.
1237 def : Pat<(add GR16:$src1, 128),
1238           (SUB16ri8 GR16:$src1, -128)>;
1239 def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
1240           (SUB16mi8 addr:$dst, -128)>;
1241
1242 def : Pat<(add GR32:$src1, 128),
1243           (SUB32ri8 GR32:$src1, -128)>;
1244 def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
1245           (SUB32mi8 addr:$dst, -128)>;
1246
1247 def : Pat<(add GR64:$src1, 128),
1248           (SUB64ri8 GR64:$src1, -128)>;
1249 def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
1250           (SUB64mi8 addr:$dst, -128)>;
1251
1252 // The same trick applies for 32-bit immediate fields in 64-bit
1253 // instructions.
1254 def : Pat<(add GR64:$src1, 0x0000000080000000),
1255           (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1256 def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
1257           (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
1258
1259 // To avoid needing to materialize an immediate in a register, use a 32-bit and
1260 // with implicit zero-extension instead of a 64-bit and if the immediate has at
1261 // least 32 bits of leading zeros. If in addition the last 32 bits can be
1262 // represented with a sign extension of a 8 bit constant, use that.
1263
1264 def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
1265           (SUBREG_TO_REG
1266             (i64 0),
1267             (AND32ri8
1268               (EXTRACT_SUBREG GR64:$src, sub_32bit),
1269               (i32 (GetLo8XForm imm:$imm))),
1270             sub_32bit)>;
1271
1272 def : Pat<(and GR64:$src, i64immZExt32:$imm),
1273           (SUBREG_TO_REG
1274             (i64 0),
1275             (AND32ri
1276               (EXTRACT_SUBREG GR64:$src, sub_32bit),
1277               (i32 (GetLo32XForm imm:$imm))),
1278             sub_32bit)>;
1279
1280
1281 // r & (2^16-1) ==> movz
1282 def : Pat<(and GR32:$src1, 0xffff),
1283           (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
1284 // r & (2^8-1) ==> movz
1285 def : Pat<(and GR32:$src1, 0xff),
1286           (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
1287                                                              GR32_ABCD)),
1288                                       sub_8bit))>,
1289       Requires<[In32BitMode]>;
1290 // r & (2^8-1) ==> movz
1291 def : Pat<(and GR16:$src1, 0xff),
1292            (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG
1293             (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)),
1294              sub_16bit)>,
1295       Requires<[In32BitMode]>;
1296
1297 // r & (2^32-1) ==> movz
1298 def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
1299           (SUBREG_TO_REG (i64 0),
1300                          (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
1301                          sub_32bit)>;
1302 // r & (2^16-1) ==> movz
1303 def : Pat<(and GR64:$src, 0xffff),
1304           (SUBREG_TO_REG (i64 0),
1305                       (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
1306                       sub_32bit)>;
1307 // r & (2^8-1) ==> movz
1308 def : Pat<(and GR64:$src, 0xff),
1309           (SUBREG_TO_REG (i64 0),
1310                          (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
1311                          sub_32bit)>;
1312 // r & (2^8-1) ==> movz
1313 def : Pat<(and GR32:$src1, 0xff),
1314            (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
1315       Requires<[In64BitMode]>;
1316 // r & (2^8-1) ==> movz
1317 def : Pat<(and GR16:$src1, 0xff),
1318            (EXTRACT_SUBREG (MOVZX32rr8 (i8
1319             (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>,
1320       Requires<[In64BitMode]>;
1321
1322
1323 // sext_inreg patterns
1324 def : Pat<(sext_inreg GR32:$src, i16),
1325           (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
1326 def : Pat<(sext_inreg GR32:$src, i8),
1327           (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1328                                                              GR32_ABCD)),
1329                                       sub_8bit))>,
1330       Requires<[In32BitMode]>;
1331
1332 def : Pat<(sext_inreg GR16:$src, i8),
1333            (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG
1334             (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))),
1335              sub_16bit)>,
1336       Requires<[In32BitMode]>;
1337
1338 def : Pat<(sext_inreg GR64:$src, i32),
1339           (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1340 def : Pat<(sext_inreg GR64:$src, i16),
1341           (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1342 def : Pat<(sext_inreg GR64:$src, i8),
1343           (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1344 def : Pat<(sext_inreg GR32:$src, i8),
1345           (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
1346       Requires<[In64BitMode]>;
1347 def : Pat<(sext_inreg GR16:$src, i8),
1348            (EXTRACT_SUBREG (MOVSX32rr8
1349             (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>,
1350       Requires<[In64BitMode]>;
1351
1352 // sext, sext_load, zext, zext_load
1353 def: Pat<(i16 (sext GR8:$src)),
1354           (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
1355 def: Pat<(sextloadi16i8 addr:$src),
1356           (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
1357 def: Pat<(i16 (zext GR8:$src)),
1358           (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
1359 def: Pat<(zextloadi16i8 addr:$src),
1360           (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1361
1362 // trunc patterns
1363 def : Pat<(i16 (trunc GR32:$src)),
1364           (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1365 def : Pat<(i8 (trunc GR32:$src)),
1366           (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1367                           sub_8bit)>,
1368       Requires<[In32BitMode]>;
1369 def : Pat<(i8 (trunc GR16:$src)),
1370           (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1371                           sub_8bit)>,
1372       Requires<[In32BitMode]>;
1373 def : Pat<(i32 (trunc GR64:$src)),
1374           (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1375 def : Pat<(i16 (trunc GR64:$src)),
1376           (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1377 def : Pat<(i8 (trunc GR64:$src)),
1378           (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1379 def : Pat<(i8 (trunc GR32:$src)),
1380           (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1381       Requires<[In64BitMode]>;
1382 def : Pat<(i8 (trunc GR16:$src)),
1383           (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1384       Requires<[In64BitMode]>;
1385
1386 // h-register tricks
1387 def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1388           (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1389                           sub_8bit_hi)>,
1390       Requires<[In32BitMode]>;
1391 def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1392           (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1393                           sub_8bit_hi)>,
1394       Requires<[In32BitMode]>;
1395 def : Pat<(srl GR16:$src, (i8 8)),
1396           (EXTRACT_SUBREG
1397             (MOVZX32rr8
1398               (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1399                               sub_8bit_hi)),
1400             sub_16bit)>,
1401       Requires<[In32BitMode]>;
1402 def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1403           (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1404                                                              GR16_ABCD)),
1405                                       sub_8bit_hi))>,
1406       Requires<[In32BitMode]>;
1407 def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1408           (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1409                                                              GR16_ABCD)),
1410                                       sub_8bit_hi))>,
1411       Requires<[In32BitMode]>;
1412 def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1413           (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1414                                                              GR32_ABCD)),
1415                                       sub_8bit_hi))>,
1416       Requires<[In32BitMode]>;
1417 def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1418           (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1419                                                              GR32_ABCD)),
1420                                       sub_8bit_hi))>,
1421       Requires<[In32BitMode]>;
1422
1423 // h-register tricks.
1424 // For now, be conservative on x86-64 and use an h-register extract only if the
1425 // value is immediately zero-extended or stored, which are somewhat common
1426 // cases. This uses a bunch of code to prevent a register requiring a REX prefix
1427 // from being allocated in the same instruction as the h register, as there's
1428 // currently no way to describe this requirement to the register allocator.
1429
1430 // h-register extract and zero-extend.
1431 def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1432           (SUBREG_TO_REG
1433             (i64 0),
1434             (MOVZX32_NOREXrr8
1435               (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1436                               sub_8bit_hi)),
1437             sub_32bit)>;
1438 def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1439           (MOVZX32_NOREXrr8
1440             (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1441                             sub_8bit_hi))>,
1442       Requires<[In64BitMode]>;
1443 def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1444           (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1445                                                                    GR32_ABCD)),
1446                                              sub_8bit_hi))>,
1447       Requires<[In64BitMode]>;
1448 def : Pat<(srl GR16:$src, (i8 8)),
1449           (EXTRACT_SUBREG
1450             (MOVZX32_NOREXrr8
1451               (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1452                               sub_8bit_hi)),
1453             sub_16bit)>,
1454       Requires<[In64BitMode]>;
1455 def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1456           (MOVZX32_NOREXrr8
1457             (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1458                             sub_8bit_hi))>,
1459       Requires<[In64BitMode]>;
1460 def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1461           (MOVZX32_NOREXrr8
1462             (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1463                             sub_8bit_hi))>,
1464       Requires<[In64BitMode]>;
1465 def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1466           (SUBREG_TO_REG
1467             (i64 0),
1468             (MOVZX32_NOREXrr8
1469               (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1470                               sub_8bit_hi)),
1471             sub_32bit)>;
1472 def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1473           (SUBREG_TO_REG
1474             (i64 0),
1475             (MOVZX32_NOREXrr8
1476               (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1477                               sub_8bit_hi)),
1478             sub_32bit)>;
1479
1480 // h-register extract and store.
1481 def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1482           (MOV8mr_NOREX
1483             addr:$dst,
1484             (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1485                             sub_8bit_hi))>;
1486 def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1487           (MOV8mr_NOREX
1488             addr:$dst,
1489             (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1490                             sub_8bit_hi))>,
1491       Requires<[In64BitMode]>;
1492 def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1493           (MOV8mr_NOREX
1494             addr:$dst,
1495             (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1496                             sub_8bit_hi))>,
1497       Requires<[In64BitMode]>;
1498
1499
1500 // (shl x, 1) ==> (add x, x)
1501 // Note that if x is undef (immediate or otherwise), we could theoretically
1502 // end up with the two uses of x getting different values, producing a result
1503 // where the least significant bit is not 0. However, the probability of this
1504 // happening is considered low enough that this is officially not a
1505 // "real problem".
1506 def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr  GR8 :$src1, GR8 :$src1)>;
1507 def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1508 def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1509 def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1510
1511 // Helper imms that check if a mask doesn't change significant shift bits.
1512 def immShift32 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 5; }]>;
1513 def immShift64 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 6; }]>;
1514
1515 // (shl x (and y, 31)) ==> (shl x, y)
1516 def : Pat<(shl GR8:$src1, (and CL, immShift32)),
1517           (SHL8rCL GR8:$src1)>;
1518 def : Pat<(shl GR16:$src1, (and CL, immShift32)),
1519           (SHL16rCL GR16:$src1)>;
1520 def : Pat<(shl GR32:$src1, (and CL, immShift32)),
1521           (SHL32rCL GR32:$src1)>;
1522 def : Pat<(store (shl (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1523           (SHL8mCL addr:$dst)>;
1524 def : Pat<(store (shl (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1525           (SHL16mCL addr:$dst)>;
1526 def : Pat<(store (shl (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1527           (SHL32mCL addr:$dst)>;
1528
1529 def : Pat<(srl GR8:$src1, (and CL, immShift32)),
1530           (SHR8rCL GR8:$src1)>;
1531 def : Pat<(srl GR16:$src1, (and CL, immShift32)),
1532           (SHR16rCL GR16:$src1)>;
1533 def : Pat<(srl GR32:$src1, (and CL, immShift32)),
1534           (SHR32rCL GR32:$src1)>;
1535 def : Pat<(store (srl (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1536           (SHR8mCL addr:$dst)>;
1537 def : Pat<(store (srl (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1538           (SHR16mCL addr:$dst)>;
1539 def : Pat<(store (srl (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1540           (SHR32mCL addr:$dst)>;
1541
1542 def : Pat<(sra GR8:$src1, (and CL, immShift32)),
1543           (SAR8rCL GR8:$src1)>;
1544 def : Pat<(sra GR16:$src1, (and CL, immShift32)),
1545           (SAR16rCL GR16:$src1)>;
1546 def : Pat<(sra GR32:$src1, (and CL, immShift32)),
1547           (SAR32rCL GR32:$src1)>;
1548 def : Pat<(store (sra (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1549           (SAR8mCL addr:$dst)>;
1550 def : Pat<(store (sra (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1551           (SAR16mCL addr:$dst)>;
1552 def : Pat<(store (sra (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1553           (SAR32mCL addr:$dst)>;
1554
1555 // (shl x (and y, 63)) ==> (shl x, y)
1556 def : Pat<(shl GR64:$src1, (and CL, immShift64)),
1557           (SHL64rCL GR64:$src1)>;
1558 def : Pat<(store (shl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1559           (SHL64mCL addr:$dst)>;
1560
1561 def : Pat<(srl GR64:$src1, (and CL, immShift64)),
1562           (SHR64rCL GR64:$src1)>;
1563 def : Pat<(store (srl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1564           (SHR64mCL addr:$dst)>;
1565
1566 def : Pat<(sra GR64:$src1, (and CL, immShift64)),
1567           (SAR64rCL GR64:$src1)>;
1568 def : Pat<(store (sra (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1569           (SAR64mCL addr:$dst)>;
1570
1571
1572 // (anyext (setcc_carry)) -> (setcc_carry)
1573 def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1574           (SETB_C16r)>;
1575 def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1576           (SETB_C32r)>;
1577 def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
1578           (SETB_C32r)>;
1579
1580
1581
1582
1583 //===----------------------------------------------------------------------===//
1584 // EFLAGS-defining Patterns
1585 //===----------------------------------------------------------------------===//
1586
1587 // add reg, reg
1588 def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr  GR8 :$src1, GR8 :$src2)>;
1589 def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1590 def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1591
1592 // add reg, mem
1593 def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
1594           (ADD8rm GR8:$src1, addr:$src2)>;
1595 def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
1596           (ADD16rm GR16:$src1, addr:$src2)>;
1597 def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
1598           (ADD32rm GR32:$src1, addr:$src2)>;
1599
1600 // add reg, imm
1601 def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri  GR8:$src1 , imm:$src2)>;
1602 def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
1603 def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
1604 def : Pat<(add GR16:$src1, i16immSExt8:$src2),
1605           (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1606 def : Pat<(add GR32:$src1, i32immSExt8:$src2),
1607           (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1608
1609 // sub reg, reg
1610 def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr  GR8 :$src1, GR8 :$src2)>;
1611 def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
1612 def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
1613
1614 // sub reg, mem
1615 def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
1616           (SUB8rm GR8:$src1, addr:$src2)>;
1617 def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
1618           (SUB16rm GR16:$src1, addr:$src2)>;
1619 def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
1620           (SUB32rm GR32:$src1, addr:$src2)>;
1621
1622 // sub reg, imm
1623 def : Pat<(sub GR8:$src1, imm:$src2),
1624           (SUB8ri GR8:$src1, imm:$src2)>;
1625 def : Pat<(sub GR16:$src1, imm:$src2),
1626           (SUB16ri GR16:$src1, imm:$src2)>;
1627 def : Pat<(sub GR32:$src1, imm:$src2),
1628           (SUB32ri GR32:$src1, imm:$src2)>;
1629 def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
1630           (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
1631 def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
1632           (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
1633
1634 // sub 0, reg
1635 def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r  GR8 :$src)>;
1636 def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
1637 def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
1638 def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
1639
1640 // mul reg, reg
1641 def : Pat<(mul GR16:$src1, GR16:$src2),
1642           (IMUL16rr GR16:$src1, GR16:$src2)>;
1643 def : Pat<(mul GR32:$src1, GR32:$src2),
1644           (IMUL32rr GR32:$src1, GR32:$src2)>;
1645
1646 // mul reg, mem
1647 def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
1648           (IMUL16rm GR16:$src1, addr:$src2)>;
1649 def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
1650           (IMUL32rm GR32:$src1, addr:$src2)>;
1651
1652 // mul reg, imm
1653 def : Pat<(mul GR16:$src1, imm:$src2),
1654           (IMUL16rri GR16:$src1, imm:$src2)>;
1655 def : Pat<(mul GR32:$src1, imm:$src2),
1656           (IMUL32rri GR32:$src1, imm:$src2)>;
1657 def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
1658           (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
1659 def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
1660           (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
1661
1662 // reg = mul mem, imm
1663 def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
1664           (IMUL16rmi addr:$src1, imm:$src2)>;
1665 def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
1666           (IMUL32rmi addr:$src1, imm:$src2)>;
1667 def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
1668           (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
1669 def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
1670           (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
1671
1672 // Patterns for nodes that do not produce flags, for instructions that do.
1673
1674 // addition
1675 def : Pat<(add GR64:$src1, GR64:$src2),
1676           (ADD64rr GR64:$src1, GR64:$src2)>;
1677 def : Pat<(add GR64:$src1, i64immSExt8:$src2),
1678           (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1679 def : Pat<(add GR64:$src1, i64immSExt32:$src2),
1680           (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1681 def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
1682           (ADD64rm GR64:$src1, addr:$src2)>;
1683
1684 // subtraction
1685 def : Pat<(sub GR64:$src1, GR64:$src2),
1686           (SUB64rr GR64:$src1, GR64:$src2)>;
1687 def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
1688           (SUB64rm GR64:$src1, addr:$src2)>;
1689 def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
1690           (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
1691 def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
1692           (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
1693
1694 // Multiply
1695 def : Pat<(mul GR64:$src1, GR64:$src2),
1696           (IMUL64rr GR64:$src1, GR64:$src2)>;
1697 def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
1698           (IMUL64rm GR64:$src1, addr:$src2)>;
1699 def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
1700           (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
1701 def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
1702           (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
1703 def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
1704           (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
1705 def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
1706           (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
1707
1708 // Increment reg.
1709 def : Pat<(add GR8 :$src, 1), (INC8r     GR8 :$src)>;
1710 def : Pat<(add GR16:$src, 1), (INC16r    GR16:$src)>, Requires<[In32BitMode]>;
1711 def : Pat<(add GR16:$src, 1), (INC64_16r GR16:$src)>, Requires<[In64BitMode]>;
1712 def : Pat<(add GR32:$src, 1), (INC32r    GR32:$src)>, Requires<[In32BitMode]>;
1713 def : Pat<(add GR32:$src, 1), (INC64_32r GR32:$src)>, Requires<[In64BitMode]>;
1714 def : Pat<(add GR64:$src, 1), (INC64r    GR64:$src)>;
1715
1716 // Decrement reg.
1717 def : Pat<(add GR8 :$src, -1), (DEC8r     GR8 :$src)>;
1718 def : Pat<(add GR16:$src, -1), (DEC16r    GR16:$src)>, Requires<[In32BitMode]>;
1719 def : Pat<(add GR16:$src, -1), (DEC64_16r GR16:$src)>, Requires<[In64BitMode]>;
1720 def : Pat<(add GR32:$src, -1), (DEC32r    GR32:$src)>, Requires<[In32BitMode]>;
1721 def : Pat<(add GR32:$src, -1), (DEC64_32r GR32:$src)>, Requires<[In64BitMode]>;
1722 def : Pat<(add GR64:$src, -1), (DEC64r    GR64:$src)>;
1723
1724 // or reg/reg.
1725 def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr  GR8 :$src1, GR8 :$src2)>;
1726 def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
1727 def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
1728 def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
1729
1730 // or reg/mem
1731 def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
1732           (OR8rm GR8:$src1, addr:$src2)>;
1733 def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
1734           (OR16rm GR16:$src1, addr:$src2)>;
1735 def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
1736           (OR32rm GR32:$src1, addr:$src2)>;
1737 def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
1738           (OR64rm GR64:$src1, addr:$src2)>;
1739
1740 // or reg/imm
1741 def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri  GR8 :$src1, imm:$src2)>;
1742 def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
1743 def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
1744 def : Pat<(or GR16:$src1, i16immSExt8:$src2),
1745           (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1746 def : Pat<(or GR32:$src1, i32immSExt8:$src2),
1747           (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1748 def : Pat<(or GR64:$src1, i64immSExt8:$src2),
1749           (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1750 def : Pat<(or GR64:$src1, i64immSExt32:$src2),
1751           (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1752
1753 // xor reg/reg
1754 def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr  GR8 :$src1, GR8 :$src2)>;
1755 def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
1756 def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
1757 def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
1758
1759 // xor reg/mem
1760 def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
1761           (XOR8rm GR8:$src1, addr:$src2)>;
1762 def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
1763           (XOR16rm GR16:$src1, addr:$src2)>;
1764 def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
1765           (XOR32rm GR32:$src1, addr:$src2)>;
1766 def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
1767           (XOR64rm GR64:$src1, addr:$src2)>;
1768
1769 // xor reg/imm
1770 def : Pat<(xor GR8:$src1, imm:$src2),
1771           (XOR8ri GR8:$src1, imm:$src2)>;
1772 def : Pat<(xor GR16:$src1, imm:$src2),
1773           (XOR16ri GR16:$src1, imm:$src2)>;
1774 def : Pat<(xor GR32:$src1, imm:$src2),
1775           (XOR32ri GR32:$src1, imm:$src2)>;
1776 def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
1777           (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1778 def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
1779           (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1780 def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
1781           (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1782 def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
1783           (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1784
1785 // and reg/reg
1786 def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr  GR8 :$src1, GR8 :$src2)>;
1787 def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
1788 def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
1789 def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
1790
1791 // and reg/mem
1792 def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
1793           (AND8rm GR8:$src1, addr:$src2)>;
1794 def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
1795           (AND16rm GR16:$src1, addr:$src2)>;
1796 def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
1797           (AND32rm GR32:$src1, addr:$src2)>;
1798 def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
1799           (AND64rm GR64:$src1, addr:$src2)>;
1800
1801 // and reg/imm
1802 def : Pat<(and GR8:$src1, imm:$src2),
1803           (AND8ri GR8:$src1, imm:$src2)>;
1804 def : Pat<(and GR16:$src1, imm:$src2),
1805           (AND16ri GR16:$src1, imm:$src2)>;
1806 def : Pat<(and GR32:$src1, imm:$src2),
1807           (AND32ri GR32:$src1, imm:$src2)>;
1808 def : Pat<(and GR16:$src1, i16immSExt8:$src2),
1809           (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
1810 def : Pat<(and GR32:$src1, i32immSExt8:$src2),
1811           (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
1812 def : Pat<(and GR64:$src1, i64immSExt8:$src2),
1813           (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
1814 def : Pat<(and GR64:$src1, i64immSExt32:$src2),
1815           (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
1816
1817 // Bit scan instruction patterns to match explicit zero-undef behavior.
1818 def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
1819 def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
1820 def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
1821 def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
1822 def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
1823 def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;