Fix the comment.
[oota-llvm.git] / lib / Target / X86 / X86ISelLowering.h
1 //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef X86ISELLOWERING_H
16 #define X86ISELLOWERING_H
17
18 #include "X86MachineFunctionInfo.h"
19 #include "X86RegisterInfo.h"
20 #include "X86Subtarget.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/FastISel.h"
23 #include "llvm/CodeGen/SelectionDAG.h"
24 #include "llvm/Target/TargetLowering.h"
25 #include "llvm/Target/TargetOptions.h"
26
27 namespace llvm {
28   namespace X86ISD {
29     // X86 Specific DAG Nodes
30     enum NodeType {
31       // Start the numbering where the builtin ops leave off.
32       FIRST_NUMBER = ISD::BUILTIN_OP_END,
33
34       /// BSF - Bit scan forward.
35       /// BSR - Bit scan reverse.
36       BSF,
37       BSR,
38
39       /// SHLD, SHRD - Double shift instructions. These correspond to
40       /// X86::SHLDxx and X86::SHRDxx instructions.
41       SHLD,
42       SHRD,
43
44       /// FAND - Bitwise logical AND of floating point values. This corresponds
45       /// to X86::ANDPS or X86::ANDPD.
46       FAND,
47
48       /// FOR - Bitwise logical OR of floating point values. This corresponds
49       /// to X86::ORPS or X86::ORPD.
50       FOR,
51
52       /// FXOR - Bitwise logical XOR of floating point values. This corresponds
53       /// to X86::XORPS or X86::XORPD.
54       FXOR,
55
56       /// FANDN - Bitwise logical ANDNOT of floating point values. This
57       /// corresponds to X86::ANDNPS or X86::ANDNPD.
58       FANDN,
59
60       /// FSRL - Bitwise logical right shift of floating point values. These
61       /// corresponds to X86::PSRLDQ.
62       FSRL,
63
64       /// CALL - These operations represent an abstract X86 call
65       /// instruction, which includes a bunch of information.  In particular the
66       /// operands of these node are:
67       ///
68       ///     #0 - The incoming token chain
69       ///     #1 - The callee
70       ///     #2 - The number of arg bytes the caller pushes on the stack.
71       ///     #3 - The number of arg bytes the callee pops off the stack.
72       ///     #4 - The value to pass in AL/AX/EAX (optional)
73       ///     #5 - The value to pass in DL/DX/EDX (optional)
74       ///
75       /// The result values of these nodes are:
76       ///
77       ///     #0 - The outgoing token chain
78       ///     #1 - The first register result value (optional)
79       ///     #2 - The second register result value (optional)
80       ///
81       CALL,
82
83       /// RDTSC_DAG - This operation implements the lowering for
84       /// readcyclecounter
85       RDTSC_DAG,
86
87       /// X86 compare and logical compare instructions.
88       CMP, COMI, UCOMI,
89
90       /// X86 bit-test instructions.
91       BT,
92
93       /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
94       /// operand, usually produced by a CMP instruction.
95       SETCC,
96
97       // Same as SETCC except it's materialized with a sbb and the value is all
98       // one's or all zero's.
99       SETCC_CARRY,  // R = carry_bit ? ~0 : 0
100
101       /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
102       /// Operands are two FP values to compare; result is a mask of
103       /// 0s or 1s.  Generally DTRT for C/C++ with NaNs.
104       FSETCCss, FSETCCsd,
105
106       /// X86 MOVMSK{pd|ps}, extracts sign bits of two or four FP values,
107       /// result in an integer GPR.  Needs masking for scalar result.
108       FGETSIGNx86,
109
110       /// X86 conditional moves. Operand 0 and operand 1 are the two values
111       /// to select from. Operand 2 is the condition code, and operand 3 is the
112       /// flag operand produced by a CMP or TEST instruction. It also writes a
113       /// flag result.
114       CMOV,
115
116       /// X86 conditional branches. Operand 0 is the chain operand, operand 1
117       /// is the block to branch if condition is true, operand 2 is the
118       /// condition code, and operand 3 is the flag operand produced by a CMP
119       /// or TEST instruction.
120       BRCOND,
121
122       /// Return with a flag operand. Operand 0 is the chain operand, operand
123       /// 1 is the number of bytes of stack to pop.
124       RET_FLAG,
125
126       /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
127       REP_STOS,
128
129       /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
130       REP_MOVS,
131
132       /// GlobalBaseReg - On Darwin, this node represents the result of the popl
133       /// at function entry, used for PIC code.
134       GlobalBaseReg,
135
136       /// Wrapper - A wrapper node for TargetConstantPool,
137       /// TargetExternalSymbol, and TargetGlobalAddress.
138       Wrapper,
139
140       /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
141       /// relative displacements.
142       WrapperRIP,
143
144       /// MOVDQ2Q - Copies a 64-bit value from the low word of an XMM vector
145       /// to an MMX vector.  If you think this is too close to the previous
146       /// mnemonic, so do I; blame Intel.
147       MOVDQ2Q,
148
149       /// MMX_MOVD2W - Copies a 32-bit value from the low word of a MMX
150       /// vector to a GPR.
151       MMX_MOVD2W,
152
153       /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
154       /// i32, corresponds to X86::PEXTRB.
155       PEXTRB,
156
157       /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
158       /// i32, corresponds to X86::PEXTRW.
159       PEXTRW,
160
161       /// INSERTPS - Insert any element of a 4 x float vector into any element
162       /// of a destination 4 x floatvector.
163       INSERTPS,
164
165       /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
166       /// corresponds to X86::PINSRB.
167       PINSRB,
168
169       /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
170       /// corresponds to X86::PINSRW.
171       PINSRW, MMX_PINSRW,
172
173       /// PSHUFB - Shuffle 16 8-bit values within a vector.
174       PSHUFB,
175
176       /// ANDNP - Bitwise Logical AND NOT of Packed FP values.
177       ANDNP,
178
179       /// PSIGN - Copy integer sign.
180       PSIGN,
181
182       /// BLENDV - Blend where the selector is a register.
183       BLENDV,
184
185       /// BLENDI - Blend where the selector is an immediate.
186       BLENDI,
187
188       // SUBUS - Integer sub with unsigned saturation.
189       SUBUS,
190
191       /// HADD - Integer horizontal add.
192       HADD,
193
194       /// HSUB - Integer horizontal sub.
195       HSUB,
196
197       /// FHADD - Floating point horizontal add.
198       FHADD,
199
200       /// FHSUB - Floating point horizontal sub.
201       FHSUB,
202
203       /// UMAX, UMIN - Unsigned integer max and min.
204       UMAX, UMIN,
205
206       /// SMAX, SMIN - Signed integer max and min.
207       SMAX, SMIN,
208
209       /// FMAX, FMIN - Floating point max and min.
210       ///
211       FMAX, FMIN,
212
213       /// FMAXC, FMINC - Commutative FMIN and FMAX.
214       FMAXC, FMINC,
215
216       /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
217       /// approximation.  Note that these typically require refinement
218       /// in order to obtain suitable precision.
219       FRSQRT, FRCP,
220
221       // TLSADDR - Thread Local Storage.
222       TLSADDR,
223
224       // TLSBASEADDR - Thread Local Storage. A call to get the start address
225       // of the TLS block for the current module.
226       TLSBASEADDR,
227
228       // TLSCALL - Thread Local Storage.  When calling to an OS provided
229       // thunk at the address from an earlier relocation.
230       TLSCALL,
231
232       // EH_RETURN - Exception Handling helpers.
233       EH_RETURN,
234
235       // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
236       EH_SJLJ_SETJMP,
237
238       // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
239       EH_SJLJ_LONGJMP,
240
241       /// TC_RETURN - Tail call return. See X86TargetLowering::LowerCall for
242       /// the list of operands.
243       TC_RETURN,
244
245       // VZEXT_MOVL - Vector move low and zero extend.
246       VZEXT_MOVL,
247
248       // VSEXT_MOVL - Vector move low and sign extend.
249       VSEXT_MOVL,
250
251       // VZEXT - Vector integer zero-extend.
252       VZEXT,
253
254       // VSEXT - Vector integer signed-extend.
255       VSEXT,
256
257       // VFPEXT - Vector FP extend.
258       VFPEXT,
259
260       // VFPROUND - Vector FP round.
261       VFPROUND,
262
263       // VSHL, VSRL - 128-bit vector logical left / right shift
264       VSHLDQ, VSRLDQ,
265
266       // VSHL, VSRL, VSRA - Vector shift elements
267       VSHL, VSRL, VSRA,
268
269       // VSHLI, VSRLI, VSRAI - Vector shift elements by immediate
270       VSHLI, VSRLI, VSRAI,
271
272       // CMPP - Vector packed double/float comparison.
273       CMPP,
274
275       // PCMP* - Vector integer comparisons.
276       PCMPEQ, PCMPGT,
277
278       // ADD, SUB, SMUL, etc. - Arithmetic operations with FLAGS results.
279       ADD, SUB, ADC, SBB, SMUL,
280       INC, DEC, OR, XOR, AND,
281
282       BLSI,   // BLSI - Extract lowest set isolated bit
283       BLSMSK, // BLSMSK - Get mask up to lowest set bit
284       BLSR,   // BLSR - Reset lowest set bit
285
286       UMUL, // LOW, HI, FLAGS = umul LHS, RHS
287
288       // MUL_IMM - X86 specific multiply by immediate.
289       MUL_IMM,
290
291       // PTEST - Vector bitwise comparisons
292       PTEST,
293
294       // TESTP - Vector packed fp sign bitwise comparisons
295       TESTP,
296
297       // OR/AND test for masks
298       KORTEST,
299       KTEST,
300
301       // Several flavors of instructions with vector shuffle behaviors.
302       PALIGNR,
303       PSHUFD,
304       PSHUFHW,
305       PSHUFLW,
306       SHUFP,
307       MOVDDUP,
308       MOVSHDUP,
309       MOVSLDUP,
310       MOVLHPS,
311       MOVLHPD,
312       MOVHLPS,
313       MOVLPS,
314       MOVLPD,
315       MOVSD,
316       MOVSS,
317       UNPCKL,
318       UNPCKH,
319       VPERMILP,
320       VPERMV,
321       VPERMI,
322       VPERM2X128,
323       VBROADCAST,
324       // masked broadcast
325       VBROADCASTM,
326
327       // PMULUDQ - Vector multiply packed unsigned doubleword integers
328       PMULUDQ,
329
330       // FMA nodes
331       FMADD,
332       FNMADD,
333       FMSUB,
334       FNMSUB,
335       FMADDSUB,
336       FMSUBADD,
337
338       // VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack,
339       // according to %al. An operator is needed so that this can be expanded
340       // with control flow.
341       VASTART_SAVE_XMM_REGS,
342
343       // WIN_ALLOCA - Windows's _chkstk call to do stack probing.
344       WIN_ALLOCA,
345
346       // SEG_ALLOCA - For allocating variable amounts of stack space when using
347       // segmented stacks. Check if the current stacklet has enough space, and
348       // falls back to heap allocation if not.
349       SEG_ALLOCA,
350
351       // WIN_FTOL - Windows's _ftol2 runtime routine to do fptoui.
352       WIN_FTOL,
353
354       // Memory barrier
355       MEMBARRIER,
356       MFENCE,
357       SFENCE,
358       LFENCE,
359
360       // FNSTSW16r - Store FP status word into i16 register.
361       FNSTSW16r,
362
363       // SAHF - Store contents of %ah into %eflags.
364       SAHF,
365
366       // RDRAND - Get a random integer and indicate whether it is valid in CF.
367       RDRAND,
368
369       // RDSEED - Get a NIST SP800-90B & C compliant random integer and
370       // indicate whether it is valid in CF.
371       RDSEED,
372
373       // PCMP*STRI
374       PCMPISTRI,
375       PCMPESTRI,
376
377       // XTEST - Test if in transactional execution.
378       XTEST,
379
380       // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG,
381       // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG -
382       // Atomic 64-bit binary operations.
383       ATOMADD64_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
384       ATOMSUB64_DAG,
385       ATOMOR64_DAG,
386       ATOMXOR64_DAG,
387       ATOMAND64_DAG,
388       ATOMNAND64_DAG,
389       ATOMMAX64_DAG,
390       ATOMMIN64_DAG,
391       ATOMUMAX64_DAG,
392       ATOMUMIN64_DAG,
393       ATOMSWAP64_DAG,
394
395       // LCMPXCHG_DAG, LCMPXCHG8_DAG, LCMPXCHG16_DAG - Compare and swap.
396       LCMPXCHG_DAG,
397       LCMPXCHG8_DAG,
398       LCMPXCHG16_DAG,
399
400       // VZEXT_LOAD - Load, scalar_to_vector, and zero extend.
401       VZEXT_LOAD,
402
403       // FNSTCW16m - Store FP control world into i16 memory.
404       FNSTCW16m,
405
406       /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
407       /// integer destination in memory and a FP reg source.  This corresponds
408       /// to the X86::FIST*m instructions and the rounding mode change stuff. It
409       /// has two inputs (token chain and address) and two outputs (int value
410       /// and token chain).
411       FP_TO_INT16_IN_MEM,
412       FP_TO_INT32_IN_MEM,
413       FP_TO_INT64_IN_MEM,
414
415       /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
416       /// integer source in memory and FP reg result.  This corresponds to the
417       /// X86::FILD*m instructions. It has three inputs (token chain, address,
418       /// and source type) and two outputs (FP value and token chain). FILD_FLAG
419       /// also produces a flag).
420       FILD,
421       FILD_FLAG,
422
423       /// FLD - This instruction implements an extending load to FP stack slots.
424       /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
425       /// operand, ptr to load from, and a ValueType node indicating the type
426       /// to load to.
427       FLD,
428
429       /// FST - This instruction implements a truncating store to FP stack
430       /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
431       /// chain operand, value to store, address, and a ValueType to store it
432       /// as.
433       FST,
434
435       /// VAARG_64 - This instruction grabs the address of the next argument
436       /// from a va_list. (reads and modifies the va_list in memory)
437       VAARG_64
438
439       // WARNING: Do not add anything in the end unless you want the node to
440       // have memop! In fact, starting from ATOMADD64_DAG all opcodes will be
441       // thought as target memory ops!
442     };
443   }
444
445   /// Define some predicates that are used for node matching.
446   namespace X86 {
447     /// isVEXTRACT128Index - Return true if the specified
448     /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
449     /// suitable for input to VEXTRACTF128, VEXTRACTI128 instructions.
450     bool isVEXTRACT128Index(SDNode *N);
451
452     /// isVINSERT128Index - Return true if the specified
453     /// INSERT_SUBVECTOR operand specifies a subvector insert that is
454     /// suitable for input to VINSERTF128, VINSERTI128 instructions.
455     bool isVINSERT128Index(SDNode *N);
456
457     /// isVEXTRACT256Index - Return true if the specified
458     /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
459     /// suitable for input to VEXTRACTF64X4, VEXTRACTI64X4 instructions.
460     bool isVEXTRACT256Index(SDNode *N);
461
462     /// isVINSERT256Index - Return true if the specified
463     /// INSERT_SUBVECTOR operand specifies a subvector insert that is
464     /// suitable for input to VINSERTF64X4, VINSERTI64X4 instructions.
465     bool isVINSERT256Index(SDNode *N);
466
467     /// getExtractVEXTRACT128Immediate - Return the appropriate
468     /// immediate to extract the specified EXTRACT_SUBVECTOR index
469     /// with VEXTRACTF128, VEXTRACTI128 instructions.
470     unsigned getExtractVEXTRACT128Immediate(SDNode *N);
471
472     /// getInsertVINSERT128Immediate - Return the appropriate
473     /// immediate to insert at the specified INSERT_SUBVECTOR index
474     /// with VINSERTF128, VINSERT128 instructions.
475     unsigned getInsertVINSERT128Immediate(SDNode *N);
476
477     /// getExtractVEXTRACT256Immediate - Return the appropriate
478     /// immediate to extract the specified EXTRACT_SUBVECTOR index
479     /// with VEXTRACTF64X4, VEXTRACTI64x4 instructions.
480     unsigned getExtractVEXTRACT256Immediate(SDNode *N);
481
482     /// getInsertVINSERT256Immediate - Return the appropriate
483     /// immediate to insert at the specified INSERT_SUBVECTOR index
484     /// with VINSERTF64x4, VINSERTI64x4 instructions.
485     unsigned getInsertVINSERT256Immediate(SDNode *N);
486
487     /// isZeroNode - Returns true if Elt is a constant zero or a floating point
488     /// constant +0.0.
489     bool isZeroNode(SDValue Elt);
490
491     /// isOffsetSuitableForCodeModel - Returns true of the given offset can be
492     /// fit into displacement field of the instruction.
493     bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
494                                       bool hasSymbolicDisplacement = true);
495
496
497     /// isCalleePop - Determines whether the callee is required to pop its
498     /// own arguments. Callee pop is necessary to support tail calls.
499     bool isCalleePop(CallingConv::ID CallingConv,
500                      bool is64Bit, bool IsVarArg, bool TailCallOpt);
501   }
502
503   //===--------------------------------------------------------------------===//
504   //  X86TargetLowering - X86 Implementation of the TargetLowering interface
505   class X86TargetLowering : public TargetLowering {
506   public:
507     explicit X86TargetLowering(X86TargetMachine &TM);
508
509     virtual unsigned getJumpTableEncoding() const;
510
511     virtual MVT getScalarShiftAmountTy(EVT LHSTy) const { return MVT::i8; }
512
513     virtual const MCExpr *
514     LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
515                               const MachineBasicBlock *MBB, unsigned uid,
516                               MCContext &Ctx) const;
517
518     /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
519     /// jumptable.
520     virtual SDValue getPICJumpTableRelocBase(SDValue Table,
521                                              SelectionDAG &DAG) const;
522     virtual const MCExpr *
523     getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
524                                  unsigned JTI, MCContext &Ctx) const;
525
526     /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
527     /// function arguments in the caller parameter area. For X86, aggregates
528     /// that contains are placed at 16-byte boundaries while the rest are at
529     /// 4-byte boundaries.
530     virtual unsigned getByValTypeAlignment(Type *Ty) const;
531
532     /// getOptimalMemOpType - Returns the target specific optimal type for load
533     /// and store operations as a result of memset, memcpy, and memmove
534     /// lowering. If DstAlign is zero that means it's safe to destination
535     /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
536     /// means there isn't a need to check it against alignment requirement,
537     /// probably because the source does not need to be loaded. If 'IsMemset' is
538     /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
539     /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
540     /// source is constant so it does not need to be loaded.
541     /// It returns EVT::Other if the type should be determined using generic
542     /// target-independent logic.
543     virtual EVT
544     getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
545                         bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
546                         MachineFunction &MF) const;
547
548     /// isSafeMemOpType - Returns true if it's safe to use load / store of the
549     /// specified type to expand memcpy / memset inline. This is mostly true
550     /// for all types except for some special cases. For example, on X86
551     /// targets without SSE2 f64 load / store are done with fldl / fstpl which
552     /// also does type conversion. Note the specified type doesn't have to be
553     /// legal as the hook is used before type legalization.
554     virtual bool isSafeMemOpType(MVT VT) const;
555
556     /// allowsUnalignedMemoryAccesses - Returns true if the target allows
557     /// unaligned memory accesses. of the specified type. Returns whether it
558     /// is "fast" by reference in the second argument.
559     virtual bool allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const;
560
561     /// LowerOperation - Provide custom lowering hooks for some operations.
562     ///
563     virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
564
565     /// ReplaceNodeResults - Replace the results of node with an illegal result
566     /// type with new values built out of custom code.
567     ///
568     virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
569                                     SelectionDAG &DAG) const;
570
571
572     virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
573
574     /// isTypeDesirableForOp - Return true if the target has native support for
575     /// the specified value type and it is 'desirable' to use the type for the
576     /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
577     /// instruction encodings are longer and some i16 instructions are slow.
578     virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const;
579
580     /// isTypeDesirable - Return true if the target has native support for the
581     /// specified value type and it is 'desirable' to use the type. e.g. On x86
582     /// i16 is legal, but undesirable since i16 instruction encodings are longer
583     /// and some i16 instructions are slow.
584     virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const;
585
586     virtual MachineBasicBlock *
587       EmitInstrWithCustomInserter(MachineInstr *MI,
588                                   MachineBasicBlock *MBB) const;
589
590
591     /// getTargetNodeName - This method returns the name of a target specific
592     /// DAG node.
593     virtual const char *getTargetNodeName(unsigned Opcode) const;
594
595     /// getSetCCResultType - Return the value type to use for ISD::SETCC.
596     virtual EVT getSetCCResultType(LLVMContext &Context, EVT VT) const;
597
598     /// computeMaskedBitsForTargetNode - Determine which of the bits specified
599     /// in Mask are known to be either zero or one and return them in the
600     /// KnownZero/KnownOne bitsets.
601     virtual void computeMaskedBitsForTargetNode(const SDValue Op,
602                                                 APInt &KnownZero,
603                                                 APInt &KnownOne,
604                                                 const SelectionDAG &DAG,
605                                                 unsigned Depth = 0) const;
606
607     // ComputeNumSignBitsForTargetNode - Determine the number of bits in the
608     // operation that are sign bits.
609     virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
610                                                      unsigned Depth) const;
611
612     virtual bool
613     isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
614
615     SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
616
617     virtual bool ExpandInlineAsm(CallInst *CI) const;
618
619     ConstraintType getConstraintType(const std::string &Constraint) const;
620
621     /// Examine constraint string and operand type and determine a weight value.
622     /// The operand object must already have been set up with the operand type.
623     virtual ConstraintWeight getSingleConstraintMatchWeight(
624       AsmOperandInfo &info, const char *constraint) const;
625
626     virtual const char *LowerXConstraint(EVT ConstraintVT) const;
627
628     /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
629     /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is
630     /// true it means one of the asm constraint of the inline asm instruction
631     /// being processed is 'm'.
632     virtual void LowerAsmOperandForConstraint(SDValue Op,
633                                               std::string &Constraint,
634                                               std::vector<SDValue> &Ops,
635                                               SelectionDAG &DAG) const;
636
637     /// getRegForInlineAsmConstraint - Given a physical register constraint
638     /// (e.g. {edx}), return the register number and the register class for the
639     /// register.  This should only be used for C_Register constraints.  On
640     /// error, this returns a register number of 0.
641     std::pair<unsigned, const TargetRegisterClass*>
642       getRegForInlineAsmConstraint(const std::string &Constraint,
643                                    MVT VT) const;
644
645     /// isLegalAddressingMode - Return true if the addressing mode represented
646     /// by AM is legal for this target, for a load/store of the specified type.
647     virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty)const;
648
649     /// isLegalICmpImmediate - Return true if the specified immediate is legal
650     /// icmp immediate, that is the target has icmp instructions which can
651     /// compare a register against the immediate without having to materialize
652     /// the immediate into a register.
653     virtual bool isLegalICmpImmediate(int64_t Imm) const;
654
655     /// isLegalAddImmediate - Return true if the specified immediate is legal
656     /// add immediate, that is the target has add instructions which can
657     /// add a register and the immediate without having to materialize
658     /// the immediate into a register.
659     virtual bool isLegalAddImmediate(int64_t Imm) const;
660
661     /// isTruncateFree - Return true if it's free to truncate a value of
662     /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
663     /// register EAX to i16 by referencing its sub-register AX.
664     virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const;
665     virtual bool isTruncateFree(EVT VT1, EVT VT2) const;
666
667     virtual bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const;
668
669     /// isZExtFree - Return true if any actual instruction that defines a
670     /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
671     /// register. This does not necessarily include registers defined in
672     /// unknown ways, such as incoming arguments, or copies from unknown
673     /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
674     /// does not necessarily apply to truncate instructions. e.g. on x86-64,
675     /// all instructions that define 32-bit values implicit zero-extend the
676     /// result out to 64 bits.
677     virtual bool isZExtFree(Type *Ty1, Type *Ty2) const;
678     virtual bool isZExtFree(EVT VT1, EVT VT2) const;
679     virtual bool isZExtFree(SDValue Val, EVT VT2) const;
680
681     /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
682     /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
683     /// expanded to FMAs when this method returns true, otherwise fmuladd is
684     /// expanded to fmul + fadd.
685     virtual bool isFMAFasterThanFMulAndFAdd(EVT VT) const;
686
687     /// isNarrowingProfitable - Return true if it's profitable to narrow
688     /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
689     /// from i32 to i8 but not from i32 to i16.
690     virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const;
691
692     /// isFPImmLegal - Returns true if the target can instruction select the
693     /// specified FP immediate natively. If false, the legalizer will
694     /// materialize the FP immediate as a load from a constant pool.
695     virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const;
696
697     /// isShuffleMaskLegal - Targets can use this to indicate that they only
698     /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
699     /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
700     /// values are assumed to be legal.
701     virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
702                                     EVT VT) const;
703
704     /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
705     /// used by Targets can use this to indicate if there is a suitable
706     /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
707     /// pool entry.
708     virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
709                                         EVT VT) const;
710
711     /// ShouldShrinkFPConstant - If true, then instruction selection should
712     /// seek to shrink the FP constant of the specified type to a smaller type
713     /// in order to save space and / or reduce runtime.
714     virtual bool ShouldShrinkFPConstant(EVT VT) const {
715       // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
716       // expensive than a straight movsd. On the other hand, it's important to
717       // shrink long double fp constant since fldt is very slow.
718       return !X86ScalarSSEf64 || VT == MVT::f80;
719     }
720
721     const X86Subtarget* getSubtarget() const {
722       return Subtarget;
723     }
724
725     /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
726     /// computed in an SSE register, not on the X87 floating point stack.
727     bool isScalarFPTypeInSSEReg(EVT VT) const {
728       return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
729       (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
730     }
731
732     /// isTargetFTOL - Return true if the target uses the MSVC _ftol2 routine
733     /// for fptoui.
734     bool isTargetFTOL() const {
735       return Subtarget->isTargetWindows() && !Subtarget->is64Bit();
736     }
737
738     /// isIntegerTypeFTOL - Return true if the MSVC _ftol2 routine should be
739     /// used for fptoui to the given type.
740     bool isIntegerTypeFTOL(EVT VT) const {
741       return isTargetFTOL() && VT == MVT::i64;
742     }
743
744     /// createFastISel - This method returns a target specific FastISel object,
745     /// or null if the target does not support "fast" ISel.
746     virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
747                                      const TargetLibraryInfo *libInfo) const;
748
749     /// getStackCookieLocation - Return true if the target stores stack
750     /// protector cookies at a fixed offset in some non-standard address
751     /// space, and populates the address space and offset as
752     /// appropriate.
753     virtual bool getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const;
754
755     SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
756                       SelectionDAG &DAG) const;
757
758     /// \brief Reset the operation actions based on target options.
759     virtual void resetOperationActions();
760
761   protected:
762     std::pair<const TargetRegisterClass*, uint8_t>
763     findRepresentativeClass(MVT VT) const;
764
765   private:
766     /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
767     /// make the right decision when generating code for different targets.
768     const X86Subtarget *Subtarget;
769     const DataLayout *TD;
770
771     /// Used to store the TargetOptions so that we don't waste time resetting
772     /// the operation actions unless we have to.
773     TargetOptions TO;
774
775     /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
776     /// floating point ops.
777     /// When SSE is available, use it for f32 operations.
778     /// When SSE2 is available, use it for f64 operations.
779     bool X86ScalarSSEf32;
780     bool X86ScalarSSEf64;
781
782     /// LegalFPImmediates - A list of legal fp immediates.
783     std::vector<APFloat> LegalFPImmediates;
784
785     /// addLegalFPImmediate - Indicate that this x86 target can instruction
786     /// select the specified FP immediate natively.
787     void addLegalFPImmediate(const APFloat& Imm) {
788       LegalFPImmediates.push_back(Imm);
789     }
790
791     SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
792                             CallingConv::ID CallConv, bool isVarArg,
793                             const SmallVectorImpl<ISD::InputArg> &Ins,
794                             SDLoc dl, SelectionDAG &DAG,
795                             SmallVectorImpl<SDValue> &InVals) const;
796     SDValue LowerMemArgument(SDValue Chain,
797                              CallingConv::ID CallConv,
798                              const SmallVectorImpl<ISD::InputArg> &ArgInfo,
799                              SDLoc dl, SelectionDAG &DAG,
800                              const CCValAssign &VA,  MachineFrameInfo *MFI,
801                               unsigned i) const;
802     SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
803                              SDLoc dl, SelectionDAG &DAG,
804                              const CCValAssign &VA,
805                              ISD::ArgFlagsTy Flags) const;
806
807     // Call lowering helpers.
808
809     /// IsEligibleForTailCallOptimization - Check whether the call is eligible
810     /// for tail call optimization. Targets which want to do tail call
811     /// optimization should implement this function.
812     bool IsEligibleForTailCallOptimization(SDValue Callee,
813                                            CallingConv::ID CalleeCC,
814                                            bool isVarArg,
815                                            bool isCalleeStructRet,
816                                            bool isCallerStructRet,
817                                            Type *RetTy,
818                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
819                                     const SmallVectorImpl<SDValue> &OutVals,
820                                     const SmallVectorImpl<ISD::InputArg> &Ins,
821                                            SelectionDAG& DAG) const;
822     bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv) const;
823     SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
824                                 SDValue Chain, bool IsTailCall, bool Is64Bit,
825                                 int FPDiff, SDLoc dl) const;
826
827     unsigned GetAlignedArgumentStackSize(unsigned StackSize,
828                                          SelectionDAG &DAG) const;
829
830     std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
831                                                bool isSigned,
832                                                bool isReplace) const;
833
834     SDValue LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, SDLoc dl,
835                                    SelectionDAG &DAG) const;
836     SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
837     SDValue LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const;
838     SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
839     SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
840     SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
841     SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
842     SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
843     SDValue LowerGlobalAddress(const GlobalValue *GV, SDLoc dl,
844                                int64_t Offset, SelectionDAG &DAG) const;
845     SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
846     SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
847     SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
848     SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) const;
849     SDValue LowerBITCAST(SDValue op, SelectionDAG &DAG) const;
850     SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
851     SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
852     SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const;
853     SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const;
854     SDValue lowerUINT_TO_FP_vec(SDValue Op, SelectionDAG &DAG) const;
855     SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
856     SDValue LowerZERO_EXTEND(SDValue Op, SelectionDAG &DAG) const;
857     SDValue LowerZERO_EXTEND_AVX512(SDValue Op, SelectionDAG &DAG) const;
858     SDValue LowerSIGN_EXTEND(SDValue Op, SelectionDAG &DAG) const;
859     SDValue LowerSIGN_EXTEND_AVX512(SDValue Op, SelectionDAG &DAG) const;
860     SDValue LowerANY_EXTEND(SDValue Op, SelectionDAG &DAG) const;
861     SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const;
862     SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const;
863     SDValue LowerFABS(SDValue Op, SelectionDAG &DAG) const;
864     SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG) const;
865     SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const;
866     SDValue LowerToBT(SDValue And, ISD::CondCode CC,
867                       SDLoc dl, SelectionDAG &DAG) const;
868     SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
869     SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
870     SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
871     SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG) const;
872     SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
873     SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
874     SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
875     SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
876     SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
877     SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
878     SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
879     SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
880     SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
881     SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
882     SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
883     SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
884     SDValue LowerShift(SDValue Op, SelectionDAG &DAG) const;
885     SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) const;
886     SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
887     SDValue LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const;
888
889     // Utility functions to help LowerVECTOR_SHUFFLE & LowerBUILD_VECTOR
890     SDValue LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const;
891     SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const;
892     SDValue buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) const;
893
894     SDValue LowerVectorAllZeroTest(SDValue Op, SelectionDAG &DAG) const;
895
896     SDValue LowerVectorIntExtend(SDValue Op, SelectionDAG &DAG) const;
897
898     virtual SDValue
899       LowerFormalArguments(SDValue Chain,
900                            CallingConv::ID CallConv, bool isVarArg,
901                            const SmallVectorImpl<ISD::InputArg> &Ins,
902                            SDLoc dl, SelectionDAG &DAG,
903                            SmallVectorImpl<SDValue> &InVals) const;
904     virtual SDValue
905       LowerCall(CallLoweringInfo &CLI,
906                 SmallVectorImpl<SDValue> &InVals) const;
907
908     virtual SDValue
909       LowerReturn(SDValue Chain,
910                   CallingConv::ID CallConv, bool isVarArg,
911                   const SmallVectorImpl<ISD::OutputArg> &Outs,
912                   const SmallVectorImpl<SDValue> &OutVals,
913                   SDLoc dl, SelectionDAG &DAG) const;
914
915     virtual bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const;
916
917     virtual bool mayBeEmittedAsTailCall(CallInst *CI) const;
918
919     virtual MVT
920     getTypeForExtArgOrReturn(MVT VT, ISD::NodeType ExtendKind) const;
921
922     virtual bool
923     CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
924                    bool isVarArg,
925                    const SmallVectorImpl<ISD::OutputArg> &Outs,
926                    LLVMContext &Context) const;
927
928     /// Utility function to emit atomic-load-arith operations (and, or, xor,
929     /// nand, max, min, umax, umin). It takes the corresponding instruction to
930     /// expand, the associated machine basic block, and the associated X86
931     /// opcodes for reg/reg.
932     MachineBasicBlock *EmitAtomicLoadArith(MachineInstr *MI,
933                                            MachineBasicBlock *MBB) const;
934
935     /// Utility function to emit atomic-load-arith operations (and, or, xor,
936     /// nand, add, sub, swap) for 64-bit operands on 32-bit target.
937     MachineBasicBlock *EmitAtomicLoadArith6432(MachineInstr *MI,
938                                                MachineBasicBlock *MBB) const;
939
940     // Utility function to emit the low-level va_arg code for X86-64.
941     MachineBasicBlock *EmitVAARG64WithCustomInserter(
942                        MachineInstr *MI,
943                        MachineBasicBlock *MBB) const;
944
945     /// Utility function to emit the xmm reg save portion of va_start.
946     MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter(
947                                                    MachineInstr *BInstr,
948                                                    MachineBasicBlock *BB) const;
949
950     MachineBasicBlock *EmitLoweredSelect(MachineInstr *I,
951                                          MachineBasicBlock *BB) const;
952
953     MachineBasicBlock *EmitLoweredWinAlloca(MachineInstr *MI,
954                                               MachineBasicBlock *BB) const;
955
956     MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr *MI,
957                                             MachineBasicBlock *BB,
958                                             bool Is64Bit) const;
959
960     MachineBasicBlock *EmitLoweredTLSCall(MachineInstr *MI,
961                                           MachineBasicBlock *BB) const;
962
963     MachineBasicBlock *emitLoweredTLSAddr(MachineInstr *MI,
964                                           MachineBasicBlock *BB) const;
965
966     MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr *MI,
967                                         MachineBasicBlock *MBB) const;
968
969     MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr *MI,
970                                          MachineBasicBlock *MBB) const;
971
972     /// Emit nodes that will be selected as "test Op0,Op0", or something
973     /// equivalent, for use with the given x86 condition code.
974     SDValue EmitTest(SDValue Op0, unsigned X86CC, SelectionDAG &DAG) const;
975
976     /// Emit nodes that will be selected as "cmp Op0,Op1", or something
977     /// equivalent, for use with the given x86 condition code.
978     SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
979                     SelectionDAG &DAG) const;
980
981     /// Convert a comparison if required by the subtarget.
982     SDValue ConvertCmpIfNecessary(SDValue Cmp, SelectionDAG &DAG) const;
983   };
984
985   namespace X86 {
986     FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
987                              const TargetLibraryInfo *libInfo);
988   }
989 }
990
991 #endif    // X86ISELLOWERING_H