[CodeGenPrepare] Teach when it is profitable to speculate calls to @llvm.cttz/ctlz.
[oota-llvm.git] / lib / Target / X86 / X86ISelLowering.h
1 //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
16 #define LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
17
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/SelectionDAG.h"
20 #include "llvm/Target/TargetLowering.h"
21 #include "llvm/Target/TargetOptions.h"
22
23 namespace llvm {
24   class X86Subtarget;
25   class X86TargetMachine;
26
27   namespace X86ISD {
28     // X86 Specific DAG Nodes
29     enum NodeType {
30       // Start the numbering where the builtin ops leave off.
31       FIRST_NUMBER = ISD::BUILTIN_OP_END,
32
33       /// BSF - Bit scan forward.
34       /// BSR - Bit scan reverse.
35       BSF,
36       BSR,
37
38       /// SHLD, SHRD - Double shift instructions. These correspond to
39       /// X86::SHLDxx and X86::SHRDxx instructions.
40       SHLD,
41       SHRD,
42
43       /// FAND - Bitwise logical AND of floating point values. This corresponds
44       /// to X86::ANDPS or X86::ANDPD.
45       FAND,
46
47       /// FOR - Bitwise logical OR of floating point values. This corresponds
48       /// to X86::ORPS or X86::ORPD.
49       FOR,
50
51       /// FXOR - Bitwise logical XOR of floating point values. This corresponds
52       /// to X86::XORPS or X86::XORPD.
53       FXOR,
54
55       /// FANDN - Bitwise logical ANDNOT of floating point values. This
56       /// corresponds to X86::ANDNPS or X86::ANDNPD.
57       FANDN,
58
59       /// FSRL - Bitwise logical right shift of floating point values. These
60       /// corresponds to X86::PSRLDQ.
61       FSRL,
62
63       /// CALL - These operations represent an abstract X86 call
64       /// instruction, which includes a bunch of information.  In particular the
65       /// operands of these node are:
66       ///
67       ///     #0 - The incoming token chain
68       ///     #1 - The callee
69       ///     #2 - The number of arg bytes the caller pushes on the stack.
70       ///     #3 - The number of arg bytes the callee pops off the stack.
71       ///     #4 - The value to pass in AL/AX/EAX (optional)
72       ///     #5 - The value to pass in DL/DX/EDX (optional)
73       ///
74       /// The result values of these nodes are:
75       ///
76       ///     #0 - The outgoing token chain
77       ///     #1 - The first register result value (optional)
78       ///     #2 - The second register result value (optional)
79       ///
80       CALL,
81
82       /// RDTSC_DAG - This operation implements the lowering for
83       /// readcyclecounter
84       RDTSC_DAG,
85
86       /// X86 Read Time-Stamp Counter and Processor ID.
87       RDTSCP_DAG,
88
89       /// X86 Read Performance Monitoring Counters.
90       RDPMC_DAG,
91
92       /// X86 compare and logical compare instructions.
93       CMP, COMI, UCOMI,
94
95       /// X86 bit-test instructions.
96       BT,
97
98       /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
99       /// operand, usually produced by a CMP instruction.
100       SETCC,
101
102       /// X86 Select
103       SELECT,
104
105       // Same as SETCC except it's materialized with a sbb and the value is all
106       // one's or all zero's.
107       SETCC_CARRY,  // R = carry_bit ? ~0 : 0
108
109       /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
110       /// Operands are two FP values to compare; result is a mask of
111       /// 0s or 1s.  Generally DTRT for C/C++ with NaNs.
112       FSETCC,
113
114       /// X86 MOVMSK{pd|ps}, extracts sign bits of two or four FP values,
115       /// result in an integer GPR.  Needs masking for scalar result.
116       FGETSIGNx86,
117
118       /// X86 conditional moves. Operand 0 and operand 1 are the two values
119       /// to select from. Operand 2 is the condition code, and operand 3 is the
120       /// flag operand produced by a CMP or TEST instruction. It also writes a
121       /// flag result.
122       CMOV,
123
124       /// X86 conditional branches. Operand 0 is the chain operand, operand 1
125       /// is the block to branch if condition is true, operand 2 is the
126       /// condition code, and operand 3 is the flag operand produced by a CMP
127       /// or TEST instruction.
128       BRCOND,
129
130       /// Return with a flag operand. Operand 0 is the chain operand, operand
131       /// 1 is the number of bytes of stack to pop.
132       RET_FLAG,
133
134       /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
135       REP_STOS,
136
137       /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
138       REP_MOVS,
139
140       /// GlobalBaseReg - On Darwin, this node represents the result of the popl
141       /// at function entry, used for PIC code.
142       GlobalBaseReg,
143
144       /// Wrapper - A wrapper node for TargetConstantPool,
145       /// TargetExternalSymbol, and TargetGlobalAddress.
146       Wrapper,
147
148       /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
149       /// relative displacements.
150       WrapperRIP,
151
152       /// MOVDQ2Q - Copies a 64-bit value from the low word of an XMM vector
153       /// to an MMX vector.  If you think this is too close to the previous
154       /// mnemonic, so do I; blame Intel.
155       MOVDQ2Q,
156
157       /// MMX_MOVD2W - Copies a 32-bit value from the low word of a MMX
158       /// vector to a GPR.
159       MMX_MOVD2W,
160
161       /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
162       /// i32, corresponds to X86::PEXTRB.
163       PEXTRB,
164
165       /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
166       /// i32, corresponds to X86::PEXTRW.
167       PEXTRW,
168
169       /// INSERTPS - Insert any element of a 4 x float vector into any element
170       /// of a destination 4 x floatvector.
171       INSERTPS,
172
173       /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
174       /// corresponds to X86::PINSRB.
175       PINSRB,
176
177       /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
178       /// corresponds to X86::PINSRW.
179       PINSRW, MMX_PINSRW,
180
181       /// PSHUFB - Shuffle 16 8-bit values within a vector.
182       PSHUFB,
183
184       /// ANDNP - Bitwise Logical AND NOT of Packed FP values.
185       ANDNP,
186
187       /// PSIGN - Copy integer sign.
188       PSIGN,
189
190       /// BLENDI - Blend where the selector is an immediate.
191       BLENDI,
192
193       /// SHRUNKBLEND - Blend where the condition has been shrunk.
194       /// This is used to emphasize that the condition mask is
195       /// no more valid for generic VSELECT optimizations.
196       SHRUNKBLEND,
197
198       /// ADDSUB - Combined add and sub on an FP vector.
199       ADDSUB,
200
201       // SUBUS - Integer sub with unsigned saturation.
202       SUBUS,
203
204       /// HADD - Integer horizontal add.
205       HADD,
206
207       /// HSUB - Integer horizontal sub.
208       HSUB,
209
210       /// FHADD - Floating point horizontal add.
211       FHADD,
212
213       /// FHSUB - Floating point horizontal sub.
214       FHSUB,
215
216       /// UMAX, UMIN - Unsigned integer max and min.
217       UMAX, UMIN,
218
219       /// SMAX, SMIN - Signed integer max and min.
220       SMAX, SMIN,
221
222       /// FMAX, FMIN - Floating point max and min.
223       ///
224       FMAX, FMIN,
225
226       /// FMAXC, FMINC - Commutative FMIN and FMAX.
227       FMAXC, FMINC,
228
229       /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
230       /// approximation.  Note that these typically require refinement
231       /// in order to obtain suitable precision.
232       FRSQRT, FRCP,
233
234       // TLSADDR - Thread Local Storage.
235       TLSADDR,
236
237       // TLSBASEADDR - Thread Local Storage. A call to get the start address
238       // of the TLS block for the current module.
239       TLSBASEADDR,
240
241       // TLSCALL - Thread Local Storage.  When calling to an OS provided
242       // thunk at the address from an earlier relocation.
243       TLSCALL,
244
245       // EH_RETURN - Exception Handling helpers.
246       EH_RETURN,
247
248       // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
249       EH_SJLJ_SETJMP,
250
251       // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
252       EH_SJLJ_LONGJMP,
253
254       /// TC_RETURN - Tail call return. See X86TargetLowering::LowerCall for
255       /// the list of operands.
256       TC_RETURN,
257
258       // VZEXT_MOVL - Vector move to low scalar and zero higher vector elements.
259       VZEXT_MOVL,
260
261       // VZEXT - Vector integer zero-extend.
262       VZEXT,
263
264       // VSEXT - Vector integer signed-extend.
265       VSEXT,
266
267       // VTRUNC - Vector integer truncate.
268       VTRUNC,
269
270       // VTRUNC - Vector integer truncate with mask.
271       VTRUNCM,
272
273       // VFPEXT - Vector FP extend.
274       VFPEXT,
275
276       // VFPROUND - Vector FP round.
277       VFPROUND,
278
279       // VSHL, VSRL - 128-bit vector logical left / right shift
280       VSHLDQ, VSRLDQ,
281
282       // VSHL, VSRL, VSRA - Vector shift elements
283       VSHL, VSRL, VSRA,
284
285       // VSHLI, VSRLI, VSRAI - Vector shift elements by immediate
286       VSHLI, VSRLI, VSRAI,
287
288       // CMPP - Vector packed double/float comparison.
289       CMPP,
290
291       // PCMP* - Vector integer comparisons.
292       PCMPEQ, PCMPGT,
293       // PCMP*M - Vector integer comparisons, the result is in a mask vector.
294       PCMPEQM, PCMPGTM,
295
296       /// CMPM, CMPMU - Vector comparison generating mask bits for fp and
297       /// integer signed and unsigned data types.
298       CMPM,
299       CMPMU,
300
301       // ADD, SUB, SMUL, etc. - Arithmetic operations with FLAGS results.
302       ADD, SUB, ADC, SBB, SMUL,
303       INC, DEC, OR, XOR, AND,
304
305       BEXTR,  // BEXTR - Bit field extract
306
307       UMUL, // LOW, HI, FLAGS = umul LHS, RHS
308
309       // 8-bit SMUL/UMUL - AX, FLAGS = smul8/umul8 AL, RHS
310       SMUL8, UMUL8,
311
312       // 8-bit divrem that zero-extend the high result (AH).
313       UDIVREM8_ZEXT_HREG,
314       SDIVREM8_SEXT_HREG,
315
316       // MUL_IMM - X86 specific multiply by immediate.
317       MUL_IMM,
318
319       // PTEST - Vector bitwise comparisons.
320       PTEST,
321
322       // TESTP - Vector packed fp sign bitwise comparisons.
323       TESTP,
324
325       // TESTM, TESTNM - Vector "test" in AVX-512, the result is in a mask vector.
326       TESTM,
327       TESTNM,
328
329       // OR/AND test for masks
330       KORTEST,
331
332       // Several flavors of instructions with vector shuffle behaviors.
333       PACKSS,
334       PACKUS,
335       // Intra-lane alignr
336       PALIGNR,
337       // AVX512 inter-lane alignr
338       VALIGN,
339       PSHUFD,
340       PSHUFHW,
341       PSHUFLW,
342       SHUFP,
343       MOVDDUP,
344       MOVSHDUP,
345       MOVSLDUP,
346       MOVLHPS,
347       MOVLHPD,
348       MOVHLPS,
349       MOVLPS,
350       MOVLPD,
351       MOVSD,
352       MOVSS,
353       UNPCKL,
354       UNPCKH,
355       VPERMILPV,
356       VPERMILPI,
357       VPERMV,
358       VPERMV3,
359       VPERMIV3,
360       VPERMI,
361       VPERM2X128,
362       VBROADCAST,
363       // masked broadcast
364       VBROADCASTM,
365       // Insert/Extract vector element
366       VINSERT,
367       VEXTRACT,
368
369       // Vector multiply packed unsigned doubleword integers
370       PMULUDQ,
371       // Vector multiply packed signed doubleword integers
372       PMULDQ,
373
374       // FMA nodes
375       FMADD,
376       FNMADD,
377       FMSUB,
378       FNMSUB,
379       FMADDSUB,
380       FMSUBADD,
381
382       // Compress and expand
383       COMPRESS,
384       EXPAND,
385
386       // Save xmm argument registers to the stack, according to %al. An operator
387       // is needed so that this can be expanded with control flow.
388       VASTART_SAVE_XMM_REGS,
389
390       // Windows's _chkstk call to do stack probing.
391       WIN_ALLOCA,
392
393       // For allocating variable amounts of stack space when using
394       // segmented stacks. Check if the current stacklet has enough space, and
395       // falls back to heap allocation if not.
396       SEG_ALLOCA,
397
398       // Windows's _ftol2 runtime routine to do fptoui.
399       WIN_FTOL,
400
401       // Memory barrier
402       MEMBARRIER,
403       MFENCE,
404       SFENCE,
405       LFENCE,
406
407       // Store FP status word into i16 register.
408       FNSTSW16r,
409
410       // Store contents of %ah into %eflags.
411       SAHF,
412
413       // Get a random integer and indicate whether it is valid in CF.
414       RDRAND,
415
416       // Get a NIST SP800-90B & C compliant random integer and
417       // indicate whether it is valid in CF.
418       RDSEED,
419
420       PCMPISTRI,
421       PCMPESTRI,
422
423       // Test if in transactional execution.
424       XTEST,
425
426       // ERI instructions
427       RSQRT28, RCP28, EXP2,
428
429       // Compare and swap.
430       LCMPXCHG_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
431       LCMPXCHG8_DAG,
432       LCMPXCHG16_DAG,
433
434       // Load, scalar_to_vector, and zero extend.
435       VZEXT_LOAD,
436
437       // Store FP control world into i16 memory.
438       FNSTCW16m,
439
440       /// This instruction implements FP_TO_SINT with the
441       /// integer destination in memory and a FP reg source.  This corresponds
442       /// to the X86::FIST*m instructions and the rounding mode change stuff. It
443       /// has two inputs (token chain and address) and two outputs (int value
444       /// and token chain).
445       FP_TO_INT16_IN_MEM,
446       FP_TO_INT32_IN_MEM,
447       FP_TO_INT64_IN_MEM,
448
449       /// This instruction implements SINT_TO_FP with the
450       /// integer source in memory and FP reg result.  This corresponds to the
451       /// X86::FILD*m instructions. It has three inputs (token chain, address,
452       /// and source type) and two outputs (FP value and token chain). FILD_FLAG
453       /// also produces a flag).
454       FILD,
455       FILD_FLAG,
456
457       /// This instruction implements an extending load to FP stack slots.
458       /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
459       /// operand, ptr to load from, and a ValueType node indicating the type
460       /// to load to.
461       FLD,
462
463       /// This instruction implements a truncating store to FP stack
464       /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
465       /// chain operand, value to store, address, and a ValueType to store it
466       /// as.
467       FST,
468
469       /// This instruction grabs the address of the next argument
470       /// from a va_list. (reads and modifies the va_list in memory)
471       VAARG_64
472
473       // WARNING: Do not add anything in the end unless you want the node to
474       // have memop! In fact, starting from ATOMADD64_DAG all opcodes will be
475       // thought as target memory ops!
476     };
477   }
478
479   /// Define some predicates that are used for node matching.
480   namespace X86 {
481     /// Return true if the specified
482     /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
483     /// suitable for input to VEXTRACTF128, VEXTRACTI128 instructions.
484     bool isVEXTRACT128Index(SDNode *N);
485
486     /// Return true if the specified
487     /// INSERT_SUBVECTOR operand specifies a subvector insert that is
488     /// suitable for input to VINSERTF128, VINSERTI128 instructions.
489     bool isVINSERT128Index(SDNode *N);
490
491     /// Return true if the specified
492     /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
493     /// suitable for input to VEXTRACTF64X4, VEXTRACTI64X4 instructions.
494     bool isVEXTRACT256Index(SDNode *N);
495
496     /// Return true if the specified
497     /// INSERT_SUBVECTOR operand specifies a subvector insert that is
498     /// suitable for input to VINSERTF64X4, VINSERTI64X4 instructions.
499     bool isVINSERT256Index(SDNode *N);
500
501     /// Return the appropriate
502     /// immediate to extract the specified EXTRACT_SUBVECTOR index
503     /// with VEXTRACTF128, VEXTRACTI128 instructions.
504     unsigned getExtractVEXTRACT128Immediate(SDNode *N);
505
506     /// Return the appropriate
507     /// immediate to insert at the specified INSERT_SUBVECTOR index
508     /// with VINSERTF128, VINSERT128 instructions.
509     unsigned getInsertVINSERT128Immediate(SDNode *N);
510
511     /// Return the appropriate
512     /// immediate to extract the specified EXTRACT_SUBVECTOR index
513     /// with VEXTRACTF64X4, VEXTRACTI64x4 instructions.
514     unsigned getExtractVEXTRACT256Immediate(SDNode *N);
515
516     /// Return the appropriate
517     /// immediate to insert at the specified INSERT_SUBVECTOR index
518     /// with VINSERTF64x4, VINSERTI64x4 instructions.
519     unsigned getInsertVINSERT256Immediate(SDNode *N);
520
521     /// Returns true if Elt is a constant zero or floating point constant +0.0.
522     bool isZeroNode(SDValue Elt);
523
524     /// Returns true of the given offset can be
525     /// fit into displacement field of the instruction.
526     bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
527                                       bool hasSymbolicDisplacement = true);
528
529
530     /// Determines whether the callee is required to pop its
531     /// own arguments. Callee pop is necessary to support tail calls.
532     bool isCalleePop(CallingConv::ID CallingConv,
533                      bool is64Bit, bool IsVarArg, bool TailCallOpt);
534
535     /// AVX512 static rounding constants.  These need to match the values in
536     /// avx512fintrin.h.
537     enum STATIC_ROUNDING {
538       TO_NEAREST_INT = 0,
539       TO_NEG_INF = 1,
540       TO_POS_INF = 2,
541       TO_ZERO = 3,
542       CUR_DIRECTION = 4
543     };
544   }
545
546   //===--------------------------------------------------------------------===//
547   //  X86 Implementation of the TargetLowering interface
548   class X86TargetLowering final : public TargetLowering {
549   public:
550     explicit X86TargetLowering(const X86TargetMachine &TM);
551
552     unsigned getJumpTableEncoding() const override;
553
554     MVT getScalarShiftAmountTy(EVT LHSTy) const override { return MVT::i8; }
555
556     const MCExpr *
557     LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
558                               const MachineBasicBlock *MBB, unsigned uid,
559                               MCContext &Ctx) const override;
560
561     /// Returns relocation base for the given PIC jumptable.
562     SDValue getPICJumpTableRelocBase(SDValue Table,
563                                      SelectionDAG &DAG) const override;
564     const MCExpr *
565     getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
566                                  unsigned JTI, MCContext &Ctx) const override;
567
568     /// Return the desired alignment for ByVal aggregate
569     /// function arguments in the caller parameter area. For X86, aggregates
570     /// that contains are placed at 16-byte boundaries while the rest are at
571     /// 4-byte boundaries.
572     unsigned getByValTypeAlignment(Type *Ty) const override;
573
574     /// Returns the target specific optimal type for load
575     /// and store operations as a result of memset, memcpy, and memmove
576     /// lowering. If DstAlign is zero that means it's safe to destination
577     /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
578     /// means there isn't a need to check it against alignment requirement,
579     /// probably because the source does not need to be loaded. If 'IsMemset' is
580     /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
581     /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
582     /// source is constant so it does not need to be loaded.
583     /// It returns EVT::Other if the type should be determined using generic
584     /// target-independent logic.
585     EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
586                             bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
587                             MachineFunction &MF) const override;
588
589     /// Returns true if it's safe to use load / store of the
590     /// specified type to expand memcpy / memset inline. This is mostly true
591     /// for all types except for some special cases. For example, on X86
592     /// targets without SSE2 f64 load / store are done with fldl / fstpl which
593     /// also does type conversion. Note the specified type doesn't have to be
594     /// legal as the hook is used before type legalization.
595     bool isSafeMemOpType(MVT VT) const override;
596
597     /// Returns true if the target allows
598     /// unaligned memory accesses. of the specified type. Returns whether it
599     /// is "fast" by reference in the second argument.
600     bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, unsigned Align,
601                                        bool *Fast) const override;
602
603     /// Provide custom lowering hooks for some operations.
604     ///
605     SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
606
607     /// Replace the results of node with an illegal result
608     /// type with new values built out of custom code.
609     ///
610     void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
611                             SelectionDAG &DAG) const override;
612
613
614     SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
615
616     /// Return true if the target has native support for
617     /// the specified value type and it is 'desirable' to use the type for the
618     /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
619     /// instruction encodings are longer and some i16 instructions are slow.
620     bool isTypeDesirableForOp(unsigned Opc, EVT VT) const override;
621
622     /// Return true if the target has native support for the
623     /// specified value type and it is 'desirable' to use the type. e.g. On x86
624     /// i16 is legal, but undesirable since i16 instruction encodings are longer
625     /// and some i16 instructions are slow.
626     bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const override;
627
628     MachineBasicBlock *
629       EmitInstrWithCustomInserter(MachineInstr *MI,
630                                   MachineBasicBlock *MBB) const override;
631
632
633     /// This method returns the name of a target specific DAG node.
634     const char *getTargetNodeName(unsigned Opcode) const override;
635
636     bool isCheapToSpeculateCttz() const override;
637
638     bool isCheapToSpeculateCtlz() const override;
639
640     /// Return the value type to use for ISD::SETCC.
641     EVT getSetCCResultType(LLVMContext &Context, EVT VT) const override;
642
643     /// Determine which of the bits specified in Mask are known to be either
644     /// zero or one and return them in the KnownZero/KnownOne bitsets.
645     void computeKnownBitsForTargetNode(const SDValue Op,
646                                        APInt &KnownZero,
647                                        APInt &KnownOne,
648                                        const SelectionDAG &DAG,
649                                        unsigned Depth = 0) const override;
650
651     /// Determine the number of bits in the operation that are sign bits.
652     unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
653                                              const SelectionDAG &DAG,
654                                              unsigned Depth) const override;
655
656     bool isGAPlusOffset(SDNode *N, const GlobalValue* &GA,
657                         int64_t &Offset) const override;
658
659     SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
660
661     bool ExpandInlineAsm(CallInst *CI) const override;
662
663     ConstraintType
664       getConstraintType(const std::string &Constraint) const override;
665
666     /// Examine constraint string and operand type and determine a weight value.
667     /// The operand object must already have been set up with the operand type.
668     ConstraintWeight
669       getSingleConstraintMatchWeight(AsmOperandInfo &info,
670                                      const char *constraint) const override;
671
672     const char *LowerXConstraint(EVT ConstraintVT) const override;
673
674     /// Lower the specified operand into the Ops vector. If it is invalid, don't
675     /// add anything to Ops. If hasMemory is true it means one of the asm
676     /// constraint of the inline asm instruction being processed is 'm'.
677     void LowerAsmOperandForConstraint(SDValue Op,
678                                       std::string &Constraint,
679                                       std::vector<SDValue> &Ops,
680                                       SelectionDAG &DAG) const override;
681
682     /// Given a physical register constraint
683     /// (e.g. {edx}), return the register number and the register class for the
684     /// register.  This should only be used for C_Register constraints.  On
685     /// error, this returns a register number of 0.
686     std::pair<unsigned, const TargetRegisterClass*>
687       getRegForInlineAsmConstraint(const std::string &Constraint,
688                                    MVT VT) const override;
689
690     /// Return true if the addressing mode represented
691     /// by AM is legal for this target, for a load/store of the specified type.
692     bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const override;
693
694     /// Return true if the specified immediate is legal
695     /// icmp immediate, that is the target has icmp instructions which can
696     /// compare a register against the immediate without having to materialize
697     /// the immediate into a register.
698     bool isLegalICmpImmediate(int64_t Imm) const override;
699
700     /// Return true if the specified immediate is legal
701     /// add immediate, that is the target has add instructions which can
702     /// add a register and the immediate without having to materialize
703     /// the immediate into a register.
704     bool isLegalAddImmediate(int64_t Imm) const override;
705
706     /// \brief Return the cost of the scaling factor used in the addressing
707     /// mode represented by AM for this target, for a load/store
708     /// of the specified type.
709     /// If the AM is supported, the return value must be >= 0.
710     /// If the AM is not supported, it returns a negative value.
711     int getScalingFactorCost(const AddrMode &AM, Type *Ty) const override;
712
713     bool isVectorShiftByScalarCheap(Type *Ty) const override;
714
715     /// Return true if it's free to truncate a value of
716     /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
717     /// register EAX to i16 by referencing its sub-register AX.
718     bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
719     bool isTruncateFree(EVT VT1, EVT VT2) const override;
720
721     bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override;
722
723     /// Return true if any actual instruction that defines a
724     /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
725     /// register. This does not necessarily include registers defined in
726     /// unknown ways, such as incoming arguments, or copies from unknown
727     /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
728     /// does not necessarily apply to truncate instructions. e.g. on x86-64,
729     /// all instructions that define 32-bit values implicit zero-extend the
730     /// result out to 64 bits.
731     bool isZExtFree(Type *Ty1, Type *Ty2) const override;
732     bool isZExtFree(EVT VT1, EVT VT2) const override;
733     bool isZExtFree(SDValue Val, EVT VT2) const override;
734
735     /// Return true if an FMA operation is faster than a pair of fmul and fadd
736     /// instructions. fmuladd intrinsics will be expanded to FMAs when this
737     /// method returns true, otherwise fmuladd is expanded to fmul + fadd.
738     bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
739
740     /// Return true if it's profitable to narrow
741     /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
742     /// from i32 to i8 but not from i32 to i16.
743     bool isNarrowingProfitable(EVT VT1, EVT VT2) const override;
744
745     /// Returns true if the target can instruction select the
746     /// specified FP immediate natively. If false, the legalizer will
747     /// materialize the FP immediate as a load from a constant pool.
748     bool isFPImmLegal(const APFloat &Imm, EVT VT) const override;
749
750     /// Targets can use this to indicate that they only support *some*
751     /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
752     /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to
753     /// be legal.
754     bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
755                             EVT VT) const override;
756
757     /// Similar to isShuffleMaskLegal. This is used by Targets can use this to
758     /// indicate if there is a suitable VECTOR_SHUFFLE that can be used to
759     /// replace a VAND with a constant pool entry.
760     bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
761                                 EVT VT) const override;
762
763     /// If true, then instruction selection should
764     /// seek to shrink the FP constant of the specified type to a smaller type
765     /// in order to save space and / or reduce runtime.
766     bool ShouldShrinkFPConstant(EVT VT) const override {
767       // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
768       // expensive than a straight movsd. On the other hand, it's important to
769       // shrink long double fp constant since fldt is very slow.
770       return !X86ScalarSSEf64 || VT == MVT::f80;
771     }
772
773     const X86Subtarget* getSubtarget() const {
774       return Subtarget;
775     }
776
777     /// Return true if the specified scalar FP type is computed in an SSE
778     /// register, not on the X87 floating point stack.
779     bool isScalarFPTypeInSSEReg(EVT VT) const {
780       return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
781       (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
782     }
783
784     /// Return true if the target uses the MSVC _ftol2 routine for fptoui.
785     bool isTargetFTOL() const;
786
787     /// Return true if the MSVC _ftol2 routine should be used for fptoui to the
788     /// given type.
789     bool isIntegerTypeFTOL(EVT VT) const {
790       return isTargetFTOL() && VT == MVT::i64;
791     }
792
793     /// \brief Returns true if it is beneficial to convert a load of a constant
794     /// to just the constant itself.
795     bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
796                                            Type *Ty) const override;
797
798     /// Return true if EXTRACT_SUBVECTOR is cheap for this result type
799     /// with this index.
800     bool isExtractSubvectorCheap(EVT ResVT, unsigned Index) const override;
801
802     /// Intel processors have a unified instruction and data cache
803     const char * getClearCacheBuiltinName() const override {
804       return nullptr; // nothing to do, move along.
805     }
806
807     unsigned getRegisterByName(const char* RegName, EVT VT) const override;
808
809     /// This method returns a target specific FastISel object,
810     /// or null if the target does not support "fast" ISel.
811     FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
812                              const TargetLibraryInfo *libInfo) const override;
813
814     /// Return true if the target stores stack protector cookies at a fixed
815     /// offset in some non-standard address space, and populates the address
816     /// space and offset as appropriate.
817     bool getStackCookieLocation(unsigned &AddressSpace,
818                                 unsigned &Offset) const override;
819
820     SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
821                       SelectionDAG &DAG) const;
822
823     bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override;
824
825     /// \brief Reset the operation actions based on target options.
826     void resetOperationActions() override;
827
828     bool useLoadStackGuardNode() const override;
829     /// \brief Customize the preferred legalization strategy for certain types.
830     LegalizeTypeAction getPreferredVectorAction(EVT VT) const override;
831
832   protected:
833     std::pair<const TargetRegisterClass*, uint8_t>
834     findRepresentativeClass(MVT VT) const override;
835
836   private:
837     /// Keep a pointer to the X86Subtarget around so that we can
838     /// make the right decision when generating code for different targets.
839     const X86Subtarget *Subtarget;
840     const DataLayout *TD;
841
842     /// Used to store the TargetOptions so that we don't waste time resetting
843     /// the operation actions unless we have to.
844     TargetOptions TO;
845
846     /// Select between SSE or x87 floating point ops.
847     /// When SSE is available, use it for f32 operations.
848     /// When SSE2 is available, use it for f64 operations.
849     bool X86ScalarSSEf32;
850     bool X86ScalarSSEf64;
851
852     /// A list of legal FP immediates.
853     std::vector<APFloat> LegalFPImmediates;
854
855     /// Indicate that this x86 target can instruction
856     /// select the specified FP immediate natively.
857     void addLegalFPImmediate(const APFloat& Imm) {
858       LegalFPImmediates.push_back(Imm);
859     }
860
861     SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
862                             CallingConv::ID CallConv, bool isVarArg,
863                             const SmallVectorImpl<ISD::InputArg> &Ins,
864                             SDLoc dl, SelectionDAG &DAG,
865                             SmallVectorImpl<SDValue> &InVals) const;
866     SDValue LowerMemArgument(SDValue Chain,
867                              CallingConv::ID CallConv,
868                              const SmallVectorImpl<ISD::InputArg> &ArgInfo,
869                              SDLoc dl, SelectionDAG &DAG,
870                              const CCValAssign &VA,  MachineFrameInfo *MFI,
871                               unsigned i) const;
872     SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
873                              SDLoc dl, SelectionDAG &DAG,
874                              const CCValAssign &VA,
875                              ISD::ArgFlagsTy Flags) const;
876
877     // Call lowering helpers.
878
879     /// Check whether the call is eligible for tail call optimization. Targets
880     /// that want to do tail call optimization should implement this function.
881     bool IsEligibleForTailCallOptimization(SDValue Callee,
882                                            CallingConv::ID CalleeCC,
883                                            bool isVarArg,
884                                            bool isCalleeStructRet,
885                                            bool isCallerStructRet,
886                                            Type *RetTy,
887                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
888                                     const SmallVectorImpl<SDValue> &OutVals,
889                                     const SmallVectorImpl<ISD::InputArg> &Ins,
890                                            SelectionDAG& DAG) const;
891     bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv) const;
892     SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
893                                 SDValue Chain, bool IsTailCall, bool Is64Bit,
894                                 int FPDiff, SDLoc dl) const;
895
896     unsigned GetAlignedArgumentStackSize(unsigned StackSize,
897                                          SelectionDAG &DAG) const;
898
899     std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
900                                                bool isSigned,
901                                                bool isReplace) const;
902
903     SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
904     SDValue LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const;
905     SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
906     SDValue LowerVSELECT(SDValue Op, SelectionDAG &DAG) const;
907     SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
908     SDValue ExtractBitFromMaskVector(SDValue Op, SelectionDAG &DAG) const;
909     SDValue InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG) const;
910
911     SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
912     SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
913     SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
914     SDValue LowerGlobalAddress(const GlobalValue *GV, SDLoc dl,
915                                int64_t Offset, SelectionDAG &DAG) const;
916     SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
917     SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
918     SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
919     SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
920     SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
921     SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const;
922     SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const;
923     SDValue lowerUINT_TO_FP_vec(SDValue Op, SelectionDAG &DAG) const;
924     SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
925     SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const;
926     SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const;
927     SDValue LowerToBT(SDValue And, ISD::CondCode CC,
928                       SDLoc dl, SelectionDAG &DAG) const;
929     SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
930     SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
931     SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
932     SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG) const;
933     SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
934     SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
935     SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
936     SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
937     SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
938     SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
939     SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
940     SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
941     SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
942     SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
943     SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
944     SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
945     SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
946     SDValue LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const;
947
948     SDValue
949       LowerFormalArguments(SDValue Chain,
950                            CallingConv::ID CallConv, bool isVarArg,
951                            const SmallVectorImpl<ISD::InputArg> &Ins,
952                            SDLoc dl, SelectionDAG &DAG,
953                            SmallVectorImpl<SDValue> &InVals) const override;
954     SDValue LowerCall(CallLoweringInfo &CLI,
955                       SmallVectorImpl<SDValue> &InVals) const override;
956
957     SDValue LowerReturn(SDValue Chain,
958                         CallingConv::ID CallConv, bool isVarArg,
959                         const SmallVectorImpl<ISD::OutputArg> &Outs,
960                         const SmallVectorImpl<SDValue> &OutVals,
961                         SDLoc dl, SelectionDAG &DAG) const override;
962
963     bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override;
964
965     bool mayBeEmittedAsTailCall(CallInst *CI) const override;
966
967     EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
968                                  ISD::NodeType ExtendKind) const override;
969
970     bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
971                         bool isVarArg,
972                         const SmallVectorImpl<ISD::OutputArg> &Outs,
973                         LLVMContext &Context) const override;
974
975     const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
976
977     bool shouldExpandAtomicLoadInIR(LoadInst *SI) const override;
978     bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
979     bool shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;
980
981     LoadInst *
982     lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const override;
983
984     bool needsCmpXchgNb(const Type *MemType) const;
985
986     /// Utility function to emit atomic-load-arith operations (and, or, xor,
987     /// nand, max, min, umax, umin). It takes the corresponding instruction to
988     /// expand, the associated machine basic block, and the associated X86
989     /// opcodes for reg/reg.
990     MachineBasicBlock *EmitAtomicLoadArith(MachineInstr *MI,
991                                            MachineBasicBlock *MBB) const;
992
993     /// Utility function to emit atomic-load-arith operations (and, or, xor,
994     /// nand, add, sub, swap) for 64-bit operands on 32-bit target.
995     MachineBasicBlock *EmitAtomicLoadArith6432(MachineInstr *MI,
996                                                MachineBasicBlock *MBB) const;
997
998     // Utility function to emit the low-level va_arg code for X86-64.
999     MachineBasicBlock *EmitVAARG64WithCustomInserter(
1000                        MachineInstr *MI,
1001                        MachineBasicBlock *MBB) const;
1002
1003     /// Utility function to emit the xmm reg save portion of va_start.
1004     MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter(
1005                                                    MachineInstr *BInstr,
1006                                                    MachineBasicBlock *BB) const;
1007
1008     MachineBasicBlock *EmitLoweredSelect(MachineInstr *I,
1009                                          MachineBasicBlock *BB) const;
1010
1011     MachineBasicBlock *EmitLoweredWinAlloca(MachineInstr *MI,
1012                                               MachineBasicBlock *BB) const;
1013
1014     MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr *MI,
1015                                             MachineBasicBlock *BB) const;
1016
1017     MachineBasicBlock *EmitLoweredTLSCall(MachineInstr *MI,
1018                                           MachineBasicBlock *BB) const;
1019
1020     MachineBasicBlock *emitLoweredTLSAddr(MachineInstr *MI,
1021                                           MachineBasicBlock *BB) const;
1022
1023     MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr *MI,
1024                                         MachineBasicBlock *MBB) const;
1025
1026     MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr *MI,
1027                                          MachineBasicBlock *MBB) const;
1028
1029     MachineBasicBlock *emitFMA3Instr(MachineInstr *MI,
1030                                      MachineBasicBlock *MBB) const;
1031
1032     /// Emit nodes that will be selected as "test Op0,Op0", or something
1033     /// equivalent, for use with the given x86 condition code.
1034     SDValue EmitTest(SDValue Op0, unsigned X86CC, SDLoc dl,
1035                      SelectionDAG &DAG) const;
1036
1037     /// Emit nodes that will be selected as "cmp Op0,Op1", or something
1038     /// equivalent, for use with the given x86 condition code.
1039     SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, SDLoc dl,
1040                     SelectionDAG &DAG) const;
1041
1042     /// Convert a comparison if required by the subtarget.
1043     SDValue ConvertCmpIfNecessary(SDValue Cmp, SelectionDAG &DAG) const;
1044
1045     /// Use rsqrt* to speed up sqrt calculations.
1046     SDValue getRsqrtEstimate(SDValue Operand, DAGCombinerInfo &DCI,
1047                              unsigned &RefinementSteps,
1048                              bool &UseOneConstNR) const override;
1049
1050     /// Use rcp* to speed up fdiv calculations.
1051     SDValue getRecipEstimate(SDValue Operand, DAGCombinerInfo &DCI,
1052                              unsigned &RefinementSteps) const override;
1053   };
1054
1055   namespace X86 {
1056     FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
1057                              const TargetLibraryInfo *libInfo);
1058   }
1059 }
1060
1061 #endif    // X86ISELLOWERING_H