Remove the TargetMachine forwards for TargetSubtargetInfo based
[oota-llvm.git] / lib / Target / X86 / X86ISelDAGToDAG.cpp
1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a DAG pattern matching instruction selector for X86,
11 // converting from a legalized dag to a X86 dag.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "X86.h"
16 #include "X86InstrBuilder.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86RegisterInfo.h"
19 #include "X86Subtarget.h"
20 #include "X86TargetMachine.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/SelectionDAGISel.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include "llvm/Target/TargetOptions.h"
36 using namespace llvm;
37
38 #define DEBUG_TYPE "x86-isel"
39
40 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
41
42 //===----------------------------------------------------------------------===//
43 //                      Pattern Matcher Implementation
44 //===----------------------------------------------------------------------===//
45
46 namespace {
47   /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
48   /// SDValue's instead of register numbers for the leaves of the matched
49   /// tree.
50   struct X86ISelAddressMode {
51     enum {
52       RegBase,
53       FrameIndexBase
54     } BaseType;
55
56     // This is really a union, discriminated by BaseType!
57     SDValue Base_Reg;
58     int Base_FrameIndex;
59
60     unsigned Scale;
61     SDValue IndexReg;
62     int32_t Disp;
63     SDValue Segment;
64     const GlobalValue *GV;
65     const Constant *CP;
66     const BlockAddress *BlockAddr;
67     const char *ES;
68     int JT;
69     unsigned Align;    // CP alignment.
70     unsigned char SymbolFlags;  // X86II::MO_*
71
72     X86ISelAddressMode()
73       : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
74         Segment(), GV(nullptr), CP(nullptr), BlockAddr(nullptr), ES(nullptr),
75         JT(-1), Align(0), SymbolFlags(X86II::MO_NO_FLAG) {
76     }
77
78     bool hasSymbolicDisplacement() const {
79       return GV != nullptr || CP != nullptr || ES != nullptr ||
80              JT != -1 || BlockAddr != nullptr;
81     }
82
83     bool hasBaseOrIndexReg() const {
84       return BaseType == FrameIndexBase ||
85              IndexReg.getNode() != nullptr || Base_Reg.getNode() != nullptr;
86     }
87
88     /// isRIPRelative - Return true if this addressing mode is already RIP
89     /// relative.
90     bool isRIPRelative() const {
91       if (BaseType != RegBase) return false;
92       if (RegisterSDNode *RegNode =
93             dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
94         return RegNode->getReg() == X86::RIP;
95       return false;
96     }
97
98     void setBaseReg(SDValue Reg) {
99       BaseType = RegBase;
100       Base_Reg = Reg;
101     }
102
103 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
104     void dump() {
105       dbgs() << "X86ISelAddressMode " << this << '\n';
106       dbgs() << "Base_Reg ";
107       if (Base_Reg.getNode())
108         Base_Reg.getNode()->dump();
109       else
110         dbgs() << "nul";
111       dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
112              << " Scale" << Scale << '\n'
113              << "IndexReg ";
114       if (IndexReg.getNode())
115         IndexReg.getNode()->dump();
116       else
117         dbgs() << "nul";
118       dbgs() << " Disp " << Disp << '\n'
119              << "GV ";
120       if (GV)
121         GV->dump();
122       else
123         dbgs() << "nul";
124       dbgs() << " CP ";
125       if (CP)
126         CP->dump();
127       else
128         dbgs() << "nul";
129       dbgs() << '\n'
130              << "ES ";
131       if (ES)
132         dbgs() << ES;
133       else
134         dbgs() << "nul";
135       dbgs() << " JT" << JT << " Align" << Align << '\n';
136     }
137 #endif
138   };
139 }
140
141 namespace {
142   //===--------------------------------------------------------------------===//
143   /// ISel - X86 specific code to select X86 machine instructions for
144   /// SelectionDAG operations.
145   ///
146   class X86DAGToDAGISel final : public SelectionDAGISel {
147     /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
148     /// make the right decision when generating code for different targets.
149     const X86Subtarget *Subtarget;
150
151     /// OptForSize - If true, selector should try to optimize for code size
152     /// instead of performance.
153     bool OptForSize;
154
155   public:
156     explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
157       : SelectionDAGISel(tm, OptLevel),
158         Subtarget(&tm.getSubtarget<X86Subtarget>()),
159         OptForSize(false) {}
160
161     const char *getPassName() const override {
162       return "X86 DAG->DAG Instruction Selection";
163     }
164
165     bool runOnMachineFunction(MachineFunction &MF) override {
166       // Reset the subtarget each time through.
167       Subtarget = &TM.getSubtarget<X86Subtarget>();
168       SelectionDAGISel::runOnMachineFunction(MF);
169       return true;
170     }
171
172     void EmitFunctionEntryCode() override;
173
174     bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
175
176     void PreprocessISelDAG() override;
177
178     inline bool immSext8(SDNode *N) const {
179       return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
180     }
181
182     // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
183     // sign extended field.
184     inline bool i64immSExt32(SDNode *N) const {
185       uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
186       return (int64_t)v == (int32_t)v;
187     }
188
189 // Include the pieces autogenerated from the target description.
190 #include "X86GenDAGISel.inc"
191
192   private:
193     SDNode *Select(SDNode *N) override;
194     SDNode *SelectGather(SDNode *N, unsigned Opc);
195     SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
196     SDNode *SelectAtomicLoadArith(SDNode *Node, MVT NVT);
197
198     bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
199     bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
200     bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
201     bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
202     bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
203                                  unsigned Depth);
204     bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
205     bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
206                     SDValue &Scale, SDValue &Index, SDValue &Disp,
207                     SDValue &Segment);
208     bool SelectMOV64Imm32(SDValue N, SDValue &Imm);
209     bool SelectLEAAddr(SDValue N, SDValue &Base,
210                        SDValue &Scale, SDValue &Index, SDValue &Disp,
211                        SDValue &Segment);
212     bool SelectLEA64_32Addr(SDValue N, SDValue &Base,
213                             SDValue &Scale, SDValue &Index, SDValue &Disp,
214                             SDValue &Segment);
215     bool SelectTLSADDRAddr(SDValue N, SDValue &Base,
216                            SDValue &Scale, SDValue &Index, SDValue &Disp,
217                            SDValue &Segment);
218     bool SelectScalarSSELoad(SDNode *Root, SDValue N,
219                              SDValue &Base, SDValue &Scale,
220                              SDValue &Index, SDValue &Disp,
221                              SDValue &Segment,
222                              SDValue &NodeWithChain);
223
224     bool TryFoldLoad(SDNode *P, SDValue N,
225                      SDValue &Base, SDValue &Scale,
226                      SDValue &Index, SDValue &Disp,
227                      SDValue &Segment);
228
229     /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
230     /// inline asm expressions.
231     bool SelectInlineAsmMemoryOperand(const SDValue &Op,
232                                       char ConstraintCode,
233                                       std::vector<SDValue> &OutOps) override;
234
235     void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
236
237     inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
238                                    SDValue &Scale, SDValue &Index,
239                                    SDValue &Disp, SDValue &Segment) {
240       Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
241         CurDAG->getTargetFrameIndex(AM.Base_FrameIndex,
242                                     getTargetLowering()->getPointerTy()) :
243         AM.Base_Reg;
244       Scale = getI8Imm(AM.Scale);
245       Index = AM.IndexReg;
246       // These are 32-bit even in 64-bit mode since RIP relative offset
247       // is 32-bit.
248       if (AM.GV)
249         Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(),
250                                               MVT::i32, AM.Disp,
251                                               AM.SymbolFlags);
252       else if (AM.CP)
253         Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
254                                              AM.Align, AM.Disp, AM.SymbolFlags);
255       else if (AM.ES) {
256         assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
257         Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
258       } else if (AM.JT != -1) {
259         assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
260         Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
261       } else if (AM.BlockAddr)
262         Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
263                                              AM.SymbolFlags);
264       else
265         Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
266
267       if (AM.Segment.getNode())
268         Segment = AM.Segment;
269       else
270         Segment = CurDAG->getRegister(0, MVT::i32);
271     }
272
273     /// getI8Imm - Return a target constant with the specified value, of type
274     /// i8.
275     inline SDValue getI8Imm(unsigned Imm) {
276       return CurDAG->getTargetConstant(Imm, MVT::i8);
277     }
278
279     /// getI32Imm - Return a target constant with the specified value, of type
280     /// i32.
281     inline SDValue getI32Imm(unsigned Imm) {
282       return CurDAG->getTargetConstant(Imm, MVT::i32);
283     }
284
285     /// getGlobalBaseReg - Return an SDNode that returns the value of
286     /// the global base register. Output instructions required to
287     /// initialize the global base register, if necessary.
288     ///
289     SDNode *getGlobalBaseReg();
290
291     /// getTargetMachine - Return a reference to the TargetMachine, casted
292     /// to the target-specific type.
293     const X86TargetMachine &getTargetMachine() const {
294       return static_cast<const X86TargetMachine &>(TM);
295     }
296
297     /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
298     /// to the target-specific type.
299     const X86InstrInfo *getInstrInfo() const {
300       return getTargetMachine().getSubtargetImpl()->getInstrInfo();
301     }
302   };
303 }
304
305
306 bool
307 X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
308   if (OptLevel == CodeGenOpt::None) return false;
309
310   if (!N.hasOneUse())
311     return false;
312
313   if (N.getOpcode() != ISD::LOAD)
314     return true;
315
316   // If N is a load, do additional profitability checks.
317   if (U == Root) {
318     switch (U->getOpcode()) {
319     default: break;
320     case X86ISD::ADD:
321     case X86ISD::SUB:
322     case X86ISD::AND:
323     case X86ISD::XOR:
324     case X86ISD::OR:
325     case ISD::ADD:
326     case ISD::ADDC:
327     case ISD::ADDE:
328     case ISD::AND:
329     case ISD::OR:
330     case ISD::XOR: {
331       SDValue Op1 = U->getOperand(1);
332
333       // If the other operand is a 8-bit immediate we should fold the immediate
334       // instead. This reduces code size.
335       // e.g.
336       // movl 4(%esp), %eax
337       // addl $4, %eax
338       // vs.
339       // movl $4, %eax
340       // addl 4(%esp), %eax
341       // The former is 2 bytes shorter. In case where the increment is 1, then
342       // the saving can be 4 bytes (by using incl %eax).
343       if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
344         if (Imm->getAPIntValue().isSignedIntN(8))
345           return false;
346
347       // If the other operand is a TLS address, we should fold it instead.
348       // This produces
349       // movl    %gs:0, %eax
350       // leal    i@NTPOFF(%eax), %eax
351       // instead of
352       // movl    $i@NTPOFF, %eax
353       // addl    %gs:0, %eax
354       // if the block also has an access to a second TLS address this will save
355       // a load.
356       // FIXME: This is probably also true for non-TLS addresses.
357       if (Op1.getOpcode() == X86ISD::Wrapper) {
358         SDValue Val = Op1.getOperand(0);
359         if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
360           return false;
361       }
362     }
363     }
364   }
365
366   return true;
367 }
368
369 /// MoveBelowCallOrigChain - Replace the original chain operand of the call with
370 /// load's chain operand and move load below the call's chain operand.
371 static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
372                                SDValue Call, SDValue OrigChain) {
373   SmallVector<SDValue, 8> Ops;
374   SDValue Chain = OrigChain.getOperand(0);
375   if (Chain.getNode() == Load.getNode())
376     Ops.push_back(Load.getOperand(0));
377   else {
378     assert(Chain.getOpcode() == ISD::TokenFactor &&
379            "Unexpected chain operand");
380     for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
381       if (Chain.getOperand(i).getNode() == Load.getNode())
382         Ops.push_back(Load.getOperand(0));
383       else
384         Ops.push_back(Chain.getOperand(i));
385     SDValue NewChain =
386       CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), MVT::Other, Ops);
387     Ops.clear();
388     Ops.push_back(NewChain);
389   }
390   for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i)
391     Ops.push_back(OrigChain.getOperand(i));
392   CurDAG->UpdateNodeOperands(OrigChain.getNode(), Ops);
393   CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
394                              Load.getOperand(1), Load.getOperand(2));
395
396   unsigned NumOps = Call.getNode()->getNumOperands();
397   Ops.clear();
398   Ops.push_back(SDValue(Load.getNode(), 1));
399   for (unsigned i = 1, e = NumOps; i != e; ++i)
400     Ops.push_back(Call.getOperand(i));
401   CurDAG->UpdateNodeOperands(Call.getNode(), Ops);
402 }
403
404 /// isCalleeLoad - Return true if call address is a load and it can be
405 /// moved below CALLSEQ_START and the chains leading up to the call.
406 /// Return the CALLSEQ_START by reference as a second output.
407 /// In the case of a tail call, there isn't a callseq node between the call
408 /// chain and the load.
409 static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
410   // The transformation is somewhat dangerous if the call's chain was glued to
411   // the call. After MoveBelowOrigChain the load is moved between the call and
412   // the chain, this can create a cycle if the load is not folded. So it is
413   // *really* important that we are sure the load will be folded.
414   if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
415     return false;
416   LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
417   if (!LD ||
418       LD->isVolatile() ||
419       LD->getAddressingMode() != ISD::UNINDEXED ||
420       LD->getExtensionType() != ISD::NON_EXTLOAD)
421     return false;
422
423   // Now let's find the callseq_start.
424   while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
425     if (!Chain.hasOneUse())
426       return false;
427     Chain = Chain.getOperand(0);
428   }
429
430   if (!Chain.getNumOperands())
431     return false;
432   // Since we are not checking for AA here, conservatively abort if the chain
433   // writes to memory. It's not safe to move the callee (a load) across a store.
434   if (isa<MemSDNode>(Chain.getNode()) &&
435       cast<MemSDNode>(Chain.getNode())->writeMem())
436     return false;
437   if (Chain.getOperand(0).getNode() == Callee.getNode())
438     return true;
439   if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
440       Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
441       Callee.getValue(1).hasOneUse())
442     return true;
443   return false;
444 }
445
446 void X86DAGToDAGISel::PreprocessISelDAG() {
447   // OptForSize is used in pattern predicates that isel is matching.
448   OptForSize = MF->getFunction()->getAttributes().
449     hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
450
451   for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
452        E = CurDAG->allnodes_end(); I != E; ) {
453     SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
454
455     if (OptLevel != CodeGenOpt::None &&
456         // Only does this when target favors doesn't favor register indirect
457         // call.
458         ((N->getOpcode() == X86ISD::CALL && !Subtarget->callRegIndirect()) ||
459          (N->getOpcode() == X86ISD::TC_RETURN &&
460           // Only does this if load can be folded into TC_RETURN.
461           (Subtarget->is64Bit() ||
462            getTargetMachine().getRelocationModel() != Reloc::PIC_)))) {
463       /// Also try moving call address load from outside callseq_start to just
464       /// before the call to allow it to be folded.
465       ///
466       ///     [Load chain]
467       ///         ^
468       ///         |
469       ///       [Load]
470       ///       ^    ^
471       ///       |    |
472       ///      /      \--
473       ///     /          |
474       ///[CALLSEQ_START] |
475       ///     ^          |
476       ///     |          |
477       /// [LOAD/C2Reg]   |
478       ///     |          |
479       ///      \        /
480       ///       \      /
481       ///       [CALL]
482       bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
483       SDValue Chain = N->getOperand(0);
484       SDValue Load  = N->getOperand(1);
485       if (!isCalleeLoad(Load, Chain, HasCallSeq))
486         continue;
487       MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
488       ++NumLoadMoved;
489       continue;
490     }
491
492     // Lower fpround and fpextend nodes that target the FP stack to be store and
493     // load to the stack.  This is a gross hack.  We would like to simply mark
494     // these as being illegal, but when we do that, legalize produces these when
495     // it expands calls, then expands these in the same legalize pass.  We would
496     // like dag combine to be able to hack on these between the call expansion
497     // and the node legalization.  As such this pass basically does "really
498     // late" legalization of these inline with the X86 isel pass.
499     // FIXME: This should only happen when not compiled with -O0.
500     if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
501       continue;
502
503     MVT SrcVT = N->getOperand(0).getSimpleValueType();
504     MVT DstVT = N->getSimpleValueType(0);
505
506     // If any of the sources are vectors, no fp stack involved.
507     if (SrcVT.isVector() || DstVT.isVector())
508       continue;
509
510     // If the source and destination are SSE registers, then this is a legal
511     // conversion that should not be lowered.
512     const X86TargetLowering *X86Lowering =
513         static_cast<const X86TargetLowering *>(getTargetLowering());
514     bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
515     bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
516     if (SrcIsSSE && DstIsSSE)
517       continue;
518
519     if (!SrcIsSSE && !DstIsSSE) {
520       // If this is an FPStack extension, it is a noop.
521       if (N->getOpcode() == ISD::FP_EXTEND)
522         continue;
523       // If this is a value-preserving FPStack truncation, it is a noop.
524       if (N->getConstantOperandVal(1))
525         continue;
526     }
527
528     // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
529     // FPStack has extload and truncstore.  SSE can fold direct loads into other
530     // operations.  Based on this, decide what we want to do.
531     MVT MemVT;
532     if (N->getOpcode() == ISD::FP_ROUND)
533       MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
534     else
535       MemVT = SrcIsSSE ? SrcVT : DstVT;
536
537     SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
538     SDLoc dl(N);
539
540     // FIXME: optimize the case where the src/dest is a load or store?
541     SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
542                                           N->getOperand(0),
543                                           MemTmp, MachinePointerInfo(), MemVT,
544                                           false, false, 0);
545     SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
546                                         MachinePointerInfo(),
547                                         MemVT, false, false, false, 0);
548
549     // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
550     // extload we created.  This will cause general havok on the dag because
551     // anything below the conversion could be folded into other existing nodes.
552     // To avoid invalidating 'I', back it up to the convert node.
553     --I;
554     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
555
556     // Now that we did that, the node is dead.  Increment the iterator to the
557     // next node to process, then delete N.
558     ++I;
559     CurDAG->DeleteNode(N);
560   }
561 }
562
563
564 /// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
565 /// the main function.
566 void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
567                                              MachineFrameInfo *MFI) {
568   const TargetInstrInfo *TII = TM.getSubtargetImpl()->getInstrInfo();
569   if (Subtarget->isTargetCygMing()) {
570     unsigned CallOp =
571       Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32;
572     BuildMI(BB, DebugLoc(),
573             TII->get(CallOp)).addExternalSymbol("__main");
574   }
575 }
576
577 void X86DAGToDAGISel::EmitFunctionEntryCode() {
578   // If this is main, emit special code for main.
579   if (const Function *Fn = MF->getFunction())
580     if (Fn->hasExternalLinkage() && Fn->getName() == "main")
581       EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo());
582 }
583
584 static bool isDispSafeForFrameIndex(int64_t Val) {
585   // On 64-bit platforms, we can run into an issue where a frame index
586   // includes a displacement that, when added to the explicit displacement,
587   // will overflow the displacement field. Assuming that the frame index
588   // displacement fits into a 31-bit integer  (which is only slightly more
589   // aggressive than the current fundamental assumption that it fits into
590   // a 32-bit integer), a 31-bit disp should always be safe.
591   return isInt<31>(Val);
592 }
593
594 bool X86DAGToDAGISel::FoldOffsetIntoAddress(uint64_t Offset,
595                                             X86ISelAddressMode &AM) {
596   int64_t Val = AM.Disp + Offset;
597   CodeModel::Model M = TM.getCodeModel();
598   if (Subtarget->is64Bit()) {
599     if (!X86::isOffsetSuitableForCodeModel(Val, M,
600                                            AM.hasSymbolicDisplacement()))
601       return true;
602     // In addition to the checks required for a register base, check that
603     // we do not try to use an unsafe Disp with a frame index.
604     if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
605         !isDispSafeForFrameIndex(Val))
606       return true;
607   }
608   AM.Disp = Val;
609   return false;
610
611 }
612
613 bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
614   SDValue Address = N->getOperand(1);
615
616   // load gs:0 -> GS segment register.
617   // load fs:0 -> FS segment register.
618   //
619   // This optimization is valid because the GNU TLS model defines that
620   // gs:0 (or fs:0 on X86-64) contains its own address.
621   // For more information see http://people.redhat.com/drepper/tls.pdf
622   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
623     if (C->getSExtValue() == 0 && AM.Segment.getNode() == nullptr &&
624         Subtarget->isTargetLinux())
625       switch (N->getPointerInfo().getAddrSpace()) {
626       case 256:
627         AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
628         return false;
629       case 257:
630         AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
631         return false;
632       }
633
634   return true;
635 }
636
637 /// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
638 /// into an addressing mode.  These wrap things that will resolve down into a
639 /// symbol reference.  If no match is possible, this returns true, otherwise it
640 /// returns false.
641 bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
642   // If the addressing mode already has a symbol as the displacement, we can
643   // never match another symbol.
644   if (AM.hasSymbolicDisplacement())
645     return true;
646
647   SDValue N0 = N.getOperand(0);
648   CodeModel::Model M = TM.getCodeModel();
649
650   // Handle X86-64 rip-relative addresses.  We check this before checking direct
651   // folding because RIP is preferable to non-RIP accesses.
652   if (Subtarget->is64Bit() && N.getOpcode() == X86ISD::WrapperRIP &&
653       // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
654       // they cannot be folded into immediate fields.
655       // FIXME: This can be improved for kernel and other models?
656       (M == CodeModel::Small || M == CodeModel::Kernel)) {
657     // Base and index reg must be 0 in order to use %rip as base.
658     if (AM.hasBaseOrIndexReg())
659       return true;
660     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
661       X86ISelAddressMode Backup = AM;
662       AM.GV = G->getGlobal();
663       AM.SymbolFlags = G->getTargetFlags();
664       if (FoldOffsetIntoAddress(G->getOffset(), AM)) {
665         AM = Backup;
666         return true;
667       }
668     } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
669       X86ISelAddressMode Backup = AM;
670       AM.CP = CP->getConstVal();
671       AM.Align = CP->getAlignment();
672       AM.SymbolFlags = CP->getTargetFlags();
673       if (FoldOffsetIntoAddress(CP->getOffset(), AM)) {
674         AM = Backup;
675         return true;
676       }
677     } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
678       AM.ES = S->getSymbol();
679       AM.SymbolFlags = S->getTargetFlags();
680     } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
681       AM.JT = J->getIndex();
682       AM.SymbolFlags = J->getTargetFlags();
683     } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
684       X86ISelAddressMode Backup = AM;
685       AM.BlockAddr = BA->getBlockAddress();
686       AM.SymbolFlags = BA->getTargetFlags();
687       if (FoldOffsetIntoAddress(BA->getOffset(), AM)) {
688         AM = Backup;
689         return true;
690       }
691     } else
692       llvm_unreachable("Unhandled symbol reference node.");
693
694     if (N.getOpcode() == X86ISD::WrapperRIP)
695       AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
696     return false;
697   }
698
699   // Handle the case when globals fit in our immediate field: This is true for
700   // X86-32 always and X86-64 when in -mcmodel=small mode.  In 64-bit
701   // mode, this only applies to a non-RIP-relative computation.
702   if (!Subtarget->is64Bit() ||
703       M == CodeModel::Small || M == CodeModel::Kernel) {
704     assert(N.getOpcode() != X86ISD::WrapperRIP &&
705            "RIP-relative addressing already handled");
706     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
707       AM.GV = G->getGlobal();
708       AM.Disp += G->getOffset();
709       AM.SymbolFlags = G->getTargetFlags();
710     } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
711       AM.CP = CP->getConstVal();
712       AM.Align = CP->getAlignment();
713       AM.Disp += CP->getOffset();
714       AM.SymbolFlags = CP->getTargetFlags();
715     } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
716       AM.ES = S->getSymbol();
717       AM.SymbolFlags = S->getTargetFlags();
718     } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
719       AM.JT = J->getIndex();
720       AM.SymbolFlags = J->getTargetFlags();
721     } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
722       AM.BlockAddr = BA->getBlockAddress();
723       AM.Disp += BA->getOffset();
724       AM.SymbolFlags = BA->getTargetFlags();
725     } else
726       llvm_unreachable("Unhandled symbol reference node.");
727     return false;
728   }
729
730   return true;
731 }
732
733 /// MatchAddress - Add the specified node to the specified addressing mode,
734 /// returning true if it cannot be done.  This just pattern matches for the
735 /// addressing mode.
736 bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
737   if (MatchAddressRecursively(N, AM, 0))
738     return true;
739
740   // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
741   // a smaller encoding and avoids a scaled-index.
742   if (AM.Scale == 2 &&
743       AM.BaseType == X86ISelAddressMode::RegBase &&
744       AM.Base_Reg.getNode() == nullptr) {
745     AM.Base_Reg = AM.IndexReg;
746     AM.Scale = 1;
747   }
748
749   // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
750   // because it has a smaller encoding.
751   // TODO: Which other code models can use this?
752   if (TM.getCodeModel() == CodeModel::Small &&
753       Subtarget->is64Bit() &&
754       AM.Scale == 1 &&
755       AM.BaseType == X86ISelAddressMode::RegBase &&
756       AM.Base_Reg.getNode() == nullptr &&
757       AM.IndexReg.getNode() == nullptr &&
758       AM.SymbolFlags == X86II::MO_NO_FLAG &&
759       AM.hasSymbolicDisplacement())
760     AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
761
762   return false;
763 }
764
765 // Insert a node into the DAG at least before the Pos node's position. This
766 // will reposition the node as needed, and will assign it a node ID that is <=
767 // the Pos node's ID. Note that this does *not* preserve the uniqueness of node
768 // IDs! The selection DAG must no longer depend on their uniqueness when this
769 // is used.
770 static void InsertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
771   if (N.getNode()->getNodeId() == -1 ||
772       N.getNode()->getNodeId() > Pos.getNode()->getNodeId()) {
773     DAG.RepositionNode(Pos.getNode(), N.getNode());
774     N.getNode()->setNodeId(Pos.getNode()->getNodeId());
775   }
776 }
777
778 // Transform "(X >> (8-C1)) & C2" to "(X >> 8) & 0xff)" if safe. This
779 // allows us to convert the shift and and into an h-register extract and
780 // a scaled index. Returns false if the simplification is performed.
781 static bool FoldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
782                                       uint64_t Mask,
783                                       SDValue Shift, SDValue X,
784                                       X86ISelAddressMode &AM) {
785   if (Shift.getOpcode() != ISD::SRL ||
786       !isa<ConstantSDNode>(Shift.getOperand(1)) ||
787       !Shift.hasOneUse())
788     return true;
789
790   int ScaleLog = 8 - Shift.getConstantOperandVal(1);
791   if (ScaleLog <= 0 || ScaleLog >= 4 ||
792       Mask != (0xffu << ScaleLog))
793     return true;
794
795   MVT VT = N.getSimpleValueType();
796   SDLoc DL(N);
797   SDValue Eight = DAG.getConstant(8, MVT::i8);
798   SDValue NewMask = DAG.getConstant(0xff, VT);
799   SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
800   SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
801   SDValue ShlCount = DAG.getConstant(ScaleLog, MVT::i8);
802   SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
803
804   // Insert the new nodes into the topological ordering. We must do this in
805   // a valid topological ordering as nothing is going to go back and re-sort
806   // these nodes. We continually insert before 'N' in sequence as this is
807   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
808   // hierarchy left to express.
809   InsertDAGNode(DAG, N, Eight);
810   InsertDAGNode(DAG, N, Srl);
811   InsertDAGNode(DAG, N, NewMask);
812   InsertDAGNode(DAG, N, And);
813   InsertDAGNode(DAG, N, ShlCount);
814   InsertDAGNode(DAG, N, Shl);
815   DAG.ReplaceAllUsesWith(N, Shl);
816   AM.IndexReg = And;
817   AM.Scale = (1 << ScaleLog);
818   return false;
819 }
820
821 // Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
822 // allows us to fold the shift into this addressing mode. Returns false if the
823 // transform succeeded.
824 static bool FoldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
825                                         uint64_t Mask,
826                                         SDValue Shift, SDValue X,
827                                         X86ISelAddressMode &AM) {
828   if (Shift.getOpcode() != ISD::SHL ||
829       !isa<ConstantSDNode>(Shift.getOperand(1)))
830     return true;
831
832   // Not likely to be profitable if either the AND or SHIFT node has more
833   // than one use (unless all uses are for address computation). Besides,
834   // isel mechanism requires their node ids to be reused.
835   if (!N.hasOneUse() || !Shift.hasOneUse())
836     return true;
837
838   // Verify that the shift amount is something we can fold.
839   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
840   if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
841     return true;
842
843   MVT VT = N.getSimpleValueType();
844   SDLoc DL(N);
845   SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, VT);
846   SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
847   SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
848
849   // Insert the new nodes into the topological ordering. We must do this in
850   // a valid topological ordering as nothing is going to go back and re-sort
851   // these nodes. We continually insert before 'N' in sequence as this is
852   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
853   // hierarchy left to express.
854   InsertDAGNode(DAG, N, NewMask);
855   InsertDAGNode(DAG, N, NewAnd);
856   InsertDAGNode(DAG, N, NewShift);
857   DAG.ReplaceAllUsesWith(N, NewShift);
858
859   AM.Scale = 1 << ShiftAmt;
860   AM.IndexReg = NewAnd;
861   return false;
862 }
863
864 // Implement some heroics to detect shifts of masked values where the mask can
865 // be replaced by extending the shift and undoing that in the addressing mode
866 // scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
867 // (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
868 // the addressing mode. This results in code such as:
869 //
870 //   int f(short *y, int *lookup_table) {
871 //     ...
872 //     return *y + lookup_table[*y >> 11];
873 //   }
874 //
875 // Turning into:
876 //   movzwl (%rdi), %eax
877 //   movl %eax, %ecx
878 //   shrl $11, %ecx
879 //   addl (%rsi,%rcx,4), %eax
880 //
881 // Instead of:
882 //   movzwl (%rdi), %eax
883 //   movl %eax, %ecx
884 //   shrl $9, %ecx
885 //   andl $124, %rcx
886 //   addl (%rsi,%rcx), %eax
887 //
888 // Note that this function assumes the mask is provided as a mask *after* the
889 // value is shifted. The input chain may or may not match that, but computing
890 // such a mask is trivial.
891 static bool FoldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
892                                     uint64_t Mask,
893                                     SDValue Shift, SDValue X,
894                                     X86ISelAddressMode &AM) {
895   if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
896       !isa<ConstantSDNode>(Shift.getOperand(1)))
897     return true;
898
899   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
900   unsigned MaskLZ = countLeadingZeros(Mask);
901   unsigned MaskTZ = countTrailingZeros(Mask);
902
903   // The amount of shift we're trying to fit into the addressing mode is taken
904   // from the trailing zeros of the mask.
905   unsigned AMShiftAmt = MaskTZ;
906
907   // There is nothing we can do here unless the mask is removing some bits.
908   // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
909   if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true;
910
911   // We also need to ensure that mask is a continuous run of bits.
912   if (CountTrailingOnes_64(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
913
914   // Scale the leading zero count down based on the actual size of the value.
915   // Also scale it down based on the size of the shift.
916   MaskLZ -= (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt;
917
918   // The final check is to ensure that any masked out high bits of X are
919   // already known to be zero. Otherwise, the mask has a semantic impact
920   // other than masking out a couple of low bits. Unfortunately, because of
921   // the mask, zero extensions will be removed from operands in some cases.
922   // This code works extra hard to look through extensions because we can
923   // replace them with zero extensions cheaply if necessary.
924   bool ReplacingAnyExtend = false;
925   if (X.getOpcode() == ISD::ANY_EXTEND) {
926     unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() -
927                           X.getOperand(0).getSimpleValueType().getSizeInBits();
928     // Assume that we'll replace the any-extend with a zero-extend, and
929     // narrow the search to the extended value.
930     X = X.getOperand(0);
931     MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
932     ReplacingAnyExtend = true;
933   }
934   APInt MaskedHighBits =
935     APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ);
936   APInt KnownZero, KnownOne;
937   DAG.computeKnownBits(X, KnownZero, KnownOne);
938   if (MaskedHighBits != KnownZero) return true;
939
940   // We've identified a pattern that can be transformed into a single shift
941   // and an addressing mode. Make it so.
942   MVT VT = N.getSimpleValueType();
943   if (ReplacingAnyExtend) {
944     assert(X.getValueType() != VT);
945     // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
946     SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X);
947     InsertDAGNode(DAG, N, NewX);
948     X = NewX;
949   }
950   SDLoc DL(N);
951   SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, MVT::i8);
952   SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
953   SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, MVT::i8);
954   SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
955
956   // Insert the new nodes into the topological ordering. We must do this in
957   // a valid topological ordering as nothing is going to go back and re-sort
958   // these nodes. We continually insert before 'N' in sequence as this is
959   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
960   // hierarchy left to express.
961   InsertDAGNode(DAG, N, NewSRLAmt);
962   InsertDAGNode(DAG, N, NewSRL);
963   InsertDAGNode(DAG, N, NewSHLAmt);
964   InsertDAGNode(DAG, N, NewSHL);
965   DAG.ReplaceAllUsesWith(N, NewSHL);
966
967   AM.Scale = 1 << AMShiftAmt;
968   AM.IndexReg = NewSRL;
969   return false;
970 }
971
972 bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
973                                               unsigned Depth) {
974   SDLoc dl(N);
975   DEBUG({
976       dbgs() << "MatchAddress: ";
977       AM.dump();
978     });
979   // Limit recursion.
980   if (Depth > 5)
981     return MatchAddressBase(N, AM);
982
983   // If this is already a %rip relative address, we can only merge immediates
984   // into it.  Instead of handling this in every case, we handle it here.
985   // RIP relative addressing: %rip + 32-bit displacement!
986   if (AM.isRIPRelative()) {
987     // FIXME: JumpTable and ExternalSymbol address currently don't like
988     // displacements.  It isn't very important, but this should be fixed for
989     // consistency.
990     if (!AM.ES && AM.JT != -1) return true;
991
992     if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
993       if (!FoldOffsetIntoAddress(Cst->getSExtValue(), AM))
994         return false;
995     return true;
996   }
997
998   switch (N.getOpcode()) {
999   default: break;
1000   case ISD::Constant: {
1001     uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
1002     if (!FoldOffsetIntoAddress(Val, AM))
1003       return false;
1004     break;
1005   }
1006
1007   case X86ISD::Wrapper:
1008   case X86ISD::WrapperRIP:
1009     if (!MatchWrapper(N, AM))
1010       return false;
1011     break;
1012
1013   case ISD::LOAD:
1014     if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM))
1015       return false;
1016     break;
1017
1018   case ISD::FrameIndex:
1019     if (AM.BaseType == X86ISelAddressMode::RegBase &&
1020         AM.Base_Reg.getNode() == nullptr &&
1021         (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
1022       AM.BaseType = X86ISelAddressMode::FrameIndexBase;
1023       AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
1024       return false;
1025     }
1026     break;
1027
1028   case ISD::SHL:
1029     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
1030       break;
1031
1032     if (ConstantSDNode
1033           *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
1034       unsigned Val = CN->getZExtValue();
1035       // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
1036       // that the base operand remains free for further matching. If
1037       // the base doesn't end up getting used, a post-processing step
1038       // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
1039       if (Val == 1 || Val == 2 || Val == 3) {
1040         AM.Scale = 1 << Val;
1041         SDValue ShVal = N.getNode()->getOperand(0);
1042
1043         // Okay, we know that we have a scale by now.  However, if the scaled
1044         // value is an add of something and a constant, we can fold the
1045         // constant into the disp field here.
1046         if (CurDAG->isBaseWithConstantOffset(ShVal)) {
1047           AM.IndexReg = ShVal.getNode()->getOperand(0);
1048           ConstantSDNode *AddVal =
1049             cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
1050           uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val;
1051           if (!FoldOffsetIntoAddress(Disp, AM))
1052             return false;
1053         }
1054
1055         AM.IndexReg = ShVal;
1056         return false;
1057       }
1058     }
1059     break;
1060
1061   case ISD::SRL: {
1062     // Scale must not be used already.
1063     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
1064
1065     SDValue And = N.getOperand(0);
1066     if (And.getOpcode() != ISD::AND) break;
1067     SDValue X = And.getOperand(0);
1068
1069     // We only handle up to 64-bit values here as those are what matter for
1070     // addressing mode optimizations.
1071     if (X.getSimpleValueType().getSizeInBits() > 64) break;
1072
1073     // The mask used for the transform is expected to be post-shift, but we
1074     // found the shift first so just apply the shift to the mask before passing
1075     // it down.
1076     if (!isa<ConstantSDNode>(N.getOperand(1)) ||
1077         !isa<ConstantSDNode>(And.getOperand(1)))
1078       break;
1079     uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
1080
1081     // Try to fold the mask and shift into the scale, and return false if we
1082     // succeed.
1083     if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
1084       return false;
1085     break;
1086   }
1087
1088   case ISD::SMUL_LOHI:
1089   case ISD::UMUL_LOHI:
1090     // A mul_lohi where we need the low part can be folded as a plain multiply.
1091     if (N.getResNo() != 0) break;
1092     // FALL THROUGH
1093   case ISD::MUL:
1094   case X86ISD::MUL_IMM:
1095     // X*[3,5,9] -> X+X*[2,4,8]
1096     if (AM.BaseType == X86ISelAddressMode::RegBase &&
1097         AM.Base_Reg.getNode() == nullptr &&
1098         AM.IndexReg.getNode() == nullptr) {
1099       if (ConstantSDNode
1100             *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
1101         if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
1102             CN->getZExtValue() == 9) {
1103           AM.Scale = unsigned(CN->getZExtValue())-1;
1104
1105           SDValue MulVal = N.getNode()->getOperand(0);
1106           SDValue Reg;
1107
1108           // Okay, we know that we have a scale by now.  However, if the scaled
1109           // value is an add of something and a constant, we can fold the
1110           // constant into the disp field here.
1111           if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
1112               isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
1113             Reg = MulVal.getNode()->getOperand(0);
1114             ConstantSDNode *AddVal =
1115               cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
1116             uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
1117             if (FoldOffsetIntoAddress(Disp, AM))
1118               Reg = N.getNode()->getOperand(0);
1119           } else {
1120             Reg = N.getNode()->getOperand(0);
1121           }
1122
1123           AM.IndexReg = AM.Base_Reg = Reg;
1124           return false;
1125         }
1126     }
1127     break;
1128
1129   case ISD::SUB: {
1130     // Given A-B, if A can be completely folded into the address and
1131     // the index field with the index field unused, use -B as the index.
1132     // This is a win if a has multiple parts that can be folded into
1133     // the address. Also, this saves a mov if the base register has
1134     // other uses, since it avoids a two-address sub instruction, however
1135     // it costs an additional mov if the index register has other uses.
1136
1137     // Add an artificial use to this node so that we can keep track of
1138     // it if it gets CSE'd with a different node.
1139     HandleSDNode Handle(N);
1140
1141     // Test if the LHS of the sub can be folded.
1142     X86ISelAddressMode Backup = AM;
1143     if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
1144       AM = Backup;
1145       break;
1146     }
1147     // Test if the index field is free for use.
1148     if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
1149       AM = Backup;
1150       break;
1151     }
1152
1153     int Cost = 0;
1154     SDValue RHS = Handle.getValue().getNode()->getOperand(1);
1155     // If the RHS involves a register with multiple uses, this
1156     // transformation incurs an extra mov, due to the neg instruction
1157     // clobbering its operand.
1158     if (!RHS.getNode()->hasOneUse() ||
1159         RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
1160         RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
1161         RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
1162         (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
1163          RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
1164       ++Cost;
1165     // If the base is a register with multiple uses, this
1166     // transformation may save a mov.
1167     if ((AM.BaseType == X86ISelAddressMode::RegBase &&
1168          AM.Base_Reg.getNode() &&
1169          !AM.Base_Reg.getNode()->hasOneUse()) ||
1170         AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1171       --Cost;
1172     // If the folded LHS was interesting, this transformation saves
1173     // address arithmetic.
1174     if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
1175         ((AM.Disp != 0) && (Backup.Disp == 0)) +
1176         (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
1177       --Cost;
1178     // If it doesn't look like it may be an overall win, don't do it.
1179     if (Cost >= 0) {
1180       AM = Backup;
1181       break;
1182     }
1183
1184     // Ok, the transformation is legal and appears profitable. Go for it.
1185     SDValue Zero = CurDAG->getConstant(0, N.getValueType());
1186     SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
1187     AM.IndexReg = Neg;
1188     AM.Scale = 1;
1189
1190     // Insert the new nodes into the topological ordering.
1191     InsertDAGNode(*CurDAG, N, Zero);
1192     InsertDAGNode(*CurDAG, N, Neg);
1193     return false;
1194   }
1195
1196   case ISD::ADD: {
1197     // Add an artificial use to this node so that we can keep track of
1198     // it if it gets CSE'd with a different node.
1199     HandleSDNode Handle(N);
1200
1201     X86ISelAddressMode Backup = AM;
1202     if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1203         !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
1204       return false;
1205     AM = Backup;
1206
1207     // Try again after commuting the operands.
1208     if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&&
1209         !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
1210       return false;
1211     AM = Backup;
1212
1213     // If we couldn't fold both operands into the address at the same time,
1214     // see if we can just put each operand into a register and fold at least
1215     // the add.
1216     if (AM.BaseType == X86ISelAddressMode::RegBase &&
1217         !AM.Base_Reg.getNode() &&
1218         !AM.IndexReg.getNode()) {
1219       N = Handle.getValue();
1220       AM.Base_Reg = N.getOperand(0);
1221       AM.IndexReg = N.getOperand(1);
1222       AM.Scale = 1;
1223       return false;
1224     }
1225     N = Handle.getValue();
1226     break;
1227   }
1228
1229   case ISD::OR:
1230     // Handle "X | C" as "X + C" iff X is known to have C bits clear.
1231     if (CurDAG->isBaseWithConstantOffset(N)) {
1232       X86ISelAddressMode Backup = AM;
1233       ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
1234
1235       // Start with the LHS as an addr mode.
1236       if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1237           !FoldOffsetIntoAddress(CN->getSExtValue(), AM))
1238         return false;
1239       AM = Backup;
1240     }
1241     break;
1242
1243   case ISD::AND: {
1244     // Perform some heroic transforms on an and of a constant-count shift
1245     // with a constant to enable use of the scaled offset field.
1246
1247     // Scale must not be used already.
1248     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
1249
1250     SDValue Shift = N.getOperand(0);
1251     if (Shift.getOpcode() != ISD::SRL && Shift.getOpcode() != ISD::SHL) break;
1252     SDValue X = Shift.getOperand(0);
1253
1254     // We only handle up to 64-bit values here as those are what matter for
1255     // addressing mode optimizations.
1256     if (X.getSimpleValueType().getSizeInBits() > 64) break;
1257
1258     if (!isa<ConstantSDNode>(N.getOperand(1)))
1259       break;
1260     uint64_t Mask = N.getConstantOperandVal(1);
1261
1262     // Try to fold the mask and shift into an extract and scale.
1263     if (!FoldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
1264       return false;
1265
1266     // Try to fold the mask and shift directly into the scale.
1267     if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
1268       return false;
1269
1270     // Try to swap the mask and shift to place shifts which can be done as
1271     // a scale on the outside of the mask.
1272     if (!FoldMaskedShiftToScaledMask(*CurDAG, N, Mask, Shift, X, AM))
1273       return false;
1274     break;
1275   }
1276   }
1277
1278   return MatchAddressBase(N, AM);
1279 }
1280
1281 /// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1282 /// specified addressing mode without any further recursion.
1283 bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1284   // Is the base register already occupied?
1285   if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
1286     // If so, check to see if the scale index register is set.
1287     if (!AM.IndexReg.getNode()) {
1288       AM.IndexReg = N;
1289       AM.Scale = 1;
1290       return false;
1291     }
1292
1293     // Otherwise, we cannot select it.
1294     return true;
1295   }
1296
1297   // Default, generate it as a register.
1298   AM.BaseType = X86ISelAddressMode::RegBase;
1299   AM.Base_Reg = N;
1300   return false;
1301 }
1302
1303 /// SelectAddr - returns true if it is able pattern match an addressing mode.
1304 /// It returns the operands which make up the maximal addressing mode it can
1305 /// match by reference.
1306 ///
1307 /// Parent is the parent node of the addr operand that is being matched.  It
1308 /// is always a load, store, atomic node, or null.  It is only null when
1309 /// checking memory operands for inline asm nodes.
1310 bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
1311                                  SDValue &Scale, SDValue &Index,
1312                                  SDValue &Disp, SDValue &Segment) {
1313   X86ISelAddressMode AM;
1314
1315   if (Parent &&
1316       // This list of opcodes are all the nodes that have an "addr:$ptr" operand
1317       // that are not a MemSDNode, and thus don't have proper addrspace info.
1318       Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
1319       Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
1320       Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
1321       Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
1322       Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
1323     unsigned AddrSpace =
1324       cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
1325     // AddrSpace 256 -> GS, 257 -> FS.
1326     if (AddrSpace == 256)
1327       AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1328     if (AddrSpace == 257)
1329       AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1330   }
1331
1332   if (MatchAddress(N, AM))
1333     return false;
1334
1335   MVT VT = N.getSimpleValueType();
1336   if (AM.BaseType == X86ISelAddressMode::RegBase) {
1337     if (!AM.Base_Reg.getNode())
1338       AM.Base_Reg = CurDAG->getRegister(0, VT);
1339   }
1340
1341   if (!AM.IndexReg.getNode())
1342     AM.IndexReg = CurDAG->getRegister(0, VT);
1343
1344   getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1345   return true;
1346 }
1347
1348 /// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
1349 /// match a load whose top elements are either undef or zeros.  The load flavor
1350 /// is derived from the type of N, which is either v4f32 or v2f64.
1351 ///
1352 /// We also return:
1353 ///   PatternChainNode: this is the matched node that has a chain input and
1354 ///   output.
1355 bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
1356                                           SDValue N, SDValue &Base,
1357                                           SDValue &Scale, SDValue &Index,
1358                                           SDValue &Disp, SDValue &Segment,
1359                                           SDValue &PatternNodeWithChain) {
1360   if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1361     PatternNodeWithChain = N.getOperand(0);
1362     if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
1363         PatternNodeWithChain.hasOneUse() &&
1364         IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1365         IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1366       LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
1367       if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1368         return false;
1369       return true;
1370     }
1371   }
1372
1373   // Also handle the case where we explicitly require zeros in the top
1374   // elements.  This is a vector shuffle from the zero vector.
1375   if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1376       // Check to see if the top elements are all zeros (or bitcast of zeros).
1377       N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1378       N.getOperand(0).getNode()->hasOneUse() &&
1379       ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1380       N.getOperand(0).getOperand(0).hasOneUse() &&
1381       IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1382       IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1383     // Okay, this is a zero extending load.  Fold it.
1384     LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1385     if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1386       return false;
1387     PatternNodeWithChain = SDValue(LD, 0);
1388     return true;
1389   }
1390   return false;
1391 }
1392
1393
1394 bool X86DAGToDAGISel::SelectMOV64Imm32(SDValue N, SDValue &Imm) {
1395   if (const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1396     uint64_t ImmVal = CN->getZExtValue();
1397     if ((uint32_t)ImmVal != (uint64_t)ImmVal)
1398       return false;
1399
1400     Imm = CurDAG->getTargetConstant(ImmVal, MVT::i64);
1401     return true;
1402   }
1403
1404   // In static codegen with small code model, we can get the address of a label
1405   // into a register with 'movl'. TableGen has already made sure we're looking
1406   // at a label of some kind.
1407   assert(N->getOpcode() == X86ISD::Wrapper &&
1408          "Unexpected node type for MOV32ri64");
1409   N = N.getOperand(0);
1410
1411   if (N->getOpcode() != ISD::TargetConstantPool &&
1412       N->getOpcode() != ISD::TargetJumpTable &&
1413       N->getOpcode() != ISD::TargetGlobalAddress &&
1414       N->getOpcode() != ISD::TargetExternalSymbol &&
1415       N->getOpcode() != ISD::TargetBlockAddress)
1416     return false;
1417
1418   Imm = N;
1419   return TM.getCodeModel() == CodeModel::Small;
1420 }
1421
1422 bool X86DAGToDAGISel::SelectLEA64_32Addr(SDValue N, SDValue &Base,
1423                                          SDValue &Scale, SDValue &Index,
1424                                          SDValue &Disp, SDValue &Segment) {
1425   if (!SelectLEAAddr(N, Base, Scale, Index, Disp, Segment))
1426     return false;
1427
1428   SDLoc DL(N);
1429   RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Base);
1430   if (RN && RN->getReg() == 0)
1431     Base = CurDAG->getRegister(0, MVT::i64);
1432   else if (Base.getValueType() == MVT::i32 && !dyn_cast<FrameIndexSDNode>(N)) {
1433     // Base could already be %rip, particularly in the x32 ABI.
1434     Base = SDValue(CurDAG->getMachineNode(
1435                        TargetOpcode::SUBREG_TO_REG, DL, MVT::i64,
1436                        CurDAG->getTargetConstant(0, MVT::i64),
1437                        Base,
1438                        CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
1439                    0);
1440   }
1441
1442   RN = dyn_cast<RegisterSDNode>(Index);
1443   if (RN && RN->getReg() == 0)
1444     Index = CurDAG->getRegister(0, MVT::i64);
1445   else {
1446     assert(Index.getValueType() == MVT::i32 &&
1447            "Expect to be extending 32-bit registers for use in LEA");
1448     Index = SDValue(CurDAG->getMachineNode(
1449                         TargetOpcode::SUBREG_TO_REG, DL, MVT::i64,
1450                         CurDAG->getTargetConstant(0, MVT::i64),
1451                         Index,
1452                         CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
1453                     0);
1454   }
1455
1456   return true;
1457 }
1458
1459 /// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1460 /// mode it matches can be cost effectively emitted as an LEA instruction.
1461 bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
1462                                     SDValue &Base, SDValue &Scale,
1463                                     SDValue &Index, SDValue &Disp,
1464                                     SDValue &Segment) {
1465   X86ISelAddressMode AM;
1466
1467   // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1468   // segments.
1469   SDValue Copy = AM.Segment;
1470   SDValue T = CurDAG->getRegister(0, MVT::i32);
1471   AM.Segment = T;
1472   if (MatchAddress(N, AM))
1473     return false;
1474   assert (T == AM.Segment);
1475   AM.Segment = Copy;
1476
1477   MVT VT = N.getSimpleValueType();
1478   unsigned Complexity = 0;
1479   if (AM.BaseType == X86ISelAddressMode::RegBase)
1480     if (AM.Base_Reg.getNode())
1481       Complexity = 1;
1482     else
1483       AM.Base_Reg = CurDAG->getRegister(0, VT);
1484   else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1485     Complexity = 4;
1486
1487   if (AM.IndexReg.getNode())
1488     Complexity++;
1489   else
1490     AM.IndexReg = CurDAG->getRegister(0, VT);
1491
1492   // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1493   // a simple shift.
1494   if (AM.Scale > 1)
1495     Complexity++;
1496
1497   // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1498   // to a LEA. This is determined with some expermentation but is by no means
1499   // optimal (especially for code size consideration). LEA is nice because of
1500   // its three-address nature. Tweak the cost function again when we can run
1501   // convertToThreeAddress() at register allocation time.
1502   if (AM.hasSymbolicDisplacement()) {
1503     // For X86-64, we should always use lea to materialize RIP relative
1504     // addresses.
1505     if (Subtarget->is64Bit())
1506       Complexity = 4;
1507     else
1508       Complexity += 2;
1509   }
1510
1511   if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
1512     Complexity++;
1513
1514   // If it isn't worth using an LEA, reject it.
1515   if (Complexity <= 2)
1516     return false;
1517
1518   getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1519   return true;
1520 }
1521
1522 /// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
1523 bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base,
1524                                         SDValue &Scale, SDValue &Index,
1525                                         SDValue &Disp, SDValue &Segment) {
1526   assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1527   const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1528
1529   X86ISelAddressMode AM;
1530   AM.GV = GA->getGlobal();
1531   AM.Disp += GA->getOffset();
1532   AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
1533   AM.SymbolFlags = GA->getTargetFlags();
1534
1535   if (N.getValueType() == MVT::i32) {
1536     AM.Scale = 1;
1537     AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1538   } else {
1539     AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1540   }
1541
1542   getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1543   return true;
1544 }
1545
1546
1547 bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
1548                                   SDValue &Base, SDValue &Scale,
1549                                   SDValue &Index, SDValue &Disp,
1550                                   SDValue &Segment) {
1551   if (!ISD::isNON_EXTLoad(N.getNode()) ||
1552       !IsProfitableToFold(N, P, P) ||
1553       !IsLegalToFold(N, P, P, OptLevel))
1554     return false;
1555
1556   return SelectAddr(N.getNode(),
1557                     N.getOperand(1), Base, Scale, Index, Disp, Segment);
1558 }
1559
1560 /// getGlobalBaseReg - Return an SDNode that returns the value of
1561 /// the global base register. Output instructions required to
1562 /// initialize the global base register, if necessary.
1563 ///
1564 SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1565   unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1566   return CurDAG->getRegister(GlobalBaseReg,
1567                              getTargetLowering()->getPointerTy()).getNode();
1568 }
1569
1570 SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1571   SDValue Chain = Node->getOperand(0);
1572   SDValue In1 = Node->getOperand(1);
1573   SDValue In2L = Node->getOperand(2);
1574   SDValue In2H = Node->getOperand(3);
1575
1576   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1577   if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1578     return nullptr;
1579   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1580   MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1581   const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
1582   SDNode *ResNode = CurDAG->getMachineNode(Opc, SDLoc(Node),
1583                                            MVT::i32, MVT::i32, MVT::Other, Ops);
1584   cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
1585   return ResNode;
1586 }
1587
1588 /// Atomic opcode table
1589 ///
1590 enum AtomicOpc {
1591   ADD,
1592   SUB,
1593   INC,
1594   DEC,
1595   OR,
1596   AND,
1597   XOR,
1598   AtomicOpcEnd
1599 };
1600
1601 enum AtomicSz {
1602   ConstantI8,
1603   I8,
1604   SextConstantI16,
1605   ConstantI16,
1606   I16,
1607   SextConstantI32,
1608   ConstantI32,
1609   I32,
1610   SextConstantI64,
1611   ConstantI64,
1612   I64,
1613   AtomicSzEnd
1614 };
1615
1616 static const uint16_t AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = {
1617   {
1618     X86::LOCK_ADD8mi,
1619     X86::LOCK_ADD8mr,
1620     X86::LOCK_ADD16mi8,
1621     X86::LOCK_ADD16mi,
1622     X86::LOCK_ADD16mr,
1623     X86::LOCK_ADD32mi8,
1624     X86::LOCK_ADD32mi,
1625     X86::LOCK_ADD32mr,
1626     X86::LOCK_ADD64mi8,
1627     X86::LOCK_ADD64mi32,
1628     X86::LOCK_ADD64mr,
1629   },
1630   {
1631     X86::LOCK_SUB8mi,
1632     X86::LOCK_SUB8mr,
1633     X86::LOCK_SUB16mi8,
1634     X86::LOCK_SUB16mi,
1635     X86::LOCK_SUB16mr,
1636     X86::LOCK_SUB32mi8,
1637     X86::LOCK_SUB32mi,
1638     X86::LOCK_SUB32mr,
1639     X86::LOCK_SUB64mi8,
1640     X86::LOCK_SUB64mi32,
1641     X86::LOCK_SUB64mr,
1642   },
1643   {
1644     0,
1645     X86::LOCK_INC8m,
1646     0,
1647     0,
1648     X86::LOCK_INC16m,
1649     0,
1650     0,
1651     X86::LOCK_INC32m,
1652     0,
1653     0,
1654     X86::LOCK_INC64m,
1655   },
1656   {
1657     0,
1658     X86::LOCK_DEC8m,
1659     0,
1660     0,
1661     X86::LOCK_DEC16m,
1662     0,
1663     0,
1664     X86::LOCK_DEC32m,
1665     0,
1666     0,
1667     X86::LOCK_DEC64m,
1668   },
1669   {
1670     X86::LOCK_OR8mi,
1671     X86::LOCK_OR8mr,
1672     X86::LOCK_OR16mi8,
1673     X86::LOCK_OR16mi,
1674     X86::LOCK_OR16mr,
1675     X86::LOCK_OR32mi8,
1676     X86::LOCK_OR32mi,
1677     X86::LOCK_OR32mr,
1678     X86::LOCK_OR64mi8,
1679     X86::LOCK_OR64mi32,
1680     X86::LOCK_OR64mr,
1681   },
1682   {
1683     X86::LOCK_AND8mi,
1684     X86::LOCK_AND8mr,
1685     X86::LOCK_AND16mi8,
1686     X86::LOCK_AND16mi,
1687     X86::LOCK_AND16mr,
1688     X86::LOCK_AND32mi8,
1689     X86::LOCK_AND32mi,
1690     X86::LOCK_AND32mr,
1691     X86::LOCK_AND64mi8,
1692     X86::LOCK_AND64mi32,
1693     X86::LOCK_AND64mr,
1694   },
1695   {
1696     X86::LOCK_XOR8mi,
1697     X86::LOCK_XOR8mr,
1698     X86::LOCK_XOR16mi8,
1699     X86::LOCK_XOR16mi,
1700     X86::LOCK_XOR16mr,
1701     X86::LOCK_XOR32mi8,
1702     X86::LOCK_XOR32mi,
1703     X86::LOCK_XOR32mr,
1704     X86::LOCK_XOR64mi8,
1705     X86::LOCK_XOR64mi32,
1706     X86::LOCK_XOR64mr,
1707   }
1708 };
1709
1710 // Return the target constant operand for atomic-load-op and do simple
1711 // translations, such as from atomic-load-add to lock-sub. The return value is
1712 // one of the following 3 cases:
1713 // + target-constant, the operand could be supported as a target constant.
1714 // + empty, the operand is not needed any more with the new op selected.
1715 // + non-empty, otherwise.
1716 static SDValue getAtomicLoadArithTargetConstant(SelectionDAG *CurDAG,
1717                                                 SDLoc dl,
1718                                                 enum AtomicOpc &Op, MVT NVT,
1719                                                 SDValue Val) {
1720   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val)) {
1721     int64_t CNVal = CN->getSExtValue();
1722     // Quit if not 32-bit imm.
1723     if ((int32_t)CNVal != CNVal)
1724       return Val;
1725     // For atomic-load-add, we could do some optimizations.
1726     if (Op == ADD) {
1727       // Translate to INC/DEC if ADD by 1 or -1.
1728       if ((CNVal == 1) || (CNVal == -1)) {
1729         Op = (CNVal == 1) ? INC : DEC;
1730         // No more constant operand after being translated into INC/DEC.
1731         return SDValue();
1732       }
1733       // Translate to SUB if ADD by negative value.
1734       if (CNVal < 0) {
1735         Op = SUB;
1736         CNVal = -CNVal;
1737       }
1738     }
1739     return CurDAG->getTargetConstant(CNVal, NVT);
1740   }
1741
1742   // If the value operand is single-used, try to optimize it.
1743   if (Op == ADD && Val.hasOneUse()) {
1744     // Translate (atomic-load-add ptr (sub 0 x)) back to (lock-sub x).
1745     if (Val.getOpcode() == ISD::SUB && X86::isZeroNode(Val.getOperand(0))) {
1746       Op = SUB;
1747       return Val.getOperand(1);
1748     }
1749     // A special case for i16, which needs truncating as, in most cases, it's
1750     // promoted to i32. We will translate
1751     // (atomic-load-add (truncate (sub 0 x))) to (lock-sub (EXTRACT_SUBREG x))
1752     if (Val.getOpcode() == ISD::TRUNCATE && NVT == MVT::i16 &&
1753         Val.getOperand(0).getOpcode() == ISD::SUB &&
1754         X86::isZeroNode(Val.getOperand(0).getOperand(0))) {
1755       Op = SUB;
1756       Val = Val.getOperand(0);
1757       return CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, NVT,
1758                                             Val.getOperand(1));
1759     }
1760   }
1761
1762   return Val;
1763 }
1764
1765 SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, MVT NVT) {
1766   if (Node->hasAnyUseOfValue(0))
1767     return nullptr;
1768
1769   SDLoc dl(Node);
1770
1771   // Optimize common patterns for __sync_or_and_fetch and similar arith
1772   // operations where the result is not used. This allows us to use the "lock"
1773   // version of the arithmetic instruction.
1774   SDValue Chain = Node->getOperand(0);
1775   SDValue Ptr = Node->getOperand(1);
1776   SDValue Val = Node->getOperand(2);
1777   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1778   if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1779     return nullptr;
1780
1781   // Which index into the table.
1782   enum AtomicOpc Op;
1783   switch (Node->getOpcode()) {
1784     default:
1785       return nullptr;
1786     case ISD::ATOMIC_LOAD_OR:
1787       Op = OR;
1788       break;
1789     case ISD::ATOMIC_LOAD_AND:
1790       Op = AND;
1791       break;
1792     case ISD::ATOMIC_LOAD_XOR:
1793       Op = XOR;
1794       break;
1795     case ISD::ATOMIC_LOAD_ADD:
1796       Op = ADD;
1797       break;
1798   }
1799
1800   Val = getAtomicLoadArithTargetConstant(CurDAG, dl, Op, NVT, Val);
1801   bool isUnOp = !Val.getNode();
1802   bool isCN = Val.getNode() && (Val.getOpcode() == ISD::TargetConstant);
1803
1804   unsigned Opc = 0;
1805   switch (NVT.SimpleTy) {
1806     default: return nullptr;
1807     case MVT::i8:
1808       if (isCN)
1809         Opc = AtomicOpcTbl[Op][ConstantI8];
1810       else
1811         Opc = AtomicOpcTbl[Op][I8];
1812       break;
1813     case MVT::i16:
1814       if (isCN) {
1815         if (immSext8(Val.getNode()))
1816           Opc = AtomicOpcTbl[Op][SextConstantI16];
1817         else
1818           Opc = AtomicOpcTbl[Op][ConstantI16];
1819       } else
1820         Opc = AtomicOpcTbl[Op][I16];
1821       break;
1822     case MVT::i32:
1823       if (isCN) {
1824         if (immSext8(Val.getNode()))
1825           Opc = AtomicOpcTbl[Op][SextConstantI32];
1826         else
1827           Opc = AtomicOpcTbl[Op][ConstantI32];
1828       } else
1829         Opc = AtomicOpcTbl[Op][I32];
1830       break;
1831     case MVT::i64:
1832       Opc = AtomicOpcTbl[Op][I64];
1833       if (isCN) {
1834         if (immSext8(Val.getNode()))
1835           Opc = AtomicOpcTbl[Op][SextConstantI64];
1836         else if (i64immSExt32(Val.getNode()))
1837           Opc = AtomicOpcTbl[Op][ConstantI64];
1838       }
1839       break;
1840   }
1841
1842   assert(Opc != 0 && "Invalid arith lock transform!");
1843
1844   SDValue Ret;
1845   SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1846                                                  dl, NVT), 0);
1847   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1848   MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1849   if (isUnOp) {
1850     SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
1851     Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0);
1852   } else {
1853     SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1854     Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0);
1855   }
1856   cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1857   SDValue RetVals[] = { Undef, Ret };
1858   return CurDAG->getMergeValues(RetVals, dl).getNode();
1859 }
1860
1861 /// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
1862 /// any uses which require the SF or OF bits to be accurate.
1863 static bool HasNoSignedComparisonUses(SDNode *N) {
1864   // Examine each user of the node.
1865   for (SDNode::use_iterator UI = N->use_begin(),
1866          UE = N->use_end(); UI != UE; ++UI) {
1867     // Only examine CopyToReg uses.
1868     if (UI->getOpcode() != ISD::CopyToReg)
1869       return false;
1870     // Only examine CopyToReg uses that copy to EFLAGS.
1871     if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
1872           X86::EFLAGS)
1873       return false;
1874     // Examine each user of the CopyToReg use.
1875     for (SDNode::use_iterator FlagUI = UI->use_begin(),
1876            FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
1877       // Only examine the Flag result.
1878       if (FlagUI.getUse().getResNo() != 1) continue;
1879       // Anything unusual: assume conservatively.
1880       if (!FlagUI->isMachineOpcode()) return false;
1881       // Examine the opcode of the user.
1882       switch (FlagUI->getMachineOpcode()) {
1883       // These comparisons don't treat the most significant bit specially.
1884       case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
1885       case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
1886       case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
1887       case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
1888       case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
1889       case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
1890       case X86::CMOVA16rr: case X86::CMOVA16rm:
1891       case X86::CMOVA32rr: case X86::CMOVA32rm:
1892       case X86::CMOVA64rr: case X86::CMOVA64rm:
1893       case X86::CMOVAE16rr: case X86::CMOVAE16rm:
1894       case X86::CMOVAE32rr: case X86::CMOVAE32rm:
1895       case X86::CMOVAE64rr: case X86::CMOVAE64rm:
1896       case X86::CMOVB16rr: case X86::CMOVB16rm:
1897       case X86::CMOVB32rr: case X86::CMOVB32rm:
1898       case X86::CMOVB64rr: case X86::CMOVB64rm:
1899       case X86::CMOVBE16rr: case X86::CMOVBE16rm:
1900       case X86::CMOVBE32rr: case X86::CMOVBE32rm:
1901       case X86::CMOVBE64rr: case X86::CMOVBE64rm:
1902       case X86::CMOVE16rr: case X86::CMOVE16rm:
1903       case X86::CMOVE32rr: case X86::CMOVE32rm:
1904       case X86::CMOVE64rr: case X86::CMOVE64rm:
1905       case X86::CMOVNE16rr: case X86::CMOVNE16rm:
1906       case X86::CMOVNE32rr: case X86::CMOVNE32rm:
1907       case X86::CMOVNE64rr: case X86::CMOVNE64rm:
1908       case X86::CMOVNP16rr: case X86::CMOVNP16rm:
1909       case X86::CMOVNP32rr: case X86::CMOVNP32rm:
1910       case X86::CMOVNP64rr: case X86::CMOVNP64rm:
1911       case X86::CMOVP16rr: case X86::CMOVP16rm:
1912       case X86::CMOVP32rr: case X86::CMOVP32rm:
1913       case X86::CMOVP64rr: case X86::CMOVP64rm:
1914         continue;
1915       // Anything else: assume conservatively.
1916       default: return false;
1917       }
1918     }
1919   }
1920   return true;
1921 }
1922
1923 /// isLoadIncOrDecStore - Check whether or not the chain ending in StoreNode
1924 /// is suitable for doing the {load; increment or decrement; store} to modify
1925 /// transformation.
1926 static bool isLoadIncOrDecStore(StoreSDNode *StoreNode, unsigned Opc,
1927                                 SDValue StoredVal, SelectionDAG *CurDAG,
1928                                 LoadSDNode* &LoadNode, SDValue &InputChain) {
1929
1930   // is the value stored the result of a DEC or INC?
1931   if (!(Opc == X86ISD::DEC || Opc == X86ISD::INC)) return false;
1932
1933   // is the stored value result 0 of the load?
1934   if (StoredVal.getResNo() != 0) return false;
1935
1936   // are there other uses of the loaded value than the inc or dec?
1937   if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
1938
1939   // is the store non-extending and non-indexed?
1940   if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
1941     return false;
1942
1943   SDValue Load = StoredVal->getOperand(0);
1944   // Is the stored value a non-extending and non-indexed load?
1945   if (!ISD::isNormalLoad(Load.getNode())) return false;
1946
1947   // Return LoadNode by reference.
1948   LoadNode = cast<LoadSDNode>(Load);
1949   // is the size of the value one that we can handle? (i.e. 64, 32, 16, or 8)
1950   EVT LdVT = LoadNode->getMemoryVT();
1951   if (LdVT != MVT::i64 && LdVT != MVT::i32 && LdVT != MVT::i16 &&
1952       LdVT != MVT::i8)
1953     return false;
1954
1955   // Is store the only read of the loaded value?
1956   if (!Load.hasOneUse())
1957     return false;
1958
1959   // Is the address of the store the same as the load?
1960   if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
1961       LoadNode->getOffset() != StoreNode->getOffset())
1962     return false;
1963
1964   // Check if the chain is produced by the load or is a TokenFactor with
1965   // the load output chain as an operand. Return InputChain by reference.
1966   SDValue Chain = StoreNode->getChain();
1967
1968   bool ChainCheck = false;
1969   if (Chain == Load.getValue(1)) {
1970     ChainCheck = true;
1971     InputChain = LoadNode->getChain();
1972   } else if (Chain.getOpcode() == ISD::TokenFactor) {
1973     SmallVector<SDValue, 4> ChainOps;
1974     for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
1975       SDValue Op = Chain.getOperand(i);
1976       if (Op == Load.getValue(1)) {
1977         ChainCheck = true;
1978         continue;
1979       }
1980
1981       // Make sure using Op as part of the chain would not cause a cycle here.
1982       // In theory, we could check whether the chain node is a predecessor of
1983       // the load. But that can be very expensive. Instead visit the uses and
1984       // make sure they all have smaller node id than the load.
1985       int LoadId = LoadNode->getNodeId();
1986       for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
1987              UE = UI->use_end(); UI != UE; ++UI) {
1988         if (UI.getUse().getResNo() != 0)
1989           continue;
1990         if (UI->getNodeId() > LoadId)
1991           return false;
1992       }
1993
1994       ChainOps.push_back(Op);
1995     }
1996
1997     if (ChainCheck)
1998       // Make a new TokenFactor with all the other input chains except
1999       // for the load.
2000       InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain),
2001                                    MVT::Other, ChainOps);
2002   }
2003   if (!ChainCheck)
2004     return false;
2005
2006   return true;
2007 }
2008
2009 /// getFusedLdStOpcode - Get the appropriate X86 opcode for an in memory
2010 /// increment or decrement. Opc should be X86ISD::DEC or X86ISD::INC.
2011 static unsigned getFusedLdStOpcode(EVT &LdVT, unsigned Opc) {
2012   if (Opc == X86ISD::DEC) {
2013     if (LdVT == MVT::i64) return X86::DEC64m;
2014     if (LdVT == MVT::i32) return X86::DEC32m;
2015     if (LdVT == MVT::i16) return X86::DEC16m;
2016     if (LdVT == MVT::i8)  return X86::DEC8m;
2017   } else {
2018     assert(Opc == X86ISD::INC && "unrecognized opcode");
2019     if (LdVT == MVT::i64) return X86::INC64m;
2020     if (LdVT == MVT::i32) return X86::INC32m;
2021     if (LdVT == MVT::i16) return X86::INC16m;
2022     if (LdVT == MVT::i8)  return X86::INC8m;
2023   }
2024   llvm_unreachable("unrecognized size for LdVT");
2025 }
2026
2027 /// SelectGather - Customized ISel for GATHER operations.
2028 ///
2029 SDNode *X86DAGToDAGISel::SelectGather(SDNode *Node, unsigned Opc) {
2030   // Operands of Gather: VSrc, Base, VIdx, VMask, Scale
2031   SDValue Chain = Node->getOperand(0);
2032   SDValue VSrc = Node->getOperand(2);
2033   SDValue Base = Node->getOperand(3);
2034   SDValue VIdx = Node->getOperand(4);
2035   SDValue VMask = Node->getOperand(5);
2036   ConstantSDNode *Scale = dyn_cast<ConstantSDNode>(Node->getOperand(6));
2037   if (!Scale)
2038     return nullptr;
2039
2040   SDVTList VTs = CurDAG->getVTList(VSrc.getValueType(), VSrc.getValueType(),
2041                                    MVT::Other);
2042
2043   // Memory Operands: Base, Scale, Index, Disp, Segment
2044   SDValue Disp = CurDAG->getTargetConstant(0, MVT::i32);
2045   SDValue Segment = CurDAG->getRegister(0, MVT::i32);
2046   const SDValue Ops[] = { VSrc, Base, getI8Imm(Scale->getSExtValue()), VIdx,
2047                           Disp, Segment, VMask, Chain};
2048   SDNode *ResNode = CurDAG->getMachineNode(Opc, SDLoc(Node), VTs, Ops);
2049   // Node has 2 outputs: VDst and MVT::Other.
2050   // ResNode has 3 outputs: VDst, VMask_wb, and MVT::Other.
2051   // We replace VDst of Node with VDst of ResNode, and Other of Node with Other
2052   // of ResNode.
2053   ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0));
2054   ReplaceUses(SDValue(Node, 1), SDValue(ResNode, 2));
2055   return ResNode;
2056 }
2057
2058 SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
2059   MVT NVT = Node->getSimpleValueType(0);
2060   unsigned Opc, MOpc;
2061   unsigned Opcode = Node->getOpcode();
2062   SDLoc dl(Node);
2063
2064   DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
2065
2066   if (Node->isMachineOpcode()) {
2067     DEBUG(dbgs() << "== ";  Node->dump(CurDAG); dbgs() << '\n');
2068     Node->setNodeId(-1);
2069     return nullptr;   // Already selected.
2070   }
2071
2072   switch (Opcode) {
2073   default: break;
2074   case ISD::INTRINSIC_W_CHAIN: {
2075     unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
2076     switch (IntNo) {
2077     default: break;
2078     case Intrinsic::x86_avx2_gather_d_pd:
2079     case Intrinsic::x86_avx2_gather_d_pd_256:
2080     case Intrinsic::x86_avx2_gather_q_pd:
2081     case Intrinsic::x86_avx2_gather_q_pd_256:
2082     case Intrinsic::x86_avx2_gather_d_ps:
2083     case Intrinsic::x86_avx2_gather_d_ps_256:
2084     case Intrinsic::x86_avx2_gather_q_ps:
2085     case Intrinsic::x86_avx2_gather_q_ps_256:
2086     case Intrinsic::x86_avx2_gather_d_q:
2087     case Intrinsic::x86_avx2_gather_d_q_256:
2088     case Intrinsic::x86_avx2_gather_q_q:
2089     case Intrinsic::x86_avx2_gather_q_q_256:
2090     case Intrinsic::x86_avx2_gather_d_d:
2091     case Intrinsic::x86_avx2_gather_d_d_256:
2092     case Intrinsic::x86_avx2_gather_q_d:
2093     case Intrinsic::x86_avx2_gather_q_d_256: {
2094       if (!Subtarget->hasAVX2())
2095         break;
2096       unsigned Opc;
2097       switch (IntNo) {
2098       default: llvm_unreachable("Impossible intrinsic");
2099       case Intrinsic::x86_avx2_gather_d_pd:     Opc = X86::VGATHERDPDrm;  break;
2100       case Intrinsic::x86_avx2_gather_d_pd_256: Opc = X86::VGATHERDPDYrm; break;
2101       case Intrinsic::x86_avx2_gather_q_pd:     Opc = X86::VGATHERQPDrm;  break;
2102       case Intrinsic::x86_avx2_gather_q_pd_256: Opc = X86::VGATHERQPDYrm; break;
2103       case Intrinsic::x86_avx2_gather_d_ps:     Opc = X86::VGATHERDPSrm;  break;
2104       case Intrinsic::x86_avx2_gather_d_ps_256: Opc = X86::VGATHERDPSYrm; break;
2105       case Intrinsic::x86_avx2_gather_q_ps:     Opc = X86::VGATHERQPSrm;  break;
2106       case Intrinsic::x86_avx2_gather_q_ps_256: Opc = X86::VGATHERQPSYrm; break;
2107       case Intrinsic::x86_avx2_gather_d_q:      Opc = X86::VPGATHERDQrm;  break;
2108       case Intrinsic::x86_avx2_gather_d_q_256:  Opc = X86::VPGATHERDQYrm; break;
2109       case Intrinsic::x86_avx2_gather_q_q:      Opc = X86::VPGATHERQQrm;  break;
2110       case Intrinsic::x86_avx2_gather_q_q_256:  Opc = X86::VPGATHERQQYrm; break;
2111       case Intrinsic::x86_avx2_gather_d_d:      Opc = X86::VPGATHERDDrm;  break;
2112       case Intrinsic::x86_avx2_gather_d_d_256:  Opc = X86::VPGATHERDDYrm; break;
2113       case Intrinsic::x86_avx2_gather_q_d:      Opc = X86::VPGATHERQDrm;  break;
2114       case Intrinsic::x86_avx2_gather_q_d_256:  Opc = X86::VPGATHERQDYrm; break;
2115       }
2116       SDNode *RetVal = SelectGather(Node, Opc);
2117       if (RetVal)
2118         // We already called ReplaceUses inside SelectGather.
2119         return nullptr;
2120       break;
2121     }
2122     }
2123     break;
2124   }
2125   case X86ISD::GlobalBaseReg:
2126     return getGlobalBaseReg();
2127
2128
2129   case ISD::ATOMIC_LOAD_XOR:
2130   case ISD::ATOMIC_LOAD_AND:
2131   case ISD::ATOMIC_LOAD_OR:
2132   case ISD::ATOMIC_LOAD_ADD: {
2133     SDNode *RetVal = SelectAtomicLoadArith(Node, NVT);
2134     if (RetVal)
2135       return RetVal;
2136     break;
2137   }
2138   case ISD::AND:
2139   case ISD::OR:
2140   case ISD::XOR: {
2141     // For operations of the form (x << C1) op C2, check if we can use a smaller
2142     // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
2143     SDValue N0 = Node->getOperand(0);
2144     SDValue N1 = Node->getOperand(1);
2145
2146     if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse())
2147       break;
2148
2149     // i8 is unshrinkable, i16 should be promoted to i32.
2150     if (NVT != MVT::i32 && NVT != MVT::i64)
2151       break;
2152
2153     ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
2154     ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
2155     if (!Cst || !ShlCst)
2156       break;
2157
2158     int64_t Val = Cst->getSExtValue();
2159     uint64_t ShlVal = ShlCst->getZExtValue();
2160
2161     // Make sure that we don't change the operation by removing bits.
2162     // This only matters for OR and XOR, AND is unaffected.
2163     uint64_t RemovedBitsMask = (1ULL << ShlVal) - 1;
2164     if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
2165       break;
2166
2167     unsigned ShlOp, Op;
2168     MVT CstVT = NVT;
2169
2170     // Check the minimum bitwidth for the new constant.
2171     // TODO: AND32ri is the same as AND64ri32 with zext imm.
2172     // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr
2173     // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
2174     if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal))
2175       CstVT = MVT::i8;
2176     else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal))
2177       CstVT = MVT::i32;
2178
2179     // Bail if there is no smaller encoding.
2180     if (NVT == CstVT)
2181       break;
2182
2183     switch (NVT.SimpleTy) {
2184     default: llvm_unreachable("Unsupported VT!");
2185     case MVT::i32:
2186       assert(CstVT == MVT::i8);
2187       ShlOp = X86::SHL32ri;
2188
2189       switch (Opcode) {
2190       default: llvm_unreachable("Impossible opcode");
2191       case ISD::AND: Op = X86::AND32ri8; break;
2192       case ISD::OR:  Op =  X86::OR32ri8; break;
2193       case ISD::XOR: Op = X86::XOR32ri8; break;
2194       }
2195       break;
2196     case MVT::i64:
2197       assert(CstVT == MVT::i8 || CstVT == MVT::i32);
2198       ShlOp = X86::SHL64ri;
2199
2200       switch (Opcode) {
2201       default: llvm_unreachable("Impossible opcode");
2202       case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break;
2203       case ISD::OR:  Op = CstVT==MVT::i8?  X86::OR64ri8 :  X86::OR64ri32; break;
2204       case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break;
2205       }
2206       break;
2207     }
2208
2209     // Emit the smaller op and the shift.
2210     SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT);
2211     SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst);
2212     return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0),
2213                                 getI8Imm(ShlVal));
2214   }
2215   case X86ISD::UMUL: {
2216     SDValue N0 = Node->getOperand(0);
2217     SDValue N1 = Node->getOperand(1);
2218
2219     unsigned LoReg;
2220     switch (NVT.SimpleTy) {
2221     default: llvm_unreachable("Unsupported VT!");
2222     case MVT::i8:  LoReg = X86::AL;  Opc = X86::MUL8r; break;
2223     case MVT::i16: LoReg = X86::AX;  Opc = X86::MUL16r; break;
2224     case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break;
2225     case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break;
2226     }
2227
2228     SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
2229                                           N0, SDValue()).getValue(1);
2230
2231     SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
2232     SDValue Ops[] = {N1, InFlag};
2233     SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2234
2235     ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
2236     ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
2237     ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2));
2238     return nullptr;
2239   }
2240
2241   case ISD::SMUL_LOHI:
2242   case ISD::UMUL_LOHI: {
2243     SDValue N0 = Node->getOperand(0);
2244     SDValue N1 = Node->getOperand(1);
2245
2246     bool isSigned = Opcode == ISD::SMUL_LOHI;
2247     bool hasBMI2 = Subtarget->hasBMI2();
2248     if (!isSigned) {
2249       switch (NVT.SimpleTy) {
2250       default: llvm_unreachable("Unsupported VT!");
2251       case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
2252       case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
2253       case MVT::i32: Opc = hasBMI2 ? X86::MULX32rr : X86::MUL32r;
2254                      MOpc = hasBMI2 ? X86::MULX32rm : X86::MUL32m; break;
2255       case MVT::i64: Opc = hasBMI2 ? X86::MULX64rr : X86::MUL64r;
2256                      MOpc = hasBMI2 ? X86::MULX64rm : X86::MUL64m; break;
2257       }
2258     } else {
2259       switch (NVT.SimpleTy) {
2260       default: llvm_unreachable("Unsupported VT!");
2261       case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
2262       case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
2263       case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
2264       case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
2265       }
2266     }
2267
2268     unsigned SrcReg, LoReg, HiReg;
2269     switch (Opc) {
2270     default: llvm_unreachable("Unknown MUL opcode!");
2271     case X86::IMUL8r:
2272     case X86::MUL8r:
2273       SrcReg = LoReg = X86::AL; HiReg = X86::AH;
2274       break;
2275     case X86::IMUL16r:
2276     case X86::MUL16r:
2277       SrcReg = LoReg = X86::AX; HiReg = X86::DX;
2278       break;
2279     case X86::IMUL32r:
2280     case X86::MUL32r:
2281       SrcReg = LoReg = X86::EAX; HiReg = X86::EDX;
2282       break;
2283     case X86::IMUL64r:
2284     case X86::MUL64r:
2285       SrcReg = LoReg = X86::RAX; HiReg = X86::RDX;
2286       break;
2287     case X86::MULX32rr:
2288       SrcReg = X86::EDX; LoReg = HiReg = 0;
2289       break;
2290     case X86::MULX64rr:
2291       SrcReg = X86::RDX; LoReg = HiReg = 0;
2292       break;
2293     }
2294
2295     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2296     bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2297     // Multiply is commmutative.
2298     if (!foldedLoad) {
2299       foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2300       if (foldedLoad)
2301         std::swap(N0, N1);
2302     }
2303
2304     SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg,
2305                                           N0, SDValue()).getValue(1);
2306     SDValue ResHi, ResLo;
2307
2308     if (foldedLoad) {
2309       SDValue Chain;
2310       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2311                         InFlag };
2312       if (MOpc == X86::MULX32rm || MOpc == X86::MULX64rm) {
2313         SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other, MVT::Glue);
2314         SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
2315         ResHi = SDValue(CNode, 0);
2316         ResLo = SDValue(CNode, 1);
2317         Chain = SDValue(CNode, 2);
2318         InFlag = SDValue(CNode, 3);
2319       } else {
2320         SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
2321         SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
2322         Chain = SDValue(CNode, 0);
2323         InFlag = SDValue(CNode, 1);
2324       }
2325
2326       // Update the chain.
2327       ReplaceUses(N1.getValue(1), Chain);
2328     } else {
2329       SDValue Ops[] = { N1, InFlag };
2330       if (Opc == X86::MULX32rr || Opc == X86::MULX64rr) {
2331         SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Glue);
2332         SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2333         ResHi = SDValue(CNode, 0);
2334         ResLo = SDValue(CNode, 1);
2335         InFlag = SDValue(CNode, 2);
2336       } else {
2337         SDVTList VTs = CurDAG->getVTList(MVT::Glue);
2338         SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2339         InFlag = SDValue(CNode, 0);
2340       }
2341     }
2342
2343     // Prevent use of AH in a REX instruction by referencing AX instead.
2344     if (HiReg == X86::AH && Subtarget->is64Bit() &&
2345         !SDValue(Node, 1).use_empty()) {
2346       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2347                                               X86::AX, MVT::i16, InFlag);
2348       InFlag = Result.getValue(2);
2349       // Get the low part if needed. Don't use getCopyFromReg for aliasing
2350       // registers.
2351       if (!SDValue(Node, 0).use_empty())
2352         ReplaceUses(SDValue(Node, 1),
2353           CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2354
2355       // Shift AX down 8 bits.
2356       Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2357                                               Result,
2358                                      CurDAG->getTargetConstant(8, MVT::i8)), 0);
2359       // Then truncate it down to i8.
2360       ReplaceUses(SDValue(Node, 1),
2361         CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2362     }
2363     // Copy the low half of the result, if it is needed.
2364     if (!SDValue(Node, 0).use_empty()) {
2365       if (!ResLo.getNode()) {
2366         assert(LoReg && "Register for low half is not defined!");
2367         ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, NVT,
2368                                        InFlag);
2369         InFlag = ResLo.getValue(2);
2370       }
2371       ReplaceUses(SDValue(Node, 0), ResLo);
2372       DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG); dbgs() << '\n');
2373     }
2374     // Copy the high half of the result, if it is needed.
2375     if (!SDValue(Node, 1).use_empty()) {
2376       if (!ResHi.getNode()) {
2377         assert(HiReg && "Register for high half is not defined!");
2378         ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, NVT,
2379                                        InFlag);
2380         InFlag = ResHi.getValue(2);
2381       }
2382       ReplaceUses(SDValue(Node, 1), ResHi);
2383       DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG); dbgs() << '\n');
2384     }
2385
2386     return nullptr;
2387   }
2388
2389   case ISD::SDIVREM:
2390   case ISD::UDIVREM: {
2391     SDValue N0 = Node->getOperand(0);
2392     SDValue N1 = Node->getOperand(1);
2393
2394     bool isSigned = Opcode == ISD::SDIVREM;
2395     if (!isSigned) {
2396       switch (NVT.SimpleTy) {
2397       default: llvm_unreachable("Unsupported VT!");
2398       case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
2399       case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
2400       case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
2401       case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
2402       }
2403     } else {
2404       switch (NVT.SimpleTy) {
2405       default: llvm_unreachable("Unsupported VT!");
2406       case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
2407       case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
2408       case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
2409       case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
2410       }
2411     }
2412
2413     unsigned LoReg, HiReg, ClrReg;
2414     unsigned SExtOpcode;
2415     switch (NVT.SimpleTy) {
2416     default: llvm_unreachable("Unsupported VT!");
2417     case MVT::i8:
2418       LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
2419       SExtOpcode = X86::CBW;
2420       break;
2421     case MVT::i16:
2422       LoReg = X86::AX;  HiReg = X86::DX;
2423       ClrReg = X86::DX;
2424       SExtOpcode = X86::CWD;
2425       break;
2426     case MVT::i32:
2427       LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
2428       SExtOpcode = X86::CDQ;
2429       break;
2430     case MVT::i64:
2431       LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
2432       SExtOpcode = X86::CQO;
2433       break;
2434     }
2435
2436     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2437     bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2438     bool signBitIsZero = CurDAG->SignBitIsZero(N0);
2439
2440     SDValue InFlag;
2441     if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
2442       // Special case for div8, just use a move with zero extension to AX to
2443       // clear the upper 8 bits (AH).
2444       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
2445       if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
2446         SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
2447         Move =
2448           SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32,
2449                                          MVT::Other, Ops), 0);
2450         Chain = Move.getValue(1);
2451         ReplaceUses(N0.getValue(1), Chain);
2452       } else {
2453         Move =
2454           SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0);
2455         Chain = CurDAG->getEntryNode();
2456       }
2457       Chain  = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue());
2458       InFlag = Chain.getValue(1);
2459     } else {
2460       InFlag =
2461         CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
2462                              LoReg, N0, SDValue()).getValue(1);
2463       if (isSigned && !signBitIsZero) {
2464         // Sign extend the low part into the high part.
2465         InFlag =
2466           SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
2467       } else {
2468         // Zero out the high part, effectively zero extending the input.
2469         SDValue ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, NVT), 0);       
2470         switch (NVT.SimpleTy) {
2471         case MVT::i16:
2472           ClrNode =
2473               SDValue(CurDAG->getMachineNode(
2474                           TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode,
2475                           CurDAG->getTargetConstant(X86::sub_16bit, MVT::i32)),
2476                       0);
2477           break;
2478         case MVT::i32:
2479           break;
2480         case MVT::i64:
2481           ClrNode =
2482               SDValue(CurDAG->getMachineNode(
2483                           TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
2484                           CurDAG->getTargetConstant(0, MVT::i64), ClrNode,
2485                           CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
2486                       0);
2487           break;
2488         default:
2489           llvm_unreachable("Unexpected division source");
2490         }
2491
2492         InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
2493                                       ClrNode, InFlag).getValue(1);
2494       }
2495     }
2496
2497     if (foldedLoad) {
2498       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2499                         InFlag };
2500       SDNode *CNode =
2501         CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops);
2502       InFlag = SDValue(CNode, 1);
2503       // Update the chain.
2504       ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
2505     } else {
2506       InFlag =
2507         SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
2508     }
2509
2510     // Prevent use of AH in a REX instruction by referencing AX instead.
2511     // Shift it down 8 bits.
2512     //
2513     // The current assumption of the register allocator is that isel
2514     // won't generate explicit references to the GPR8_NOREX registers. If
2515     // the allocator and/or the backend get enhanced to be more robust in
2516     // that regard, this can be, and should be, removed.
2517     if (HiReg == X86::AH && Subtarget->is64Bit() &&
2518         !SDValue(Node, 1).use_empty()) {
2519       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2520                                               X86::AX, MVT::i16, InFlag);
2521       InFlag = Result.getValue(2);
2522
2523       // If we also need AL (the quotient), get it by extracting a subreg from
2524       // Result. The fast register allocator does not like multiple CopyFromReg
2525       // nodes using aliasing registers.
2526       if (!SDValue(Node, 0).use_empty())
2527         ReplaceUses(SDValue(Node, 0),
2528           CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2529
2530       // Shift AX right by 8 bits instead of using AH.
2531       Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2532                                          Result,
2533                                          CurDAG->getTargetConstant(8, MVT::i8)),
2534                        0);
2535       ReplaceUses(SDValue(Node, 1),
2536         CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2537     }
2538     // Copy the division (low) result, if it is needed.
2539     if (!SDValue(Node, 0).use_empty()) {
2540       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2541                                                 LoReg, NVT, InFlag);
2542       InFlag = Result.getValue(2);
2543       ReplaceUses(SDValue(Node, 0), Result);
2544       DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2545     }
2546     // Copy the remainder (high) result, if it is needed.
2547     if (!SDValue(Node, 1).use_empty()) {
2548       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2549                                               HiReg, NVT, InFlag);
2550       InFlag = Result.getValue(2);
2551       ReplaceUses(SDValue(Node, 1), Result);
2552       DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2553     }
2554     return nullptr;
2555   }
2556
2557   case X86ISD::CMP:
2558   case X86ISD::SUB: {
2559     // Sometimes a SUB is used to perform comparison.
2560     if (Opcode == X86ISD::SUB && Node->hasAnyUseOfValue(0))
2561       // This node is not a CMP.
2562       break;
2563     SDValue N0 = Node->getOperand(0);
2564     SDValue N1 = Node->getOperand(1);
2565
2566     // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
2567     // use a smaller encoding.
2568     if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
2569         HasNoSignedComparisonUses(Node))
2570       // Look past the truncate if CMP is the only use of it.
2571       N0 = N0.getOperand(0);
2572     if ((N0.getNode()->getOpcode() == ISD::AND ||
2573          (N0.getResNo() == 0 && N0.getNode()->getOpcode() == X86ISD::AND)) &&
2574         N0.getNode()->hasOneUse() &&
2575         N0.getValueType() != MVT::i8 &&
2576         X86::isZeroNode(N1)) {
2577       ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
2578       if (!C) break;
2579
2580       // For example, convert "testl %eax, $8" to "testb %al, $8"
2581       if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
2582           (!(C->getZExtValue() & 0x80) ||
2583            HasNoSignedComparisonUses(Node))) {
2584         SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
2585         SDValue Reg = N0.getNode()->getOperand(0);
2586
2587         // On x86-32, only the ABCD registers have 8-bit subregisters.
2588         if (!Subtarget->is64Bit()) {
2589           const TargetRegisterClass *TRC;
2590           switch (N0.getSimpleValueType().SimpleTy) {
2591           case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2592           case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2593           default: llvm_unreachable("Unsupported TEST operand type!");
2594           }
2595           SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2596           Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2597                                                Reg.getValueType(), Reg, RC), 0);
2598         }
2599
2600         // Extract the l-register.
2601         SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
2602                                                         MVT::i8, Reg);
2603
2604         // Emit a testb.
2605         SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
2606                                                  Subreg, Imm);
2607         // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2608         // one, do not call ReplaceAllUsesWith.
2609         ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2610                     SDValue(NewNode, 0));
2611         return nullptr;
2612       }
2613
2614       // For example, "testl %eax, $2048" to "testb %ah, $8".
2615       if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
2616           (!(C->getZExtValue() & 0x8000) ||
2617            HasNoSignedComparisonUses(Node))) {
2618         // Shift the immediate right by 8 bits.
2619         SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
2620                                                        MVT::i8);
2621         SDValue Reg = N0.getNode()->getOperand(0);
2622
2623         // Put the value in an ABCD register.
2624         const TargetRegisterClass *TRC;
2625         switch (N0.getSimpleValueType().SimpleTy) {
2626         case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
2627         case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2628         case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2629         default: llvm_unreachable("Unsupported TEST operand type!");
2630         }
2631         SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2632         Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2633                                              Reg.getValueType(), Reg, RC), 0);
2634
2635         // Extract the h-register.
2636         SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
2637                                                         MVT::i8, Reg);
2638
2639         // Emit a testb.  The EXTRACT_SUBREG becomes a COPY that can only
2640         // target GR8_NOREX registers, so make sure the register class is
2641         // forced.
2642         SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl,
2643                                                  MVT::i32, Subreg, ShiftedImm);
2644         // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2645         // one, do not call ReplaceAllUsesWith.
2646         ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2647                     SDValue(NewNode, 0));
2648         return nullptr;
2649       }
2650
2651       // For example, "testl %eax, $32776" to "testw %ax, $32776".
2652       if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
2653           N0.getValueType() != MVT::i16 &&
2654           (!(C->getZExtValue() & 0x8000) ||
2655            HasNoSignedComparisonUses(Node))) {
2656         SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
2657         SDValue Reg = N0.getNode()->getOperand(0);
2658
2659         // Extract the 16-bit subregister.
2660         SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
2661                                                         MVT::i16, Reg);
2662
2663         // Emit a testw.
2664         SDNode *NewNode = CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32,
2665                                                  Subreg, Imm);
2666         // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2667         // one, do not call ReplaceAllUsesWith.
2668         ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2669                     SDValue(NewNode, 0));
2670         return nullptr;
2671       }
2672
2673       // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
2674       if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
2675           N0.getValueType() == MVT::i64 &&
2676           (!(C->getZExtValue() & 0x80000000) ||
2677            HasNoSignedComparisonUses(Node))) {
2678         SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
2679         SDValue Reg = N0.getNode()->getOperand(0);
2680
2681         // Extract the 32-bit subregister.
2682         SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
2683                                                         MVT::i32, Reg);
2684
2685         // Emit a testl.
2686         SDNode *NewNode = CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32,
2687                                                  Subreg, Imm);
2688         // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2689         // one, do not call ReplaceAllUsesWith.
2690         ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2691                     SDValue(NewNode, 0));
2692         return nullptr;
2693       }
2694     }
2695     break;
2696   }
2697   case ISD::STORE: {
2698     // Change a chain of {load; incr or dec; store} of the same value into
2699     // a simple increment or decrement through memory of that value, if the
2700     // uses of the modified value and its address are suitable.
2701     // The DEC64m tablegen pattern is currently not able to match the case where
2702     // the EFLAGS on the original DEC are used. (This also applies to
2703     // {INC,DEC}X{64,32,16,8}.)
2704     // We'll need to improve tablegen to allow flags to be transferred from a
2705     // node in the pattern to the result node.  probably with a new keyword
2706     // for example, we have this
2707     // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2708     //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2709     //   (implicit EFLAGS)]>;
2710     // but maybe need something like this
2711     // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2712     //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2713     //   (transferrable EFLAGS)]>;
2714
2715     StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
2716     SDValue StoredVal = StoreNode->getOperand(1);
2717     unsigned Opc = StoredVal->getOpcode();
2718
2719     LoadSDNode *LoadNode = nullptr;
2720     SDValue InputChain;
2721     if (!isLoadIncOrDecStore(StoreNode, Opc, StoredVal, CurDAG,
2722                              LoadNode, InputChain))
2723       break;
2724
2725     SDValue Base, Scale, Index, Disp, Segment;
2726     if (!SelectAddr(LoadNode, LoadNode->getBasePtr(),
2727                     Base, Scale, Index, Disp, Segment))
2728       break;
2729
2730     MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2);
2731     MemOp[0] = StoreNode->getMemOperand();
2732     MemOp[1] = LoadNode->getMemOperand();
2733     const SDValue Ops[] = { Base, Scale, Index, Disp, Segment, InputChain };
2734     EVT LdVT = LoadNode->getMemoryVT();
2735     unsigned newOpc = getFusedLdStOpcode(LdVT, Opc);
2736     MachineSDNode *Result = CurDAG->getMachineNode(newOpc,
2737                                                    SDLoc(Node),
2738                                                    MVT::i32, MVT::Other, Ops);
2739     Result->setMemRefs(MemOp, MemOp + 2);
2740
2741     ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
2742     ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
2743
2744     return Result;
2745   }
2746   }
2747
2748   SDNode *ResNode = SelectCode(Node);
2749
2750   DEBUG(dbgs() << "=> ";
2751         if (ResNode == nullptr || ResNode == Node)
2752           Node->dump(CurDAG);
2753         else
2754           ResNode->dump(CurDAG);
2755         dbgs() << '\n');
2756
2757   return ResNode;
2758 }
2759
2760 bool X86DAGToDAGISel::
2761 SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
2762                              std::vector<SDValue> &OutOps) {
2763   SDValue Op0, Op1, Op2, Op3, Op4;
2764   switch (ConstraintCode) {
2765   case 'o':   // offsetable        ??
2766   case 'v':   // not offsetable    ??
2767   default: return true;
2768   case 'm':   // memory
2769     if (!SelectAddr(nullptr, Op, Op0, Op1, Op2, Op3, Op4))
2770       return true;
2771     break;
2772   }
2773
2774   OutOps.push_back(Op0);
2775   OutOps.push_back(Op1);
2776   OutOps.push_back(Op2);
2777   OutOps.push_back(Op3);
2778   OutOps.push_back(Op4);
2779   return false;
2780 }
2781
2782 /// createX86ISelDag - This pass converts a legalized DAG into a
2783 /// X86-specific DAG, ready for instruction scheduling.
2784 ///
2785 FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
2786                                      CodeGenOpt::Level OptLevel) {
2787   return new X86DAGToDAGISel(TM, OptLevel);
2788 }