Use std::bitset for SubtargetFeatures
[oota-llvm.git] / lib / Target / X86 / MCTargetDesc / X86MCCodeEmitter.cpp
1 //===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the X86MCCodeEmitter class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "MCTargetDesc/X86MCTargetDesc.h"
15 #include "MCTargetDesc/X86BaseInfo.h"
16 #include "MCTargetDesc/X86FixupKinds.h"
17 #include "llvm/MC/MCCodeEmitter.h"
18 #include "llvm/MC/MCContext.h"
19 #include "llvm/MC/MCExpr.h"
20 #include "llvm/MC/MCInst.h"
21 #include "llvm/MC/MCInstrInfo.h"
22 #include "llvm/MC/MCRegisterInfo.h"
23 #include "llvm/MC/MCSubtargetInfo.h"
24 #include "llvm/MC/MCSymbol.h"
25 #include "llvm/Support/raw_ostream.h"
26
27 using namespace llvm;
28
29 #define DEBUG_TYPE "mccodeemitter"
30
31 namespace {
32 class X86MCCodeEmitter : public MCCodeEmitter {
33   X86MCCodeEmitter(const X86MCCodeEmitter &) = delete;
34   void operator=(const X86MCCodeEmitter &) = delete;
35   const MCInstrInfo &MCII;
36   MCContext &Ctx;
37 public:
38   X86MCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx)
39     : MCII(mcii), Ctx(ctx) {
40   }
41
42   ~X86MCCodeEmitter() override {}
43
44   bool is64BitMode(const MCSubtargetInfo &STI) const {
45     return STI.getFeatureBits()[X86::Mode64Bit];
46   }
47
48   bool is32BitMode(const MCSubtargetInfo &STI) const {
49     return STI.getFeatureBits()[X86::Mode32Bit];
50   }
51
52   bool is16BitMode(const MCSubtargetInfo &STI) const {
53     return STI.getFeatureBits()[X86::Mode16Bit];
54   }
55
56   /// Is16BitMemOperand - Return true if the specified instruction has
57   /// a 16-bit memory operand. Op specifies the operand # of the memoperand.
58   bool Is16BitMemOperand(const MCInst &MI, unsigned Op,
59                          const MCSubtargetInfo &STI) const {
60     const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
61     const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
62     const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp);
63
64     if (is16BitMode(STI) && BaseReg.getReg() == 0 &&
65         Disp.isImm() && Disp.getImm() < 0x10000)
66       return true;
67     if ((BaseReg.getReg() != 0 &&
68          X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
69         (IndexReg.getReg() != 0 &&
70          X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
71       return true;
72     return false;
73   }
74
75   unsigned GetX86RegNum(const MCOperand &MO) const {
76     return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7;
77   }
78
79   // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
80   // 0-7 and the difference between the 2 groups is given by the REX prefix.
81   // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
82   // in 1's complement form, example:
83   //
84   //  ModRM field => XMM9 => 1
85   //  VEX.VVVV    => XMM9 => ~9
86   //
87   // See table 4-35 of Intel AVX Programming Reference for details.
88   unsigned char getVEXRegisterEncoding(const MCInst &MI,
89                                        unsigned OpNum) const {
90     unsigned SrcReg = MI.getOperand(OpNum).getReg();
91     unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
92     if (X86II::isX86_64ExtendedReg(SrcReg))
93       SrcRegNum |= 8;
94
95     // The registers represented through VEX_VVVV should
96     // be encoded in 1's complement form.
97     return (~SrcRegNum) & 0xf;
98   }
99
100   unsigned char getWriteMaskRegisterEncoding(const MCInst &MI,
101                                              unsigned OpNum) const {
102     assert(X86::K0 != MI.getOperand(OpNum).getReg() &&
103            "Invalid mask register as write-mask!");
104     unsigned MaskRegNum = GetX86RegNum(MI.getOperand(OpNum));
105     return MaskRegNum;
106   }
107
108   void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
109     OS << (char)C;
110     ++CurByte;
111   }
112
113   void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
114                     raw_ostream &OS) const {
115     // Output the constant in little endian byte order.
116     for (unsigned i = 0; i != Size; ++i) {
117       EmitByte(Val & 255, CurByte, OS);
118       Val >>= 8;
119     }
120   }
121
122   void EmitImmediate(const MCOperand &Disp, SMLoc Loc,
123                      unsigned ImmSize, MCFixupKind FixupKind,
124                      unsigned &CurByte, raw_ostream &OS,
125                      SmallVectorImpl<MCFixup> &Fixups,
126                      int ImmOffset = 0) const;
127
128   inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
129                                         unsigned RM) {
130     assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
131     return RM | (RegOpcode << 3) | (Mod << 6);
132   }
133
134   void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
135                         unsigned &CurByte, raw_ostream &OS) const {
136     EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
137   }
138
139   void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
140                    unsigned &CurByte, raw_ostream &OS) const {
141     // SIB byte is in the same format as the ModRMByte.
142     EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
143   }
144
145
146   void EmitMemModRMByte(const MCInst &MI, unsigned Op,
147                         unsigned RegOpcodeField,
148                         uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
149                         SmallVectorImpl<MCFixup> &Fixups,
150                         const MCSubtargetInfo &STI) const;
151
152   void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
153                          SmallVectorImpl<MCFixup> &Fixups,
154                          const MCSubtargetInfo &STI) const override;
155
156   void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
157                            const MCInst &MI, const MCInstrDesc &Desc,
158                            raw_ostream &OS) const;
159
160   void EmitSegmentOverridePrefix(unsigned &CurByte, unsigned SegOperand,
161                                  const MCInst &MI, raw_ostream &OS) const;
162
163   void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
164                         const MCInst &MI, const MCInstrDesc &Desc,
165                         const MCSubtargetInfo &STI,
166                         raw_ostream &OS) const;
167 };
168
169 } // end anonymous namespace
170
171 MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
172                                             const MCRegisterInfo &MRI,
173                                             MCContext &Ctx) {
174   return new X86MCCodeEmitter(MCII, Ctx);
175 }
176
177 /// isDisp8 - Return true if this signed displacement fits in a 8-bit
178 /// sign-extended field.
179 static bool isDisp8(int Value) {
180   return Value == (signed char)Value;
181 }
182
183 /// isCDisp8 - Return true if this signed displacement fits in a 8-bit
184 /// compressed dispacement field.
185 static bool isCDisp8(uint64_t TSFlags, int Value, int& CValue) {
186   assert(((TSFlags & X86II::EncodingMask) == X86II::EVEX) &&
187          "Compressed 8-bit displacement is only valid for EVEX inst.");
188
189   unsigned CD8_Scale =
190     (TSFlags & X86II::CD8_Scale_Mask) >> X86II::CD8_Scale_Shift;
191   if (CD8_Scale == 0) {
192     CValue = Value;
193     return isDisp8(Value);
194   }
195
196   unsigned Mask = CD8_Scale - 1;
197   assert((CD8_Scale & Mask) == 0 && "Invalid memory object size.");
198   if (Value & Mask) // Unaligned offset
199     return false;
200   Value /= (int)CD8_Scale;
201   bool Ret = (Value == (signed char)Value);
202
203   if (Ret)
204     CValue = Value;
205   return Ret;
206 }
207
208 /// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
209 /// in an instruction with the specified TSFlags.
210 static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
211   unsigned Size = X86II::getSizeOfImm(TSFlags);
212   bool isPCRel = X86II::isImmPCRel(TSFlags);
213
214   if (X86II::isImmSigned(TSFlags)) {
215     switch (Size) {
216     default: llvm_unreachable("Unsupported signed fixup size!");
217     case 4: return MCFixupKind(X86::reloc_signed_4byte);
218     }
219   }
220   return MCFixup::getKindForSize(Size, isPCRel);
221 }
222
223 /// Is32BitMemOperand - Return true if the specified instruction has
224 /// a 32-bit memory operand. Op specifies the operand # of the memoperand.
225 static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
226   const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
227   const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
228
229   if ((BaseReg.getReg() != 0 &&
230        X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
231       (IndexReg.getReg() != 0 &&
232        X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
233     return true;
234   return false;
235 }
236
237 /// Is64BitMemOperand - Return true if the specified instruction has
238 /// a 64-bit memory operand. Op specifies the operand # of the memoperand.
239 #ifndef NDEBUG
240 static bool Is64BitMemOperand(const MCInst &MI, unsigned Op) {
241   const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
242   const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
243
244   if ((BaseReg.getReg() != 0 &&
245        X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
246       (IndexReg.getReg() != 0 &&
247        X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
248     return true;
249   return false;
250 }
251 #endif
252
253 /// StartsWithGlobalOffsetTable - Check if this expression starts with
254 ///  _GLOBAL_OFFSET_TABLE_ and if it is of the form
255 ///  _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on ELF
256 /// i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
257 /// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
258 /// of a binary expression.
259 enum GlobalOffsetTableExprKind {
260   GOT_None,
261   GOT_Normal,
262   GOT_SymDiff
263 };
264 static GlobalOffsetTableExprKind
265 StartsWithGlobalOffsetTable(const MCExpr *Expr) {
266   const MCExpr *RHS = nullptr;
267   if (Expr->getKind() == MCExpr::Binary) {
268     const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
269     Expr = BE->getLHS();
270     RHS = BE->getRHS();
271   }
272
273   if (Expr->getKind() != MCExpr::SymbolRef)
274     return GOT_None;
275
276   const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
277   const MCSymbol &S = Ref->getSymbol();
278   if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
279     return GOT_None;
280   if (RHS && RHS->getKind() == MCExpr::SymbolRef)
281     return GOT_SymDiff;
282   return GOT_Normal;
283 }
284
285 static bool HasSecRelSymbolRef(const MCExpr *Expr) {
286   if (Expr->getKind() == MCExpr::SymbolRef) {
287     const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
288     return Ref->getKind() == MCSymbolRefExpr::VK_SECREL;
289   }
290   return false;
291 }
292
293 void X86MCCodeEmitter::
294 EmitImmediate(const MCOperand &DispOp, SMLoc Loc, unsigned Size,
295               MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS,
296               SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
297   const MCExpr *Expr = nullptr;
298   if (DispOp.isImm()) {
299     // If this is a simple integer displacement that doesn't require a
300     // relocation, emit it now.
301     if (FixupKind != FK_PCRel_1 &&
302         FixupKind != FK_PCRel_2 &&
303         FixupKind != FK_PCRel_4) {
304       EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
305       return;
306     }
307     Expr = MCConstantExpr::Create(DispOp.getImm(), Ctx);
308   } else {
309     Expr = DispOp.getExpr();
310   }
311
312   // If we have an immoffset, add it to the expression.
313   if ((FixupKind == FK_Data_4 ||
314        FixupKind == FK_Data_8 ||
315        FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
316     GlobalOffsetTableExprKind Kind = StartsWithGlobalOffsetTable(Expr);
317     if (Kind != GOT_None) {
318       assert(ImmOffset == 0);
319
320       if (Size == 8) {
321         FixupKind = MCFixupKind(X86::reloc_global_offset_table8);
322       } else {
323         assert(Size == 4);
324         FixupKind = MCFixupKind(X86::reloc_global_offset_table);
325       }
326
327       if (Kind == GOT_Normal)
328         ImmOffset = CurByte;
329     } else if (Expr->getKind() == MCExpr::SymbolRef) {
330       if (HasSecRelSymbolRef(Expr)) {
331         FixupKind = MCFixupKind(FK_SecRel_4);
332       }
333     } else if (Expr->getKind() == MCExpr::Binary) {
334       const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr*>(Expr);
335       if (HasSecRelSymbolRef(Bin->getLHS())
336           || HasSecRelSymbolRef(Bin->getRHS())) {
337         FixupKind = MCFixupKind(FK_SecRel_4);
338       }
339     }
340   }
341
342   // If the fixup is pc-relative, we need to bias the value to be relative to
343   // the start of the field, not the end of the field.
344   if (FixupKind == FK_PCRel_4 ||
345       FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
346       FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
347     ImmOffset -= 4;
348   if (FixupKind == FK_PCRel_2)
349     ImmOffset -= 2;
350   if (FixupKind == FK_PCRel_1)
351     ImmOffset -= 1;
352
353   if (ImmOffset)
354     Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
355                                    Ctx);
356
357   // Emit a symbolic constant as a fixup and 4 zeros.
358   Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind, Loc));
359   EmitConstant(0, Size, CurByte, OS);
360 }
361
362 void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
363                                         unsigned RegOpcodeField,
364                                         uint64_t TSFlags, unsigned &CurByte,
365                                         raw_ostream &OS,
366                                         SmallVectorImpl<MCFixup> &Fixups,
367                                         const MCSubtargetInfo &STI) const{
368   const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp);
369   const MCOperand &Base     = MI.getOperand(Op+X86::AddrBaseReg);
370   const MCOperand &Scale    = MI.getOperand(Op+X86::AddrScaleAmt);
371   const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
372   unsigned BaseReg = Base.getReg();
373   bool HasEVEX = (TSFlags & X86II::EncodingMask) == X86II::EVEX;
374
375   // Handle %rip relative addressing.
376   if (BaseReg == X86::RIP) {    // [disp32+RIP] in X86-64 mode
377     assert(is64BitMode(STI) && "Rip-relative addressing requires 64-bit mode");
378     assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
379     EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
380
381     unsigned FixupKind = X86::reloc_riprel_4byte;
382
383     // movq loads are handled with a special relocation form which allows the
384     // linker to eliminate some loads for GOT references which end up in the
385     // same linkage unit.
386     if (MI.getOpcode() == X86::MOV64rm)
387       FixupKind = X86::reloc_riprel_4byte_movq_load;
388
389     // rip-relative addressing is actually relative to the *next* instruction.
390     // Since an immediate can follow the mod/rm byte for an instruction, this
391     // means that we need to bias the immediate field of the instruction with
392     // the size of the immediate field.  If we have this case, add it into the
393     // expression to emit.
394     int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
395
396     EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind),
397                   CurByte, OS, Fixups, -ImmSize);
398     return;
399   }
400
401   unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
402
403   // 16-bit addressing forms of the ModR/M byte have a different encoding for
404   // the R/M field and are far more limited in which registers can be used.
405   if (Is16BitMemOperand(MI, Op, STI)) {
406     if (BaseReg) {
407       // For 32-bit addressing, the row and column values in Table 2-2 are
408       // basically the same. It's AX/CX/DX/BX/SP/BP/SI/DI in that order, with
409       // some special cases. And GetX86RegNum reflects that numbering.
410       // For 16-bit addressing it's more fun, as shown in the SDM Vol 2A,
411       // Table 2-1 "16-Bit Addressing Forms with the ModR/M byte". We can only
412       // use SI/DI/BP/BX, which have "row" values 4-7 in no particular order,
413       // while values 0-3 indicate the allowed combinations (base+index) of
414       // those: 0 for BX+SI, 1 for BX+DI, 2 for BP+SI, 3 for BP+DI.
415       //
416       // R16Table[] is a lookup from the normal RegNo, to the row values from
417       // Table 2-1 for 16-bit addressing modes. Where zero means disallowed.
418       static const unsigned R16Table[] = { 0, 0, 0, 7, 0, 6, 4, 5 };
419       unsigned RMfield = R16Table[BaseRegNo];
420
421       assert(RMfield && "invalid 16-bit base register");
422
423       if (IndexReg.getReg()) {
424         unsigned IndexReg16 = R16Table[GetX86RegNum(IndexReg)];
425
426         assert(IndexReg16 && "invalid 16-bit index register");
427         // We must have one of SI/DI (4,5), and one of BP/BX (6,7).
428         assert(((IndexReg16 ^ RMfield) & 2) &&
429                "invalid 16-bit base/index register combination");
430         assert(Scale.getImm() == 1 &&
431                "invalid scale for 16-bit memory reference");
432
433         // Allow base/index to appear in either order (although GAS doesn't).
434         if (IndexReg16 & 2)
435           RMfield = (RMfield & 1) | ((7 - IndexReg16) << 1);
436         else
437           RMfield = (IndexReg16 & 1) | ((7 - RMfield) << 1);
438       }
439
440       if (Disp.isImm() && isDisp8(Disp.getImm())) {
441         if (Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
442           // There is no displacement; just the register.
443           EmitByte(ModRMByte(0, RegOpcodeField, RMfield), CurByte, OS);
444           return;
445         }
446         // Use the [REG]+disp8 form, including for [BP] which cannot be encoded.
447         EmitByte(ModRMByte(1, RegOpcodeField, RMfield), CurByte, OS);
448         EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
449         return;
450       }
451       // This is the [REG]+disp16 case.
452       EmitByte(ModRMByte(2, RegOpcodeField, RMfield), CurByte, OS);
453     } else {
454       // There is no BaseReg; this is the plain [disp16] case.
455       EmitByte(ModRMByte(0, RegOpcodeField, 6), CurByte, OS);
456     }
457
458     // Emit 16-bit displacement for plain disp16 or [REG]+disp16 cases.
459     EmitImmediate(Disp, MI.getLoc(), 2, FK_Data_2, CurByte, OS, Fixups);
460     return;
461   }
462
463   // Determine whether a SIB byte is needed.
464   // If no BaseReg, issue a RIP relative instruction only if the MCE can
465   // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
466   // 2-7) and absolute references.
467
468   if (// The SIB byte must be used if there is an index register.
469       IndexReg.getReg() == 0 &&
470       // The SIB byte must be used if the base is ESP/RSP/R12, all of which
471       // encode to an R/M value of 4, which indicates that a SIB byte is
472       // present.
473       BaseRegNo != N86::ESP &&
474       // If there is no base register and we're in 64-bit mode, we need a SIB
475       // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
476       (!is64BitMode(STI) || BaseReg != 0)) {
477
478     if (BaseReg == 0) {          // [disp32]     in X86-32 mode
479       EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
480       EmitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, CurByte, OS, Fixups);
481       return;
482     }
483
484     // If the base is not EBP/ESP and there is no displacement, use simple
485     // indirect register encoding, this handles addresses like [EAX].  The
486     // encoding for [EBP] with no displacement means [disp32] so we handle it
487     // by emitting a displacement of 0 below.
488     if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
489       EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
490       return;
491     }
492
493     // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
494     if (Disp.isImm()) {
495       if (!HasEVEX && isDisp8(Disp.getImm())) {
496         EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
497         EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
498         return;
499       }
500       // Try EVEX compressed 8-bit displacement first; if failed, fall back to
501       // 32-bit displacement.
502       int CDisp8 = 0;
503       if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
504         EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
505         EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups,
506                       CDisp8 - Disp.getImm());
507         return;
508       }
509     }
510
511     // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
512     EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
513     EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
514                   Fixups);
515     return;
516   }
517
518   // We need a SIB byte, so start by outputting the ModR/M byte first
519   assert(IndexReg.getReg() != X86::ESP &&
520          IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
521
522   bool ForceDisp32 = false;
523   bool ForceDisp8  = false;
524   int CDisp8 = 0;
525   int ImmOffset = 0;
526   if (BaseReg == 0) {
527     // If there is no base register, we emit the special case SIB byte with
528     // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
529     EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
530     ForceDisp32 = true;
531   } else if (!Disp.isImm()) {
532     // Emit the normal disp32 encoding.
533     EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
534     ForceDisp32 = true;
535   } else if (Disp.getImm() == 0 &&
536              // Base reg can't be anything that ends up with '5' as the base
537              // reg, it is the magic [*] nomenclature that indicates no base.
538              BaseRegNo != N86::EBP) {
539     // Emit no displacement ModR/M byte
540     EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
541   } else if (!HasEVEX && isDisp8(Disp.getImm())) {
542     // Emit the disp8 encoding.
543     EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
544     ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
545   } else if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
546     // Emit the disp8 encoding.
547     EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
548     ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
549     ImmOffset = CDisp8 - Disp.getImm();
550   } else {
551     // Emit the normal disp32 encoding.
552     EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
553   }
554
555   // Calculate what the SS field value should be...
556   static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
557   unsigned SS = SSTable[Scale.getImm()];
558
559   if (BaseReg == 0) {
560     // Handle the SIB byte for the case where there is no base, see Intel
561     // Manual 2A, table 2-7. The displacement has already been output.
562     unsigned IndexRegNo;
563     if (IndexReg.getReg())
564       IndexRegNo = GetX86RegNum(IndexReg);
565     else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
566       IndexRegNo = 4;
567     EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
568   } else {
569     unsigned IndexRegNo;
570     if (IndexReg.getReg())
571       IndexRegNo = GetX86RegNum(IndexReg);
572     else
573       IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
574     EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
575   }
576
577   // Do we need to output a displacement?
578   if (ForceDisp8)
579     EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups, ImmOffset);
580   else if (ForceDisp32 || Disp.getImm() != 0)
581     EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
582                   CurByte, OS, Fixups);
583 }
584
585 /// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
586 /// called VEX.
587 void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
588                                            int MemOperand, const MCInst &MI,
589                                            const MCInstrDesc &Desc,
590                                            raw_ostream &OS) const {
591   assert(!(TSFlags & X86II::LOCK) && "Can't have LOCK VEX.");
592
593   uint64_t Encoding = TSFlags & X86II::EncodingMask;
594   bool HasEVEX_K = TSFlags & X86II::EVEX_K;
595   bool HasVEX_4V = TSFlags & X86II::VEX_4V;
596   bool HasVEX_4VOp3 = TSFlags & X86II::VEX_4VOp3;
597   bool HasMemOp4 = TSFlags & X86II::MemOp4;
598   bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
599
600   // VEX_R: opcode externsion equivalent to REX.R in
601   // 1's complement (inverted) form
602   //
603   //  1: Same as REX_R=0 (must be 1 in 32-bit mode)
604   //  0: Same as REX_R=1 (64 bit mode only)
605   //
606   unsigned char VEX_R = 0x1;
607   unsigned char EVEX_R2 = 0x1;
608
609   // VEX_X: equivalent to REX.X, only used when a
610   // register is used for index in SIB Byte.
611   //
612   //  1: Same as REX.X=0 (must be 1 in 32-bit mode)
613   //  0: Same as REX.X=1 (64-bit mode only)
614   unsigned char VEX_X = 0x1;
615
616   // VEX_B:
617   //
618   //  1: Same as REX_B=0 (ignored in 32-bit mode)
619   //  0: Same as REX_B=1 (64 bit mode only)
620   //
621   unsigned char VEX_B = 0x1;
622
623   // VEX_W: opcode specific (use like REX.W, or used for
624   // opcode extension, or ignored, depending on the opcode byte)
625   unsigned char VEX_W = 0;
626
627   // VEX_5M (VEX m-mmmmm field):
628   //
629   //  0b00000: Reserved for future use
630   //  0b00001: implied 0F leading opcode
631   //  0b00010: implied 0F 38 leading opcode bytes
632   //  0b00011: implied 0F 3A leading opcode bytes
633   //  0b00100-0b11111: Reserved for future use
634   //  0b01000: XOP map select - 08h instructions with imm byte
635   //  0b01001: XOP map select - 09h instructions with no imm byte
636   //  0b01010: XOP map select - 0Ah instructions with imm dword
637   unsigned char VEX_5M = 0;
638
639   // VEX_4V (VEX vvvv field): a register specifier
640   // (in 1's complement form) or 1111 if unused.
641   unsigned char VEX_4V = 0xf;
642   unsigned char EVEX_V2 = 0x1;
643
644   // VEX_L (Vector Length):
645   //
646   //  0: scalar or 128-bit vector
647   //  1: 256-bit vector
648   //
649   unsigned char VEX_L = 0;
650   unsigned char EVEX_L2 = 0;
651
652   // VEX_PP: opcode extension providing equivalent
653   // functionality of a SIMD prefix
654   //
655   //  0b00: None
656   //  0b01: 66
657   //  0b10: F3
658   //  0b11: F2
659   //
660   unsigned char VEX_PP = 0;
661
662   // EVEX_U
663   unsigned char EVEX_U = 1; // Always '1' so far
664
665   // EVEX_z
666   unsigned char EVEX_z = 0;
667
668   // EVEX_b
669   unsigned char EVEX_b = 0;
670
671   // EVEX_rc
672   unsigned char EVEX_rc = 0;
673
674   // EVEX_aaa
675   unsigned char EVEX_aaa = 0;
676
677   bool EncodeRC = false;
678
679   if (TSFlags & X86II::VEX_W)
680     VEX_W = 1;
681
682   if (TSFlags & X86II::VEX_L)
683     VEX_L = 1;
684   if (TSFlags & X86II::EVEX_L2)
685     EVEX_L2 = 1;
686
687   if (HasEVEX_K && (TSFlags & X86II::EVEX_Z))
688     EVEX_z = 1;
689
690   if ((TSFlags & X86II::EVEX_B))
691     EVEX_b = 1;
692
693   switch (TSFlags & X86II::OpPrefixMask) {
694   default: break; // VEX_PP already correct
695   case X86II::PD: VEX_PP = 0x1; break; // 66
696   case X86II::XS: VEX_PP = 0x2; break; // F3
697   case X86II::XD: VEX_PP = 0x3; break; // F2
698   }
699
700   switch (TSFlags & X86II::OpMapMask) {
701   default: llvm_unreachable("Invalid prefix!");
702   case X86II::TB:   VEX_5M = 0x1; break; // 0F
703   case X86II::T8:   VEX_5M = 0x2; break; // 0F 38
704   case X86II::TA:   VEX_5M = 0x3; break; // 0F 3A
705   case X86II::XOP8: VEX_5M = 0x8; break;
706   case X86II::XOP9: VEX_5M = 0x9; break;
707   case X86II::XOPA: VEX_5M = 0xA; break;
708   }
709
710   // Classify VEX_B, VEX_4V, VEX_R, VEX_X
711   unsigned NumOps = Desc.getNumOperands();
712   unsigned CurOp = X86II::getOperandBias(Desc);
713
714   switch (TSFlags & X86II::FormMask) {
715   default: llvm_unreachable("Unexpected form in EmitVEXOpcodePrefix!");
716   case X86II::RawFrm:
717     break;
718   case X86II::MRMDestMem: {
719     // MRMDestMem instructions forms:
720     //  MemAddr, src1(ModR/M)
721     //  MemAddr, src1(VEX_4V), src2(ModR/M)
722     //  MemAddr, src1(ModR/M), imm8
723     //
724     if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand +
725                                                  X86::AddrBaseReg).getReg()))
726       VEX_B = 0x0;
727     if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand +
728                                                  X86::AddrIndexReg).getReg()))
729       VEX_X = 0x0;
730     if (X86II::is32ExtendedReg(MI.getOperand(MemOperand +
731                                           X86::AddrIndexReg).getReg()))
732       EVEX_V2 = 0x0;
733
734     CurOp += X86::AddrNumOperands;
735
736     if (HasEVEX_K)
737       EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
738
739     if (HasVEX_4V) {
740       VEX_4V = getVEXRegisterEncoding(MI, CurOp);
741       if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
742         EVEX_V2 = 0x0;
743       CurOp++;
744     }
745
746     const MCOperand &MO = MI.getOperand(CurOp);
747     if (MO.isReg()) {
748       if (X86II::isX86_64ExtendedReg(MO.getReg()))
749         VEX_R = 0x0;
750       if (X86II::is32ExtendedReg(MO.getReg()))
751         EVEX_R2 = 0x0;
752     }
753     break;
754   }
755   case X86II::MRMSrcMem:
756     // MRMSrcMem instructions forms:
757     //  src1(ModR/M), MemAddr
758     //  src1(ModR/M), src2(VEX_4V), MemAddr
759     //  src1(ModR/M), MemAddr, imm8
760     //  src1(ModR/M), MemAddr, src2(VEX_I8IMM)
761     //
762     //  FMA4:
763     //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
764     //  dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
765     if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
766       VEX_R = 0x0;
767     if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
768       EVEX_R2 = 0x0;
769     CurOp++;
770
771     if (HasEVEX_K)
772       EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
773
774     if (HasVEX_4V) {
775       VEX_4V = getVEXRegisterEncoding(MI, CurOp);
776       if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
777         EVEX_V2 = 0x0;
778       CurOp++;
779     }
780
781     if (X86II::isX86_64ExtendedReg(
782                MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
783       VEX_B = 0x0;
784     if (X86II::isX86_64ExtendedReg(
785                MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
786       VEX_X = 0x0;
787     if (X86II::is32ExtendedReg(MI.getOperand(MemOperand +
788                                X86::AddrIndexReg).getReg()))
789       EVEX_V2 = 0x0;
790
791     if (HasVEX_4VOp3)
792       // Instruction format for 4VOp3:
793       //   src1(ModR/M), MemAddr, src3(VEX_4V)
794       // CurOp points to start of the MemoryOperand,
795       //   it skips TIED_TO operands if exist, then increments past src1.
796       // CurOp + X86::AddrNumOperands will point to src3.
797       VEX_4V = getVEXRegisterEncoding(MI, CurOp+X86::AddrNumOperands);
798     break;
799   case X86II::MRM0m: case X86II::MRM1m:
800   case X86II::MRM2m: case X86II::MRM3m:
801   case X86II::MRM4m: case X86II::MRM5m:
802   case X86II::MRM6m: case X86II::MRM7m: {
803     // MRM[0-9]m instructions forms:
804     //  MemAddr
805     //  src1(VEX_4V), MemAddr
806     if (HasVEX_4V) {
807       VEX_4V = getVEXRegisterEncoding(MI, CurOp);
808       if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
809         EVEX_V2 = 0x0;
810       CurOp++;
811     }
812
813     if (HasEVEX_K)
814       EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
815
816     if (X86II::isX86_64ExtendedReg(
817                MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
818       VEX_B = 0x0;
819     if (X86II::isX86_64ExtendedReg(
820                MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
821       VEX_X = 0x0;
822     break;
823   }
824   case X86II::MRMSrcReg:
825     // MRMSrcReg instructions forms:
826     //  dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
827     //  dst(ModR/M), src1(ModR/M)
828     //  dst(ModR/M), src1(ModR/M), imm8
829     //
830     //  FMA4:
831     //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
832     //  dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
833     if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
834       VEX_R = 0x0;
835     if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
836       EVEX_R2 = 0x0;
837     CurOp++;
838
839     if (HasEVEX_K)
840       EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
841
842     if (HasVEX_4V) {
843       VEX_4V = getVEXRegisterEncoding(MI, CurOp);
844       if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
845         EVEX_V2 = 0x0;
846       CurOp++;
847     }
848
849     if (HasMemOp4) // Skip second register source (encoded in I8IMM)
850       CurOp++;
851
852     if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
853       VEX_B = 0x0;
854     if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
855       VEX_X = 0x0;
856     CurOp++;
857     if (HasVEX_4VOp3)
858       VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
859     if (EVEX_b) {
860       if (HasEVEX_RC) {
861         unsigned RcOperand = NumOps-1;
862         assert(RcOperand >= CurOp);
863         EVEX_rc = MI.getOperand(RcOperand).getImm() & 0x3;
864       }
865       EncodeRC = true;
866     }
867     break;
868   case X86II::MRMDestReg:
869     // MRMDestReg instructions forms:
870     //  dst(ModR/M), src(ModR/M)
871     //  dst(ModR/M), src(ModR/M), imm8
872     //  dst(ModR/M), src1(VEX_4V), src2(ModR/M)
873     if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
874       VEX_B = 0x0;
875     if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
876       VEX_X = 0x0;
877     CurOp++;
878
879     if (HasEVEX_K)
880       EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
881
882     if (HasVEX_4V) {
883       VEX_4V = getVEXRegisterEncoding(MI, CurOp);
884       if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
885         EVEX_V2 = 0x0;
886       CurOp++;
887     }
888
889     if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
890       VEX_R = 0x0;
891     if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
892       EVEX_R2 = 0x0;
893     if (EVEX_b)
894       EncodeRC = true;
895     break;
896   case X86II::MRM0r: case X86II::MRM1r:
897   case X86II::MRM2r: case X86II::MRM3r:
898   case X86II::MRM4r: case X86II::MRM5r:
899   case X86II::MRM6r: case X86II::MRM7r:
900     // MRM0r-MRM7r instructions forms:
901     //  dst(VEX_4V), src(ModR/M), imm8
902     if (HasVEX_4V) {
903       VEX_4V = getVEXRegisterEncoding(MI, CurOp);
904       if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
905           EVEX_V2 = 0x0;
906       CurOp++;
907     }
908     if (HasEVEX_K)
909       EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
910
911     if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
912       VEX_B = 0x0;
913     if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
914       VEX_X = 0x0;
915     break;
916   }
917
918   if (Encoding == X86II::VEX || Encoding == X86II::XOP) {
919     // VEX opcode prefix can have 2 or 3 bytes
920     //
921     //  3 bytes:
922     //    +-----+ +--------------+ +-------------------+
923     //    | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
924     //    +-----+ +--------------+ +-------------------+
925     //  2 bytes:
926     //    +-----+ +-------------------+
927     //    | C5h | | R | vvvv | L | pp |
928     //    +-----+ +-------------------+
929     //
930     //  XOP uses a similar prefix:
931     //    +-----+ +--------------+ +-------------------+
932     //    | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp |
933     //    +-----+ +--------------+ +-------------------+
934     unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
935
936     // Can we use the 2 byte VEX prefix?
937     if (Encoding == X86II::VEX && VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) {
938       EmitByte(0xC5, CurByte, OS);
939       EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
940       return;
941     }
942
943     // 3 byte VEX prefix
944     EmitByte(Encoding == X86II::XOP ? 0x8F : 0xC4, CurByte, OS);
945     EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
946     EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
947   } else {
948     assert(Encoding == X86II::EVEX && "unknown encoding!");
949     // EVEX opcode prefix can have 4 bytes
950     //
951     // +-----+ +--------------+ +-------------------+ +------------------------+
952     // | 62h | | RXBR' | 00mm | | W | vvvv | U | pp | | z | L'L | b | v' | aaa |
953     // +-----+ +--------------+ +-------------------+ +------------------------+
954     assert((VEX_5M & 0x3) == VEX_5M
955            && "More than 2 significant bits in VEX.m-mmmm fields for EVEX!");
956
957     VEX_5M &= 0x3;
958
959     EmitByte(0x62, CurByte, OS);
960     EmitByte((VEX_R   << 7) |
961              (VEX_X   << 6) |
962              (VEX_B   << 5) |
963              (EVEX_R2 << 4) |
964              VEX_5M, CurByte, OS);
965     EmitByte((VEX_W   << 7) |
966              (VEX_4V  << 3) |
967              (EVEX_U  << 2) |
968              VEX_PP, CurByte, OS);
969     if (EncodeRC)
970       EmitByte((EVEX_z  << 7) |
971               (EVEX_rc << 5) |
972               (EVEX_b  << 4) |
973               (EVEX_V2 << 3) |
974               EVEX_aaa, CurByte, OS);
975     else
976       EmitByte((EVEX_z  << 7) |
977               (EVEX_L2 << 6) |
978               (VEX_L   << 5) |
979               (EVEX_b  << 4) |
980               (EVEX_V2 << 3) |
981               EVEX_aaa, CurByte, OS);
982   }
983 }
984
985 /// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
986 /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
987 /// size, and 3) use of X86-64 extended registers.
988 static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
989                                    const MCInstrDesc &Desc) {
990   unsigned REX = 0;
991   if (TSFlags & X86II::REX_W)
992     REX |= 1 << 3; // set REX.W
993
994   if (MI.getNumOperands() == 0) return REX;
995
996   unsigned NumOps = MI.getNumOperands();
997   // FIXME: MCInst should explicitize the two-addrness.
998   bool isTwoAddr = NumOps > 1 &&
999                       Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
1000
1001   // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
1002   unsigned i = isTwoAddr ? 1 : 0;
1003   for (; i != NumOps; ++i) {
1004     const MCOperand &MO = MI.getOperand(i);
1005     if (!MO.isReg()) continue;
1006     unsigned Reg = MO.getReg();
1007     if (!X86II::isX86_64NonExtLowByteReg(Reg)) continue;
1008     // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
1009     // that returns non-zero.
1010     REX |= 0x40; // REX fixed encoding prefix
1011     break;
1012   }
1013
1014   switch (TSFlags & X86II::FormMask) {
1015   case X86II::MRMSrcReg:
1016     if (MI.getOperand(0).isReg() &&
1017         X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
1018       REX |= 1 << 2; // set REX.R
1019     i = isTwoAddr ? 2 : 1;
1020     for (; i != NumOps; ++i) {
1021       const MCOperand &MO = MI.getOperand(i);
1022       if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
1023         REX |= 1 << 0; // set REX.B
1024     }
1025     break;
1026   case X86II::MRMSrcMem: {
1027     if (MI.getOperand(0).isReg() &&
1028         X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
1029       REX |= 1 << 2; // set REX.R
1030     unsigned Bit = 0;
1031     i = isTwoAddr ? 2 : 1;
1032     for (; i != NumOps; ++i) {
1033       const MCOperand &MO = MI.getOperand(i);
1034       if (MO.isReg()) {
1035         if (X86II::isX86_64ExtendedReg(MO.getReg()))
1036           REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
1037         Bit++;
1038       }
1039     }
1040     break;
1041   }
1042   case X86II::MRMXm:
1043   case X86II::MRM0m: case X86II::MRM1m:
1044   case X86II::MRM2m: case X86II::MRM3m:
1045   case X86II::MRM4m: case X86II::MRM5m:
1046   case X86II::MRM6m: case X86II::MRM7m:
1047   case X86II::MRMDestMem: {
1048     unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
1049     i = isTwoAddr ? 1 : 0;
1050     if (NumOps > e && MI.getOperand(e).isReg() &&
1051         X86II::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
1052       REX |= 1 << 2; // set REX.R
1053     unsigned Bit = 0;
1054     for (; i != e; ++i) {
1055       const MCOperand &MO = MI.getOperand(i);
1056       if (MO.isReg()) {
1057         if (X86II::isX86_64ExtendedReg(MO.getReg()))
1058           REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
1059         Bit++;
1060       }
1061     }
1062     break;
1063   }
1064   default:
1065     if (MI.getOperand(0).isReg() &&
1066         X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
1067       REX |= 1 << 0; // set REX.B
1068     i = isTwoAddr ? 2 : 1;
1069     for (unsigned e = NumOps; i != e; ++i) {
1070       const MCOperand &MO = MI.getOperand(i);
1071       if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
1072         REX |= 1 << 2; // set REX.R
1073     }
1074     break;
1075   }
1076   return REX;
1077 }
1078
1079 /// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
1080 void X86MCCodeEmitter::EmitSegmentOverridePrefix(unsigned &CurByte,
1081                                                  unsigned SegOperand,
1082                                                  const MCInst &MI,
1083                                                  raw_ostream &OS) const {
1084   // Check for explicit segment override on memory operand.
1085   switch (MI.getOperand(SegOperand).getReg()) {
1086   default: llvm_unreachable("Unknown segment register!");
1087   case 0: break;
1088   case X86::CS: EmitByte(0x2E, CurByte, OS); break;
1089   case X86::SS: EmitByte(0x36, CurByte, OS); break;
1090   case X86::DS: EmitByte(0x3E, CurByte, OS); break;
1091   case X86::ES: EmitByte(0x26, CurByte, OS); break;
1092   case X86::FS: EmitByte(0x64, CurByte, OS); break;
1093   case X86::GS: EmitByte(0x65, CurByte, OS); break;
1094   }
1095 }
1096
1097 /// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
1098 ///
1099 /// MemOperand is the operand # of the start of a memory operand if present.  If
1100 /// Not present, it is -1.
1101 void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
1102                                         int MemOperand, const MCInst &MI,
1103                                         const MCInstrDesc &Desc,
1104                                         const MCSubtargetInfo &STI,
1105                                         raw_ostream &OS) const {
1106
1107   // Emit the operand size opcode prefix as needed.
1108   if ((TSFlags & X86II::OpSizeMask) == (is16BitMode(STI) ? X86II::OpSize32
1109                                                          : X86II::OpSize16))
1110     EmitByte(0x66, CurByte, OS);
1111
1112   // Emit the LOCK opcode prefix.
1113   if (TSFlags & X86II::LOCK)
1114     EmitByte(0xF0, CurByte, OS);
1115
1116   switch (TSFlags & X86II::OpPrefixMask) {
1117   case X86II::PD:   // 66
1118     EmitByte(0x66, CurByte, OS);
1119     break;
1120   case X86II::XS:   // F3
1121     EmitByte(0xF3, CurByte, OS);
1122     break;
1123   case X86II::XD:   // F2
1124     EmitByte(0xF2, CurByte, OS);
1125     break;
1126   }
1127
1128   // Handle REX prefix.
1129   // FIXME: Can this come before F2 etc to simplify emission?
1130   if (is64BitMode(STI)) {
1131     if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
1132       EmitByte(0x40 | REX, CurByte, OS);
1133   }
1134
1135   // 0x0F escape code must be emitted just before the opcode.
1136   switch (TSFlags & X86II::OpMapMask) {
1137   case X86II::TB:  // Two-byte opcode map
1138   case X86II::T8:  // 0F 38
1139   case X86II::TA:  // 0F 3A
1140     EmitByte(0x0F, CurByte, OS);
1141     break;
1142   }
1143
1144   switch (TSFlags & X86II::OpMapMask) {
1145   case X86II::T8:    // 0F 38
1146     EmitByte(0x38, CurByte, OS);
1147     break;
1148   case X86II::TA:    // 0F 3A
1149     EmitByte(0x3A, CurByte, OS);
1150     break;
1151   }
1152 }
1153
1154 void X86MCCodeEmitter::
1155 EncodeInstruction(const MCInst &MI, raw_ostream &OS,
1156                   SmallVectorImpl<MCFixup> &Fixups,
1157                   const MCSubtargetInfo &STI) const {
1158   unsigned Opcode = MI.getOpcode();
1159   const MCInstrDesc &Desc = MCII.get(Opcode);
1160   uint64_t TSFlags = Desc.TSFlags;
1161
1162   // Pseudo instructions don't get encoded.
1163   if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
1164     return;
1165
1166   unsigned NumOps = Desc.getNumOperands();
1167   unsigned CurOp = X86II::getOperandBias(Desc);
1168
1169   // Keep track of the current byte being emitted.
1170   unsigned CurByte = 0;
1171
1172   // Encoding type for this instruction.
1173   uint64_t Encoding = TSFlags & X86II::EncodingMask;
1174
1175   // It uses the VEX.VVVV field?
1176   bool HasVEX_4V = TSFlags & X86II::VEX_4V;
1177   bool HasVEX_4VOp3 = TSFlags & X86II::VEX_4VOp3;
1178   bool HasMemOp4 = TSFlags & X86II::MemOp4;
1179   const unsigned MemOp4_I8IMMOperand = 2;
1180
1181   // It uses the EVEX.aaa field?
1182   bool HasEVEX_K = TSFlags & X86II::EVEX_K;
1183   bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
1184
1185   // Determine where the memory operand starts, if present.
1186   int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
1187   if (MemoryOperand != -1) MemoryOperand += CurOp;
1188
1189   // Emit segment override opcode prefix as needed.
1190   if (MemoryOperand >= 0)
1191     EmitSegmentOverridePrefix(CurByte, MemoryOperand+X86::AddrSegmentReg,
1192                               MI, OS);
1193
1194   // Emit the repeat opcode prefix as needed.
1195   if (TSFlags & X86II::REP)
1196     EmitByte(0xF3, CurByte, OS);
1197
1198   // Emit the address size opcode prefix as needed.
1199   bool need_address_override;
1200   uint64_t AdSize = TSFlags & X86II::AdSizeMask;
1201   if ((is16BitMode(STI) && AdSize == X86II::AdSize32) ||
1202       (is32BitMode(STI) && AdSize == X86II::AdSize16) ||
1203       (is64BitMode(STI) && AdSize == X86II::AdSize32)) {
1204     need_address_override = true;
1205   } else if (MemoryOperand < 0) {
1206     need_address_override = false;
1207   } else if (is64BitMode(STI)) {
1208     assert(!Is16BitMemOperand(MI, MemoryOperand, STI));
1209     need_address_override = Is32BitMemOperand(MI, MemoryOperand);
1210   } else if (is32BitMode(STI)) {
1211     assert(!Is64BitMemOperand(MI, MemoryOperand));
1212     need_address_override = Is16BitMemOperand(MI, MemoryOperand, STI);
1213   } else {
1214     assert(is16BitMode(STI));
1215     assert(!Is64BitMemOperand(MI, MemoryOperand));
1216     need_address_override = !Is16BitMemOperand(MI, MemoryOperand, STI);
1217   }
1218
1219   if (need_address_override)
1220     EmitByte(0x67, CurByte, OS);
1221
1222   if (Encoding == 0)
1223     EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, STI, OS);
1224   else
1225     EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
1226
1227   unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
1228
1229   if (TSFlags & X86II::Has3DNow0F0FOpcode)
1230     BaseOpcode = 0x0F;   // Weird 3DNow! encoding.
1231
1232   unsigned SrcRegNum = 0;
1233   switch (TSFlags & X86II::FormMask) {
1234   default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
1235     llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
1236   case X86II::Pseudo:
1237     llvm_unreachable("Pseudo instruction shouldn't be emitted");
1238   case X86II::RawFrmDstSrc: {
1239     unsigned siReg = MI.getOperand(1).getReg();
1240     assert(((siReg == X86::SI && MI.getOperand(0).getReg() == X86::DI) ||
1241             (siReg == X86::ESI && MI.getOperand(0).getReg() == X86::EDI) ||
1242             (siReg == X86::RSI && MI.getOperand(0).getReg() == X86::RDI)) &&
1243            "SI and DI register sizes do not match");
1244     // Emit segment override opcode prefix as needed (not for %ds).
1245     if (MI.getOperand(2).getReg() != X86::DS)
1246       EmitSegmentOverridePrefix(CurByte, 2, MI, OS);
1247     // Emit AdSize prefix as needed.
1248     if ((!is32BitMode(STI) && siReg == X86::ESI) ||
1249         (is32BitMode(STI) && siReg == X86::SI))
1250       EmitByte(0x67, CurByte, OS);
1251     CurOp += 3; // Consume operands.
1252     EmitByte(BaseOpcode, CurByte, OS);
1253     break;
1254   }
1255   case X86II::RawFrmSrc: {
1256     unsigned siReg = MI.getOperand(0).getReg();
1257     // Emit segment override opcode prefix as needed (not for %ds).
1258     if (MI.getOperand(1).getReg() != X86::DS)
1259       EmitSegmentOverridePrefix(CurByte, 1, MI, OS);
1260     // Emit AdSize prefix as needed.
1261     if ((!is32BitMode(STI) && siReg == X86::ESI) ||
1262         (is32BitMode(STI) && siReg == X86::SI))
1263       EmitByte(0x67, CurByte, OS);
1264     CurOp += 2; // Consume operands.
1265     EmitByte(BaseOpcode, CurByte, OS);
1266     break;
1267   }
1268   case X86II::RawFrmDst: {
1269     unsigned siReg = MI.getOperand(0).getReg();
1270     // Emit AdSize prefix as needed.
1271     if ((!is32BitMode(STI) && siReg == X86::EDI) ||
1272         (is32BitMode(STI) && siReg == X86::DI))
1273       EmitByte(0x67, CurByte, OS);
1274     ++CurOp; // Consume operand.
1275     EmitByte(BaseOpcode, CurByte, OS);
1276     break;
1277   }
1278   case X86II::RawFrm:
1279     EmitByte(BaseOpcode, CurByte, OS);
1280     break;
1281   case X86II::RawFrmMemOffs:
1282     // Emit segment override opcode prefix as needed.
1283     EmitSegmentOverridePrefix(CurByte, 1, MI, OS);
1284     EmitByte(BaseOpcode, CurByte, OS);
1285     EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1286                   X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1287                   CurByte, OS, Fixups);
1288     ++CurOp; // skip segment operand
1289     break;
1290   case X86II::RawFrmImm8:
1291     EmitByte(BaseOpcode, CurByte, OS);
1292     EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1293                   X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1294                   CurByte, OS, Fixups);
1295     EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, CurByte,
1296                   OS, Fixups);
1297     break;
1298   case X86II::RawFrmImm16:
1299     EmitByte(BaseOpcode, CurByte, OS);
1300     EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1301                   X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1302                   CurByte, OS, Fixups);
1303     EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, CurByte,
1304                   OS, Fixups);
1305     break;
1306
1307   case X86II::AddRegFrm:
1308     EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
1309     break;
1310
1311   case X86II::MRMDestReg:
1312     EmitByte(BaseOpcode, CurByte, OS);
1313     SrcRegNum = CurOp + 1;
1314
1315     if (HasEVEX_K) // Skip writemask
1316       SrcRegNum++;
1317
1318     if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1319       ++SrcRegNum;
1320
1321     EmitRegModRMByte(MI.getOperand(CurOp),
1322                      GetX86RegNum(MI.getOperand(SrcRegNum)), CurByte, OS);
1323     CurOp = SrcRegNum + 1;
1324     break;
1325
1326   case X86II::MRMDestMem:
1327     EmitByte(BaseOpcode, CurByte, OS);
1328     SrcRegNum = CurOp + X86::AddrNumOperands;
1329
1330     if (HasEVEX_K) // Skip writemask
1331       SrcRegNum++;
1332
1333     if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1334       ++SrcRegNum;
1335
1336     EmitMemModRMByte(MI, CurOp,
1337                      GetX86RegNum(MI.getOperand(SrcRegNum)),
1338                      TSFlags, CurByte, OS, Fixups, STI);
1339     CurOp = SrcRegNum + 1;
1340     break;
1341
1342   case X86II::MRMSrcReg:
1343     EmitByte(BaseOpcode, CurByte, OS);
1344     SrcRegNum = CurOp + 1;
1345
1346     if (HasEVEX_K) // Skip writemask
1347       SrcRegNum++;
1348
1349     if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1350       ++SrcRegNum;
1351
1352     if (HasMemOp4) // Skip 2nd src (which is encoded in I8IMM)
1353       ++SrcRegNum;
1354
1355     EmitRegModRMByte(MI.getOperand(SrcRegNum),
1356                      GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
1357
1358     // 2 operands skipped with HasMemOp4, compensate accordingly
1359     CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1;
1360     if (HasVEX_4VOp3)
1361       ++CurOp;
1362     // do not count the rounding control operand
1363     if (HasEVEX_RC)
1364       NumOps--;
1365     break;
1366
1367   case X86II::MRMSrcMem: {
1368     int AddrOperands = X86::AddrNumOperands;
1369     unsigned FirstMemOp = CurOp+1;
1370
1371     if (HasEVEX_K) { // Skip writemask
1372       ++AddrOperands;
1373       ++FirstMemOp;
1374     }
1375
1376     if (HasVEX_4V) {
1377       ++AddrOperands;
1378       ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV).
1379     }
1380     if (HasMemOp4) // Skip second register source (encoded in I8IMM)
1381       ++FirstMemOp;
1382
1383     EmitByte(BaseOpcode, CurByte, OS);
1384
1385     EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
1386                      TSFlags, CurByte, OS, Fixups, STI);
1387     CurOp += AddrOperands + 1;
1388     if (HasVEX_4VOp3)
1389       ++CurOp;
1390     break;
1391   }
1392
1393   case X86II::MRMXr:
1394   case X86II::MRM0r: case X86II::MRM1r:
1395   case X86II::MRM2r: case X86II::MRM3r:
1396   case X86II::MRM4r: case X86II::MRM5r:
1397   case X86II::MRM6r: case X86II::MRM7r: {
1398     if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1399       ++CurOp;
1400     if (HasEVEX_K) // Skip writemask
1401       ++CurOp;
1402     EmitByte(BaseOpcode, CurByte, OS);
1403     uint64_t Form = TSFlags & X86II::FormMask;
1404     EmitRegModRMByte(MI.getOperand(CurOp++),
1405                      (Form == X86II::MRMXr) ? 0 : Form-X86II::MRM0r,
1406                      CurByte, OS);
1407     break;
1408   }
1409
1410   case X86II::MRMXm:
1411   case X86II::MRM0m: case X86II::MRM1m:
1412   case X86II::MRM2m: case X86II::MRM3m:
1413   case X86II::MRM4m: case X86II::MRM5m:
1414   case X86II::MRM6m: case X86II::MRM7m: {
1415     if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1416       ++CurOp;
1417     if (HasEVEX_K) // Skip writemask
1418       ++CurOp;
1419     EmitByte(BaseOpcode, CurByte, OS);
1420     uint64_t Form = TSFlags & X86II::FormMask;
1421     EmitMemModRMByte(MI, CurOp, (Form == X86II::MRMXm) ? 0 : Form-X86II::MRM0m,
1422                      TSFlags, CurByte, OS, Fixups, STI);
1423     CurOp += X86::AddrNumOperands;
1424     break;
1425   }
1426   case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
1427   case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
1428   case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
1429   case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
1430   case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
1431   case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
1432   case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
1433   case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
1434   case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
1435   case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
1436   case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
1437   case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
1438   case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
1439   case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
1440   case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
1441   case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
1442   case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
1443   case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
1444   case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
1445   case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
1446   case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
1447   case X86II::MRM_FF:
1448     EmitByte(BaseOpcode, CurByte, OS);
1449
1450     uint64_t Form = TSFlags & X86II::FormMask;
1451     EmitByte(0xC0 + Form - X86II::MRM_C0, CurByte, OS);
1452     break;
1453   }
1454
1455   // If there is a remaining operand, it must be a trailing immediate.  Emit it
1456   // according to the right size for the instruction. Some instructions
1457   // (SSE4a extrq and insertq) have two trailing immediates.
1458   while (CurOp != NumOps && NumOps - CurOp <= 2) {
1459     // The last source register of a 4 operand instruction in AVX is encoded
1460     // in bits[7:4] of a immediate byte.
1461     if (TSFlags & X86II::VEX_I8IMM) {
1462       const MCOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand
1463                                                     : CurOp);
1464       ++CurOp;
1465       unsigned RegNum = GetX86RegNum(MO) << 4;
1466       if (X86II::isX86_64ExtendedReg(MO.getReg()))
1467         RegNum |= 1 << 7;
1468       // If there is an additional 5th operand it must be an immediate, which
1469       // is encoded in bits[3:0]
1470       if (CurOp != NumOps) {
1471         const MCOperand &MIMM = MI.getOperand(CurOp++);
1472         if (MIMM.isImm()) {
1473           unsigned Val = MIMM.getImm();
1474           assert(Val < 16 && "Immediate operand value out of range");
1475           RegNum |= Val;
1476         }
1477       }
1478       EmitImmediate(MCOperand::CreateImm(RegNum), MI.getLoc(), 1, FK_Data_1,
1479                     CurByte, OS, Fixups);
1480     } else {
1481       EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1482                     X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1483                     CurByte, OS, Fixups);
1484     }
1485   }
1486
1487   if (TSFlags & X86II::Has3DNow0F0FOpcode)
1488     EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
1489
1490 #ifndef NDEBUG
1491   // FIXME: Verify.
1492   if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
1493     errs() << "Cannot encode all operands of: ";
1494     MI.dump();
1495     errs() << '\n';
1496     abort();
1497   }
1498 #endif
1499 }