Re-sort all of the includes with ./utils/sort_includes.py so that
[oota-llvm.git] / lib / Target / X86 / MCTargetDesc / X86BaseInfo.h
1 //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains small standalone helper functions and enum definitions for
11 // the X86 target useful for the compiler back-end and the MC libraries.
12 // As such, it deliberately does not include references to LLVM core
13 // code gen types, passes, etc..
14 //
15 //===----------------------------------------------------------------------===//
16
17 #ifndef X86BASEINFO_H
18 #define X86BASEINFO_H
19
20 #include "X86MCTargetDesc.h"
21 #include "llvm/MC/MCInstrInfo.h"
22 #include "llvm/Support/DataTypes.h"
23 #include "llvm/Support/ErrorHandling.h"
24
25 namespace llvm {
26
27 namespace X86 {
28   // Enums for memory operand decoding.  Each memory operand is represented with
29   // a 5 operand sequence in the form:
30   //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
31   // These enums help decode this.
32   enum {
33     AddrBaseReg = 0,
34     AddrScaleAmt = 1,
35     AddrIndexReg = 2,
36     AddrDisp = 3,
37
38     /// AddrSegmentReg - The operand # of the segment in the memory operand.
39     AddrSegmentReg = 4,
40
41     /// AddrNumOperands - Total number of operands in a memory reference.
42     AddrNumOperands = 5
43   };
44 } // end namespace X86;
45
46 /// X86II - This namespace holds all of the target specific flags that
47 /// instruction info tracks.
48 ///
49 namespace X86II {
50   /// Target Operand Flag enum.
51   enum TOF {
52     //===------------------------------------------------------------------===//
53     // X86 Specific MachineOperand flags.
54
55     MO_NO_FLAG,
56
57     /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
58     /// relocation of:
59     ///    SYMBOL_LABEL + [. - PICBASELABEL]
60     MO_GOT_ABSOLUTE_ADDRESS,
61
62     /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
63     /// immediate should get the value of the symbol minus the PIC base label:
64     ///    SYMBOL_LABEL - PICBASELABEL
65     MO_PIC_BASE_OFFSET,
66
67     /// MO_GOT - On a symbol operand this indicates that the immediate is the
68     /// offset to the GOT entry for the symbol name from the base of the GOT.
69     ///
70     /// See the X86-64 ELF ABI supplement for more details.
71     ///    SYMBOL_LABEL @GOT
72     MO_GOT,
73
74     /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
75     /// the offset to the location of the symbol name from the base of the GOT.
76     ///
77     /// See the X86-64 ELF ABI supplement for more details.
78     ///    SYMBOL_LABEL @GOTOFF
79     MO_GOTOFF,
80
81     /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
82     /// offset to the GOT entry for the symbol name from the current code
83     /// location.
84     ///
85     /// See the X86-64 ELF ABI supplement for more details.
86     ///    SYMBOL_LABEL @GOTPCREL
87     MO_GOTPCREL,
88
89     /// MO_PLT - On a symbol operand this indicates that the immediate is
90     /// offset to the PLT entry of symbol name from the current code location.
91     ///
92     /// See the X86-64 ELF ABI supplement for more details.
93     ///    SYMBOL_LABEL @PLT
94     MO_PLT,
95
96     /// MO_TLSGD - On a symbol operand this indicates that the immediate is
97     /// the offset of the GOT entry with the TLS index structure that contains
98     /// the module number and variable offset for the symbol. Used in the
99     /// general dynamic TLS access model.
100     ///
101     /// See 'ELF Handling for Thread-Local Storage' for more details.
102     ///    SYMBOL_LABEL @TLSGD
103     MO_TLSGD,
104
105     /// MO_TLSLD - On a symbol operand this indicates that the immediate is
106     /// the offset of the GOT entry with the TLS index for the module that
107     /// contains the symbol. When this index is passed to a call to
108     /// __tls_get_addr, the function will return the base address of the TLS
109     /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
110     ///
111     /// See 'ELF Handling for Thread-Local Storage' for more details.
112     ///    SYMBOL_LABEL @TLSLD
113     MO_TLSLD,
114
115     /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
116     /// the offset of the GOT entry with the TLS index for the module that
117     /// contains the symbol. When this index is passed to a call to
118     /// ___tls_get_addr, the function will return the base address of the TLS
119     /// block for the symbol. Used in the IA32 local dynamic TLS access model.
120     ///
121     /// See 'ELF Handling for Thread-Local Storage' for more details.
122     ///    SYMBOL_LABEL @TLSLDM
123     MO_TLSLDM,
124
125     /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
126     /// the offset of the GOT entry with the thread-pointer offset for the
127     /// symbol. Used in the x86-64 initial exec TLS access model.
128     ///
129     /// See 'ELF Handling for Thread-Local Storage' for more details.
130     ///    SYMBOL_LABEL @GOTTPOFF
131     MO_GOTTPOFF,
132
133     /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
134     /// the absolute address of the GOT entry with the negative thread-pointer
135     /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
136     /// model.
137     ///
138     /// See 'ELF Handling for Thread-Local Storage' for more details.
139     ///    SYMBOL_LABEL @INDNTPOFF
140     MO_INDNTPOFF,
141
142     /// MO_TPOFF - On a symbol operand this indicates that the immediate is
143     /// the thread-pointer offset for the symbol. Used in the x86-64 local
144     /// exec TLS access model.
145     ///
146     /// See 'ELF Handling for Thread-Local Storage' for more details.
147     ///    SYMBOL_LABEL @TPOFF
148     MO_TPOFF,
149
150     /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
151     /// the offset of the GOT entry with the TLS offset of the symbol. Used
152     /// in the local dynamic TLS access model.
153     ///
154     /// See 'ELF Handling for Thread-Local Storage' for more details.
155     ///    SYMBOL_LABEL @DTPOFF
156     MO_DTPOFF,
157
158     /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
159     /// the negative thread-pointer offset for the symbol. Used in the IA32
160     /// local exec TLS access model.
161     ///
162     /// See 'ELF Handling for Thread-Local Storage' for more details.
163     ///    SYMBOL_LABEL @NTPOFF
164     MO_NTPOFF,
165
166     /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
167     /// the offset of the GOT entry with the negative thread-pointer offset for
168     /// the symbol. Used in the PIC IA32 initial exec TLS access model.
169     ///
170     /// See 'ELF Handling for Thread-Local Storage' for more details.
171     ///    SYMBOL_LABEL @GOTNTPOFF
172     MO_GOTNTPOFF,
173
174     /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
175     /// reference is actually to the "__imp_FOO" symbol.  This is used for
176     /// dllimport linkage on windows.
177     MO_DLLIMPORT,
178
179     /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
180     /// reference is actually to the "FOO$stub" symbol.  This is used for calls
181     /// and jumps to external functions on Tiger and earlier.
182     MO_DARWIN_STUB,
183
184     /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
185     /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
186     /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
187     MO_DARWIN_NONLAZY,
188
189     /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
190     /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
191     /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
192     MO_DARWIN_NONLAZY_PIC_BASE,
193
194     /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
195     /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
196     /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
197     /// stub.
198     MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
199
200     /// MO_TLVP - On a symbol operand this indicates that the immediate is
201     /// some TLS offset.
202     ///
203     /// This is the TLS offset for the Darwin TLS mechanism.
204     MO_TLVP,
205
206     /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
207     /// is some TLS offset from the picbase.
208     ///
209     /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
210     MO_TLVP_PIC_BASE,
211
212     /// MO_SECREL - On a symbol operand this indicates that the immediate is
213     /// the offset from beginning of section.
214     ///
215     /// This is the TLS offset for the COFF/Windows TLS mechanism.
216     MO_SECREL
217   };
218
219   enum {
220     //===------------------------------------------------------------------===//
221     // Instruction encodings.  These are the standard/most common forms for X86
222     // instructions.
223     //
224
225     // PseudoFrm - This represents an instruction that is a pseudo instruction
226     // or one that has not been implemented yet.  It is illegal to code generate
227     // it, but tolerated for intermediate implementation stages.
228     Pseudo         = 0,
229
230     /// Raw - This form is for instructions that don't have any operands, so
231     /// they are just a fixed opcode value, like 'leave'.
232     RawFrm         = 1,
233
234     /// AddRegFrm - This form is used for instructions like 'push r32' that have
235     /// their one register operand added to their opcode.
236     AddRegFrm      = 2,
237
238     /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
239     /// to specify a destination, which in this case is a register.
240     ///
241     MRMDestReg     = 3,
242
243     /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
244     /// to specify a destination, which in this case is memory.
245     ///
246     MRMDestMem     = 4,
247
248     /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
249     /// to specify a source, which in this case is a register.
250     ///
251     MRMSrcReg      = 5,
252
253     /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
254     /// to specify a source, which in this case is memory.
255     ///
256     MRMSrcMem      = 6,
257
258     /// MRM[0-7][rm] - These forms are used to represent instructions that use
259     /// a Mod/RM byte, and use the middle field to hold extended opcode
260     /// information.  In the intel manual these are represented as /0, /1, ...
261     ///
262
263     // First, instructions that operate on a register r/m operand...
264     MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
265     MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
266
267     // Next, instructions that operate on a memory r/m operand...
268     MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
269     MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
270
271     //// MRM_XX - A mod/rm byte of exactly 0xXX.
272     MRM_C1 = 33, MRM_C2 = 34, MRM_C3 = 35, MRM_C4 = 36,
273     MRM_C8 = 37, MRM_C9 = 38, MRM_CA = 39, MRM_CB = 40,
274     MRM_E8 = 41, MRM_F0 = 42, MRM_F8 = 45, MRM_F9 = 46,
275     MRM_D0 = 47, MRM_D1 = 48, MRM_D4 = 49, MRM_D5 = 50,
276     MRM_D6 = 51, MRM_D8 = 52, MRM_D9 = 53, MRM_DA = 54,
277     MRM_DB = 55, MRM_DC = 56, MRM_DD = 57, MRM_DE = 58,
278     MRM_DF = 59,
279
280     /// RawFrmImm8 - This is used for the ENTER instruction, which has two
281     /// immediates, the first of which is a 16-bit immediate (specified by
282     /// the imm encoding) and the second is a 8-bit fixed value.
283     RawFrmImm8 = 43,
284
285     /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
286     /// immediates, the first of which is a 16 or 32-bit immediate (specified by
287     /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
288     /// manual, this operand is described as pntr16:32 and pntr16:16
289     RawFrmImm16 = 44,
290
291     FormMask       = 63,
292
293     //===------------------------------------------------------------------===//
294     // Actual flags...
295
296     // OpSize - Set if this instruction requires an operand size prefix (0x66),
297     // which most often indicates that the instruction operates on 16 bit data
298     // instead of 32 bit data. OpSize16 in 16 bit mode indicates that the
299     // instruction operates on 32 bit data instead of 16 bit data.
300     OpSize      = 1 << 6,
301     OpSize16    = 1 << 7,
302
303     // AsSize - Set if this instruction requires an operand size prefix (0x67),
304     // which most often indicates that the instruction address 16 bit address
305     // instead of 32 bit address (or 32 bit address in 64 bit mode).
306     AdSize      = 1 << 8,
307
308     //===------------------------------------------------------------------===//
309     // Op0Mask - There are several prefix bytes that are used to form two byte
310     // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is
311     // used to obtain the setting of this field.  If no bits in this field is
312     // set, there is no prefix byte for obtaining a multibyte opcode.
313     //
314     Op0Shift    = 9,
315     Op0Mask     = 0x1F << Op0Shift,
316
317     // TB - TwoByte - Set if this instruction has a two byte opcode, which
318     // starts with a 0x0F byte before the real opcode.
319     TB          = 1 << Op0Shift,
320
321     // REP - The 0xF3 prefix byte indicating repetition of the following
322     // instruction.
323     REP         = 2 << Op0Shift,
324
325     // D8-DF - These escape opcodes are used by the floating point unit.  These
326     // values must remain sequential.
327     D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift,
328     DA = 5 << Op0Shift,   DB = 6 << Op0Shift,
329     DC = 7 << Op0Shift,   DD = 8 << Op0Shift,
330     DE = 9 << Op0Shift,   DF = 10 << Op0Shift,
331
332     // XS, XD - These prefix codes are for single and double precision scalar
333     // floating point operations performed in the SSE registers.
334     XD = 11 << Op0Shift,  XS = 12 << Op0Shift,
335
336     // T8, TA, A6, A7 - Prefix after the 0x0F prefix.
337     T8 = 13 << Op0Shift,  TA = 14 << Op0Shift,
338     A6 = 15 << Op0Shift,  A7 = 16 << Op0Shift,
339
340     // T8XD - Prefix before and after 0x0F. Combination of T8 and XD.
341     T8XD = 17 << Op0Shift,
342
343     // T8XS - Prefix before and after 0x0F. Combination of T8 and XS.
344     T8XS = 18 << Op0Shift,
345
346     // TAXD - Prefix before and after 0x0F. Combination of TA and XD.
347     TAXD = 19 << Op0Shift,
348
349     // XOP8 - Prefix to include use of imm byte.
350     XOP8 = 20 << Op0Shift,
351
352     // XOP9 - Prefix to exclude use of imm byte.
353     XOP9 = 21 << Op0Shift,
354
355     // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
356     XOPA = 22 << Op0Shift,
357
358     //===------------------------------------------------------------------===//
359     // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
360     // They are used to specify GPRs and SSE registers, 64-bit operand size,
361     // etc. We only cares about REX.W and REX.R bits and only the former is
362     // statically determined.
363     //
364     REXShift    = Op0Shift + 5,
365     REX_W       = 1 << REXShift,
366
367     //===------------------------------------------------------------------===//
368     // This three-bit field describes the size of an immediate operand.  Zero is
369     // unused so that we can tell if we forgot to set a value.
370     ImmShift = REXShift + 1,
371     ImmMask    = 7 << ImmShift,
372     Imm8       = 1 << ImmShift,
373     Imm8PCRel  = 2 << ImmShift,
374     Imm16      = 3 << ImmShift,
375     Imm16PCRel = 4 << ImmShift,
376     Imm32      = 5 << ImmShift,
377     Imm32PCRel = 6 << ImmShift,
378     Imm64      = 7 << ImmShift,
379
380     //===------------------------------------------------------------------===//
381     // FP Instruction Classification...  Zero is non-fp instruction.
382
383     // FPTypeMask - Mask for all of the FP types...
384     FPTypeShift = ImmShift + 3,
385     FPTypeMask  = 7 << FPTypeShift,
386
387     // NotFP - The default, set for instructions that do not use FP registers.
388     NotFP      = 0 << FPTypeShift,
389
390     // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
391     ZeroArgFP  = 1 << FPTypeShift,
392
393     // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
394     OneArgFP   = 2 << FPTypeShift,
395
396     // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
397     // result back to ST(0).  For example, fcos, fsqrt, etc.
398     //
399     OneArgFPRW = 3 << FPTypeShift,
400
401     // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
402     // explicit argument, storing the result to either ST(0) or the implicit
403     // argument.  For example: fadd, fsub, fmul, etc...
404     TwoArgFP   = 4 << FPTypeShift,
405
406     // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
407     // explicit argument, but have no destination.  Example: fucom, fucomi, ...
408     CompareFP  = 5 << FPTypeShift,
409
410     // CondMovFP - "2 operand" floating point conditional move instructions.
411     CondMovFP  = 6 << FPTypeShift,
412
413     // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
414     SpecialFP  = 7 << FPTypeShift,
415
416     // Lock prefix
417     LOCKShift = FPTypeShift + 3,
418     LOCK = 1 << LOCKShift,
419
420     // Execution domain for SSE instructions in bits 23, 24.
421     // 0 in bits 23-24 means normal, non-SSE instruction.
422     SSEDomainShift = LOCKShift + 1,
423
424     OpcodeShift   = SSEDomainShift + 2,
425
426     //===------------------------------------------------------------------===//
427     /// VEX - The opcode prefix used by AVX instructions
428     VEXShift = OpcodeShift + 8,
429     VEX         = 1U << 0,
430
431     /// VEX_W - Has a opcode specific functionality, but is used in the same
432     /// way as REX_W is for regular SSE instructions.
433     VEX_W       = 1U << 1,
434
435     /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
436     /// address instructions in SSE are represented as 3 address ones in AVX
437     /// and the additional register is encoded in VEX_VVVV prefix.
438     VEX_4V      = 1U << 2,
439
440     /// VEX_4VOp3 - Similar to VEX_4V, but used on instructions that encode
441     /// operand 3 with VEX.vvvv.
442     VEX_4VOp3   = 1U << 3,
443
444     /// VEX_I8IMM - Specifies that the last register used in a AVX instruction,
445     /// must be encoded in the i8 immediate field. This usually happens in
446     /// instructions with 4 operands.
447     VEX_I8IMM   = 1U << 4,
448
449     /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
450     /// instruction uses 256-bit wide registers. This is usually auto detected
451     /// if a VR256 register is used, but some AVX instructions also have this
452     /// field marked when using a f256 memory references.
453     VEX_L       = 1U << 5,
454
455     // VEX_LIG - Specifies that this instruction ignores the L-bit in the VEX
456     // prefix. Usually used for scalar instructions. Needed by disassembler.
457     VEX_LIG     = 1U << 6,
458
459     // TODO: we should combine VEX_L and VEX_LIG together to form a 2-bit field
460     // with following encoding:
461     // - 00 V128
462     // - 01 V256
463     // - 10 V512
464     // - 11 LIG (but, in insn encoding, leave VEX.L and EVEX.L in zeros.
465     // this will save 1 tsflag bit
466
467     // VEX_EVEX - Specifies that this instruction use EVEX form which provides
468     // syntax support up to 32 512-bit register operands and up to 7 16-bit
469     // mask operands as well as source operand data swizzling/memory operand
470     // conversion, eviction hint, and rounding mode.
471     EVEX        = 1U << 7,
472
473     // EVEX_K - Set if this instruction requires masking
474     EVEX_K      = 1U << 8,
475
476     // EVEX_Z - Set if this instruction has EVEX.Z field set.
477     EVEX_Z      = 1U << 9,
478
479     // EVEX_L2 - Set if this instruction has EVEX.L' field set.
480     EVEX_L2     = 1U << 10,
481
482     // EVEX_B - Set if this instruction has EVEX.B field set.
483     EVEX_B      = 1U << 11,
484
485     // EVEX_CD8E - compressed disp8 form, element-size
486     EVEX_CD8EShift = VEXShift + 12,
487     EVEX_CD8EMask = 3,
488
489     // EVEX_CD8V - compressed disp8 form, vector-width
490     EVEX_CD8VShift = EVEX_CD8EShift + 2,
491     EVEX_CD8VMask = 7,
492
493     /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the
494     /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
495     /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
496     /// storing a classifier in the imm8 field.  To simplify our implementation,
497     /// we handle this by storeing the classifier in the opcode field and using
498     /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
499     Has3DNow0F0FOpcode = 1U << 17,
500
501     /// MemOp4 - Used to indicate swapping of operand 3 and 4 to be encoded in
502     /// ModRM or I8IMM. This is used for FMA4 and XOP instructions.
503     MemOp4 = 1U << 18,
504
505     /// XOP - Opcode prefix used by XOP instructions.
506     XOP = 1U << 19
507
508   };
509
510   // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
511   // specified machine instruction.
512   //
513   inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
514     return TSFlags >> X86II::OpcodeShift;
515   }
516
517   inline bool hasImm(uint64_t TSFlags) {
518     return (TSFlags & X86II::ImmMask) != 0;
519   }
520
521   /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
522   /// of the specified instruction.
523   inline unsigned getSizeOfImm(uint64_t TSFlags) {
524     switch (TSFlags & X86II::ImmMask) {
525     default: llvm_unreachable("Unknown immediate size");
526     case X86II::Imm8:
527     case X86II::Imm8PCRel:  return 1;
528     case X86II::Imm16:
529     case X86II::Imm16PCRel: return 2;
530     case X86II::Imm32:
531     case X86II::Imm32PCRel: return 4;
532     case X86II::Imm64:      return 8;
533     }
534   }
535
536   /// isImmPCRel - Return true if the immediate of the specified instruction's
537   /// TSFlags indicates that it is pc relative.
538   inline unsigned isImmPCRel(uint64_t TSFlags) {
539     switch (TSFlags & X86II::ImmMask) {
540     default: llvm_unreachable("Unknown immediate size");
541     case X86II::Imm8PCRel:
542     case X86II::Imm16PCRel:
543     case X86II::Imm32PCRel:
544       return true;
545     case X86II::Imm8:
546     case X86II::Imm16:
547     case X86II::Imm32:
548     case X86II::Imm64:
549       return false;
550     }
551   }
552
553   /// getOperandBias - compute any additional adjustment needed to
554   ///                  the offset to the start of the memory operand
555   ///                  in this instruction.
556   /// If this is a two-address instruction,skip one of the register operands.
557   /// FIXME: This should be handled during MCInst lowering.
558   inline int getOperandBias(const MCInstrDesc& Desc)
559   {
560     unsigned NumOps = Desc.getNumOperands();
561     unsigned CurOp = 0;
562     if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
563       ++CurOp;
564     else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
565              Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
566       // Special case for AVX-512 GATHER with 2 TIED_TO operands
567       // Skip the first 2 operands: dst, mask_wb
568       CurOp += 2;
569     else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
570              Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1)
571       // Special case for GATHER with 2 TIED_TO operands
572       // Skip the first 2 operands: dst, mask_wb
573       CurOp += 2;
574     else if (NumOps > 2 && Desc.getOperandConstraint(NumOps - 2, MCOI::TIED_TO) == 0)
575       // SCATTER
576       ++CurOp;
577     return CurOp;
578   }
579
580   /// getMemoryOperandNo - The function returns the MCInst operand # for the
581   /// first field of the memory operand.  If the instruction doesn't have a
582   /// memory operand, this returns -1.
583   ///
584   /// Note that this ignores tied operands.  If there is a tied register which
585   /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
586   /// counted as one operand.
587   ///
588   inline int getMemoryOperandNo(uint64_t TSFlags, unsigned Opcode) {
589     switch (TSFlags & X86II::FormMask) {
590     default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
591     case X86II::Pseudo:
592     case X86II::RawFrm:
593     case X86II::AddRegFrm:
594     case X86II::MRMDestReg:
595     case X86II::MRMSrcReg:
596     case X86II::RawFrmImm8:
597     case X86II::RawFrmImm16:
598        return -1;
599     case X86II::MRMDestMem:
600       return 0;
601     case X86II::MRMSrcMem: {
602       bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
603       bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
604       bool HasEVEX = (TSFlags >> X86II::VEXShift) & X86II::EVEX;
605       bool HasEVEX_K = HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
606       unsigned FirstMemOp = 1;
607       if (HasVEX_4V)
608         ++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV).
609       if (HasMemOp4)
610         ++FirstMemOp;// Skip the register source (which is encoded in I8IMM).
611       if (HasEVEX_K)
612         ++FirstMemOp;// Skip the mask register
613       // FIXME: Maybe lea should have its own form?  This is a horrible hack.
614       //if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
615       //    Opcode == X86::LEA16r || Opcode == X86::LEA32r)
616       return FirstMemOp;
617     }
618     case X86II::MRM0r: case X86II::MRM1r:
619     case X86II::MRM2r: case X86II::MRM3r:
620     case X86II::MRM4r: case X86II::MRM5r:
621     case X86II::MRM6r: case X86II::MRM7r:
622       return -1;
623     case X86II::MRM0m: case X86II::MRM1m:
624     case X86II::MRM2m: case X86II::MRM3m:
625     case X86II::MRM4m: case X86II::MRM5m:
626     case X86II::MRM6m: case X86II::MRM7m: {
627       bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
628       unsigned FirstMemOp = 0;
629       if (HasVEX_4V)
630         ++FirstMemOp;// Skip the register dest (which is encoded in VEX_VVVV).
631       return FirstMemOp;
632     }
633     case X86II::MRM_C1: case X86II::MRM_C2: case X86II::MRM_C3:
634     case X86II::MRM_C4: case X86II::MRM_C8: case X86II::MRM_C9:
635     case X86II::MRM_CA: case X86II::MRM_CB: case X86II::MRM_E8:
636     case X86II::MRM_F0: case X86II::MRM_F8: case X86II::MRM_F9:
637     case X86II::MRM_D0: case X86II::MRM_D1: case X86II::MRM_D4:
638     case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D8:
639     case X86II::MRM_D9: case X86II::MRM_DA: case X86II::MRM_DB:
640     case X86II::MRM_DC: case X86II::MRM_DD: case X86II::MRM_DE:
641     case X86II::MRM_DF:
642       return -1;
643     }
644   }
645
646   /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
647   /// higher) register?  e.g. r8, xmm8, xmm13, etc.
648   inline bool isX86_64ExtendedReg(unsigned RegNo) {
649     if ((RegNo > X86::XMM7 && RegNo <= X86::XMM15) ||
650         (RegNo > X86::XMM23 && RegNo <= X86::XMM31) ||
651         (RegNo > X86::YMM7 && RegNo <= X86::YMM15) ||
652         (RegNo > X86::YMM23 && RegNo <= X86::YMM31) ||
653         (RegNo > X86::ZMM7 && RegNo <= X86::ZMM15) ||
654         (RegNo > X86::ZMM23 && RegNo <= X86::ZMM31))
655       return true;
656
657     switch (RegNo) {
658     default: break;
659     case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
660     case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
661     case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
662     case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
663     case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
664     case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
665     case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
666     case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
667     case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11:
668     case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15:
669         return true;
670     }
671     return false;
672   }
673
674   /// is32ExtendedReg - Is the MemoryOperand a 32 extended (zmm16 or higher)
675   /// registers? e.g. zmm21, etc.
676   static inline bool is32ExtendedReg(unsigned RegNo) {
677     return ((RegNo > X86::XMM15 && RegNo <= X86::XMM31) ||
678             (RegNo > X86::YMM15 && RegNo <= X86::YMM31) ||
679             (RegNo > X86::ZMM15 && RegNo <= X86::ZMM31));
680   }
681
682   
683   inline bool isX86_64NonExtLowByteReg(unsigned reg) {
684     return (reg == X86::SPL || reg == X86::BPL ||
685             reg == X86::SIL || reg == X86::DIL);
686   }
687 }
688
689 } // end namespace llvm;
690
691 #endif