Add support for implicit TLS model used with MS VC runtime.
[oota-llvm.git] / lib / Target / X86 / MCTargetDesc / X86BaseInfo.h
1 //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains small standalone helper functions and enum definitions for
11 // the X86 target useful for the compiler back-end and the MC libraries.
12 // As such, it deliberately does not include references to LLVM core
13 // code gen types, passes, etc..
14 //
15 //===----------------------------------------------------------------------===//
16
17 #ifndef X86BASEINFO_H
18 #define X86BASEINFO_H
19
20 #include "X86MCTargetDesc.h"
21 #include "llvm/Support/DataTypes.h"
22 #include "llvm/Support/ErrorHandling.h"
23
24 namespace llvm {
25
26 namespace X86 {
27   // Enums for memory operand decoding.  Each memory operand is represented with
28   // a 5 operand sequence in the form:
29   //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
30   // These enums help decode this.
31   enum {
32     AddrBaseReg = 0,
33     AddrScaleAmt = 1,
34     AddrIndexReg = 2,
35     AddrDisp = 3,
36
37     /// AddrSegmentReg - The operand # of the segment in the memory operand.
38     AddrSegmentReg = 4,
39
40     /// AddrNumOperands - Total number of operands in a memory reference.
41     AddrNumOperands = 5
42   };
43 } // end namespace X86;
44  
45
46 /// X86II - This namespace holds all of the target specific flags that
47 /// instruction info tracks.
48 ///
49 namespace X86II {
50   /// Target Operand Flag enum.
51   enum TOF {
52     //===------------------------------------------------------------------===//
53     // X86 Specific MachineOperand flags.
54
55     MO_NO_FLAG,
56
57     /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
58     /// relocation of:
59     ///    SYMBOL_LABEL + [. - PICBASELABEL]
60     MO_GOT_ABSOLUTE_ADDRESS,
61
62     /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
63     /// immediate should get the value of the symbol minus the PIC base label:
64     ///    SYMBOL_LABEL - PICBASELABEL
65     MO_PIC_BASE_OFFSET,
66
67     /// MO_GOT - On a symbol operand this indicates that the immediate is the
68     /// offset to the GOT entry for the symbol name from the base of the GOT.
69     ///
70     /// See the X86-64 ELF ABI supplement for more details.
71     ///    SYMBOL_LABEL @GOT
72     MO_GOT,
73
74     /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
75     /// the offset to the location of the symbol name from the base of the GOT.
76     ///
77     /// See the X86-64 ELF ABI supplement for more details.
78     ///    SYMBOL_LABEL @GOTOFF
79     MO_GOTOFF,
80
81     /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
82     /// offset to the GOT entry for the symbol name from the current code
83     /// location.
84     ///
85     /// See the X86-64 ELF ABI supplement for more details.
86     ///    SYMBOL_LABEL @GOTPCREL
87     MO_GOTPCREL,
88
89     /// MO_PLT - On a symbol operand this indicates that the immediate is
90     /// offset to the PLT entry of symbol name from the current code location.
91     ///
92     /// See the X86-64 ELF ABI supplement for more details.
93     ///    SYMBOL_LABEL @PLT
94     MO_PLT,
95
96     /// MO_TLSGD - On a symbol operand this indicates that the immediate is
97     /// some TLS offset.
98     ///
99     /// See 'ELF Handling for Thread-Local Storage' for more details.
100     ///    SYMBOL_LABEL @TLSGD
101     MO_TLSGD,
102
103     /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
104     /// some TLS offset.
105     ///
106     /// See 'ELF Handling for Thread-Local Storage' for more details.
107     ///    SYMBOL_LABEL @GOTTPOFF
108     MO_GOTTPOFF,
109
110     /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
111     /// some TLS offset.
112     ///
113     /// See 'ELF Handling for Thread-Local Storage' for more details.
114     ///    SYMBOL_LABEL @INDNTPOFF
115     MO_INDNTPOFF,
116
117     /// MO_TPOFF - On a symbol operand this indicates that the immediate is
118     /// some TLS offset.
119     ///
120     /// See 'ELF Handling for Thread-Local Storage' for more details.
121     ///    SYMBOL_LABEL @TPOFF
122     MO_TPOFF,
123
124     /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
125     /// some TLS offset.
126     ///
127     /// See 'ELF Handling for Thread-Local Storage' for more details.
128     ///    SYMBOL_LABEL @NTPOFF
129     MO_NTPOFF,
130
131     /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
132     /// reference is actually to the "__imp_FOO" symbol.  This is used for
133     /// dllimport linkage on windows.
134     MO_DLLIMPORT,
135
136     /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
137     /// reference is actually to the "FOO$stub" symbol.  This is used for calls
138     /// and jumps to external functions on Tiger and earlier.
139     MO_DARWIN_STUB,
140
141     /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
142     /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
143     /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
144     MO_DARWIN_NONLAZY,
145
146     /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
147     /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
148     /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
149     MO_DARWIN_NONLAZY_PIC_BASE,
150
151     /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
152     /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
153     /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
154     /// stub.
155     MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
156
157     /// MO_TLVP - On a symbol operand this indicates that the immediate is
158     /// some TLS offset.
159     ///
160     /// This is the TLS offset for the Darwin TLS mechanism.
161     MO_TLVP,
162
163     /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
164     /// is some TLS offset from the picbase.
165     ///
166     /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
167     MO_TLVP_PIC_BASE,
168
169     /// MO_SECREL - On a symbol operand this indicates that the immediate is
170     /// the offset from beginning of section.
171     ///
172     /// This is the TLS offset for the COFF/Windows TLS mechanism.
173     MO_SECREL
174   };
175
176   enum {
177     //===------------------------------------------------------------------===//
178     // Instruction encodings.  These are the standard/most common forms for X86
179     // instructions.
180     //
181
182     // PseudoFrm - This represents an instruction that is a pseudo instruction
183     // or one that has not been implemented yet.  It is illegal to code generate
184     // it, but tolerated for intermediate implementation stages.
185     Pseudo         = 0,
186
187     /// Raw - This form is for instructions that don't have any operands, so
188     /// they are just a fixed opcode value, like 'leave'.
189     RawFrm         = 1,
190
191     /// AddRegFrm - This form is used for instructions like 'push r32' that have
192     /// their one register operand added to their opcode.
193     AddRegFrm      = 2,
194
195     /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
196     /// to specify a destination, which in this case is a register.
197     ///
198     MRMDestReg     = 3,
199
200     /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
201     /// to specify a destination, which in this case is memory.
202     ///
203     MRMDestMem     = 4,
204
205     /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
206     /// to specify a source, which in this case is a register.
207     ///
208     MRMSrcReg      = 5,
209
210     /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
211     /// to specify a source, which in this case is memory.
212     ///
213     MRMSrcMem      = 6,
214
215     /// MRM[0-7][rm] - These forms are used to represent instructions that use
216     /// a Mod/RM byte, and use the middle field to hold extended opcode
217     /// information.  In the intel manual these are represented as /0, /1, ...
218     ///
219
220     // First, instructions that operate on a register r/m operand...
221     MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
222     MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
223
224     // Next, instructions that operate on a memory r/m operand...
225     MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
226     MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
227
228     // MRMInitReg - This form is used for instructions whose source and
229     // destinations are the same register.
230     MRMInitReg = 32,
231
232     //// MRM_C1 - A mod/rm byte of exactly 0xC1.
233     MRM_C1 = 33,
234     MRM_C2 = 34,
235     MRM_C3 = 35,
236     MRM_C4 = 36,
237     MRM_C8 = 37,
238     MRM_C9 = 38,
239     MRM_E8 = 39,
240     MRM_F0 = 40,
241     MRM_F8 = 41,
242     MRM_F9 = 42,
243     MRM_D0 = 45,
244     MRM_D1 = 46,
245
246     /// RawFrmImm8 - This is used for the ENTER instruction, which has two
247     /// immediates, the first of which is a 16-bit immediate (specified by
248     /// the imm encoding) and the second is a 8-bit fixed value.
249     RawFrmImm8 = 43,
250
251     /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
252     /// immediates, the first of which is a 16 or 32-bit immediate (specified by
253     /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
254     /// manual, this operand is described as pntr16:32 and pntr16:16
255     RawFrmImm16 = 44,
256
257     FormMask       = 63,
258
259     //===------------------------------------------------------------------===//
260     // Actual flags...
261
262     // OpSize - Set if this instruction requires an operand size prefix (0x66),
263     // which most often indicates that the instruction operates on 16 bit data
264     // instead of 32 bit data.
265     OpSize      = 1 << 6,
266
267     // AsSize - Set if this instruction requires an operand size prefix (0x67),
268     // which most often indicates that the instruction address 16 bit address
269     // instead of 32 bit address (or 32 bit address in 64 bit mode).
270     AdSize      = 1 << 7,
271
272     //===------------------------------------------------------------------===//
273     // Op0Mask - There are several prefix bytes that are used to form two byte
274     // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is
275     // used to obtain the setting of this field.  If no bits in this field is
276     // set, there is no prefix byte for obtaining a multibyte opcode.
277     //
278     Op0Shift    = 8,
279     Op0Mask     = 0x1F << Op0Shift,
280
281     // TB - TwoByte - Set if this instruction has a two byte opcode, which
282     // starts with a 0x0F byte before the real opcode.
283     TB          = 1 << Op0Shift,
284
285     // REP - The 0xF3 prefix byte indicating repetition of the following
286     // instruction.
287     REP         = 2 << Op0Shift,
288
289     // D8-DF - These escape opcodes are used by the floating point unit.  These
290     // values must remain sequential.
291     D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift,
292     DA = 5 << Op0Shift,   DB = 6 << Op0Shift,
293     DC = 7 << Op0Shift,   DD = 8 << Op0Shift,
294     DE = 9 << Op0Shift,   DF = 10 << Op0Shift,
295
296     // XS, XD - These prefix codes are for single and double precision scalar
297     // floating point operations performed in the SSE registers.
298     XD = 11 << Op0Shift,  XS = 12 << Op0Shift,
299
300     // T8, TA, A6, A7 - Prefix after the 0x0F prefix.
301     T8 = 13 << Op0Shift,  TA = 14 << Op0Shift,
302     A6 = 15 << Op0Shift,  A7 = 16 << Op0Shift,
303
304     // T8XD - Prefix before and after 0x0F. Combination of T8 and XD.
305     T8XD = 17 << Op0Shift,
306
307     // T8XS - Prefix before and after 0x0F. Combination of T8 and XS.
308     T8XS = 18 << Op0Shift,
309
310     // TAXD - Prefix before and after 0x0F. Combination of TA and XD.
311     TAXD = 19 << Op0Shift,
312
313     // XOP8 - Prefix to include use of imm byte.
314     XOP8 = 20 << Op0Shift,
315
316     // XOP9 - Prefix to exclude use of imm byte.
317     XOP9 = 21 << Op0Shift,
318
319     //===------------------------------------------------------------------===//
320     // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
321     // They are used to specify GPRs and SSE registers, 64-bit operand size,
322     // etc. We only cares about REX.W and REX.R bits and only the former is
323     // statically determined.
324     //
325     REXShift    = Op0Shift + 5,
326     REX_W       = 1 << REXShift,
327
328     //===------------------------------------------------------------------===//
329     // This three-bit field describes the size of an immediate operand.  Zero is
330     // unused so that we can tell if we forgot to set a value.
331     ImmShift = REXShift + 1,
332     ImmMask    = 7 << ImmShift,
333     Imm8       = 1 << ImmShift,
334     Imm8PCRel  = 2 << ImmShift,
335     Imm16      = 3 << ImmShift,
336     Imm16PCRel = 4 << ImmShift,
337     Imm32      = 5 << ImmShift,
338     Imm32PCRel = 6 << ImmShift,
339     Imm64      = 7 << ImmShift,
340
341     //===------------------------------------------------------------------===//
342     // FP Instruction Classification...  Zero is non-fp instruction.
343
344     // FPTypeMask - Mask for all of the FP types...
345     FPTypeShift = ImmShift + 3,
346     FPTypeMask  = 7 << FPTypeShift,
347
348     // NotFP - The default, set for instructions that do not use FP registers.
349     NotFP      = 0 << FPTypeShift,
350
351     // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
352     ZeroArgFP  = 1 << FPTypeShift,
353
354     // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
355     OneArgFP   = 2 << FPTypeShift,
356
357     // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
358     // result back to ST(0).  For example, fcos, fsqrt, etc.
359     //
360     OneArgFPRW = 3 << FPTypeShift,
361
362     // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
363     // explicit argument, storing the result to either ST(0) or the implicit
364     // argument.  For example: fadd, fsub, fmul, etc...
365     TwoArgFP   = 4 << FPTypeShift,
366
367     // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
368     // explicit argument, but have no destination.  Example: fucom, fucomi, ...
369     CompareFP  = 5 << FPTypeShift,
370
371     // CondMovFP - "2 operand" floating point conditional move instructions.
372     CondMovFP  = 6 << FPTypeShift,
373
374     // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
375     SpecialFP  = 7 << FPTypeShift,
376
377     // Lock prefix
378     LOCKShift = FPTypeShift + 3,
379     LOCK = 1 << LOCKShift,
380
381     // Segment override prefixes. Currently we just need ability to address
382     // stuff in gs and fs segments.
383     SegOvrShift = LOCKShift + 1,
384     SegOvrMask  = 3 << SegOvrShift,
385     FS          = 1 << SegOvrShift,
386     GS          = 2 << SegOvrShift,
387
388     // Execution domain for SSE instructions in bits 23, 24.
389     // 0 in bits 23-24 means normal, non-SSE instruction.
390     SSEDomainShift = SegOvrShift + 2,
391
392     OpcodeShift   = SSEDomainShift + 2,
393
394     //===------------------------------------------------------------------===//
395     /// VEX - The opcode prefix used by AVX instructions
396     VEXShift = OpcodeShift + 8,
397     VEX         = 1U << 0,
398
399     /// VEX_W - Has a opcode specific functionality, but is used in the same
400     /// way as REX_W is for regular SSE instructions.
401     VEX_W       = 1U << 1,
402
403     /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
404     /// address instructions in SSE are represented as 3 address ones in AVX
405     /// and the additional register is encoded in VEX_VVVV prefix.
406     VEX_4V      = 1U << 2,
407
408     /// VEX_4VOp3 - Similar to VEX_4V, but used on instructions that encode
409     /// operand 3 with VEX.vvvv.
410     VEX_4VOp3   = 1U << 3,
411
412     /// VEX_I8IMM - Specifies that the last register used in a AVX instruction,
413     /// must be encoded in the i8 immediate field. This usually happens in
414     /// instructions with 4 operands.
415     VEX_I8IMM   = 1U << 4,
416
417     /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
418     /// instruction uses 256-bit wide registers. This is usually auto detected
419     /// if a VR256 register is used, but some AVX instructions also have this
420     /// field marked when using a f256 memory references.
421     VEX_L       = 1U << 5,
422
423     // VEX_LIG - Specifies that this instruction ignores the L-bit in the VEX
424     // prefix. Usually used for scalar instructions. Needed by disassembler.
425     VEX_LIG     = 1U << 6,
426
427     /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the
428     /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
429     /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
430     /// storing a classifier in the imm8 field.  To simplify our implementation,
431     /// we handle this by storeing the classifier in the opcode field and using
432     /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
433     Has3DNow0F0FOpcode = 1U << 7,
434
435     /// MemOp4 - Used to indicate swapping of operand 3 and 4 to be encoded in
436     /// ModRM or I8IMM. This is used for FMA4 and XOP instructions.
437     MemOp4 = 1U << 8,
438
439     /// XOP - Opcode prefix used by XOP instructions.
440     XOP = 1U << 9
441
442   };
443
444   // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
445   // specified machine instruction.
446   //
447   static inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
448     return TSFlags >> X86II::OpcodeShift;
449   }
450
451   static inline bool hasImm(uint64_t TSFlags) {
452     return (TSFlags & X86II::ImmMask) != 0;
453   }
454
455   /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
456   /// of the specified instruction.
457   static inline unsigned getSizeOfImm(uint64_t TSFlags) {
458     switch (TSFlags & X86II::ImmMask) {
459     default: llvm_unreachable("Unknown immediate size");
460     case X86II::Imm8:
461     case X86II::Imm8PCRel:  return 1;
462     case X86II::Imm16:
463     case X86II::Imm16PCRel: return 2;
464     case X86II::Imm32:
465     case X86II::Imm32PCRel: return 4;
466     case X86II::Imm64:      return 8;
467     }
468   }
469
470   /// isImmPCRel - Return true if the immediate of the specified instruction's
471   /// TSFlags indicates that it is pc relative.
472   static inline unsigned isImmPCRel(uint64_t TSFlags) {
473     switch (TSFlags & X86II::ImmMask) {
474     default: llvm_unreachable("Unknown immediate size");
475     case X86II::Imm8PCRel:
476     case X86II::Imm16PCRel:
477     case X86II::Imm32PCRel:
478       return true;
479     case X86II::Imm8:
480     case X86II::Imm16:
481     case X86II::Imm32:
482     case X86II::Imm64:
483       return false;
484     }
485   }
486
487   /// getMemoryOperandNo - The function returns the MCInst operand # for the
488   /// first field of the memory operand.  If the instruction doesn't have a
489   /// memory operand, this returns -1.
490   ///
491   /// Note that this ignores tied operands.  If there is a tied register which
492   /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
493   /// counted as one operand.
494   ///
495   static inline int getMemoryOperandNo(uint64_t TSFlags, unsigned Opcode) {
496     switch (TSFlags & X86II::FormMask) {
497     case X86II::MRMInitReg:  llvm_unreachable("FIXME: Remove this form");
498     default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
499     case X86II::Pseudo:
500     case X86II::RawFrm:
501     case X86II::AddRegFrm:
502     case X86II::MRMDestReg:
503     case X86II::MRMSrcReg:
504     case X86II::RawFrmImm8:
505     case X86II::RawFrmImm16:
506        return -1;
507     case X86II::MRMDestMem:
508       return 0;
509     case X86II::MRMSrcMem: {
510       bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
511       bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
512       unsigned FirstMemOp = 1;
513       if (HasVEX_4V)
514         ++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV).
515       if (HasMemOp4)
516         ++FirstMemOp;// Skip the register source (which is encoded in I8IMM).
517
518       // FIXME: Maybe lea should have its own form?  This is a horrible hack.
519       //if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
520       //    Opcode == X86::LEA16r || Opcode == X86::LEA32r)
521       return FirstMemOp;
522     }
523     case X86II::MRM0r: case X86II::MRM1r:
524     case X86II::MRM2r: case X86II::MRM3r:
525     case X86II::MRM4r: case X86II::MRM5r:
526     case X86II::MRM6r: case X86II::MRM7r:
527       return -1;
528     case X86II::MRM0m: case X86II::MRM1m:
529     case X86II::MRM2m: case X86II::MRM3m:
530     case X86II::MRM4m: case X86II::MRM5m:
531     case X86II::MRM6m: case X86II::MRM7m: {
532       bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
533       unsigned FirstMemOp = 0;
534       if (HasVEX_4V)
535         ++FirstMemOp;// Skip the register dest (which is encoded in VEX_VVVV).
536       return FirstMemOp;
537     }
538     case X86II::MRM_C1:
539     case X86II::MRM_C2:
540     case X86II::MRM_C3:
541     case X86II::MRM_C4:
542     case X86II::MRM_C8:
543     case X86II::MRM_C9:
544     case X86II::MRM_E8:
545     case X86II::MRM_F0:
546     case X86II::MRM_F8:
547     case X86II::MRM_F9:
548     case X86II::MRM_D0:
549     case X86II::MRM_D1:
550       return -1;
551     }
552   }
553
554   /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
555   /// higher) register?  e.g. r8, xmm8, xmm13, etc.
556   static inline bool isX86_64ExtendedReg(unsigned RegNo) {
557     switch (RegNo) {
558     default: break;
559     case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
560     case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
561     case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
562     case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
563     case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
564     case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
565     case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
566     case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
567     case X86::XMM8:  case X86::XMM9:  case X86::XMM10: case X86::XMM11:
568     case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
569     case X86::YMM8:  case X86::YMM9:  case X86::YMM10: case X86::YMM11:
570     case X86::YMM12: case X86::YMM13: case X86::YMM14: case X86::YMM15:
571     case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11:
572     case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15:
573         return true;
574     }
575     return false;
576   }
577   
578   static inline bool isX86_64NonExtLowByteReg(unsigned reg) {
579     return (reg == X86::SPL || reg == X86::BPL ||
580             reg == X86::SIL || reg == X86::DIL);
581   }
582 }
583
584 } // end namespace llvm;
585
586 #endif