[X86] Move AVX512 STATIC_ROUNDING enum to X86BaseInfo.h to fix a layering violation...
[oota-llvm.git] / lib / Target / X86 / MCTargetDesc / X86BaseInfo.h
1 //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains small standalone helper functions and enum definitions for
11 // the X86 target useful for the compiler back-end and the MC libraries.
12 // As such, it deliberately does not include references to LLVM core
13 // code gen types, passes, etc..
14 //
15 //===----------------------------------------------------------------------===//
16
17 #ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
18 #define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
19
20 #include "X86MCTargetDesc.h"
21 #include "llvm/MC/MCInstrDesc.h"
22 #include "llvm/Support/DataTypes.h"
23 #include "llvm/Support/ErrorHandling.h"
24
25 namespace llvm {
26
27 namespace X86 {
28   // Enums for memory operand decoding.  Each memory operand is represented with
29   // a 5 operand sequence in the form:
30   //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
31   // These enums help decode this.
32   enum {
33     AddrBaseReg = 0,
34     AddrScaleAmt = 1,
35     AddrIndexReg = 2,
36     AddrDisp = 3,
37
38     /// AddrSegmentReg - The operand # of the segment in the memory operand.
39     AddrSegmentReg = 4,
40
41     /// AddrNumOperands - Total number of operands in a memory reference.
42     AddrNumOperands = 5
43   };
44
45   /// AVX512 static rounding constants.  These need to match the values in
46   /// avx512fintrin.h.
47   enum STATIC_ROUNDING {
48     TO_NEAREST_INT = 0,
49     TO_NEG_INF = 1,
50     TO_POS_INF = 2,
51     TO_ZERO = 3,
52     CUR_DIRECTION = 4
53   };
54 } // end namespace X86;
55
56 /// X86II - This namespace holds all of the target specific flags that
57 /// instruction info tracks.
58 ///
59 namespace X86II {
60   /// Target Operand Flag enum.
61   enum TOF {
62     //===------------------------------------------------------------------===//
63     // X86 Specific MachineOperand flags.
64
65     MO_NO_FLAG,
66
67     /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
68     /// relocation of:
69     ///    SYMBOL_LABEL + [. - PICBASELABEL]
70     MO_GOT_ABSOLUTE_ADDRESS,
71
72     /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
73     /// immediate should get the value of the symbol minus the PIC base label:
74     ///    SYMBOL_LABEL - PICBASELABEL
75     MO_PIC_BASE_OFFSET,
76
77     /// MO_GOT - On a symbol operand this indicates that the immediate is the
78     /// offset to the GOT entry for the symbol name from the base of the GOT.
79     ///
80     /// See the X86-64 ELF ABI supplement for more details.
81     ///    SYMBOL_LABEL @GOT
82     MO_GOT,
83
84     /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
85     /// the offset to the location of the symbol name from the base of the GOT.
86     ///
87     /// See the X86-64 ELF ABI supplement for more details.
88     ///    SYMBOL_LABEL @GOTOFF
89     MO_GOTOFF,
90
91     /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
92     /// offset to the GOT entry for the symbol name from the current code
93     /// location.
94     ///
95     /// See the X86-64 ELF ABI supplement for more details.
96     ///    SYMBOL_LABEL @GOTPCREL
97     MO_GOTPCREL,
98
99     /// MO_PLT - On a symbol operand this indicates that the immediate is
100     /// offset to the PLT entry of symbol name from the current code location.
101     ///
102     /// See the X86-64 ELF ABI supplement for more details.
103     ///    SYMBOL_LABEL @PLT
104     MO_PLT,
105
106     /// MO_TLSGD - On a symbol operand this indicates that the immediate is
107     /// the offset of the GOT entry with the TLS index structure that contains
108     /// the module number and variable offset for the symbol. Used in the
109     /// general dynamic TLS access model.
110     ///
111     /// See 'ELF Handling for Thread-Local Storage' for more details.
112     ///    SYMBOL_LABEL @TLSGD
113     MO_TLSGD,
114
115     /// MO_TLSLD - On a symbol operand this indicates that the immediate is
116     /// the offset of the GOT entry with the TLS index for the module that
117     /// contains the symbol. When this index is passed to a call to
118     /// __tls_get_addr, the function will return the base address of the TLS
119     /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
120     ///
121     /// See 'ELF Handling for Thread-Local Storage' for more details.
122     ///    SYMBOL_LABEL @TLSLD
123     MO_TLSLD,
124
125     /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
126     /// the offset of the GOT entry with the TLS index for the module that
127     /// contains the symbol. When this index is passed to a call to
128     /// ___tls_get_addr, the function will return the base address of the TLS
129     /// block for the symbol. Used in the IA32 local dynamic TLS access model.
130     ///
131     /// See 'ELF Handling for Thread-Local Storage' for more details.
132     ///    SYMBOL_LABEL @TLSLDM
133     MO_TLSLDM,
134
135     /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
136     /// the offset of the GOT entry with the thread-pointer offset for the
137     /// symbol. Used in the x86-64 initial exec TLS access model.
138     ///
139     /// See 'ELF Handling for Thread-Local Storage' for more details.
140     ///    SYMBOL_LABEL @GOTTPOFF
141     MO_GOTTPOFF,
142
143     /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
144     /// the absolute address of the GOT entry with the negative thread-pointer
145     /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
146     /// model.
147     ///
148     /// See 'ELF Handling for Thread-Local Storage' for more details.
149     ///    SYMBOL_LABEL @INDNTPOFF
150     MO_INDNTPOFF,
151
152     /// MO_TPOFF - On a symbol operand this indicates that the immediate is
153     /// the thread-pointer offset for the symbol. Used in the x86-64 local
154     /// exec TLS access model.
155     ///
156     /// See 'ELF Handling for Thread-Local Storage' for more details.
157     ///    SYMBOL_LABEL @TPOFF
158     MO_TPOFF,
159
160     /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
161     /// the offset of the GOT entry with the TLS offset of the symbol. Used
162     /// in the local dynamic TLS access model.
163     ///
164     /// See 'ELF Handling for Thread-Local Storage' for more details.
165     ///    SYMBOL_LABEL @DTPOFF
166     MO_DTPOFF,
167
168     /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
169     /// the negative thread-pointer offset for the symbol. Used in the IA32
170     /// local exec TLS access model.
171     ///
172     /// See 'ELF Handling for Thread-Local Storage' for more details.
173     ///    SYMBOL_LABEL @NTPOFF
174     MO_NTPOFF,
175
176     /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
177     /// the offset of the GOT entry with the negative thread-pointer offset for
178     /// the symbol. Used in the PIC IA32 initial exec TLS access model.
179     ///
180     /// See 'ELF Handling for Thread-Local Storage' for more details.
181     ///    SYMBOL_LABEL @GOTNTPOFF
182     MO_GOTNTPOFF,
183
184     /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
185     /// reference is actually to the "__imp_FOO" symbol.  This is used for
186     /// dllimport linkage on windows.
187     MO_DLLIMPORT,
188
189     /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
190     /// reference is actually to the "FOO$stub" symbol.  This is used for calls
191     /// and jumps to external functions on Tiger and earlier.
192     MO_DARWIN_STUB,
193
194     /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
195     /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
196     /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
197     MO_DARWIN_NONLAZY,
198
199     /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
200     /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
201     /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
202     MO_DARWIN_NONLAZY_PIC_BASE,
203
204     /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
205     /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
206     /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
207     /// stub.
208     MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
209
210     /// MO_TLVP - On a symbol operand this indicates that the immediate is
211     /// some TLS offset.
212     ///
213     /// This is the TLS offset for the Darwin TLS mechanism.
214     MO_TLVP,
215
216     /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
217     /// is some TLS offset from the picbase.
218     ///
219     /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
220     MO_TLVP_PIC_BASE,
221
222     /// MO_SECREL - On a symbol operand this indicates that the immediate is
223     /// the offset from beginning of section.
224     ///
225     /// This is the TLS offset for the COFF/Windows TLS mechanism.
226     MO_SECREL
227   };
228
229   enum : uint64_t {
230     //===------------------------------------------------------------------===//
231     // Instruction encodings.  These are the standard/most common forms for X86
232     // instructions.
233     //
234
235     // PseudoFrm - This represents an instruction that is a pseudo instruction
236     // or one that has not been implemented yet.  It is illegal to code generate
237     // it, but tolerated for intermediate implementation stages.
238     Pseudo         = 0,
239
240     /// Raw - This form is for instructions that don't have any operands, so
241     /// they are just a fixed opcode value, like 'leave'.
242     RawFrm         = 1,
243
244     /// AddRegFrm - This form is used for instructions like 'push r32' that have
245     /// their one register operand added to their opcode.
246     AddRegFrm      = 2,
247
248     /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
249     /// to specify a destination, which in this case is a register.
250     ///
251     MRMDestReg     = 3,
252
253     /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
254     /// to specify a destination, which in this case is memory.
255     ///
256     MRMDestMem     = 4,
257
258     /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
259     /// to specify a source, which in this case is a register.
260     ///
261     MRMSrcReg      = 5,
262
263     /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
264     /// to specify a source, which in this case is memory.
265     ///
266     MRMSrcMem      = 6,
267
268     /// RawFrmMemOffs - This form is for instructions that store an absolute
269     /// memory offset as an immediate with a possible segment override.
270     RawFrmMemOffs  = 7,
271
272     /// RawFrmSrc - This form is for instructions that use the source index
273     /// register SI/ESI/RSI with a possible segment override.
274     RawFrmSrc      = 8,
275
276     /// RawFrmDst - This form is for instructions that use the destination index
277     /// register DI/EDI/ESI.
278     RawFrmDst      = 9,
279
280     /// RawFrmSrc - This form is for instructions that use the source index
281     /// register SI/ESI/ERI with a possible segment override, and also the
282     /// destination index register DI/ESI/RDI.
283     RawFrmDstSrc   = 10,
284
285     /// RawFrmImm8 - This is used for the ENTER instruction, which has two
286     /// immediates, the first of which is a 16-bit immediate (specified by
287     /// the imm encoding) and the second is a 8-bit fixed value.
288     RawFrmImm8 = 11,
289
290     /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
291     /// immediates, the first of which is a 16 or 32-bit immediate (specified by
292     /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
293     /// manual, this operand is described as pntr16:32 and pntr16:16
294     RawFrmImm16 = 12,
295
296     /// MRMX[rm] - The forms are used to represent instructions that use a
297     /// Mod/RM byte, and don't use the middle field for anything.
298     MRMXr = 14, MRMXm = 15,
299
300     /// MRM[0-7][rm] - These forms are used to represent instructions that use
301     /// a Mod/RM byte, and use the middle field to hold extended opcode
302     /// information.  In the intel manual these are represented as /0, /1, ...
303     ///
304
305     // First, instructions that operate on a register r/m operand...
306     MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
307     MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
308
309     // Next, instructions that operate on a memory r/m operand...
310     MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
311     MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
312
313     //// MRM_XX - A mod/rm byte of exactly 0xXX.
314     MRM_C0 = 32, MRM_C1 = 33, MRM_C2 = 34, MRM_C3 = 35,
315     MRM_C4 = 36, MRM_C5 = 37, MRM_C6 = 38, MRM_C7 = 39,
316     MRM_C8 = 40, MRM_C9 = 41, MRM_CA = 42, MRM_CB = 43,
317     MRM_CC = 44, MRM_CD = 45, MRM_CE = 46, MRM_CF = 47,
318     MRM_D0 = 48, MRM_D1 = 49, MRM_D2 = 50, MRM_D3 = 51,
319     MRM_D4 = 52, MRM_D5 = 53, MRM_D6 = 54, MRM_D7 = 55,
320     MRM_D8 = 56, MRM_D9 = 57, MRM_DA = 58, MRM_DB = 59,
321     MRM_DC = 60, MRM_DD = 61, MRM_DE = 62, MRM_DF = 63,
322     MRM_E0 = 64, MRM_E1 = 65, MRM_E2 = 66, MRM_E3 = 67,
323     MRM_E4 = 68, MRM_E5 = 69, MRM_E6 = 70, MRM_E7 = 71,
324     MRM_E8 = 72, MRM_E9 = 73, MRM_EA = 74, MRM_EB = 75,
325     MRM_EC = 76, MRM_ED = 77, MRM_EE = 78, MRM_EF = 79,
326     MRM_F0 = 80, MRM_F1 = 81, MRM_F2 = 82, MRM_F3 = 83,
327     MRM_F4 = 84, MRM_F5 = 85, MRM_F6 = 86, MRM_F7 = 87,
328     MRM_F8 = 88, MRM_F9 = 89, MRM_FA = 90, MRM_FB = 91,
329     MRM_FC = 92, MRM_FD = 93, MRM_FE = 94, MRM_FF = 95,
330
331     FormMask       = 127,
332
333     //===------------------------------------------------------------------===//
334     // Actual flags...
335
336     // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
337     // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
338     // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
339     // prefix in 16-bit mode.
340     OpSizeShift = 7,
341     OpSizeMask = 0x3 << OpSizeShift,
342
343     OpSizeFixed = 0 << OpSizeShift,
344     OpSize16    = 1 << OpSizeShift,
345     OpSize32    = 2 << OpSizeShift,
346
347     // AsSize - AdSizeX implies this instruction determines its need of 0x67
348     // prefix from a normal ModRM memory operand. The other types indicate that
349     // an operand is encoded with a specific width and a prefix is needed if
350     // it differs from the current mode.
351     AdSizeShift = OpSizeShift + 2,
352     AdSizeMask  = 0x3 << AdSizeShift,
353
354     AdSizeX  = 1 << AdSizeShift,
355     AdSize16 = 1 << AdSizeShift,
356     AdSize32 = 2 << AdSizeShift,
357     AdSize64 = 3 << AdSizeShift,
358
359     //===------------------------------------------------------------------===//
360     // OpPrefix - There are several prefix bytes that are used as opcode
361     // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
362     // no prefix.
363     //
364     OpPrefixShift = AdSizeShift + 2,
365     OpPrefixMask  = 0x7 << OpPrefixShift,
366
367     // PS, PD - Prefix code for packed single and double precision vector
368     // floating point operations performed in the SSE registers.
369     PS = 1 << OpPrefixShift, PD = 2 << OpPrefixShift,
370
371     // XS, XD - These prefix codes are for single and double precision scalar
372     // floating point operations performed in the SSE registers.
373     XS = 3 << OpPrefixShift,  XD = 4 << OpPrefixShift,
374
375     //===------------------------------------------------------------------===//
376     // OpMap - This field determines which opcode map this instruction
377     // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
378     //
379     OpMapShift = OpPrefixShift + 3,
380     OpMapMask  = 0x7 << OpMapShift,
381
382     // OB - OneByte - Set if this instruction has a one byte opcode.
383     OB = 0 << OpMapShift,
384
385     // TB - TwoByte - Set if this instruction has a two byte opcode, which
386     // starts with a 0x0F byte before the real opcode.
387     TB = 1 << OpMapShift,
388
389     // T8, TA - Prefix after the 0x0F prefix.
390     T8 = 2 << OpMapShift,  TA = 3 << OpMapShift,
391
392     // XOP8 - Prefix to include use of imm byte.
393     XOP8 = 4 << OpMapShift,
394
395     // XOP9 - Prefix to exclude use of imm byte.
396     XOP9 = 5 << OpMapShift,
397
398     // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
399     XOPA = 6 << OpMapShift,
400
401     //===------------------------------------------------------------------===//
402     // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
403     // They are used to specify GPRs and SSE registers, 64-bit operand size,
404     // etc. We only cares about REX.W and REX.R bits and only the former is
405     // statically determined.
406     //
407     REXShift    = OpMapShift + 3,
408     REX_W       = 1 << REXShift,
409
410     //===------------------------------------------------------------------===//
411     // This three-bit field describes the size of an immediate operand.  Zero is
412     // unused so that we can tell if we forgot to set a value.
413     ImmShift = REXShift + 1,
414     ImmMask    = 15 << ImmShift,
415     Imm8       = 1 << ImmShift,
416     Imm8PCRel  = 2 << ImmShift,
417     Imm16      = 3 << ImmShift,
418     Imm16PCRel = 4 << ImmShift,
419     Imm32      = 5 << ImmShift,
420     Imm32PCRel = 6 << ImmShift,
421     Imm32S     = 7 << ImmShift,
422     Imm64      = 8 << ImmShift,
423
424     //===------------------------------------------------------------------===//
425     // FP Instruction Classification...  Zero is non-fp instruction.
426
427     // FPTypeMask - Mask for all of the FP types...
428     FPTypeShift = ImmShift + 4,
429     FPTypeMask  = 7 << FPTypeShift,
430
431     // NotFP - The default, set for instructions that do not use FP registers.
432     NotFP      = 0 << FPTypeShift,
433
434     // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
435     ZeroArgFP  = 1 << FPTypeShift,
436
437     // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
438     OneArgFP   = 2 << FPTypeShift,
439
440     // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
441     // result back to ST(0).  For example, fcos, fsqrt, etc.
442     //
443     OneArgFPRW = 3 << FPTypeShift,
444
445     // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
446     // explicit argument, storing the result to either ST(0) or the implicit
447     // argument.  For example: fadd, fsub, fmul, etc...
448     TwoArgFP   = 4 << FPTypeShift,
449
450     // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
451     // explicit argument, but have no destination.  Example: fucom, fucomi, ...
452     CompareFP  = 5 << FPTypeShift,
453
454     // CondMovFP - "2 operand" floating point conditional move instructions.
455     CondMovFP  = 6 << FPTypeShift,
456
457     // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
458     SpecialFP  = 7 << FPTypeShift,
459
460     // Lock prefix
461     LOCKShift = FPTypeShift + 3,
462     LOCK = 1 << LOCKShift,
463
464     // REP prefix
465     REPShift = LOCKShift + 1,
466     REP = 1 << REPShift,
467
468     // Execution domain for SSE instructions.
469     // 0 means normal, non-SSE instruction.
470     SSEDomainShift = REPShift + 1,
471
472     // Encoding
473     EncodingShift = SSEDomainShift + 2,
474     EncodingMask = 0x3 << EncodingShift,
475
476     // VEX - encoding using 0xC4/0xC5
477     VEX = 1 << EncodingShift,
478
479     /// XOP - Opcode prefix used by XOP instructions.
480     XOP = 2 << EncodingShift,
481
482     // VEX_EVEX - Specifies that this instruction use EVEX form which provides
483     // syntax support up to 32 512-bit register operands and up to 7 16-bit
484     // mask operands as well as source operand data swizzling/memory operand
485     // conversion, eviction hint, and rounding mode.
486     EVEX = 3 << EncodingShift,
487
488     // Opcode
489     OpcodeShift   = EncodingShift + 2,
490
491     /// VEX_W - Has a opcode specific functionality, but is used in the same
492     /// way as REX_W is for regular SSE instructions.
493     VEX_WShift  = OpcodeShift + 8,
494     VEX_W       = 1ULL << VEX_WShift,
495
496     /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
497     /// address instructions in SSE are represented as 3 address ones in AVX
498     /// and the additional register is encoded in VEX_VVVV prefix.
499     VEX_4VShift = VEX_WShift + 1,
500     VEX_4V      = 1ULL << VEX_4VShift,
501
502     /// VEX_4VOp3 - Similar to VEX_4V, but used on instructions that encode
503     /// operand 3 with VEX.vvvv.
504     VEX_4VOp3Shift = VEX_4VShift + 1,
505     VEX_4VOp3   = 1ULL << VEX_4VOp3Shift,
506
507     /// VEX_I8IMM - Specifies that the last register used in a AVX instruction,
508     /// must be encoded in the i8 immediate field. This usually happens in
509     /// instructions with 4 operands.
510     VEX_I8IMMShift = VEX_4VOp3Shift + 1,
511     VEX_I8IMM   = 1ULL << VEX_I8IMMShift,
512
513     /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
514     /// instruction uses 256-bit wide registers. This is usually auto detected
515     /// if a VR256 register is used, but some AVX instructions also have this
516     /// field marked when using a f256 memory references.
517     VEX_LShift = VEX_I8IMMShift + 1,
518     VEX_L       = 1ULL << VEX_LShift,
519
520     // VEX_LIG - Specifies that this instruction ignores the L-bit in the VEX
521     // prefix. Usually used for scalar instructions. Needed by disassembler.
522     VEX_LIGShift = VEX_LShift + 1,
523     VEX_LIG     = 1ULL << VEX_LIGShift,
524
525     // TODO: we should combine VEX_L and VEX_LIG together to form a 2-bit field
526     // with following encoding:
527     // - 00 V128
528     // - 01 V256
529     // - 10 V512
530     // - 11 LIG (but, in insn encoding, leave VEX.L and EVEX.L in zeros.
531     // this will save 1 tsflag bit
532
533     // EVEX_K - Set if this instruction requires masking
534     EVEX_KShift = VEX_LIGShift + 1,
535     EVEX_K      = 1ULL << EVEX_KShift,
536
537     // EVEX_Z - Set if this instruction has EVEX.Z field set.
538     EVEX_ZShift = EVEX_KShift + 1,
539     EVEX_Z      = 1ULL << EVEX_ZShift,
540
541     // EVEX_L2 - Set if this instruction has EVEX.L' field set.
542     EVEX_L2Shift = EVEX_ZShift + 1,
543     EVEX_L2     = 1ULL << EVEX_L2Shift,
544
545     // EVEX_B - Set if this instruction has EVEX.B field set.
546     EVEX_BShift = EVEX_L2Shift + 1,
547     EVEX_B      = 1ULL << EVEX_BShift,
548
549     // The scaling factor for the AVX512's 8-bit compressed displacement.
550     CD8_Scale_Shift = EVEX_BShift + 1,
551     CD8_Scale_Mask = 127ULL << CD8_Scale_Shift,
552
553     /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the
554     /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
555     /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
556     /// storing a classifier in the imm8 field.  To simplify our implementation,
557     /// we handle this by storeing the classifier in the opcode field and using
558     /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
559     Has3DNow0F0FOpcodeShift = CD8_Scale_Shift + 7,
560     Has3DNow0F0FOpcode = 1ULL << Has3DNow0F0FOpcodeShift,
561
562     /// MemOp4 - Used to indicate swapping of operand 3 and 4 to be encoded in
563     /// ModRM or I8IMM. This is used for FMA4 and XOP instructions.
564     MemOp4Shift = Has3DNow0F0FOpcodeShift + 1,
565     MemOp4 = 1ULL << MemOp4Shift,
566
567     /// Explicitly specified rounding control
568     EVEX_RCShift = MemOp4Shift + 1,
569     EVEX_RC = 1ULL << EVEX_RCShift
570   };
571
572   // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
573   // specified machine instruction.
574   //
575   inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
576     return TSFlags >> X86II::OpcodeShift;
577   }
578
579   inline bool hasImm(uint64_t TSFlags) {
580     return (TSFlags & X86II::ImmMask) != 0;
581   }
582
583   /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
584   /// of the specified instruction.
585   inline unsigned getSizeOfImm(uint64_t TSFlags) {
586     switch (TSFlags & X86II::ImmMask) {
587     default: llvm_unreachable("Unknown immediate size");
588     case X86II::Imm8:
589     case X86II::Imm8PCRel:  return 1;
590     case X86II::Imm16:
591     case X86II::Imm16PCRel: return 2;
592     case X86II::Imm32:
593     case X86II::Imm32S:
594     case X86II::Imm32PCRel: return 4;
595     case X86II::Imm64:      return 8;
596     }
597   }
598
599   /// isImmPCRel - Return true if the immediate of the specified instruction's
600   /// TSFlags indicates that it is pc relative.
601   inline unsigned isImmPCRel(uint64_t TSFlags) {
602     switch (TSFlags & X86II::ImmMask) {
603     default: llvm_unreachable("Unknown immediate size");
604     case X86II::Imm8PCRel:
605     case X86II::Imm16PCRel:
606     case X86II::Imm32PCRel:
607       return true;
608     case X86II::Imm8:
609     case X86II::Imm16:
610     case X86II::Imm32:
611     case X86II::Imm32S:
612     case X86II::Imm64:
613       return false;
614     }
615   }
616
617   /// isImmSigned - Return true if the immediate of the specified instruction's
618   /// TSFlags indicates that it is signed.
619   inline unsigned isImmSigned(uint64_t TSFlags) {
620     switch (TSFlags & X86II::ImmMask) {
621     default: llvm_unreachable("Unknown immediate signedness");
622     case X86II::Imm32S:
623       return true;
624     case X86II::Imm8:
625     case X86II::Imm8PCRel:
626     case X86II::Imm16:
627     case X86II::Imm16PCRel:
628     case X86II::Imm32:
629     case X86II::Imm32PCRel:
630     case X86II::Imm64:
631       return false;
632     }
633   }
634
635   /// getOperandBias - compute any additional adjustment needed to
636   ///                  the offset to the start of the memory operand
637   ///                  in this instruction.
638   /// If this is a two-address instruction,skip one of the register operands.
639   /// FIXME: This should be handled during MCInst lowering.
640   inline int getOperandBias(const MCInstrDesc& Desc)
641   {
642     unsigned NumOps = Desc.getNumOperands();
643     unsigned CurOp = 0;
644     if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
645       ++CurOp;
646     else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
647              Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
648       // Special case for AVX-512 GATHER with 2 TIED_TO operands
649       // Skip the first 2 operands: dst, mask_wb
650       CurOp += 2;
651     else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
652              Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1)
653       // Special case for GATHER with 2 TIED_TO operands
654       // Skip the first 2 operands: dst, mask_wb
655       CurOp += 2;
656     else if (NumOps > 2 && Desc.getOperandConstraint(NumOps - 2, MCOI::TIED_TO) == 0)
657       // SCATTER
658       ++CurOp;
659     return CurOp;
660   }
661
662   /// getMemoryOperandNo - The function returns the MCInst operand # for the
663   /// first field of the memory operand.  If the instruction doesn't have a
664   /// memory operand, this returns -1.
665   ///
666   /// Note that this ignores tied operands.  If there is a tied register which
667   /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
668   /// counted as one operand.
669   ///
670   inline int getMemoryOperandNo(uint64_t TSFlags, unsigned Opcode) {
671     bool HasVEX_4V = TSFlags & X86II::VEX_4V;
672     bool HasMemOp4 = TSFlags & X86II::MemOp4;
673     bool HasEVEX_K = TSFlags & X86II::EVEX_K;
674
675     switch (TSFlags & X86II::FormMask) {
676     default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
677     case X86II::Pseudo:
678     case X86II::RawFrm:
679     case X86II::AddRegFrm:
680     case X86II::MRMDestReg:
681     case X86II::MRMSrcReg:
682     case X86II::RawFrmImm8:
683     case X86II::RawFrmImm16:
684     case X86II::RawFrmMemOffs:
685     case X86II::RawFrmSrc:
686     case X86II::RawFrmDst:
687     case X86II::RawFrmDstSrc:
688       return -1;
689     case X86II::MRMDestMem:
690       return 0;
691     case X86II::MRMSrcMem:
692       // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
693       // mask register.
694       return 1 + HasVEX_4V + HasMemOp4 + HasEVEX_K;
695     case X86II::MRMXr:
696     case X86II::MRM0r: case X86II::MRM1r:
697     case X86II::MRM2r: case X86II::MRM3r:
698     case X86II::MRM4r: case X86II::MRM5r:
699     case X86II::MRM6r: case X86II::MRM7r:
700       return -1;
701     case X86II::MRMXm:
702     case X86II::MRM0m: case X86II::MRM1m:
703     case X86II::MRM2m: case X86II::MRM3m:
704     case X86II::MRM4m: case X86II::MRM5m:
705     case X86II::MRM6m: case X86II::MRM7m:
706       // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
707       return 0 + HasVEX_4V + HasEVEX_K;
708     case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
709     case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
710     case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
711     case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
712     case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
713     case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
714     case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
715     case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
716     case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
717     case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
718     case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
719     case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
720     case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
721     case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
722     case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
723     case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
724     case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
725     case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
726     case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
727     case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
728     case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
729     case X86II::MRM_FF:
730       return -1;
731     }
732   }
733
734   /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
735   /// higher) register?  e.g. r8, xmm8, xmm13, etc.
736   inline bool isX86_64ExtendedReg(unsigned RegNo) {
737     if ((RegNo > X86::XMM7 && RegNo <= X86::XMM15) ||
738         (RegNo > X86::XMM23 && RegNo <= X86::XMM31) ||
739         (RegNo > X86::YMM7 && RegNo <= X86::YMM15) ||
740         (RegNo > X86::YMM23 && RegNo <= X86::YMM31) ||
741         (RegNo > X86::ZMM7 && RegNo <= X86::ZMM15) ||
742         (RegNo > X86::ZMM23 && RegNo <= X86::ZMM31))
743       return true;
744
745     switch (RegNo) {
746     default: break;
747     case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
748     case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
749     case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
750     case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
751     case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
752     case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
753     case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
754     case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
755     case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11:
756     case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15:
757       return true;
758     }
759     return false;
760   }
761
762   /// is32ExtendedReg - Is the MemoryOperand a 32 extended (zmm16 or higher)
763   /// registers? e.g. zmm21, etc.
764   static inline bool is32ExtendedReg(unsigned RegNo) {
765     return ((RegNo > X86::XMM15 && RegNo <= X86::XMM31) ||
766             (RegNo > X86::YMM15 && RegNo <= X86::YMM31) ||
767             (RegNo > X86::ZMM15 && RegNo <= X86::ZMM31));
768   }
769
770
771   inline bool isX86_64NonExtLowByteReg(unsigned reg) {
772     return (reg == X86::SPL || reg == X86::BPL ||
773             reg == X86::SIL || reg == X86::DIL);
774   }
775 }
776
777 } // end namespace llvm;
778
779 #endif