[AArch64] Remove a use-after-free when collecting stats.
[oota-llvm.git] / lib / Target / X86 / Disassembler / X86DisassemblerDecoder.cpp
1 //===-- X86DisassemblerDecoder.cpp - Disassembler decoder -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is part of the X86 Disassembler.
11 // It contains the implementation of the instruction decoder.
12 // Documentation for the disassembler can be found in X86Disassembler.h.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include <cstdarg>   /* for va_*()       */
17 #include <cstdio>    /* for vsnprintf()  */
18 #include <cstdlib>   /* for exit()       */
19 #include <cstring>   /* for memset()     */
20
21 #include "X86DisassemblerDecoder.h"
22
23 using namespace llvm::X86Disassembler;
24
25 /// Specifies whether a ModR/M byte is needed and (if so) which
26 /// instruction each possible value of the ModR/M byte corresponds to.  Once
27 /// this information is known, we have narrowed down to a single instruction.
28 struct ModRMDecision {
29   uint8_t modrm_type;
30   uint16_t instructionIDs;
31 };
32
33 /// Specifies which set of ModR/M->instruction tables to look at
34 /// given a particular opcode.
35 struct OpcodeDecision {
36   ModRMDecision modRMDecisions[256];
37 };
38
39 /// Specifies which opcode->instruction tables to look at given
40 /// a particular context (set of attributes).  Since there are many possible
41 /// contexts, the decoder first uses CONTEXTS_SYM to determine which context
42 /// applies given a specific set of attributes.  Hence there are only IC_max
43 /// entries in this table, rather than 2^(ATTR_max).
44 struct ContextDecision {
45   OpcodeDecision opcodeDecisions[IC_max];
46 };
47
48 #include "X86GenDisassemblerTables.inc"
49
50 #ifndef NDEBUG
51 #define debug(s) do { Debug(__FILE__, __LINE__, s); } while (0)
52 #else
53 #define debug(s) do { } while (0)
54 #endif
55
56
57 /*
58  * contextForAttrs - Client for the instruction context table.  Takes a set of
59  *   attributes and returns the appropriate decode context.
60  *
61  * @param attrMask  - Attributes, from the enumeration attributeBits.
62  * @return          - The InstructionContext to use when looking up an
63  *                    an instruction with these attributes.
64  */
65 static InstructionContext contextForAttrs(uint16_t attrMask) {
66   return static_cast<InstructionContext>(CONTEXTS_SYM[attrMask]);
67 }
68
69 /*
70  * modRMRequired - Reads the appropriate instruction table to determine whether
71  *   the ModR/M byte is required to decode a particular instruction.
72  *
73  * @param type        - The opcode type (i.e., how many bytes it has).
74  * @param insnContext - The context for the instruction, as returned by
75  *                      contextForAttrs.
76  * @param opcode      - The last byte of the instruction's opcode, not counting
77  *                      ModR/M extensions and escapes.
78  * @return            - true if the ModR/M byte is required, false otherwise.
79  */
80 static int modRMRequired(OpcodeType type,
81                          InstructionContext insnContext,
82                          uint16_t opcode) {
83   const struct ContextDecision* decision = nullptr;
84
85   switch (type) {
86   case ONEBYTE:
87     decision = &ONEBYTE_SYM;
88     break;
89   case TWOBYTE:
90     decision = &TWOBYTE_SYM;
91     break;
92   case THREEBYTE_38:
93     decision = &THREEBYTE38_SYM;
94     break;
95   case THREEBYTE_3A:
96     decision = &THREEBYTE3A_SYM;
97     break;
98   case XOP8_MAP:
99     decision = &XOP8_MAP_SYM;
100     break;
101   case XOP9_MAP:
102     decision = &XOP9_MAP_SYM;
103     break;
104   case XOPA_MAP:
105     decision = &XOPA_MAP_SYM;
106     break;
107   }
108
109   return decision->opcodeDecisions[insnContext].modRMDecisions[opcode].
110     modrm_type != MODRM_ONEENTRY;
111 }
112
113 /*
114  * decode - Reads the appropriate instruction table to obtain the unique ID of
115  *   an instruction.
116  *
117  * @param type        - See modRMRequired().
118  * @param insnContext - See modRMRequired().
119  * @param opcode      - See modRMRequired().
120  * @param modRM       - The ModR/M byte if required, or any value if not.
121  * @return            - The UID of the instruction, or 0 on failure.
122  */
123 static InstrUID decode(OpcodeType type,
124                        InstructionContext insnContext,
125                        uint8_t opcode,
126                        uint8_t modRM) {
127   const struct ModRMDecision* dec = nullptr;
128
129   switch (type) {
130   case ONEBYTE:
131     dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
132     break;
133   case TWOBYTE:
134     dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
135     break;
136   case THREEBYTE_38:
137     dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
138     break;
139   case THREEBYTE_3A:
140     dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
141     break;
142   case XOP8_MAP:
143     dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
144     break;
145   case XOP9_MAP:
146     dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
147     break;
148   case XOPA_MAP:
149     dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
150     break;
151   }
152
153   switch (dec->modrm_type) {
154   default:
155     debug("Corrupt table!  Unknown modrm_type");
156     return 0;
157   case MODRM_ONEENTRY:
158     return modRMTable[dec->instructionIDs];
159   case MODRM_SPLITRM:
160     if (modFromModRM(modRM) == 0x3)
161       return modRMTable[dec->instructionIDs+1];
162     return modRMTable[dec->instructionIDs];
163   case MODRM_SPLITREG:
164     if (modFromModRM(modRM) == 0x3)
165       return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)+8];
166     return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
167   case MODRM_SPLITMISC:
168     if (modFromModRM(modRM) == 0x3)
169       return modRMTable[dec->instructionIDs+(modRM & 0x3f)+8];
170     return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
171   case MODRM_FULL:
172     return modRMTable[dec->instructionIDs+modRM];
173   }
174 }
175
176 /*
177  * specifierForUID - Given a UID, returns the name and operand specification for
178  *   that instruction.
179  *
180  * @param uid - The unique ID for the instruction.  This should be returned by
181  *              decode(); specifierForUID will not check bounds.
182  * @return    - A pointer to the specification for that instruction.
183  */
184 static const struct InstructionSpecifier *specifierForUID(InstrUID uid) {
185   return &INSTRUCTIONS_SYM[uid];
186 }
187
188 /*
189  * consumeByte - Uses the reader function provided by the user to consume one
190  *   byte from the instruction's memory and advance the cursor.
191  *
192  * @param insn  - The instruction with the reader function to use.  The cursor
193  *                for this instruction is advanced.
194  * @param byte  - A pointer to a pre-allocated memory buffer to be populated
195  *                with the data read.
196  * @return      - 0 if the read was successful; nonzero otherwise.
197  */
198 static int consumeByte(struct InternalInstruction* insn, uint8_t* byte) {
199   int ret = insn->reader(insn->readerArg, byte, insn->readerCursor);
200
201   if (!ret)
202     ++(insn->readerCursor);
203
204   return ret;
205 }
206
207 /*
208  * lookAtByte - Like consumeByte, but does not advance the cursor.
209  *
210  * @param insn  - See consumeByte().
211  * @param byte  - See consumeByte().
212  * @return      - See consumeByte().
213  */
214 static int lookAtByte(struct InternalInstruction* insn, uint8_t* byte) {
215   return insn->reader(insn->readerArg, byte, insn->readerCursor);
216 }
217
218 static void unconsumeByte(struct InternalInstruction* insn) {
219   insn->readerCursor--;
220 }
221
222 #define CONSUME_FUNC(name, type)                                  \
223   static int name(struct InternalInstruction* insn, type* ptr) {  \
224     type combined = 0;                                            \
225     unsigned offset;                                              \
226     for (offset = 0; offset < sizeof(type); ++offset) {           \
227       uint8_t byte;                                               \
228       int ret = insn->reader(insn->readerArg,                     \
229                              &byte,                               \
230                              insn->readerCursor + offset);        \
231       if (ret)                                                    \
232         return ret;                                               \
233       combined = combined | ((uint64_t)byte << (offset * 8));     \
234     }                                                             \
235     *ptr = combined;                                              \
236     insn->readerCursor += sizeof(type);                           \
237     return 0;                                                     \
238   }
239
240 /*
241  * consume* - Use the reader function provided by the user to consume data
242  *   values of various sizes from the instruction's memory and advance the
243  *   cursor appropriately.  These readers perform endian conversion.
244  *
245  * @param insn    - See consumeByte().
246  * @param ptr     - A pointer to a pre-allocated memory of appropriate size to
247  *                  be populated with the data read.
248  * @return        - See consumeByte().
249  */
250 CONSUME_FUNC(consumeInt8, int8_t)
251 CONSUME_FUNC(consumeInt16, int16_t)
252 CONSUME_FUNC(consumeInt32, int32_t)
253 CONSUME_FUNC(consumeUInt16, uint16_t)
254 CONSUME_FUNC(consumeUInt32, uint32_t)
255 CONSUME_FUNC(consumeUInt64, uint64_t)
256
257 /*
258  * dbgprintf - Uses the logging function provided by the user to log a single
259  *   message, typically without a carriage-return.
260  *
261  * @param insn    - The instruction containing the logging function.
262  * @param format  - See printf().
263  * @param ...     - See printf().
264  */
265 static void dbgprintf(struct InternalInstruction* insn,
266                       const char* format,
267                       ...) {
268   char buffer[256];
269   va_list ap;
270
271   if (!insn->dlog)
272     return;
273
274   va_start(ap, format);
275   (void)vsnprintf(buffer, sizeof(buffer), format, ap);
276   va_end(ap);
277
278   insn->dlog(insn->dlogArg, buffer);
279
280   return;
281 }
282
283 /*
284  * setPrefixPresent - Marks that a particular prefix is present at a particular
285  *   location.
286  *
287  * @param insn      - The instruction to be marked as having the prefix.
288  * @param prefix    - The prefix that is present.
289  * @param location  - The location where the prefix is located (in the address
290  *                    space of the instruction's reader).
291  */
292 static void setPrefixPresent(struct InternalInstruction* insn,
293                                     uint8_t prefix,
294                                     uint64_t location)
295 {
296   insn->prefixPresent[prefix] = 1;
297   insn->prefixLocations[prefix] = location;
298 }
299
300 /*
301  * isPrefixAtLocation - Queries an instruction to determine whether a prefix is
302  *   present at a given location.
303  *
304  * @param insn      - The instruction to be queried.
305  * @param prefix    - The prefix.
306  * @param location  - The location to query.
307  * @return          - Whether the prefix is at that location.
308  */
309 static bool isPrefixAtLocation(struct InternalInstruction* insn,
310                                uint8_t prefix,
311                                uint64_t location)
312 {
313   return insn->prefixPresent[prefix] == 1 &&
314      insn->prefixLocations[prefix] == location;
315 }
316
317 /*
318  * readPrefixes - Consumes all of an instruction's prefix bytes, and marks the
319  *   instruction as having them.  Also sets the instruction's default operand,
320  *   address, and other relevant data sizes to report operands correctly.
321  *
322  * @param insn  - The instruction whose prefixes are to be read.
323  * @return      - 0 if the instruction could be read until the end of the prefix
324  *                bytes, and no prefixes conflicted; nonzero otherwise.
325  */
326 static int readPrefixes(struct InternalInstruction* insn) {
327   bool isPrefix = true;
328   bool prefixGroups[4] = { false };
329   uint64_t prefixLocation;
330   uint8_t byte = 0;
331   uint8_t nextByte;
332
333   bool hasAdSize = false;
334   bool hasOpSize = false;
335
336   dbgprintf(insn, "readPrefixes()");
337
338   while (isPrefix) {
339     prefixLocation = insn->readerCursor;
340
341     /* If we fail reading prefixes, just stop here and let the opcode reader deal with it */
342     if (consumeByte(insn, &byte))
343       break;
344
345     /*
346      * If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
347      * break and let it be disassembled as a normal "instruction".
348      */
349     if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0)
350       break;
351
352     if (insn->readerCursor - 1 == insn->startLocation
353         && (byte == 0xf2 || byte == 0xf3)
354         && !lookAtByte(insn, &nextByte))
355     {
356       /*
357        * If the byte is 0xf2 or 0xf3, and any of the following conditions are
358        * met:
359        * - it is followed by a LOCK (0xf0) prefix
360        * - it is followed by an xchg instruction
361        * then it should be disassembled as a xacquire/xrelease not repne/rep.
362        */
363       if ((byte == 0xf2 || byte == 0xf3) &&
364           ((nextByte == 0xf0) |
365           ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90)))
366         insn->xAcquireRelease = true;
367       /*
368        * Also if the byte is 0xf3, and the following condition is met:
369        * - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
370        *                       "mov mem, imm" (opcode 0xc6/0xc7) instructions.
371        * then it should be disassembled as an xrelease not rep.
372        */
373       if (byte == 0xf3 &&
374           (nextByte == 0x88 || nextByte == 0x89 ||
375            nextByte == 0xc6 || nextByte == 0xc7))
376         insn->xAcquireRelease = true;
377       if (insn->mode == MODE_64BIT && (nextByte & 0xf0) == 0x40) {
378         if (consumeByte(insn, &nextByte))
379           return -1;
380         if (lookAtByte(insn, &nextByte))
381           return -1;
382         unconsumeByte(insn);
383       }
384       if (nextByte != 0x0f && nextByte != 0x90)
385         break;
386     }
387
388     switch (byte) {
389     case 0xf0:  /* LOCK */
390     case 0xf2:  /* REPNE/REPNZ */
391     case 0xf3:  /* REP or REPE/REPZ */
392       if (prefixGroups[0])
393         dbgprintf(insn, "Redundant Group 1 prefix");
394       prefixGroups[0] = true;
395       setPrefixPresent(insn, byte, prefixLocation);
396       break;
397     case 0x2e:  /* CS segment override -OR- Branch not taken */
398     case 0x36:  /* SS segment override -OR- Branch taken */
399     case 0x3e:  /* DS segment override */
400     case 0x26:  /* ES segment override */
401     case 0x64:  /* FS segment override */
402     case 0x65:  /* GS segment override */
403       switch (byte) {
404       case 0x2e:
405         insn->segmentOverride = SEG_OVERRIDE_CS;
406         break;
407       case 0x36:
408         insn->segmentOverride = SEG_OVERRIDE_SS;
409         break;
410       case 0x3e:
411         insn->segmentOverride = SEG_OVERRIDE_DS;
412         break;
413       case 0x26:
414         insn->segmentOverride = SEG_OVERRIDE_ES;
415         break;
416       case 0x64:
417         insn->segmentOverride = SEG_OVERRIDE_FS;
418         break;
419       case 0x65:
420         insn->segmentOverride = SEG_OVERRIDE_GS;
421         break;
422       default:
423         debug("Unhandled override");
424         return -1;
425       }
426       if (prefixGroups[1])
427         dbgprintf(insn, "Redundant Group 2 prefix");
428       prefixGroups[1] = true;
429       setPrefixPresent(insn, byte, prefixLocation);
430       break;
431     case 0x66:  /* Operand-size override */
432       if (prefixGroups[2])
433         dbgprintf(insn, "Redundant Group 3 prefix");
434       prefixGroups[2] = true;
435       hasOpSize = true;
436       setPrefixPresent(insn, byte, prefixLocation);
437       break;
438     case 0x67:  /* Address-size override */
439       if (prefixGroups[3])
440         dbgprintf(insn, "Redundant Group 4 prefix");
441       prefixGroups[3] = true;
442       hasAdSize = true;
443       setPrefixPresent(insn, byte, prefixLocation);
444       break;
445     default:    /* Not a prefix byte */
446       isPrefix = false;
447       break;
448     }
449
450     if (isPrefix)
451       dbgprintf(insn, "Found prefix 0x%hhx", byte);
452   }
453
454   insn->vectorExtensionType = TYPE_NO_VEX_XOP;
455
456   if (byte == 0x62) {
457     uint8_t byte1, byte2;
458
459     if (consumeByte(insn, &byte1)) {
460       dbgprintf(insn, "Couldn't read second byte of EVEX prefix");
461       return -1;
462     }
463
464     if (lookAtByte(insn, &byte2)) {
465       dbgprintf(insn, "Couldn't read third byte of EVEX prefix");
466       return -1;
467     }
468
469     if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) &&
470        ((~byte1 & 0xc) == 0xc) && ((byte2 & 0x4) == 0x4)) {
471       insn->vectorExtensionType = TYPE_EVEX;
472     } else {
473       unconsumeByte(insn); /* unconsume byte1 */
474       unconsumeByte(insn); /* unconsume byte  */
475       insn->necessaryPrefixLocation = insn->readerCursor - 2;
476     }
477
478     if (insn->vectorExtensionType == TYPE_EVEX) {
479       insn->vectorExtensionPrefix[0] = byte;
480       insn->vectorExtensionPrefix[1] = byte1;
481       if (consumeByte(insn, &insn->vectorExtensionPrefix[2])) {
482         dbgprintf(insn, "Couldn't read third byte of EVEX prefix");
483         return -1;
484       }
485       if (consumeByte(insn, &insn->vectorExtensionPrefix[3])) {
486         dbgprintf(insn, "Couldn't read fourth byte of EVEX prefix");
487         return -1;
488       }
489
490       /* We simulate the REX prefix for simplicity's sake */
491       if (insn->mode == MODE_64BIT) {
492         insn->rexPrefix = 0x40
493                         | (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3)
494                         | (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2)
495                         | (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1)
496                         | (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
497       }
498
499       dbgprintf(insn, "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
500               insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
501               insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]);
502     }
503   } else if (byte == 0xc4) {
504     uint8_t byte1;
505
506     if (lookAtByte(insn, &byte1)) {
507       dbgprintf(insn, "Couldn't read second byte of VEX");
508       return -1;
509     }
510
511     if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
512       insn->vectorExtensionType = TYPE_VEX_3B;
513       insn->necessaryPrefixLocation = insn->readerCursor - 1;
514     } else {
515       unconsumeByte(insn);
516       insn->necessaryPrefixLocation = insn->readerCursor - 1;
517     }
518
519     if (insn->vectorExtensionType == TYPE_VEX_3B) {
520       insn->vectorExtensionPrefix[0] = byte;
521       consumeByte(insn, &insn->vectorExtensionPrefix[1]);
522       consumeByte(insn, &insn->vectorExtensionPrefix[2]);
523
524       /* We simulate the REX prefix for simplicity's sake */
525
526       if (insn->mode == MODE_64BIT) {
527         insn->rexPrefix = 0x40
528                         | (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3)
529                         | (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2)
530                         | (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1)
531                         | (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);
532       }
533
534       dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
535                 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
536                 insn->vectorExtensionPrefix[2]);
537     }
538   } else if (byte == 0xc5) {
539     uint8_t byte1;
540
541     if (lookAtByte(insn, &byte1)) {
542       dbgprintf(insn, "Couldn't read second byte of VEX");
543       return -1;
544     }
545
546     if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
547       insn->vectorExtensionType = TYPE_VEX_2B;
548     } else {
549       unconsumeByte(insn);
550     }
551
552     if (insn->vectorExtensionType == TYPE_VEX_2B) {
553       insn->vectorExtensionPrefix[0] = byte;
554       consumeByte(insn, &insn->vectorExtensionPrefix[1]);
555
556       if (insn->mode == MODE_64BIT) {
557         insn->rexPrefix = 0x40
558                         | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
559       }
560
561       switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
562       default:
563         break;
564       case VEX_PREFIX_66:
565         hasOpSize = true;
566         break;
567       }
568
569       dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx",
570                 insn->vectorExtensionPrefix[0],
571                 insn->vectorExtensionPrefix[1]);
572     }
573   } else if (byte == 0x8f) {
574     uint8_t byte1;
575
576     if (lookAtByte(insn, &byte1)) {
577       dbgprintf(insn, "Couldn't read second byte of XOP");
578       return -1;
579     }
580
581     if ((byte1 & 0x38) != 0x0) { /* 0 in these 3 bits is a POP instruction. */
582       insn->vectorExtensionType = TYPE_XOP;
583       insn->necessaryPrefixLocation = insn->readerCursor - 1;
584     } else {
585       unconsumeByte(insn);
586       insn->necessaryPrefixLocation = insn->readerCursor - 1;
587     }
588
589     if (insn->vectorExtensionType == TYPE_XOP) {
590       insn->vectorExtensionPrefix[0] = byte;
591       consumeByte(insn, &insn->vectorExtensionPrefix[1]);
592       consumeByte(insn, &insn->vectorExtensionPrefix[2]);
593
594       /* We simulate the REX prefix for simplicity's sake */
595
596       if (insn->mode == MODE_64BIT) {
597         insn->rexPrefix = 0x40
598                         | (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3)
599                         | (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2)
600                         | (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1)
601                         | (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
602       }
603
604       switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
605       default:
606         break;
607       case VEX_PREFIX_66:
608         hasOpSize = true;
609         break;
610       }
611
612       dbgprintf(insn, "Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
613                 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
614                 insn->vectorExtensionPrefix[2]);
615     }
616   } else {
617     if (insn->mode == MODE_64BIT) {
618       if ((byte & 0xf0) == 0x40) {
619         uint8_t opcodeByte;
620
621         if (lookAtByte(insn, &opcodeByte) || ((opcodeByte & 0xf0) == 0x40)) {
622           dbgprintf(insn, "Redundant REX prefix");
623           return -1;
624         }
625
626         insn->rexPrefix = byte;
627         insn->necessaryPrefixLocation = insn->readerCursor - 2;
628
629         dbgprintf(insn, "Found REX prefix 0x%hhx", byte);
630       } else {
631         unconsumeByte(insn);
632         insn->necessaryPrefixLocation = insn->readerCursor - 1;
633       }
634     } else {
635       unconsumeByte(insn);
636       insn->necessaryPrefixLocation = insn->readerCursor - 1;
637     }
638   }
639
640   if (insn->mode == MODE_16BIT) {
641     insn->registerSize       = (hasOpSize ? 4 : 2);
642     insn->addressSize        = (hasAdSize ? 4 : 2);
643     insn->displacementSize   = (hasAdSize ? 4 : 2);
644     insn->immediateSize      = (hasOpSize ? 4 : 2);
645   } else if (insn->mode == MODE_32BIT) {
646     insn->registerSize       = (hasOpSize ? 2 : 4);
647     insn->addressSize        = (hasAdSize ? 2 : 4);
648     insn->displacementSize   = (hasAdSize ? 2 : 4);
649     insn->immediateSize      = (hasOpSize ? 2 : 4);
650   } else if (insn->mode == MODE_64BIT) {
651     if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
652       insn->registerSize       = 8;
653       insn->addressSize        = (hasAdSize ? 4 : 8);
654       insn->displacementSize   = 4;
655       insn->immediateSize      = 4;
656     } else if (insn->rexPrefix) {
657       insn->registerSize       = (hasOpSize ? 2 : 4);
658       insn->addressSize        = (hasAdSize ? 4 : 8);
659       insn->displacementSize   = (hasOpSize ? 2 : 4);
660       insn->immediateSize      = (hasOpSize ? 2 : 4);
661     } else {
662       insn->registerSize       = (hasOpSize ? 2 : 4);
663       insn->addressSize        = (hasAdSize ? 4 : 8);
664       insn->displacementSize   = (hasOpSize ? 2 : 4);
665       insn->immediateSize      = (hasOpSize ? 2 : 4);
666     }
667   }
668
669   return 0;
670 }
671
672 /*
673  * readOpcode - Reads the opcode (excepting the ModR/M byte in the case of
674  *   extended or escape opcodes).
675  *
676  * @param insn  - The instruction whose opcode is to be read.
677  * @return      - 0 if the opcode could be read successfully; nonzero otherwise.
678  */
679 static int readOpcode(struct InternalInstruction* insn) {
680   /* Determine the length of the primary opcode */
681
682   uint8_t current;
683
684   dbgprintf(insn, "readOpcode()");
685
686   insn->opcodeType = ONEBYTE;
687
688   if (insn->vectorExtensionType == TYPE_EVEX) {
689     switch (mmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
690     default:
691       dbgprintf(insn, "Unhandled mm field for instruction (0x%hhx)",
692                 mmFromEVEX2of4(insn->vectorExtensionPrefix[1]));
693       return -1;
694     case VEX_LOB_0F:
695       insn->opcodeType = TWOBYTE;
696       return consumeByte(insn, &insn->opcode);
697     case VEX_LOB_0F38:
698       insn->opcodeType = THREEBYTE_38;
699       return consumeByte(insn, &insn->opcode);
700     case VEX_LOB_0F3A:
701       insn->opcodeType = THREEBYTE_3A;
702       return consumeByte(insn, &insn->opcode);
703     }
704   } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
705     switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
706     default:
707       dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
708                 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]));
709       return -1;
710     case VEX_LOB_0F:
711       insn->opcodeType = TWOBYTE;
712       return consumeByte(insn, &insn->opcode);
713     case VEX_LOB_0F38:
714       insn->opcodeType = THREEBYTE_38;
715       return consumeByte(insn, &insn->opcode);
716     case VEX_LOB_0F3A:
717       insn->opcodeType = THREEBYTE_3A;
718       return consumeByte(insn, &insn->opcode);
719     }
720   } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
721     insn->opcodeType = TWOBYTE;
722     return consumeByte(insn, &insn->opcode);
723   } else if (insn->vectorExtensionType == TYPE_XOP) {
724     switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
725     default:
726       dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
727                 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]));
728       return -1;
729     case XOP_MAP_SELECT_8:
730       insn->opcodeType = XOP8_MAP;
731       return consumeByte(insn, &insn->opcode);
732     case XOP_MAP_SELECT_9:
733       insn->opcodeType = XOP9_MAP;
734       return consumeByte(insn, &insn->opcode);
735     case XOP_MAP_SELECT_A:
736       insn->opcodeType = XOPA_MAP;
737       return consumeByte(insn, &insn->opcode);
738     }
739   }
740
741   if (consumeByte(insn, &current))
742     return -1;
743
744   if (current == 0x0f) {
745     dbgprintf(insn, "Found a two-byte escape prefix (0x%hhx)", current);
746
747     if (consumeByte(insn, &current))
748       return -1;
749
750     if (current == 0x38) {
751       dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
752
753       if (consumeByte(insn, &current))
754         return -1;
755
756       insn->opcodeType = THREEBYTE_38;
757     } else if (current == 0x3a) {
758       dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
759
760       if (consumeByte(insn, &current))
761         return -1;
762
763       insn->opcodeType = THREEBYTE_3A;
764     } else {
765       dbgprintf(insn, "Didn't find a three-byte escape prefix");
766
767       insn->opcodeType = TWOBYTE;
768     }
769   }
770
771   /*
772    * At this point we have consumed the full opcode.
773    * Anything we consume from here on must be unconsumed.
774    */
775
776   insn->opcode = current;
777
778   return 0;
779 }
780
781 static int readModRM(struct InternalInstruction* insn);
782
783 /*
784  * getIDWithAttrMask - Determines the ID of an instruction, consuming
785  *   the ModR/M byte as appropriate for extended and escape opcodes,
786  *   and using a supplied attribute mask.
787  *
788  * @param instructionID - A pointer whose target is filled in with the ID of the
789  *                        instruction.
790  * @param insn          - The instruction whose ID is to be determined.
791  * @param attrMask      - The attribute mask to search.
792  * @return              - 0 if the ModR/M could be read when needed or was not
793  *                        needed; nonzero otherwise.
794  */
795 static int getIDWithAttrMask(uint16_t* instructionID,
796                              struct InternalInstruction* insn,
797                              uint16_t attrMask) {
798   bool hasModRMExtension;
799
800   InstructionContext instructionClass = contextForAttrs(attrMask);
801
802   hasModRMExtension = modRMRequired(insn->opcodeType,
803                                     instructionClass,
804                                     insn->opcode);
805
806   if (hasModRMExtension) {
807     if (readModRM(insn))
808       return -1;
809
810     *instructionID = decode(insn->opcodeType,
811                             instructionClass,
812                             insn->opcode,
813                             insn->modRM);
814   } else {
815     *instructionID = decode(insn->opcodeType,
816                             instructionClass,
817                             insn->opcode,
818                             0);
819   }
820
821   return 0;
822 }
823
824 /*
825  * is16BitEquivalent - Determines whether two instruction names refer to
826  * equivalent instructions but one is 16-bit whereas the other is not.
827  *
828  * @param orig  - The instruction that is not 16-bit
829  * @param equiv - The instruction that is 16-bit
830  */
831 static bool is16BitEquivalent(const char* orig, const char* equiv) {
832   off_t i;
833
834   for (i = 0;; i++) {
835     if (orig[i] == '\0' && equiv[i] == '\0')
836       return true;
837     if (orig[i] == '\0' || equiv[i] == '\0')
838       return false;
839     if (orig[i] != equiv[i]) {
840       if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
841         continue;
842       if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
843         continue;
844       if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
845         continue;
846       return false;
847     }
848   }
849 }
850
851 /*
852  * is64Bit - Determines whether this instruction is a 64-bit instruction.
853  *
854  * @param name - The instruction that is not 16-bit
855  */
856 static bool is64Bit(const char* name) {
857   off_t i;
858
859   for (i = 0;; ++i) {
860     if (name[i] == '\0')
861       return false;
862     if (name[i] == '6' && name[i+1] == '4')
863       return true;
864   }
865 }
866
867 /*
868  * getID - Determines the ID of an instruction, consuming the ModR/M byte as
869  *   appropriate for extended and escape opcodes.  Determines the attributes and
870  *   context for the instruction before doing so.
871  *
872  * @param insn  - The instruction whose ID is to be determined.
873  * @return      - 0 if the ModR/M could be read when needed or was not needed;
874  *                nonzero otherwise.
875  */
876 static int getID(struct InternalInstruction* insn, const void *miiArg) {
877   uint16_t attrMask;
878   uint16_t instructionID;
879
880   dbgprintf(insn, "getID()");
881
882   attrMask = ATTR_NONE;
883
884   if (insn->mode == MODE_64BIT)
885     attrMask |= ATTR_64BIT;
886
887   if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
888     attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;
889
890     if (insn->vectorExtensionType == TYPE_EVEX) {
891       switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
892       case VEX_PREFIX_66:
893         attrMask |= ATTR_OPSIZE;
894         break;
895       case VEX_PREFIX_F3:
896         attrMask |= ATTR_XS;
897         break;
898       case VEX_PREFIX_F2:
899         attrMask |= ATTR_XD;
900         break;
901       }
902
903       if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
904         attrMask |= ATTR_EVEXKZ;
905       if (bFromEVEX4of4(insn->vectorExtensionPrefix[3]))
906         attrMask |= ATTR_EVEXB;
907       if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]))
908         attrMask |= ATTR_EVEXK;
909       if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
910         attrMask |= ATTR_EVEXL;
911       if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
912         attrMask |= ATTR_EVEXL2;
913     } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
914       switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
915       case VEX_PREFIX_66:
916         attrMask |= ATTR_OPSIZE;
917         break;
918       case VEX_PREFIX_F3:
919         attrMask |= ATTR_XS;
920         break;
921       case VEX_PREFIX_F2:
922         attrMask |= ATTR_XD;
923         break;
924       }
925
926       if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
927         attrMask |= ATTR_VEXL;
928     } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
929       switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
930       case VEX_PREFIX_66:
931         attrMask |= ATTR_OPSIZE;
932         break;
933       case VEX_PREFIX_F3:
934         attrMask |= ATTR_XS;
935         break;
936       case VEX_PREFIX_F2:
937         attrMask |= ATTR_XD;
938         break;
939       }
940
941       if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
942         attrMask |= ATTR_VEXL;
943     } else if (insn->vectorExtensionType == TYPE_XOP) {
944       switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
945       case VEX_PREFIX_66:
946         attrMask |= ATTR_OPSIZE;
947         break;
948       case VEX_PREFIX_F3:
949         attrMask |= ATTR_XS;
950         break;
951       case VEX_PREFIX_F2:
952         attrMask |= ATTR_XD;
953         break;
954       }
955
956       if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
957         attrMask |= ATTR_VEXL;
958     } else {
959       return -1;
960     }
961   } else {
962     if (insn->mode != MODE_16BIT && isPrefixAtLocation(insn, 0x66, insn->necessaryPrefixLocation))
963       attrMask |= ATTR_OPSIZE;
964     else if (isPrefixAtLocation(insn, 0x67, insn->necessaryPrefixLocation))
965       attrMask |= ATTR_ADSIZE;
966     else if (isPrefixAtLocation(insn, 0xf3, insn->necessaryPrefixLocation))
967       attrMask |= ATTR_XS;
968     else if (isPrefixAtLocation(insn, 0xf2, insn->necessaryPrefixLocation))
969       attrMask |= ATTR_XD;
970   }
971
972   if (insn->rexPrefix & 0x08)
973     attrMask |= ATTR_REXW;
974
975   /*
976    * JCXZ/JECXZ need special handling for 16-bit mode because the meaning
977    * of the AdSize prefix is inverted w.r.t. 32-bit mode.
978    */
979   if (insn->mode == MODE_16BIT && insn->opcodeType == ONEBYTE &&
980       insn->opcode == 0xE3)
981     attrMask ^= ATTR_ADSIZE;
982
983   if (getIDWithAttrMask(&instructionID, insn, attrMask))
984     return -1;
985
986   /* The following clauses compensate for limitations of the tables. */
987
988   if (insn->mode != MODE_64BIT &&
989       insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
990     /*
991      * The tables can't distinquish between cases where the W-bit is used to
992      * select register size and cases where its a required part of the opcode.
993      */
994     if ((insn->vectorExtensionType == TYPE_EVEX &&
995          wFromEVEX3of4(insn->vectorExtensionPrefix[2])) ||
996         (insn->vectorExtensionType == TYPE_VEX_3B &&
997          wFromVEX3of3(insn->vectorExtensionPrefix[2])) ||
998         (insn->vectorExtensionType == TYPE_XOP &&
999          wFromXOP3of3(insn->vectorExtensionPrefix[2]))) {
1000
1001       uint16_t instructionIDWithREXW;
1002       if (getIDWithAttrMask(&instructionIDWithREXW,
1003                             insn, attrMask | ATTR_REXW)) {
1004         insn->instructionID = instructionID;
1005         insn->spec = specifierForUID(instructionID);
1006         return 0;
1007       }
1008
1009       const char *SpecName = GetInstrName(instructionIDWithREXW, miiArg);
1010       // If not a 64-bit instruction. Switch the opcode.
1011       if (!is64Bit(SpecName)) {
1012         insn->instructionID = instructionIDWithREXW;
1013         insn->spec = specifierForUID(instructionIDWithREXW);
1014         return 0;
1015       }
1016     }
1017   }
1018
1019   /*
1020    * Absolute moves need special handling.
1021    * -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are
1022    *  inverted w.r.t.
1023    * -For 32-bit mode we need to ensure the ADSIZE prefix is observed in
1024    *  any position.
1025    */
1026   if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) {
1027     /* Make sure we observed the prefixes in any position. */
1028     if (insn->prefixPresent[0x67])
1029       attrMask |= ATTR_ADSIZE;
1030     if (insn->prefixPresent[0x66])
1031       attrMask |= ATTR_OPSIZE;
1032
1033     /* In 16-bit, invert the attributes. */
1034     if (insn->mode == MODE_16BIT)
1035       attrMask ^= ATTR_ADSIZE | ATTR_OPSIZE;
1036
1037     if (getIDWithAttrMask(&instructionID, insn, attrMask))
1038       return -1;
1039
1040     insn->instructionID = instructionID;
1041     insn->spec = specifierForUID(instructionID);
1042     return 0;
1043   }
1044
1045   if ((insn->mode == MODE_16BIT || insn->prefixPresent[0x66]) &&
1046       !(attrMask & ATTR_OPSIZE)) {
1047     /*
1048      * The instruction tables make no distinction between instructions that
1049      * allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
1050      * particular spot (i.e., many MMX operations).  In general we're
1051      * conservative, but in the specific case where OpSize is present but not
1052      * in the right place we check if there's a 16-bit operation.
1053      */
1054
1055     const struct InstructionSpecifier *spec;
1056     uint16_t instructionIDWithOpsize;
1057     const char *specName, *specWithOpSizeName;
1058
1059     spec = specifierForUID(instructionID);
1060
1061     if (getIDWithAttrMask(&instructionIDWithOpsize,
1062                           insn,
1063                           attrMask | ATTR_OPSIZE)) {
1064       /*
1065        * ModRM required with OpSize but not present; give up and return version
1066        * without OpSize set
1067        */
1068
1069       insn->instructionID = instructionID;
1070       insn->spec = spec;
1071       return 0;
1072     }
1073
1074     specName = GetInstrName(instructionID, miiArg);
1075     specWithOpSizeName = GetInstrName(instructionIDWithOpsize, miiArg);
1076
1077     if (is16BitEquivalent(specName, specWithOpSizeName) &&
1078         (insn->mode == MODE_16BIT) ^ insn->prefixPresent[0x66]) {
1079       insn->instructionID = instructionIDWithOpsize;
1080       insn->spec = specifierForUID(instructionIDWithOpsize);
1081     } else {
1082       insn->instructionID = instructionID;
1083       insn->spec = spec;
1084     }
1085     return 0;
1086   }
1087
1088   if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
1089       insn->rexPrefix & 0x01) {
1090     /*
1091      * NOOP shouldn't decode as NOOP if REX.b is set. Instead
1092      * it should decode as XCHG %r8, %eax.
1093      */
1094
1095     const struct InstructionSpecifier *spec;
1096     uint16_t instructionIDWithNewOpcode;
1097     const struct InstructionSpecifier *specWithNewOpcode;
1098
1099     spec = specifierForUID(instructionID);
1100
1101     /* Borrow opcode from one of the other XCHGar opcodes */
1102     insn->opcode = 0x91;
1103
1104     if (getIDWithAttrMask(&instructionIDWithNewOpcode,
1105                           insn,
1106                           attrMask)) {
1107       insn->opcode = 0x90;
1108
1109       insn->instructionID = instructionID;
1110       insn->spec = spec;
1111       return 0;
1112     }
1113
1114     specWithNewOpcode = specifierForUID(instructionIDWithNewOpcode);
1115
1116     /* Change back */
1117     insn->opcode = 0x90;
1118
1119     insn->instructionID = instructionIDWithNewOpcode;
1120     insn->spec = specWithNewOpcode;
1121
1122     return 0;
1123   }
1124
1125   insn->instructionID = instructionID;
1126   insn->spec = specifierForUID(insn->instructionID);
1127
1128   return 0;
1129 }
1130
1131 /*
1132  * readSIB - Consumes the SIB byte to determine addressing information for an
1133  *   instruction.
1134  *
1135  * @param insn  - The instruction whose SIB byte is to be read.
1136  * @return      - 0 if the SIB byte was successfully read; nonzero otherwise.
1137  */
1138 static int readSIB(struct InternalInstruction* insn) {
1139   SIBIndex sibIndexBase = SIB_INDEX_NONE;
1140   SIBBase sibBaseBase = SIB_BASE_NONE;
1141   uint8_t index, base;
1142
1143   dbgprintf(insn, "readSIB()");
1144
1145   if (insn->consumedSIB)
1146     return 0;
1147
1148   insn->consumedSIB = true;
1149
1150   switch (insn->addressSize) {
1151   case 2:
1152     dbgprintf(insn, "SIB-based addressing doesn't work in 16-bit mode");
1153     return -1;
1154   case 4:
1155     sibIndexBase = SIB_INDEX_EAX;
1156     sibBaseBase = SIB_BASE_EAX;
1157     break;
1158   case 8:
1159     sibIndexBase = SIB_INDEX_RAX;
1160     sibBaseBase = SIB_BASE_RAX;
1161     break;
1162   }
1163
1164   if (consumeByte(insn, &insn->sib))
1165     return -1;
1166
1167   index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
1168
1169   // FIXME: The fifth bit (bit index 4) is only to be used for instructions
1170   // that understand VSIB indexing. ORing the bit in here is mildy dangerous
1171   // because performing math on an 'enum SIBIndex' can produce garbage.
1172   // Excluding the "none" value, it should cover 6 spaces of register names:
1173   //   - 16 possibilities for 16-bit GPR starting at SIB_INDEX_BX_SI
1174   //   - 16 possibilities for 32-bit GPR starting at SIB_INDEX_EAX
1175   //   - 16 possibilities for 64-bit GPR starting at SIB_INDEX_RAX
1176   //   - 32 possibilities for each of XMM, YMM, ZMM registers
1177   // When sibIndexBase gets assigned SIB_INDEX_RAX as it does in 64-bit mode,
1178   // summing in a fully decoded index between 0 and 31 can end up with a value
1179   // that looks like something in the low half of the XMM range.
1180   // translateRMMemory() tries to reverse the damage, with only partial success,
1181   // as evidenced by known bugs in "test/MC/Disassembler/X86/x86-64.txt"
1182   if (insn->vectorExtensionType == TYPE_EVEX)
1183     index |= v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4;
1184
1185   if (index == 0x4) {
1186     insn->sibIndex = SIB_INDEX_NONE;
1187   } else {
1188     insn->sibIndex = (SIBIndex)(sibIndexBase + index);
1189   }
1190
1191   insn->sibScale = 1 << scaleFromSIB(insn->sib);
1192
1193   base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
1194
1195   switch (base) {
1196   case 0x5:
1197   case 0xd:
1198     switch (modFromModRM(insn->modRM)) {
1199     case 0x0:
1200       insn->eaDisplacement = EA_DISP_32;
1201       insn->sibBase = SIB_BASE_NONE;
1202       break;
1203     case 0x1:
1204       insn->eaDisplacement = EA_DISP_8;
1205       insn->sibBase = (SIBBase)(sibBaseBase + base);
1206       break;
1207     case 0x2:
1208       insn->eaDisplacement = EA_DISP_32;
1209       insn->sibBase = (SIBBase)(sibBaseBase + base);
1210       break;
1211     case 0x3:
1212       debug("Cannot have Mod = 0b11 and a SIB byte");
1213       return -1;
1214     }
1215     break;
1216   default:
1217     insn->sibBase = (SIBBase)(sibBaseBase + base);
1218     break;
1219   }
1220
1221   return 0;
1222 }
1223
1224 /*
1225  * readDisplacement - Consumes the displacement of an instruction.
1226  *
1227  * @param insn  - The instruction whose displacement is to be read.
1228  * @return      - 0 if the displacement byte was successfully read; nonzero
1229  *                otherwise.
1230  */
1231 static int readDisplacement(struct InternalInstruction* insn) {
1232   int8_t d8;
1233   int16_t d16;
1234   int32_t d32;
1235
1236   dbgprintf(insn, "readDisplacement()");
1237
1238   if (insn->consumedDisplacement)
1239     return 0;
1240
1241   insn->consumedDisplacement = true;
1242   insn->displacementOffset = insn->readerCursor - insn->startLocation;
1243
1244   switch (insn->eaDisplacement) {
1245   case EA_DISP_NONE:
1246     insn->consumedDisplacement = false;
1247     break;
1248   case EA_DISP_8:
1249     if (consumeInt8(insn, &d8))
1250       return -1;
1251     insn->displacement = d8;
1252     break;
1253   case EA_DISP_16:
1254     if (consumeInt16(insn, &d16))
1255       return -1;
1256     insn->displacement = d16;
1257     break;
1258   case EA_DISP_32:
1259     if (consumeInt32(insn, &d32))
1260       return -1;
1261     insn->displacement = d32;
1262     break;
1263   }
1264
1265   insn->consumedDisplacement = true;
1266   return 0;
1267 }
1268
1269 /*
1270  * readModRM - Consumes all addressing information (ModR/M byte, SIB byte, and
1271  *   displacement) for an instruction and interprets it.
1272  *
1273  * @param insn  - The instruction whose addressing information is to be read.
1274  * @return      - 0 if the information was successfully read; nonzero otherwise.
1275  */
1276 static int readModRM(struct InternalInstruction* insn) {
1277   uint8_t mod, rm, reg;
1278
1279   dbgprintf(insn, "readModRM()");
1280
1281   if (insn->consumedModRM)
1282     return 0;
1283
1284   if (consumeByte(insn, &insn->modRM))
1285     return -1;
1286   insn->consumedModRM = true;
1287
1288   mod     = modFromModRM(insn->modRM);
1289   rm      = rmFromModRM(insn->modRM);
1290   reg     = regFromModRM(insn->modRM);
1291
1292   /*
1293    * This goes by insn->registerSize to pick the correct register, which messes
1294    * up if we're using (say) XMM or 8-bit register operands.  That gets fixed in
1295    * fixupReg().
1296    */
1297   switch (insn->registerSize) {
1298   case 2:
1299     insn->regBase = MODRM_REG_AX;
1300     insn->eaRegBase = EA_REG_AX;
1301     break;
1302   case 4:
1303     insn->regBase = MODRM_REG_EAX;
1304     insn->eaRegBase = EA_REG_EAX;
1305     break;
1306   case 8:
1307     insn->regBase = MODRM_REG_RAX;
1308     insn->eaRegBase = EA_REG_RAX;
1309     break;
1310   }
1311
1312   reg |= rFromREX(insn->rexPrefix) << 3;
1313   rm  |= bFromREX(insn->rexPrefix) << 3;
1314   if (insn->vectorExtensionType == TYPE_EVEX) {
1315     reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
1316     rm  |=  xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
1317   }
1318
1319   insn->reg = (Reg)(insn->regBase + reg);
1320
1321   switch (insn->addressSize) {
1322   case 2:
1323     insn->eaBaseBase = EA_BASE_BX_SI;
1324
1325     switch (mod) {
1326     case 0x0:
1327       if (rm == 0x6) {
1328         insn->eaBase = EA_BASE_NONE;
1329         insn->eaDisplacement = EA_DISP_16;
1330         if (readDisplacement(insn))
1331           return -1;
1332       } else {
1333         insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1334         insn->eaDisplacement = EA_DISP_NONE;
1335       }
1336       break;
1337     case 0x1:
1338       insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1339       insn->eaDisplacement = EA_DISP_8;
1340       insn->displacementSize = 1;
1341       if (readDisplacement(insn))
1342         return -1;
1343       break;
1344     case 0x2:
1345       insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1346       insn->eaDisplacement = EA_DISP_16;
1347       if (readDisplacement(insn))
1348         return -1;
1349       break;
1350     case 0x3:
1351       insn->eaBase = (EABase)(insn->eaRegBase + rm);
1352       if (readDisplacement(insn))
1353         return -1;
1354       break;
1355     }
1356     break;
1357   case 4:
1358   case 8:
1359     insn->eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
1360
1361     switch (mod) {
1362     case 0x0:
1363       insn->eaDisplacement = EA_DISP_NONE; /* readSIB may override this */
1364       // In determining whether RIP-relative mode is used (rm=5),
1365       // or whether a SIB byte is present (rm=4),
1366       // the extension bits (REX.b and EVEX.x) are ignored.
1367       switch (rm & 7) {
1368       case 0x4: // SIB byte is present
1369         insn->eaBase = (insn->addressSize == 4 ?
1370                         EA_BASE_sib : EA_BASE_sib64);
1371         if (readSIB(insn) || readDisplacement(insn))
1372           return -1;
1373         break;
1374       case 0x5: // RIP-relative
1375         insn->eaBase = EA_BASE_NONE;
1376         insn->eaDisplacement = EA_DISP_32;
1377         if (readDisplacement(insn))
1378           return -1;
1379         break;
1380       default:
1381         insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1382         break;
1383       }
1384       break;
1385     case 0x1:
1386       insn->displacementSize = 1;
1387       /* FALLTHROUGH */
1388     case 0x2:
1389       insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
1390       switch (rm & 7) {
1391       case 0x4: // SIB byte is present
1392         insn->eaBase = EA_BASE_sib;
1393         if (readSIB(insn) || readDisplacement(insn))
1394           return -1;
1395         break;
1396       default:
1397         insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1398         if (readDisplacement(insn))
1399           return -1;
1400         break;
1401       }
1402       break;
1403     case 0x3:
1404       insn->eaDisplacement = EA_DISP_NONE;
1405       insn->eaBase = (EABase)(insn->eaRegBase + rm);
1406       break;
1407     }
1408     break;
1409   } /* switch (insn->addressSize) */
1410
1411   return 0;
1412 }
1413
1414 #define GENERIC_FIXUP_FUNC(name, base, prefix)            \
1415   static uint8_t name(struct InternalInstruction *insn,   \
1416                       OperandType type,                   \
1417                       uint8_t index,                      \
1418                       uint8_t *valid) {                   \
1419     *valid = 1;                                           \
1420     switch (type) {                                       \
1421     default:                                              \
1422       debug("Unhandled register type");                   \
1423       *valid = 0;                                         \
1424       return 0;                                           \
1425     case TYPE_Rv:                                         \
1426       return base + index;                                \
1427     case TYPE_R8:                                         \
1428       if (insn->rexPrefix &&                              \
1429          index >= 4 && index <= 7) {                      \
1430         return prefix##_SPL + (index - 4);                \
1431       } else {                                            \
1432         return prefix##_AL + index;                       \
1433       }                                                   \
1434     case TYPE_R16:                                        \
1435       return prefix##_AX + index;                         \
1436     case TYPE_R32:                                        \
1437       return prefix##_EAX + index;                        \
1438     case TYPE_R64:                                        \
1439       return prefix##_RAX + index;                        \
1440     case TYPE_XMM512:                                     \
1441       return prefix##_ZMM0 + index;                       \
1442     case TYPE_XMM256:                                     \
1443       return prefix##_YMM0 + index;                       \
1444     case TYPE_XMM128:                                     \
1445     case TYPE_XMM64:                                      \
1446     case TYPE_XMM32:                                      \
1447     case TYPE_XMM:                                        \
1448       return prefix##_XMM0 + index;                       \
1449     case TYPE_VK1:                                        \
1450     case TYPE_VK8:                                        \
1451     case TYPE_VK16:                                       \
1452       if (index > 7)                                      \
1453         *valid = 0;                                       \
1454       return prefix##_K0 + index;                         \
1455     case TYPE_MM64:                                       \
1456       return prefix##_MM0 + (index & 0x7);                \
1457     case TYPE_SEGMENTREG:                                 \
1458       if (index > 5)                                      \
1459         *valid = 0;                                       \
1460       return prefix##_ES + index;                         \
1461     case TYPE_DEBUGREG:                                   \
1462       return prefix##_DR0 + index;                        \
1463     case TYPE_CONTROLREG:                                 \
1464       return prefix##_CR0 + index;                        \
1465     }                                                     \
1466   }
1467
1468 /*
1469  * fixup*Value - Consults an operand type to determine the meaning of the
1470  *   reg or R/M field.  If the operand is an XMM operand, for example, an
1471  *   operand would be XMM0 instead of AX, which readModRM() would otherwise
1472  *   misinterpret it as.
1473  *
1474  * @param insn  - The instruction containing the operand.
1475  * @param type  - The operand type.
1476  * @param index - The existing value of the field as reported by readModRM().
1477  * @param valid - The address of a uint8_t.  The target is set to 1 if the
1478  *                field is valid for the register class; 0 if not.
1479  * @return      - The proper value.
1480  */
1481 GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase,    MODRM_REG)
1482 GENERIC_FIXUP_FUNC(fixupRMValue,  insn->eaRegBase,  EA_REG)
1483
1484 /*
1485  * fixupReg - Consults an operand specifier to determine which of the
1486  *   fixup*Value functions to use in correcting readModRM()'ss interpretation.
1487  *
1488  * @param insn  - See fixup*Value().
1489  * @param op    - The operand specifier.
1490  * @return      - 0 if fixup was successful; -1 if the register returned was
1491  *                invalid for its class.
1492  */
1493 static int fixupReg(struct InternalInstruction *insn,
1494                     const struct OperandSpecifier *op) {
1495   uint8_t valid;
1496
1497   dbgprintf(insn, "fixupReg()");
1498
1499   switch ((OperandEncoding)op->encoding) {
1500   default:
1501     debug("Expected a REG or R/M encoding in fixupReg");
1502     return -1;
1503   case ENCODING_VVVV:
1504     insn->vvvv = (Reg)fixupRegValue(insn,
1505                                     (OperandType)op->type,
1506                                     insn->vvvv,
1507                                     &valid);
1508     if (!valid)
1509       return -1;
1510     break;
1511   case ENCODING_REG:
1512     insn->reg = (Reg)fixupRegValue(insn,
1513                                    (OperandType)op->type,
1514                                    insn->reg - insn->regBase,
1515                                    &valid);
1516     if (!valid)
1517       return -1;
1518     break;
1519   CASE_ENCODING_RM:
1520     if (insn->eaBase >= insn->eaRegBase) {
1521       insn->eaBase = (EABase)fixupRMValue(insn,
1522                                           (OperandType)op->type,
1523                                           insn->eaBase - insn->eaRegBase,
1524                                           &valid);
1525       if (!valid)
1526         return -1;
1527     }
1528     break;
1529   }
1530
1531   return 0;
1532 }
1533
1534 /*
1535  * readOpcodeRegister - Reads an operand from the opcode field of an
1536  *   instruction and interprets it appropriately given the operand width.
1537  *   Handles AddRegFrm instructions.
1538  *
1539  * @param insn  - the instruction whose opcode field is to be read.
1540  * @param size  - The width (in bytes) of the register being specified.
1541  *                1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
1542  *                RAX.
1543  * @return      - 0 on success; nonzero otherwise.
1544  */
1545 static int readOpcodeRegister(struct InternalInstruction* insn, uint8_t size) {
1546   dbgprintf(insn, "readOpcodeRegister()");
1547
1548   if (size == 0)
1549     size = insn->registerSize;
1550
1551   switch (size) {
1552   case 1:
1553     insn->opcodeRegister = (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3)
1554                                                   | (insn->opcode & 7)));
1555     if (insn->rexPrefix &&
1556         insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
1557         insn->opcodeRegister < MODRM_REG_AL + 0x8) {
1558       insn->opcodeRegister = (Reg)(MODRM_REG_SPL
1559                                    + (insn->opcodeRegister - MODRM_REG_AL - 4));
1560     }
1561
1562     break;
1563   case 2:
1564     insn->opcodeRegister = (Reg)(MODRM_REG_AX
1565                                  + ((bFromREX(insn->rexPrefix) << 3)
1566                                     | (insn->opcode & 7)));
1567     break;
1568   case 4:
1569     insn->opcodeRegister = (Reg)(MODRM_REG_EAX
1570                                  + ((bFromREX(insn->rexPrefix) << 3)
1571                                     | (insn->opcode & 7)));
1572     break;
1573   case 8:
1574     insn->opcodeRegister = (Reg)(MODRM_REG_RAX
1575                                  + ((bFromREX(insn->rexPrefix) << 3)
1576                                     | (insn->opcode & 7)));
1577     break;
1578   }
1579
1580   return 0;
1581 }
1582
1583 /*
1584  * readImmediate - Consumes an immediate operand from an instruction, given the
1585  *   desired operand size.
1586  *
1587  * @param insn  - The instruction whose operand is to be read.
1588  * @param size  - The width (in bytes) of the operand.
1589  * @return      - 0 if the immediate was successfully consumed; nonzero
1590  *                otherwise.
1591  */
1592 static int readImmediate(struct InternalInstruction* insn, uint8_t size) {
1593   uint8_t imm8;
1594   uint16_t imm16;
1595   uint32_t imm32;
1596   uint64_t imm64;
1597
1598   dbgprintf(insn, "readImmediate()");
1599
1600   if (insn->numImmediatesConsumed == 2) {
1601     debug("Already consumed two immediates");
1602     return -1;
1603   }
1604
1605   if (size == 0)
1606     size = insn->immediateSize;
1607   else
1608     insn->immediateSize = size;
1609   insn->immediateOffset = insn->readerCursor - insn->startLocation;
1610
1611   switch (size) {
1612   case 1:
1613     if (consumeByte(insn, &imm8))
1614       return -1;
1615     insn->immediates[insn->numImmediatesConsumed] = imm8;
1616     break;
1617   case 2:
1618     if (consumeUInt16(insn, &imm16))
1619       return -1;
1620     insn->immediates[insn->numImmediatesConsumed] = imm16;
1621     break;
1622   case 4:
1623     if (consumeUInt32(insn, &imm32))
1624       return -1;
1625     insn->immediates[insn->numImmediatesConsumed] = imm32;
1626     break;
1627   case 8:
1628     if (consumeUInt64(insn, &imm64))
1629       return -1;
1630     insn->immediates[insn->numImmediatesConsumed] = imm64;
1631     break;
1632   }
1633
1634   insn->numImmediatesConsumed++;
1635
1636   return 0;
1637 }
1638
1639 /*
1640  * readVVVV - Consumes vvvv from an instruction if it has a VEX prefix.
1641  *
1642  * @param insn  - The instruction whose operand is to be read.
1643  * @return      - 0 if the vvvv was successfully consumed; nonzero
1644  *                otherwise.
1645  */
1646 static int readVVVV(struct InternalInstruction* insn) {
1647   dbgprintf(insn, "readVVVV()");
1648
1649   int vvvv;
1650   if (insn->vectorExtensionType == TYPE_EVEX)
1651     vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
1652             vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]));
1653   else if (insn->vectorExtensionType == TYPE_VEX_3B)
1654     vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
1655   else if (insn->vectorExtensionType == TYPE_VEX_2B)
1656     vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
1657   else if (insn->vectorExtensionType == TYPE_XOP)
1658     vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
1659   else
1660     return -1;
1661
1662   if (insn->mode != MODE_64BIT)
1663     vvvv &= 0x7;
1664
1665   insn->vvvv = static_cast<Reg>(vvvv);
1666   return 0;
1667 }
1668
1669 /*
1670  * readMaskRegister - Reads an mask register from the opcode field of an
1671  *   instruction.
1672  *
1673  * @param insn    - The instruction whose opcode field is to be read.
1674  * @return        - 0 on success; nonzero otherwise.
1675  */
1676 static int readMaskRegister(struct InternalInstruction* insn) {
1677   dbgprintf(insn, "readMaskRegister()");
1678
1679   if (insn->vectorExtensionType != TYPE_EVEX)
1680     return -1;
1681
1682   insn->writemask =
1683       static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
1684   return 0;
1685 }
1686
1687 /*
1688  * readOperands - Consults the specifier for an instruction and consumes all
1689  *   operands for that instruction, interpreting them as it goes.
1690  *
1691  * @param insn  - The instruction whose operands are to be read and interpreted.
1692  * @return      - 0 if all operands could be read; nonzero otherwise.
1693  */
1694 static int readOperands(struct InternalInstruction* insn) {
1695   int hasVVVV, needVVVV;
1696   int sawRegImm = 0;
1697
1698   dbgprintf(insn, "readOperands()");
1699
1700   /* If non-zero vvvv specified, need to make sure one of the operands
1701      uses it. */
1702   hasVVVV = !readVVVV(insn);
1703   needVVVV = hasVVVV && (insn->vvvv != 0);
1704
1705   for (const auto &Op : x86OperandSets[insn->spec->operands]) {
1706     switch (Op.encoding) {
1707     case ENCODING_NONE:
1708     case ENCODING_SI:
1709     case ENCODING_DI:
1710       break;
1711     case ENCODING_REG:
1712     CASE_ENCODING_RM:
1713       if (readModRM(insn))
1714         return -1;
1715       if (fixupReg(insn, &Op))
1716         return -1;
1717       // Apply the AVX512 compressed displacement scaling factor.
1718       if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1719         insn->displacement *= 1 << (Op.encoding - ENCODING_RM);
1720       break;
1721     case ENCODING_CB:
1722     case ENCODING_CW:
1723     case ENCODING_CD:
1724     case ENCODING_CP:
1725     case ENCODING_CO:
1726     case ENCODING_CT:
1727       dbgprintf(insn, "We currently don't hande code-offset encodings");
1728       return -1;
1729     case ENCODING_IB:
1730       if (sawRegImm) {
1731         /* Saw a register immediate so don't read again and instead split the
1732            previous immediate.  FIXME: This is a hack. */
1733         insn->immediates[insn->numImmediatesConsumed] =
1734           insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
1735         ++insn->numImmediatesConsumed;
1736         break;
1737       }
1738       if (readImmediate(insn, 1))
1739         return -1;
1740       if (Op.type == TYPE_XMM128 ||
1741           Op.type == TYPE_XMM256)
1742         sawRegImm = 1;
1743       break;
1744     case ENCODING_IW:
1745       if (readImmediate(insn, 2))
1746         return -1;
1747       break;
1748     case ENCODING_ID:
1749       if (readImmediate(insn, 4))
1750         return -1;
1751       break;
1752     case ENCODING_IO:
1753       if (readImmediate(insn, 8))
1754         return -1;
1755       break;
1756     case ENCODING_Iv:
1757       if (readImmediate(insn, insn->immediateSize))
1758         return -1;
1759       break;
1760     case ENCODING_Ia:
1761       if (readImmediate(insn, insn->addressSize))
1762         return -1;
1763       break;
1764     case ENCODING_RB:
1765       if (readOpcodeRegister(insn, 1))
1766         return -1;
1767       break;
1768     case ENCODING_RW:
1769       if (readOpcodeRegister(insn, 2))
1770         return -1;
1771       break;
1772     case ENCODING_RD:
1773       if (readOpcodeRegister(insn, 4))
1774         return -1;
1775       break;
1776     case ENCODING_RO:
1777       if (readOpcodeRegister(insn, 8))
1778         return -1;
1779       break;
1780     case ENCODING_Rv:
1781       if (readOpcodeRegister(insn, 0))
1782         return -1;
1783       break;
1784     case ENCODING_FP:
1785       break;
1786     case ENCODING_VVVV:
1787       needVVVV = 0; /* Mark that we have found a VVVV operand. */
1788       if (!hasVVVV)
1789         return -1;
1790       if (fixupReg(insn, &Op))
1791         return -1;
1792       break;
1793     case ENCODING_WRITEMASK:
1794       if (readMaskRegister(insn))
1795         return -1;
1796       break;
1797     case ENCODING_DUP:
1798       break;
1799     default:
1800       dbgprintf(insn, "Encountered an operand with an unknown encoding.");
1801       return -1;
1802     }
1803   }
1804
1805   /* If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail */
1806   if (needVVVV) return -1;
1807
1808   return 0;
1809 }
1810
1811 /*
1812  * decodeInstruction - Reads and interprets a full instruction provided by the
1813  *   user.
1814  *
1815  * @param insn      - A pointer to the instruction to be populated.  Must be
1816  *                    pre-allocated.
1817  * @param reader    - The function to be used to read the instruction's bytes.
1818  * @param readerArg - A generic argument to be passed to the reader to store
1819  *                    any internal state.
1820  * @param logger    - If non-NULL, the function to be used to write log messages
1821  *                    and warnings.
1822  * @param loggerArg - A generic argument to be passed to the logger to store
1823  *                    any internal state.
1824  * @param startLoc  - The address (in the reader's address space) of the first
1825  *                    byte in the instruction.
1826  * @param mode      - The mode (real mode, IA-32e, or IA-32e in 64-bit mode) to
1827  *                    decode the instruction in.
1828  * @return          - 0 if the instruction's memory could be read; nonzero if
1829  *                    not.
1830  */
1831 int llvm::X86Disassembler::decodeInstruction(
1832     struct InternalInstruction *insn, byteReader_t reader,
1833     const void *readerArg, dlog_t logger, void *loggerArg, const void *miiArg,
1834     uint64_t startLoc, DisassemblerMode mode) {
1835   memset(insn, 0, sizeof(struct InternalInstruction));
1836
1837   insn->reader = reader;
1838   insn->readerArg = readerArg;
1839   insn->dlog = logger;
1840   insn->dlogArg = loggerArg;
1841   insn->startLocation = startLoc;
1842   insn->readerCursor = startLoc;
1843   insn->mode = mode;
1844   insn->numImmediatesConsumed = 0;
1845
1846   if (readPrefixes(insn)       ||
1847       readOpcode(insn)         ||
1848       getID(insn, miiArg)      ||
1849       insn->instructionID == 0 ||
1850       readOperands(insn))
1851     return -1;
1852
1853   insn->operands = x86OperandSets[insn->spec->operands];
1854
1855   insn->length = insn->readerCursor - insn->startLocation;
1856
1857   dbgprintf(insn, "Read from 0x%llx to 0x%llx: length %zu",
1858             startLoc, insn->readerCursor, insn->length);
1859
1860   if (insn->length > 15)
1861     dbgprintf(insn, "Instruction exceeds 15-byte limit");
1862
1863   return 0;
1864 }