Reinstate "Nuke the old JIT."
[oota-llvm.git] / lib / Target / SystemZ / SystemZRegisterInfo.td
1 //==- SystemZRegisterInfo.td - SystemZ register definitions -*- tablegen -*-==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 //===----------------------------------------------------------------------===//
11 // Class definitions.
12 //===----------------------------------------------------------------------===//
13
14 class SystemZReg<string n> : Register<n> {
15   let Namespace = "SystemZ";
16 }
17
18 class SystemZRegWithSubregs<string n, list<Register> subregs>
19   : RegisterWithSubRegs<n, subregs> {
20   let Namespace = "SystemZ";
21 }
22
23 let Namespace = "SystemZ" in {
24 def subreg_l32   : SubRegIndex<32, 0>;  // Also acts as subreg_ll32.
25 def subreg_h32   : SubRegIndex<32, 32>; // Also acts as subreg_lh32.
26 def subreg_l64   : SubRegIndex<64, 0>;
27 def subreg_h64   : SubRegIndex<64, 64>;
28 def subreg_hh32  : ComposedSubRegIndex<subreg_h64, subreg_h32>;
29 def subreg_hl32  : ComposedSubRegIndex<subreg_h64, subreg_l32>;
30 }
31
32 // Define a register class that contains values of type TYPE and an
33 // associated operand called NAME.  SIZE is the size and alignment
34 // of the registers and REGLIST is the list of individual registers.
35 multiclass SystemZRegClass<string name, ValueType type, int size, dag regList> {
36   def AsmOperand : AsmOperandClass {
37     let Name = name;
38     let ParserMethod = "parse"##name;
39     let RenderMethod = "addRegOperands";
40   }
41   def Bit : RegisterClass<"SystemZ", [type], size, regList> {
42     let Size = size;
43   }
44   def "" : RegisterOperand<!cast<RegisterClass>(name##"Bit")> {
45     let ParserMatchClass = !cast<AsmOperandClass>(name##"AsmOperand");
46   }
47 }
48
49 //===----------------------------------------------------------------------===//
50 // General-purpose registers
51 //===----------------------------------------------------------------------===//
52
53 // Lower 32 bits of one of the 16 64-bit general-purpose registers
54 class GPR32<bits<16> num, string n> : SystemZReg<n> {
55   let HWEncoding = num;
56 }
57
58 // One of the 16 64-bit general-purpose registers.
59 class GPR64<bits<16> num, string n, GPR32 low, GPR32 high>
60  : SystemZRegWithSubregs<n, [low, high]> {
61   let HWEncoding = num;
62   let SubRegIndices = [subreg_l32, subreg_h32];
63 }
64
65 // 8 even-odd pairs of GPR64s.
66 class GPR128<bits<16> num, string n, GPR64 low, GPR64 high>
67  : SystemZRegWithSubregs<n, [low, high]> {
68   let HWEncoding = num;
69   let SubRegIndices = [subreg_l64, subreg_h64];
70 }
71
72 // General-purpose registers
73 foreach I = 0-15 in {
74   def R#I#L : GPR32<I, "r"#I>;
75   def R#I#H : GPR32<I, "r"#I>;
76   def R#I#D : GPR64<I, "r"#I, !cast<GPR32>("R"#I#"L"), !cast<GPR32>("R"#I#"H")>,
77                     DwarfRegNum<[I]>;
78 }
79
80 foreach I = [0, 2, 4, 6, 8, 10, 12, 14] in {
81   def R#I#Q : GPR128<I, "r"#I, !cast<GPR64>("R"#!add(I, 1)#"D"),
82                      !cast<GPR64>("R"#I#"D")>;
83 }
84
85 /// Allocate the callee-saved R6-R13 backwards. That way they can be saved
86 /// together with R14 and R15 in one prolog instruction.
87 defm GR32  : SystemZRegClass<"GR32",  i32, 32, (add (sequence "R%uL",  0, 5),
88                                                     (sequence "R%uL", 15, 6))>;
89 defm GRH32 : SystemZRegClass<"GRH32", i32, 32, (add (sequence "R%uH",  0, 5),
90                                                     (sequence "R%uH", 15, 6))>;
91 defm GR64  : SystemZRegClass<"GR64",  i64, 64, (add (sequence "R%uD",  0, 5),
92                                                     (sequence "R%uD", 15, 6))>;
93
94 // Combine the low and high GR32s into a single class.  This can only be
95 // used for virtual registers if the high-word facility is available.
96 defm GRX32 : SystemZRegClass<"GRX32", i32, 32,
97                              (add (sequence "R%uL",  0, 5),
98                                   (sequence "R%uH",  0, 5),
99                                   R15L, R15H, R14L, R14H, R13L, R13H,
100                                   R12L, R12H, R11L, R11H, R10L, R10H,
101                                   R9L, R9H, R8L, R8H, R7L, R7H, R6L, R6H)>;
102
103 // The architecture doesn't really have any i128 support, so model the
104 // register pairs as untyped instead.
105 defm GR128 : SystemZRegClass<"GR128", untyped, 128, (add R0Q, R2Q, R4Q,
106                                                          R12Q, R10Q, R8Q, R6Q,
107                                                          R14Q)>;
108
109 // Base and index registers.  Everything except R0, which in an address
110 // context evaluates as 0.
111 defm ADDR32 : SystemZRegClass<"ADDR32", i32, 32, (sub GR32Bit, R0L)>;
112 defm ADDR64 : SystemZRegClass<"ADDR64", i64, 64, (sub GR64Bit, R0D)>;
113
114 // Not used directly, but needs to exist for ADDR32 and ADDR64 subregs
115 // of a GR128.
116 defm ADDR128 : SystemZRegClass<"ADDR128", untyped, 128, (sub GR128Bit, R0Q)>;
117
118 //===----------------------------------------------------------------------===//
119 // Floating-point registers
120 //===----------------------------------------------------------------------===//
121
122 // Maps FPR register numbers to their DWARF encoding.
123 class DwarfMapping<int id> { int Id = id; }
124
125 def F0Dwarf  : DwarfMapping<16>;
126 def F2Dwarf  : DwarfMapping<17>;
127 def F4Dwarf  : DwarfMapping<18>;
128 def F6Dwarf  : DwarfMapping<19>;
129
130 def F1Dwarf  : DwarfMapping<20>;
131 def F3Dwarf  : DwarfMapping<21>;
132 def F5Dwarf  : DwarfMapping<22>;
133 def F7Dwarf  : DwarfMapping<23>;
134
135 def F8Dwarf  : DwarfMapping<24>;
136 def F10Dwarf : DwarfMapping<25>;
137 def F12Dwarf : DwarfMapping<26>;
138 def F14Dwarf : DwarfMapping<27>;
139
140 def F9Dwarf  : DwarfMapping<28>;
141 def F11Dwarf : DwarfMapping<29>;
142 def F13Dwarf : DwarfMapping<30>;
143 def F15Dwarf : DwarfMapping<31>;
144
145 // Lower 32 bits of one of the 16 64-bit floating-point registers
146 class FPR32<bits<16> num, string n> : SystemZReg<n> {
147   let HWEncoding = num;
148 }
149
150 // One of the 16 64-bit floating-point registers
151 class FPR64<bits<16> num, string n, FPR32 low>
152  : SystemZRegWithSubregs<n, [low]> {
153   let HWEncoding = num;
154   let SubRegIndices = [subreg_h32];
155 }
156
157 // 8 pairs of FPR64s, with a one-register gap inbetween.
158 class FPR128<bits<16> num, string n, FPR64 low, FPR64 high>
159  : SystemZRegWithSubregs<n, [low, high]> {
160   let HWEncoding = num;
161   let SubRegIndices = [subreg_l64, subreg_h64];
162 }
163
164 // Floating-point registers
165 foreach I = 0-15 in {
166   def F#I#S : FPR32<I, "f"#I>;
167   def F#I#D : FPR64<I, "f"#I, !cast<FPR32>("F"#I#"S")>,
168               DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>;
169 }
170
171 foreach I = [0, 1, 4, 5, 8, 9, 12, 13] in {
172   def F#I#Q  : FPR128<I, "f"#I, !cast<FPR64>("F"#!add(I, 2)#"D"),
173                      !cast<FPR64>("F"#I#"D")>;
174 }
175
176 // There's no store-multiple instruction for FPRs, so we're not fussy
177 // about the order in which call-saved registers are allocated.
178 defm FP32  : SystemZRegClass<"FP32", f32, 32, (sequence "F%uS", 0, 15)>;
179 defm FP64  : SystemZRegClass<"FP64", f64, 64, (sequence "F%uD", 0, 15)>;
180 defm FP128 : SystemZRegClass<"FP128", f128, 128, (add F0Q, F1Q, F4Q, F5Q,
181                                                       F8Q, F9Q, F12Q, F13Q)>;
182
183 //===----------------------------------------------------------------------===//
184 // Other registers
185 //===----------------------------------------------------------------------===//
186
187 // The 2-bit condition code field of the PSW.  Every register named in an
188 // inline asm needs a class associated with it.
189 def CC : SystemZReg<"cc">;
190 def CCRegs : RegisterClass<"SystemZ", [i32], 32, (add CC)>;