Move DataLayout back to the TargetMachine from TargetSubtargetInfo
[oota-llvm.git] / lib / Target / SystemZ / SystemZOperands.td
1 //===-- SystemZOperands.td - SystemZ instruction operands ----*- tblgen-*--===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 //===----------------------------------------------------------------------===//
11 // Class definitions
12 //===----------------------------------------------------------------------===//
13
14 class ImmediateAsmOperand<string name>
15   : AsmOperandClass {
16   let Name = name;
17   let RenderMethod = "addImmOperands";
18 }
19
20 // Constructs both a DAG pattern and instruction operand for an immediate
21 // of type VT.  PRED returns true if a node is acceptable and XFORM returns
22 // the operand value associated with the node.  ASMOP is the name of the
23 // associated asm operand, and also forms the basis of the asm print method.
24 class Immediate<ValueType vt, code pred, SDNodeXForm xform, string asmop>
25   : PatLeaf<(vt imm), pred, xform>, Operand<vt> {
26   let PrintMethod = "print"##asmop##"Operand";
27   let DecoderMethod = "decode"##asmop##"Operand";
28   let ParserMatchClass = !cast<AsmOperandClass>(asmop);
29 }
30
31 // Constructs an asm operand for a PC-relative address.  SIZE says how
32 // many bits there are.
33 class PCRelAsmOperand<string size> : ImmediateAsmOperand<"PCRel"##size> {
34   let PredicateMethod = "isImm";
35   let ParserMethod = "parsePCRel"##size;
36 }
37
38 // Constructs an operand for a PC-relative address with address type VT.
39 // ASMOP is the associated asm operand.
40 class PCRelOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
41   let PrintMethod = "printPCRelOperand";
42   let ParserMatchClass = asmop;
43 }
44
45 // Constructs both a DAG pattern and instruction operand for a PC-relative
46 // address with address size VT.  SELF is the name of the operand and
47 // ASMOP is the associated asm operand.
48 class PCRelAddress<ValueType vt, string self, AsmOperandClass asmop>
49   : ComplexPattern<vt, 1, "selectPCRelAddress",
50                    [z_pcrel_wrapper, z_pcrel_offset]>,
51     PCRelOperand<vt, asmop> {
52   let MIOperandInfo = (ops !cast<Operand>(self));
53 }
54
55 // Constructs an AsmOperandClass for addressing mode FORMAT, treating the
56 // registers as having BITSIZE bits and displacements as having DISPSIZE bits.
57 // LENGTH is "LenN" for addresses with an N-bit length field, otherwise it
58 // is "".
59 class AddressAsmOperand<string format, string bitsize, string dispsize,
60                         string length = "">
61   : AsmOperandClass {
62   let Name = format##bitsize##"Disp"##dispsize##length;
63   let ParserMethod = "parse"##format##bitsize;
64   let RenderMethod = "add"##format##"Operands";
65 }
66
67 // Constructs both a DAG pattern and instruction operand for an addressing mode.
68 // FORMAT, BITSIZE, DISPSIZE and LENGTH are the parameters to an associated
69 // AddressAsmOperand.  OPERANDS is a list of NUMOPS individual operands
70 // (base register, displacement, etc.).  SELTYPE is the type of the memory
71 // operand for selection purposes; sometimes we want different selection
72 // choices for the same underlying addressing mode.  SUFFIX is similarly
73 // a suffix appended to the displacement for selection purposes;
74 // e.g. we want to reject small 20-bit displacements if a 12-bit form
75 // also exists, but we want to accept them otherwise.
76 class AddressingMode<string seltype, string bitsize, string dispsize,
77                      string suffix, string length, int numops, string format,
78                      dag operands>
79   : ComplexPattern<!cast<ValueType>("i"##bitsize), numops,
80                    "select"##seltype##dispsize##suffix##length,
81                    [add, sub, or, frameindex, z_adjdynalloc]>,
82     Operand<!cast<ValueType>("i"##bitsize)> {
83   let PrintMethod = "print"##format##"Operand";
84   let EncoderMethod = "get"##format##dispsize##length##"Encoding";
85   let DecoderMethod =
86     "decode"##format##bitsize##"Disp"##dispsize##length##"Operand";
87   let MIOperandInfo = operands;
88   let ParserMatchClass =
89     !cast<AddressAsmOperand>(format##bitsize##"Disp"##dispsize##length);
90 }
91
92 // An addressing mode with a base and displacement but no index.
93 class BDMode<string type, string bitsize, string dispsize, string suffix>
94   : AddressingMode<type, bitsize, dispsize, suffix, "", 2, "BDAddr",
95                    (ops !cast<RegisterOperand>("ADDR"##bitsize),
96                         !cast<Immediate>("disp"##dispsize##"imm"##bitsize))>;
97
98 // An addressing mode with a base, displacement and index.
99 class BDXMode<string type, string bitsize, string dispsize, string suffix>
100   : AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDXAddr",
101                    (ops !cast<RegisterOperand>("ADDR"##bitsize),
102                         !cast<Immediate>("disp"##dispsize##"imm"##bitsize),
103                         !cast<RegisterOperand>("ADDR"##bitsize))>;
104
105 // A BDMode paired with an immediate length operand of LENSIZE bits.
106 class BDLMode<string type, string bitsize, string dispsize, string suffix,
107               string lensize>
108   : AddressingMode<type, bitsize, dispsize, suffix, "Len"##lensize, 3,
109                    "BDLAddr",
110                    (ops !cast<RegisterOperand>("ADDR"##bitsize),
111                         !cast<Immediate>("disp"##dispsize##"imm"##bitsize),
112                         !cast<Immediate>("imm"##bitsize))>;
113
114 //===----------------------------------------------------------------------===//
115 // Extracting immediate operands from nodes
116 // These all create MVT::i64 nodes to ensure the value is not sign-extended
117 // when converted from an SDNode to a MachineOperand later on.
118 //===----------------------------------------------------------------------===//
119
120 // Bits 0-15 (counting from the lsb).
121 def LL16 : SDNodeXForm<imm, [{
122   uint64_t Value = N->getZExtValue() & 0x000000000000FFFFULL;
123   return CurDAG->getTargetConstant(Value, MVT::i64);
124 }]>;
125
126 // Bits 16-31 (counting from the lsb).
127 def LH16 : SDNodeXForm<imm, [{
128   uint64_t Value = (N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16;
129   return CurDAG->getTargetConstant(Value, MVT::i64);
130 }]>;
131
132 // Bits 32-47 (counting from the lsb).
133 def HL16 : SDNodeXForm<imm, [{
134   uint64_t Value = (N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32;
135   return CurDAG->getTargetConstant(Value, MVT::i64);
136 }]>;
137
138 // Bits 48-63 (counting from the lsb).
139 def HH16 : SDNodeXForm<imm, [{
140   uint64_t Value = (N->getZExtValue() & 0xFFFF000000000000ULL) >> 48;
141   return CurDAG->getTargetConstant(Value, MVT::i64);
142 }]>;
143
144 // Low 32 bits.
145 def LF32 : SDNodeXForm<imm, [{
146   uint64_t Value = N->getZExtValue() & 0x00000000FFFFFFFFULL;
147   return CurDAG->getTargetConstant(Value, MVT::i64);
148 }]>;
149
150 // High 32 bits.
151 def HF32 : SDNodeXForm<imm, [{
152   uint64_t Value = N->getZExtValue() >> 32;
153   return CurDAG->getTargetConstant(Value, MVT::i64);
154 }]>;
155
156 // Truncate an immediate to a 8-bit signed quantity.
157 def SIMM8 : SDNodeXForm<imm, [{
158   return CurDAG->getTargetConstant(int8_t(N->getZExtValue()), MVT::i64);
159 }]>;
160
161 // Truncate an immediate to a 8-bit unsigned quantity.
162 def UIMM8 : SDNodeXForm<imm, [{
163   return CurDAG->getTargetConstant(uint8_t(N->getZExtValue()), MVT::i64);
164 }]>;
165
166 // Truncate an immediate to a 16-bit signed quantity.
167 def SIMM16 : SDNodeXForm<imm, [{
168   return CurDAG->getTargetConstant(int16_t(N->getZExtValue()), MVT::i64);
169 }]>;
170
171 // Truncate an immediate to a 16-bit unsigned quantity.
172 def UIMM16 : SDNodeXForm<imm, [{
173   return CurDAG->getTargetConstant(uint16_t(N->getZExtValue()), MVT::i64);
174 }]>;
175
176 // Truncate an immediate to a 32-bit signed quantity.
177 def SIMM32 : SDNodeXForm<imm, [{
178   return CurDAG->getTargetConstant(int32_t(N->getZExtValue()), MVT::i64);
179 }]>;
180
181 // Truncate an immediate to a 32-bit unsigned quantity.
182 def UIMM32 : SDNodeXForm<imm, [{
183   return CurDAG->getTargetConstant(uint32_t(N->getZExtValue()), MVT::i64);
184 }]>;
185
186 // Negate and then truncate an immediate to a 32-bit unsigned quantity.
187 def NEGIMM32 : SDNodeXForm<imm, [{
188   return CurDAG->getTargetConstant(uint32_t(-N->getZExtValue()), MVT::i64);
189 }]>;
190
191 //===----------------------------------------------------------------------===//
192 // Immediate asm operands.
193 //===----------------------------------------------------------------------===//
194
195 def U4Imm  : ImmediateAsmOperand<"U4Imm">;
196 def U6Imm  : ImmediateAsmOperand<"U6Imm">;
197 def S8Imm  : ImmediateAsmOperand<"S8Imm">;
198 def U8Imm  : ImmediateAsmOperand<"U8Imm">;
199 def S16Imm : ImmediateAsmOperand<"S16Imm">;
200 def U16Imm : ImmediateAsmOperand<"U16Imm">;
201 def S32Imm : ImmediateAsmOperand<"S32Imm">;
202 def U32Imm : ImmediateAsmOperand<"U32Imm">;
203
204 //===----------------------------------------------------------------------===//
205 // i32 immediates
206 //===----------------------------------------------------------------------===//
207
208 // Immediates for the lower and upper 16 bits of an i32, with the other
209 // bits of the i32 being zero.
210 def imm32ll16 : Immediate<i32, [{
211   return SystemZ::isImmLL(N->getZExtValue());
212 }], LL16, "U16Imm">;
213
214 def imm32lh16 : Immediate<i32, [{
215   return SystemZ::isImmLH(N->getZExtValue());
216 }], LH16, "U16Imm">;
217
218 // Immediates for the lower and upper 16 bits of an i32, with the other
219 // bits of the i32 being one.
220 def imm32ll16c : Immediate<i32, [{
221   return SystemZ::isImmLL(uint32_t(~N->getZExtValue()));
222 }], LL16, "U16Imm">;
223
224 def imm32lh16c : Immediate<i32, [{
225   return SystemZ::isImmLH(uint32_t(~N->getZExtValue()));
226 }], LH16, "U16Imm">;
227
228 // Short immediates
229 def imm32zx4 : Immediate<i32, [{
230   return isUInt<4>(N->getZExtValue());
231 }], NOOP_SDNodeXForm, "U4Imm">;
232
233 def imm32zx6 : Immediate<i32, [{
234   return isUInt<6>(N->getZExtValue());
235 }], NOOP_SDNodeXForm, "U6Imm">;
236
237 def imm32sx8 : Immediate<i32, [{
238   return isInt<8>(N->getSExtValue());
239 }], SIMM8, "S8Imm">;
240
241 def imm32zx8 : Immediate<i32, [{
242   return isUInt<8>(N->getZExtValue());
243 }], UIMM8, "U8Imm">;
244
245 def imm32zx8trunc : Immediate<i32, [{}], UIMM8, "U8Imm">;
246
247 def imm32sx16 : Immediate<i32, [{
248   return isInt<16>(N->getSExtValue());
249 }], SIMM16, "S16Imm">;
250
251 def imm32zx16 : Immediate<i32, [{
252   return isUInt<16>(N->getZExtValue());
253 }], UIMM16, "U16Imm">;
254
255 def imm32sx16trunc : Immediate<i32, [{}], SIMM16, "S16Imm">;
256
257 // Full 32-bit immediates.  we need both signed and unsigned versions
258 // because the assembler is picky.  E.g. AFI requires signed operands
259 // while NILF requires unsigned ones.
260 def simm32 : Immediate<i32, [{}], SIMM32, "S32Imm">;
261 def uimm32 : Immediate<i32, [{}], UIMM32, "U32Imm">;
262
263 def imm32 : ImmLeaf<i32, [{}]>;
264
265 //===----------------------------------------------------------------------===//
266 // 64-bit immediates
267 //===----------------------------------------------------------------------===//
268
269 // Immediates for 16-bit chunks of an i64, with the other bits of the
270 // i32 being zero.
271 def imm64ll16 : Immediate<i64, [{
272   return SystemZ::isImmLL(N->getZExtValue());
273 }], LL16, "U16Imm">;
274
275 def imm64lh16 : Immediate<i64, [{
276   return SystemZ::isImmLH(N->getZExtValue());
277 }], LH16, "U16Imm">;
278
279 def imm64hl16 : Immediate<i64, [{
280   return SystemZ::isImmHL(N->getZExtValue());
281 }], HL16, "U16Imm">;
282
283 def imm64hh16 : Immediate<i64, [{
284   return SystemZ::isImmHH(N->getZExtValue());
285 }], HH16, "U16Imm">;
286
287 // Immediates for 16-bit chunks of an i64, with the other bits of the
288 // i32 being one.
289 def imm64ll16c : Immediate<i64, [{
290   return SystemZ::isImmLL(uint64_t(~N->getZExtValue()));
291 }], LL16, "U16Imm">;
292
293 def imm64lh16c : Immediate<i64, [{
294   return SystemZ::isImmLH(uint64_t(~N->getZExtValue()));
295 }], LH16, "U16Imm">;
296
297 def imm64hl16c : Immediate<i64, [{
298   return SystemZ::isImmHL(uint64_t(~N->getZExtValue()));
299 }], HL16, "U16Imm">;
300
301 def imm64hh16c : Immediate<i64, [{
302   return SystemZ::isImmHH(uint64_t(~N->getZExtValue()));
303 }], HH16, "U16Imm">;
304
305 // Immediates for the lower and upper 32 bits of an i64, with the other
306 // bits of the i32 being zero.
307 def imm64lf32 : Immediate<i64, [{
308   return SystemZ::isImmLF(N->getZExtValue());
309 }], LF32, "U32Imm">;
310
311 def imm64hf32 : Immediate<i64, [{
312   return SystemZ::isImmHF(N->getZExtValue());
313 }], HF32, "U32Imm">;
314
315 // Immediates for the lower and upper 32 bits of an i64, with the other
316 // bits of the i32 being one.
317 def imm64lf32c : Immediate<i64, [{
318   return SystemZ::isImmLF(uint64_t(~N->getZExtValue()));
319 }], LF32, "U32Imm">;
320
321 def imm64hf32c : Immediate<i64, [{
322   return SystemZ::isImmHF(uint64_t(~N->getZExtValue()));
323 }], HF32, "U32Imm">;
324
325 // Short immediates.
326 def imm64sx8 : Immediate<i64, [{
327   return isInt<8>(N->getSExtValue());
328 }], SIMM8, "S8Imm">;
329
330 def imm64zx8 : Immediate<i64, [{
331   return isUInt<8>(N->getSExtValue());
332 }], UIMM8, "U8Imm">;
333
334 def imm64sx16 : Immediate<i64, [{
335   return isInt<16>(N->getSExtValue());
336 }], SIMM16, "S16Imm">;
337
338 def imm64zx16 : Immediate<i64, [{
339   return isUInt<16>(N->getZExtValue());
340 }], UIMM16, "U16Imm">;
341
342 def imm64sx32 : Immediate<i64, [{
343   return isInt<32>(N->getSExtValue());
344 }], SIMM32, "S32Imm">;
345
346 def imm64zx32 : Immediate<i64, [{
347   return isUInt<32>(N->getZExtValue());
348 }], UIMM32, "U32Imm">;
349
350 def imm64zx32n : Immediate<i64, [{
351   return isUInt<32>(-N->getSExtValue());
352 }], NEGIMM32, "U32Imm">;
353
354 def imm64 : ImmLeaf<i64, [{}]>, Operand<i64>;
355
356 //===----------------------------------------------------------------------===//
357 // Floating-point immediates
358 //===----------------------------------------------------------------------===//
359
360 // Floating-point zero.
361 def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>;
362
363 // Floating point negative zero.
364 def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>;
365
366 //===----------------------------------------------------------------------===//
367 // Symbolic address operands
368 //===----------------------------------------------------------------------===//
369
370 // PC-relative asm operands.
371 def PCRel16 : PCRelAsmOperand<"16">;
372 def PCRel32 : PCRelAsmOperand<"32">;
373
374 // PC-relative offsets of a basic block.  The offset is sign-extended
375 // and multiplied by 2.
376 def brtarget16 : PCRelOperand<OtherVT, PCRel16> {
377   let EncoderMethod = "getPC16DBLEncoding";
378   let DecoderMethod = "decodePC16DBLOperand";
379 }
380 def brtarget32 : PCRelOperand<OtherVT, PCRel32> {
381   let EncoderMethod = "getPC32DBLEncoding";
382   let DecoderMethod = "decodePC32DBLOperand";
383 }
384
385 // A PC-relative offset of a global value.  The offset is sign-extended
386 // and multiplied by 2.
387 def pcrel32 : PCRelAddress<i64, "pcrel32", PCRel32> {
388   let EncoderMethod = "getPC32DBLEncoding";
389   let DecoderMethod = "decodePC32DBLOperand";
390 }
391
392 //===----------------------------------------------------------------------===//
393 // Addressing modes
394 //===----------------------------------------------------------------------===//
395
396 // 12-bit displacement operands.
397 def disp12imm32 : Operand<i32>;
398 def disp12imm64 : Operand<i64>;
399
400 // 20-bit displacement operands.
401 def disp20imm32 : Operand<i32>;
402 def disp20imm64 : Operand<i64>;
403
404 def BDAddr32Disp12      : AddressAsmOperand<"BDAddr",   "32", "12">;
405 def BDAddr32Disp20      : AddressAsmOperand<"BDAddr",   "32", "20">;
406 def BDAddr64Disp12      : AddressAsmOperand<"BDAddr",   "64", "12">;
407 def BDAddr64Disp20      : AddressAsmOperand<"BDAddr",   "64", "20">;
408 def BDXAddr64Disp12     : AddressAsmOperand<"BDXAddr",  "64", "12">;
409 def BDXAddr64Disp20     : AddressAsmOperand<"BDXAddr",  "64", "20">;
410 def BDLAddr64Disp12Len8 : AddressAsmOperand<"BDLAddr",  "64", "12", "Len8">;
411
412 // DAG patterns and operands for addressing modes.  Each mode has
413 // the form <type><range><group>[<len>] where:
414 //
415 // <type> is one of:
416 //   shift    : base + displacement (32-bit)
417 //   bdaddr   : base + displacement
418 //   mviaddr  : like bdaddr, but reject cases with a natural index
419 //   bdxaddr  : base + displacement + index
420 //   laaddr   : like bdxaddr, but used for Load Address operations
421 //   dynalloc : base + displacement + index + ADJDYNALLOC
422 //   bdladdr  : base + displacement with a length field
423 //
424 // <range> is one of:
425 //   12       : the displacement is an unsigned 12-bit value
426 //   20       : the displacement is a signed 20-bit value
427 //
428 // <group> is one of:
429 //   pair     : used when there is an equivalent instruction with the opposite
430 //              range value (12 or 20)
431 //   only     : used when there is no equivalent instruction with the opposite
432 //              range value
433 //
434 // <len> is one of:
435 //
436 //   <empty>  : there is no length field
437 //   len8     : the length field is 8 bits, with a range of [1, 0x100].
438 def shift12only       : BDMode <"BDAddr",   "32", "12", "Only">;
439 def shift20only       : BDMode <"BDAddr",   "32", "20", "Only">;
440 def bdaddr12only      : BDMode <"BDAddr",   "64", "12", "Only">;
441 def bdaddr12pair      : BDMode <"BDAddr",   "64", "12", "Pair">;
442 def bdaddr20only      : BDMode <"BDAddr",   "64", "20", "Only">;
443 def bdaddr20pair      : BDMode <"BDAddr",   "64", "20", "Pair">;
444 def mviaddr12pair     : BDMode <"MVIAddr",  "64", "12", "Pair">;
445 def mviaddr20pair     : BDMode <"MVIAddr",  "64", "20", "Pair">;
446 def bdxaddr12only     : BDXMode<"BDXAddr",  "64", "12", "Only">;
447 def bdxaddr12pair     : BDXMode<"BDXAddr",  "64", "12", "Pair">;
448 def bdxaddr20only     : BDXMode<"BDXAddr",  "64", "20", "Only">;
449 def bdxaddr20only128  : BDXMode<"BDXAddr",  "64", "20", "Only128">;
450 def bdxaddr20pair     : BDXMode<"BDXAddr",  "64", "20", "Pair">;
451 def dynalloc12only    : BDXMode<"DynAlloc", "64", "12", "Only">;
452 def laaddr12pair      : BDXMode<"LAAddr",   "64", "12", "Pair">;
453 def laaddr20pair      : BDXMode<"LAAddr",   "64", "20", "Pair">;
454 def bdladdr12onlylen8 : BDLMode<"BDLAddr",  "64", "12", "Only", "8">;
455
456 //===----------------------------------------------------------------------===//
457 // Miscellaneous
458 //===----------------------------------------------------------------------===//
459
460 // Access registers.  At present we just use them for accessing the thread
461 // pointer, so we don't expose them as register to LLVM.
462 def AccessReg : AsmOperandClass {
463   let Name = "AccessReg";
464   let ParserMethod = "parseAccessReg";
465 }
466 def access_reg : Immediate<i32, [{ return N->getZExtValue() < 16; }],
467                            NOOP_SDNodeXForm, "AccessReg"> {
468   let ParserMatchClass = AccessReg;
469 }
470
471 // A 4-bit condition-code mask.
472 def cond4 : PatLeaf<(i32 imm), [{ return (N->getZExtValue() < 16); }]>,
473             Operand<i32> {
474   let PrintMethod = "printCond4Operand";
475 }