R600: Fix mishandling of load / store chains.
[oota-llvm.git] / lib / Target / R600 / AMDGPUISelLowering.cpp
1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief This is the parent TargetLowering class for hardware code gen
12 /// targets.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "AMDGPUISelLowering.h"
17 #include "AMDGPU.h"
18 #include "AMDGPUFrameLowering.h"
19 #include "AMDGPUIntrinsicInfo.h"
20 #include "AMDGPURegisterInfo.h"
21 #include "AMDGPUSubtarget.h"
22 #include "R600MachineFunctionInfo.h"
23 #include "SIMachineFunctionInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/SelectionDAG.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33
34 using namespace llvm;
35
36 namespace {
37
38 /// Diagnostic information for unimplemented or unsupported feature reporting.
39 class DiagnosticInfoUnsupported : public DiagnosticInfo {
40 private:
41   const Twine &Description;
42   const Function &Fn;
43
44   static int KindID;
45
46   static int getKindID() {
47     if (KindID == 0)
48       KindID = llvm::getNextAvailablePluginDiagnosticKind();
49     return KindID;
50   }
51
52 public:
53   DiagnosticInfoUnsupported(const Function &Fn, const Twine &Desc,
54                           DiagnosticSeverity Severity = DS_Error)
55     : DiagnosticInfo(getKindID(), Severity),
56       Description(Desc),
57       Fn(Fn) { }
58
59   const Function &getFunction() const { return Fn; }
60   const Twine &getDescription() const { return Description; }
61
62   void print(DiagnosticPrinter &DP) const override {
63     DP << "unsupported " << getDescription() << " in " << Fn.getName();
64   }
65
66   static bool classof(const DiagnosticInfo *DI) {
67     return DI->getKind() == getKindID();
68   }
69 };
70
71 int DiagnosticInfoUnsupported::KindID = 0;
72 }
73
74
75 static bool allocateStack(unsigned ValNo, MVT ValVT, MVT LocVT,
76                       CCValAssign::LocInfo LocInfo,
77                       ISD::ArgFlagsTy ArgFlags, CCState &State) {
78   unsigned Offset = State.AllocateStack(ValVT.getStoreSize(),
79                                         ArgFlags.getOrigAlign());
80   State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
81
82   return true;
83 }
84
85 #include "AMDGPUGenCallingConv.inc"
86
87 // Find a larger type to do a load / store of a vector with.
88 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
89   unsigned StoreSize = VT.getStoreSizeInBits();
90   if (StoreSize <= 32)
91     return EVT::getIntegerVT(Ctx, StoreSize);
92
93   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
94   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
95 }
96
97 // Type for a vector that will be loaded to.
98 EVT AMDGPUTargetLowering::getEquivalentLoadRegType(LLVMContext &Ctx, EVT VT) {
99   unsigned StoreSize = VT.getStoreSizeInBits();
100   if (StoreSize <= 32)
101     return EVT::getIntegerVT(Ctx, 32);
102
103   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
104 }
105
106 AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM) :
107   TargetLowering(TM, new TargetLoweringObjectFileELF()) {
108
109   Subtarget = &TM.getSubtarget<AMDGPUSubtarget>();
110
111   setOperationAction(ISD::Constant, MVT::i32, Legal);
112   setOperationAction(ISD::Constant, MVT::i64, Legal);
113   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
114   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
115
116   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
117   setOperationAction(ISD::BRIND, MVT::Other, Expand);
118
119   // We need to custom lower some of the intrinsics
120   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
121
122   // Library functions.  These default to Expand, but we have instructions
123   // for them.
124   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
125   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
126   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
127   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
128   setOperationAction(ISD::FABS,   MVT::f32, Legal);
129   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
130   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
131   setOperationAction(ISD::FROUND, MVT::f32, Legal);
132   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
133
134   // Lower floating point store/load to integer store/load to reduce the number
135   // of patterns in tablegen.
136   setOperationAction(ISD::STORE, MVT::f32, Promote);
137   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
138
139   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
140   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
141
142   setOperationAction(ISD::STORE, MVT::i64, Promote);
143   AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
144
145   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
146   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
147
148   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
149   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
150
151   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
152   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
153
154   setOperationAction(ISD::STORE, MVT::f64, Promote);
155   AddPromotedToType(ISD::STORE, MVT::f64, MVT::i64);
156
157   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
158   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v2i64);
159
160   // Custom lowering of vector stores is required for local address space
161   // stores.
162   setOperationAction(ISD::STORE, MVT::v4i32, Custom);
163   // XXX: Native v2i32 local address space stores are possible, but not
164   // currently implemented.
165   setOperationAction(ISD::STORE, MVT::v2i32, Custom);
166
167   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
168   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
169   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
170
171   // XXX: This can be change to Custom, once ExpandVectorStores can
172   // handle 64-bit stores.
173   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
174
175   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
176   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
177   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
178   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
179   setTruncStoreAction(MVT::v4i64, MVT::v4i1, Expand);
180
181
182   setOperationAction(ISD::LOAD, MVT::f32, Promote);
183   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
184
185   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
186   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
187
188   setOperationAction(ISD::LOAD, MVT::i64, Promote);
189   AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
190
191   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
192   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
193
194   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
195   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
196
197   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
198   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
199
200   setOperationAction(ISD::LOAD, MVT::f64, Promote);
201   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::i64);
202
203   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
204   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v2i64);
205
206   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
207   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
208   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
209   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
210   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
211   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
212   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
213   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
214   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
215   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
216
217   setLoadExtAction(ISD::EXTLOAD, MVT::v2i8, Expand);
218   setLoadExtAction(ISD::SEXTLOAD, MVT::v2i8, Expand);
219   setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i8, Expand);
220   setLoadExtAction(ISD::EXTLOAD, MVT::v4i8, Expand);
221   setLoadExtAction(ISD::SEXTLOAD, MVT::v4i8, Expand);
222   setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i8, Expand);
223   setLoadExtAction(ISD::EXTLOAD, MVT::v2i16, Expand);
224   setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, Expand);
225   setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i16, Expand);
226   setLoadExtAction(ISD::EXTLOAD, MVT::v4i16, Expand);
227   setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, Expand);
228   setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, Expand);
229
230   setOperationAction(ISD::BR_CC, MVT::i1, Expand);
231
232   if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
233     setOperationAction(ISD::FCEIL, MVT::f64, Custom);
234     setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
235     setOperationAction(ISD::FRINT, MVT::f64, Custom);
236     setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
237   }
238
239   if (!Subtarget->hasBFI()) {
240     // fcopysign can be done in a single instruction with BFI.
241     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
242     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
243   }
244
245   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
246   for (MVT VT : ScalarIntVTs) {
247     setOperationAction(ISD::SREM, VT, Expand);
248     setOperationAction(ISD::SDIV, VT, Expand);
249
250     // GPU does not have divrem function for signed or unsigned.
251     setOperationAction(ISD::SDIVREM, VT, Custom);
252     setOperationAction(ISD::UDIVREM, VT, Custom);
253
254     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
255     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
256     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
257
258     setOperationAction(ISD::BSWAP, VT, Expand);
259     setOperationAction(ISD::CTTZ, VT, Expand);
260     setOperationAction(ISD::CTLZ, VT, Expand);
261   }
262
263   if (!Subtarget->hasBCNT(32))
264     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
265
266   if (!Subtarget->hasBCNT(64))
267     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
268
269   // The hardware supports 32-bit ROTR, but not ROTL.
270   setOperationAction(ISD::ROTL, MVT::i32, Expand);
271   setOperationAction(ISD::ROTL, MVT::i64, Expand);
272   setOperationAction(ISD::ROTR, MVT::i64, Expand);
273
274   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Expand);
275   setOperationAction(ISD::MUL, MVT::i64, Expand);
276   setOperationAction(ISD::MULHU, MVT::i64, Expand);
277   setOperationAction(ISD::MULHS, MVT::i64, Expand);
278   setOperationAction(ISD::UDIV, MVT::i32, Expand);
279   setOperationAction(ISD::UREM, MVT::i32, Expand);
280   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
281   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
282
283   static const MVT::SimpleValueType VectorIntTypes[] = {
284     MVT::v2i32, MVT::v4i32
285   };
286
287   for (MVT VT : VectorIntTypes) {
288     // Expand the following operations for the current type by default.
289     setOperationAction(ISD::ADD,  VT, Expand);
290     setOperationAction(ISD::AND,  VT, Expand);
291     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
292     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
293     setOperationAction(ISD::MUL,  VT, Expand);
294     setOperationAction(ISD::OR,   VT, Expand);
295     setOperationAction(ISD::SHL,  VT, Expand);
296     setOperationAction(ISD::SRA,  VT, Expand);
297     setOperationAction(ISD::SRL,  VT, Expand);
298     setOperationAction(ISD::ROTL, VT, Expand);
299     setOperationAction(ISD::ROTR, VT, Expand);
300     setOperationAction(ISD::SUB,  VT, Expand);
301     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
302     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
303     // TODO: Implement custom UREM / SREM routines.
304     setOperationAction(ISD::SDIV, VT, Expand);
305     setOperationAction(ISD::UDIV, VT, Expand);
306     setOperationAction(ISD::SREM, VT, Expand);
307     setOperationAction(ISD::UREM, VT, Expand);
308     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
309     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
310     setOperationAction(ISD::SDIVREM, VT, Custom);
311     setOperationAction(ISD::UDIVREM, VT, Custom);
312     setOperationAction(ISD::ADDC, VT, Expand);
313     setOperationAction(ISD::SUBC, VT, Expand);
314     setOperationAction(ISD::ADDE, VT, Expand);
315     setOperationAction(ISD::SUBE, VT, Expand);
316     setOperationAction(ISD::SELECT, VT, Expand);
317     setOperationAction(ISD::VSELECT, VT, Expand);
318     setOperationAction(ISD::SELECT_CC, VT, Expand);
319     setOperationAction(ISD::XOR,  VT, Expand);
320     setOperationAction(ISD::BSWAP, VT, Expand);
321     setOperationAction(ISD::CTPOP, VT, Expand);
322     setOperationAction(ISD::CTTZ, VT, Expand);
323     setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
324     setOperationAction(ISD::CTLZ, VT, Expand);
325     setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
326     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
327   }
328
329   static const MVT::SimpleValueType FloatVectorTypes[] = {
330     MVT::v2f32, MVT::v4f32
331   };
332
333   for (MVT VT : FloatVectorTypes) {
334     setOperationAction(ISD::FABS, VT, Expand);
335     setOperationAction(ISD::FADD, VT, Expand);
336     setOperationAction(ISD::FCEIL, VT, Expand);
337     setOperationAction(ISD::FCOS, VT, Expand);
338     setOperationAction(ISD::FDIV, VT, Expand);
339     setOperationAction(ISD::FEXP2, VT, Expand);
340     setOperationAction(ISD::FLOG2, VT, Expand);
341     setOperationAction(ISD::FPOW, VT, Expand);
342     setOperationAction(ISD::FFLOOR, VT, Expand);
343     setOperationAction(ISD::FTRUNC, VT, Expand);
344     setOperationAction(ISD::FMUL, VT, Expand);
345     setOperationAction(ISD::FMA, VT, Expand);
346     setOperationAction(ISD::FRINT, VT, Expand);
347     setOperationAction(ISD::FNEARBYINT, VT, Expand);
348     setOperationAction(ISD::FSQRT, VT, Expand);
349     setOperationAction(ISD::FSIN, VT, Expand);
350     setOperationAction(ISD::FSUB, VT, Expand);
351     setOperationAction(ISD::FNEG, VT, Expand);
352     setOperationAction(ISD::SELECT, VT, Expand);
353     setOperationAction(ISD::VSELECT, VT, Expand);
354     setOperationAction(ISD::SELECT_CC, VT, Expand);
355     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
356     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
357   }
358
359   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
360   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
361
362   setTargetDAGCombine(ISD::MUL);
363   setTargetDAGCombine(ISD::SELECT_CC);
364
365   setSchedulingPreference(Sched::RegPressure);
366   setJumpIsExpensive(true);
367
368   setSelectIsExpensive(false);
369   PredictableSelectIsExpensive = false;
370
371   // There are no integer divide instructions, and these expand to a pretty
372   // large sequence of instructions.
373   setIntDivIsCheap(false);
374   setPow2DivIsCheap(false);
375
376   // TODO: Investigate this when 64-bit divides are implemented.
377   addBypassSlowDiv(64, 32);
378
379   // FIXME: Need to really handle these.
380   MaxStoresPerMemcpy  = 4096;
381   MaxStoresPerMemmove = 4096;
382   MaxStoresPerMemset  = 4096;
383 }
384
385 //===----------------------------------------------------------------------===//
386 // Target Information
387 //===----------------------------------------------------------------------===//
388
389 MVT AMDGPUTargetLowering::getVectorIdxTy() const {
390   return MVT::i32;
391 }
392
393 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
394   return true;
395 }
396
397 // The backend supports 32 and 64 bit floating point immediates.
398 // FIXME: Why are we reporting vectors of FP immediates as legal?
399 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
400   EVT ScalarVT = VT.getScalarType();
401   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64);
402 }
403
404 // We don't want to shrink f64 / f32 constants.
405 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
406   EVT ScalarVT = VT.getScalarType();
407   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
408 }
409
410 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
411                                                    EVT CastTy) const {
412   if (LoadTy.getSizeInBits() != CastTy.getSizeInBits())
413     return true;
414
415   unsigned LScalarSize = LoadTy.getScalarType().getSizeInBits();
416   unsigned CastScalarSize = CastTy.getScalarType().getSizeInBits();
417
418   return ((LScalarSize <= CastScalarSize) ||
419           (CastScalarSize >= 32) ||
420           (LScalarSize < 32));
421 }
422
423 //===---------------------------------------------------------------------===//
424 // Target Properties
425 //===---------------------------------------------------------------------===//
426
427 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
428   assert(VT.isFloatingPoint());
429   return VT == MVT::f32;
430 }
431
432 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
433   assert(VT.isFloatingPoint());
434   return VT == MVT::f32;
435 }
436
437 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
438   // Truncate is just accessing a subregister.
439   return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0);
440 }
441
442 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
443   // Truncate is just accessing a subregister.
444   return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() &&
445          (Dest->getPrimitiveSizeInBits() % 32 == 0);
446 }
447
448 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
449   const DataLayout *DL = getDataLayout();
450   unsigned SrcSize = DL->getTypeSizeInBits(Src->getScalarType());
451   unsigned DestSize = DL->getTypeSizeInBits(Dest->getScalarType());
452
453   return SrcSize == 32 && DestSize == 64;
454 }
455
456 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
457   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
458   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
459   // this will enable reducing 64-bit operations the 32-bit, which is always
460   // good.
461   return Src == MVT::i32 && Dest == MVT::i64;
462 }
463
464 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
465   return isZExtFree(Val.getValueType(), VT2);
466 }
467
468 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
469   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
470   // limited number of native 64-bit operations. Shrinking an operation to fit
471   // in a single 32-bit register should always be helpful. As currently used,
472   // this is much less general than the name suggests, and is only used in
473   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
474   // not profitable, and may actually be harmful.
475   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
476 }
477
478 //===---------------------------------------------------------------------===//
479 // TargetLowering Callbacks
480 //===---------------------------------------------------------------------===//
481
482 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State,
483                              const SmallVectorImpl<ISD::InputArg> &Ins) const {
484
485   State.AnalyzeFormalArguments(Ins, CC_AMDGPU);
486 }
487
488 SDValue AMDGPUTargetLowering::LowerReturn(
489                                      SDValue Chain,
490                                      CallingConv::ID CallConv,
491                                      bool isVarArg,
492                                      const SmallVectorImpl<ISD::OutputArg> &Outs,
493                                      const SmallVectorImpl<SDValue> &OutVals,
494                                      SDLoc DL, SelectionDAG &DAG) const {
495   return DAG.getNode(AMDGPUISD::RET_FLAG, DL, MVT::Other, Chain);
496 }
497
498 //===---------------------------------------------------------------------===//
499 // Target specific lowering
500 //===---------------------------------------------------------------------===//
501
502 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
503                                         SmallVectorImpl<SDValue> &InVals) const {
504   SDValue Callee = CLI.Callee;
505   SelectionDAG &DAG = CLI.DAG;
506
507   const Function &Fn = *DAG.getMachineFunction().getFunction();
508
509   StringRef FuncName("<unknown>");
510
511   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
512     FuncName = G->getSymbol();
513   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
514     FuncName = G->getGlobal()->getName();
515
516   DiagnosticInfoUnsupported NoCalls(Fn, "call to function " + FuncName);
517   DAG.getContext()->diagnose(NoCalls);
518   return SDValue();
519 }
520
521 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
522                                              SelectionDAG &DAG) const {
523   switch (Op.getOpcode()) {
524   default:
525     Op.getNode()->dump();
526     llvm_unreachable("Custom lowering code for this"
527                      "instruction is not implemented yet!");
528     break;
529   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
530   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
531   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
532   case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
533   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
534   case ISD::SDIV: return LowerSDIV(Op, DAG);
535   case ISD::SREM: return LowerSREM(Op, DAG);
536   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
537   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
538   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
539   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
540   case ISD::FRINT: return LowerFRINT(Op, DAG);
541   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
542   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
543   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
544   }
545   return Op;
546 }
547
548 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
549                                               SmallVectorImpl<SDValue> &Results,
550                                               SelectionDAG &DAG) const {
551   switch (N->getOpcode()) {
552   case ISD::SIGN_EXTEND_INREG:
553     // Different parts of legalization seem to interpret which type of
554     // sign_extend_inreg is the one to check for custom lowering. The extended
555     // from type is what really matters, but some places check for custom
556     // lowering of the result type. This results in trying to use
557     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
558     // nothing here and let the illegal result integer be handled normally.
559     return;
560   case ISD::LOAD: {
561     SDNode *Node = LowerLOAD(SDValue(N, 0), DAG).getNode();
562     if (!Node)
563       return;
564
565     Results.push_back(SDValue(Node, 0));
566     Results.push_back(SDValue(Node, 1));
567     // XXX: LLVM seems not to replace Chain Value inside CustomWidenLowerNode
568     // function
569     DAG.ReplaceAllUsesOfValueWith(SDValue(N,1), SDValue(Node, 1));
570     return;
571   }
572   case ISD::STORE: {
573     SDValue Lowered = LowerSTORE(SDValue(N, 0), DAG);
574     if (Lowered.getNode())
575       Results.push_back(Lowered);
576     return;
577   }
578   default:
579     return;
580   }
581 }
582
583 // FIXME: This implements accesses to initialized globals in the constant
584 // address space by copying them to private and accessing that. It does not
585 // properly handle illegal types or vectors. The private vector loads are not
586 // scalarized, and the illegal scalars hit an assertion. This technique will not
587 // work well with large initializers, and this should eventually be
588 // removed. Initialized globals should be placed into a data section that the
589 // runtime will load into a buffer before the kernel is executed. Uses of the
590 // global need to be replaced with a pointer loaded from an implicit kernel
591 // argument into this buffer holding the copy of the data, which will remove the
592 // need for any of this.
593 SDValue AMDGPUTargetLowering::LowerConstantInitializer(const Constant* Init,
594                                                        const GlobalValue *GV,
595                                                        const SDValue &InitPtr,
596                                                        SDValue Chain,
597                                                        SelectionDAG &DAG) const {
598   const DataLayout *TD = getTargetMachine().getDataLayout();
599   SDLoc DL(InitPtr);
600   Type *InitTy = Init->getType();
601
602   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Init)) {
603     EVT VT = EVT::getEVT(InitTy);
604     PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS);
605     return DAG.getStore(Chain, DL, DAG.getConstant(*CI, VT), InitPtr,
606                         MachinePointerInfo(UndefValue::get(PtrTy)), false, false,
607                         TD->getPrefTypeAlignment(InitTy));
608   }
609
610   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Init)) {
611     EVT VT = EVT::getEVT(CFP->getType());
612     PointerType *PtrTy = PointerType::get(CFP->getType(), 0);
613     return DAG.getStore(Chain, DL, DAG.getConstantFP(*CFP, VT), InitPtr,
614                  MachinePointerInfo(UndefValue::get(PtrTy)), false, false,
615                  TD->getPrefTypeAlignment(CFP->getType()));
616   }
617
618   if (StructType *ST = dyn_cast<StructType>(InitTy)) {
619     const StructLayout *SL = TD->getStructLayout(ST);
620
621     EVT PtrVT = InitPtr.getValueType();
622     SmallVector<SDValue, 8> Chains;
623
624     for (unsigned I = 0, N = ST->getNumElements(); I != N; ++I) {
625       SDValue Offset = DAG.getConstant(SL->getElementOffset(I), PtrVT);
626       SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset);
627
628       Constant *Elt = Init->getAggregateElement(I);
629       Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG));
630     }
631
632     return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
633   }
634
635   if (SequentialType *SeqTy = dyn_cast<SequentialType>(InitTy)) {
636     EVT PtrVT = InitPtr.getValueType();
637
638     unsigned NumElements;
639     if (ArrayType *AT = dyn_cast<ArrayType>(SeqTy))
640       NumElements = AT->getNumElements();
641     else if (VectorType *VT = dyn_cast<VectorType>(SeqTy))
642       NumElements = VT->getNumElements();
643     else
644       llvm_unreachable("Unexpected type");
645
646     unsigned EltSize = TD->getTypeAllocSize(SeqTy->getElementType());
647     SmallVector<SDValue, 8> Chains;
648     for (unsigned i = 0; i < NumElements; ++i) {
649       SDValue Offset = DAG.getConstant(i * EltSize, PtrVT);
650       SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset);
651
652       Constant *Elt = Init->getAggregateElement(i);
653       Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG));
654     }
655
656     return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
657   }
658
659   if (isa<UndefValue>(Init)) {
660     EVT VT = EVT::getEVT(InitTy);
661     PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS);
662     return DAG.getStore(Chain, DL, DAG.getUNDEF(VT), InitPtr,
663                         MachinePointerInfo(UndefValue::get(PtrTy)), false, false,
664                         TD->getPrefTypeAlignment(InitTy));
665   }
666
667   Init->dump();
668   llvm_unreachable("Unhandled constant initializer");
669 }
670
671 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
672                                                  SDValue Op,
673                                                  SelectionDAG &DAG) const {
674
675   const DataLayout *TD = getTargetMachine().getDataLayout();
676   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
677   const GlobalValue *GV = G->getGlobal();
678
679   switch (G->getAddressSpace()) {
680   default: llvm_unreachable("Global Address lowering not implemented for this "
681                             "address space");
682   case AMDGPUAS::LOCAL_ADDRESS: {
683     // XXX: What does the value of G->getOffset() mean?
684     assert(G->getOffset() == 0 &&
685          "Do not know what to do with an non-zero offset");
686
687     unsigned Offset;
688     if (MFI->LocalMemoryObjects.count(GV) == 0) {
689       uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
690       Offset = MFI->LDSSize;
691       MFI->LocalMemoryObjects[GV] = Offset;
692       // XXX: Account for alignment?
693       MFI->LDSSize += Size;
694     } else {
695       Offset = MFI->LocalMemoryObjects[GV];
696     }
697
698     return DAG.getConstant(Offset, getPointerTy(G->getAddressSpace()));
699   }
700   case AMDGPUAS::CONSTANT_ADDRESS: {
701     MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
702     Type *EltType = GV->getType()->getElementType();
703     unsigned Size = TD->getTypeAllocSize(EltType);
704     unsigned Alignment = TD->getPrefTypeAlignment(EltType);
705
706     MVT PrivPtrVT = getPointerTy(AMDGPUAS::PRIVATE_ADDRESS);
707     MVT ConstPtrVT = getPointerTy(AMDGPUAS::CONSTANT_ADDRESS);
708
709     int FI = FrameInfo->CreateStackObject(Size, Alignment, false);
710     SDValue InitPtr = DAG.getFrameIndex(FI, PrivPtrVT);
711
712     const GlobalVariable *Var = cast<GlobalVariable>(GV);
713     if (!Var->hasInitializer()) {
714       // This has no use, but bugpoint will hit it.
715       return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT);
716     }
717
718     const Constant *Init = Var->getInitializer();
719     SmallVector<SDNode*, 8> WorkList;
720
721     for (SDNode::use_iterator I = DAG.getEntryNode()->use_begin(),
722                               E = DAG.getEntryNode()->use_end(); I != E; ++I) {
723       if (I->getOpcode() != AMDGPUISD::REGISTER_LOAD && I->getOpcode() != ISD::LOAD)
724         continue;
725       WorkList.push_back(*I);
726     }
727     SDValue Chain = LowerConstantInitializer(Init, GV, InitPtr, DAG.getEntryNode(), DAG);
728     for (SmallVector<SDNode*, 8>::iterator I = WorkList.begin(),
729                                            E = WorkList.end(); I != E; ++I) {
730       SmallVector<SDValue, 8> Ops;
731       Ops.push_back(Chain);
732       for (unsigned i = 1; i < (*I)->getNumOperands(); ++i) {
733         Ops.push_back((*I)->getOperand(i));
734       }
735       DAG.UpdateNodeOperands(*I, Ops);
736     }
737     return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT);
738   }
739   }
740 }
741
742 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
743                                                   SelectionDAG &DAG) const {
744   SmallVector<SDValue, 8> Args;
745   SDValue A = Op.getOperand(0);
746   SDValue B = Op.getOperand(1);
747
748   DAG.ExtractVectorElements(A, Args);
749   DAG.ExtractVectorElements(B, Args);
750
751   return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args);
752 }
753
754 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
755                                                      SelectionDAG &DAG) const {
756
757   SmallVector<SDValue, 8> Args;
758   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
759   EVT VT = Op.getValueType();
760   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
761                             VT.getVectorNumElements());
762
763   return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args);
764 }
765
766 SDValue AMDGPUTargetLowering::LowerFrameIndex(SDValue Op,
767                                               SelectionDAG &DAG) const {
768
769   MachineFunction &MF = DAG.getMachineFunction();
770   const AMDGPUFrameLowering *TFL =
771    static_cast<const AMDGPUFrameLowering*>(getTargetMachine().getFrameLowering());
772
773   FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op);
774
775   unsigned FrameIndex = FIN->getIndex();
776   unsigned Offset = TFL->getFrameIndexOffset(MF, FrameIndex);
777   return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF),
778                          Op.getValueType());
779 }
780
781 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
782     SelectionDAG &DAG) const {
783   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
784   SDLoc DL(Op);
785   EVT VT = Op.getValueType();
786
787   switch (IntrinsicID) {
788     default: return Op;
789     case AMDGPUIntrinsic::AMDGPU_abs:
790     case AMDGPUIntrinsic::AMDIL_abs: // Legacy name.
791       return LowerIntrinsicIABS(Op, DAG);
792     case AMDGPUIntrinsic::AMDGPU_lrp:
793       return LowerIntrinsicLRP(Op, DAG);
794     case AMDGPUIntrinsic::AMDGPU_fract:
795     case AMDGPUIntrinsic::AMDIL_fraction: // Legacy name.
796       return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
797
798     case AMDGPUIntrinsic::AMDGPU_clamp:
799     case AMDGPUIntrinsic::AMDIL_clamp: // Legacy name.
800       return DAG.getNode(AMDGPUISD::CLAMP, DL, VT,
801                          Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
802
803     case Intrinsic::AMDGPU_div_scale: {
804       // 3rd parameter required to be a constant.
805       const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3));
806       if (!Param)
807         return DAG.getUNDEF(VT);
808
809       // Translate to the operands expected by the machine instruction. The
810       // first parameter must be the same as the first instruction.
811       SDValue Numerator = Op.getOperand(1);
812       SDValue Denominator = Op.getOperand(2);
813       SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
814
815       return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, VT,
816                          Src0, Denominator, Numerator);
817     }
818
819     case Intrinsic::AMDGPU_div_fmas:
820       return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
821                          Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
822
823     case Intrinsic::AMDGPU_div_fixup:
824       return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
825                          Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
826
827     case Intrinsic::AMDGPU_trig_preop:
828       return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
829                          Op.getOperand(1), Op.getOperand(2));
830
831     case Intrinsic::AMDGPU_rcp:
832       return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
833
834     case Intrinsic::AMDGPU_rsq:
835       return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
836
837     case AMDGPUIntrinsic::AMDGPU_legacy_rsq:
838       return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
839
840     case Intrinsic::AMDGPU_rsq_clamped:
841       return DAG.getNode(AMDGPUISD::RSQ_CLAMPED, DL, VT, Op.getOperand(1));
842
843     case AMDGPUIntrinsic::AMDGPU_imax:
844       return DAG.getNode(AMDGPUISD::SMAX, DL, VT, Op.getOperand(1),
845                                                   Op.getOperand(2));
846     case AMDGPUIntrinsic::AMDGPU_umax:
847       return DAG.getNode(AMDGPUISD::UMAX, DL, VT, Op.getOperand(1),
848                                                   Op.getOperand(2));
849     case AMDGPUIntrinsic::AMDGPU_imin:
850       return DAG.getNode(AMDGPUISD::SMIN, DL, VT, Op.getOperand(1),
851                                                   Op.getOperand(2));
852     case AMDGPUIntrinsic::AMDGPU_umin:
853       return DAG.getNode(AMDGPUISD::UMIN, DL, VT, Op.getOperand(1),
854                                                   Op.getOperand(2));
855
856     case AMDGPUIntrinsic::AMDGPU_umul24:
857       return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT,
858                          Op.getOperand(1), Op.getOperand(2));
859
860     case AMDGPUIntrinsic::AMDGPU_imul24:
861       return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT,
862                          Op.getOperand(1), Op.getOperand(2));
863
864     case AMDGPUIntrinsic::AMDGPU_umad24:
865       return DAG.getNode(AMDGPUISD::MAD_U24, DL, VT,
866                          Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
867
868     case AMDGPUIntrinsic::AMDGPU_imad24:
869       return DAG.getNode(AMDGPUISD::MAD_I24, DL, VT,
870                          Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
871
872     case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte0:
873       return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Op.getOperand(1));
874
875     case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte1:
876       return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE1, DL, VT, Op.getOperand(1));
877
878     case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte2:
879       return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE2, DL, VT, Op.getOperand(1));
880
881     case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte3:
882       return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE3, DL, VT, Op.getOperand(1));
883
884     case AMDGPUIntrinsic::AMDGPU_bfe_i32:
885       return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
886                          Op.getOperand(1),
887                          Op.getOperand(2),
888                          Op.getOperand(3));
889
890     case AMDGPUIntrinsic::AMDGPU_bfe_u32:
891       return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
892                          Op.getOperand(1),
893                          Op.getOperand(2),
894                          Op.getOperand(3));
895
896     case AMDGPUIntrinsic::AMDGPU_bfi:
897       return DAG.getNode(AMDGPUISD::BFI, DL, VT,
898                          Op.getOperand(1),
899                          Op.getOperand(2),
900                          Op.getOperand(3));
901
902     case AMDGPUIntrinsic::AMDGPU_bfm:
903       return DAG.getNode(AMDGPUISD::BFM, DL, VT,
904                          Op.getOperand(1),
905                          Op.getOperand(2));
906
907     case AMDGPUIntrinsic::AMDGPU_brev:
908       return DAG.getNode(AMDGPUISD::BREV, DL, VT, Op.getOperand(1));
909
910     case AMDGPUIntrinsic::AMDIL_exp: // Legacy name.
911       return DAG.getNode(ISD::FEXP2, DL, VT, Op.getOperand(1));
912
913     case AMDGPUIntrinsic::AMDIL_round_nearest: // Legacy name.
914       return DAG.getNode(ISD::FRINT, DL, VT, Op.getOperand(1));
915     case AMDGPUIntrinsic::AMDGPU_trunc: // Legacy name.
916       return DAG.getNode(ISD::FTRUNC, DL, VT, Op.getOperand(1));
917   }
918 }
919
920 ///IABS(a) = SMAX(sub(0, a), a)
921 SDValue AMDGPUTargetLowering::LowerIntrinsicIABS(SDValue Op,
922                                                  SelectionDAG &DAG) const {
923   SDLoc DL(Op);
924   EVT VT = Op.getValueType();
925   SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
926                                               Op.getOperand(1));
927
928   return DAG.getNode(AMDGPUISD::SMAX, DL, VT, Neg, Op.getOperand(1));
929 }
930
931 /// Linear Interpolation
932 /// LRP(a, b, c) = muladd(a,  b, (1 - a) * c)
933 SDValue AMDGPUTargetLowering::LowerIntrinsicLRP(SDValue Op,
934                                                 SelectionDAG &DAG) const {
935   SDLoc DL(Op);
936   EVT VT = Op.getValueType();
937   SDValue OneSubA = DAG.getNode(ISD::FSUB, DL, VT,
938                                 DAG.getConstantFP(1.0f, MVT::f32),
939                                 Op.getOperand(1));
940   SDValue OneSubAC = DAG.getNode(ISD::FMUL, DL, VT, OneSubA,
941                                                     Op.getOperand(3));
942   return DAG.getNode(ISD::FADD, DL, VT,
943       DAG.getNode(ISD::FMUL, DL, VT, Op.getOperand(1), Op.getOperand(2)),
944       OneSubAC);
945 }
946
947 /// \brief Generate Min/Max node
948 SDValue AMDGPUTargetLowering::CombineMinMax(SDNode *N,
949                                             SelectionDAG &DAG) const {
950   SDLoc DL(N);
951   EVT VT = N->getValueType(0);
952
953   SDValue LHS = N->getOperand(0);
954   SDValue RHS = N->getOperand(1);
955   SDValue True = N->getOperand(2);
956   SDValue False = N->getOperand(3);
957   SDValue CC = N->getOperand(4);
958
959   if (VT != MVT::f32 ||
960       !((LHS == True && RHS == False) || (LHS == False && RHS == True))) {
961     return SDValue();
962   }
963
964   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
965   switch (CCOpcode) {
966   case ISD::SETOEQ:
967   case ISD::SETONE:
968   case ISD::SETUNE:
969   case ISD::SETNE:
970   case ISD::SETUEQ:
971   case ISD::SETEQ:
972   case ISD::SETFALSE:
973   case ISD::SETFALSE2:
974   case ISD::SETTRUE:
975   case ISD::SETTRUE2:
976   case ISD::SETUO:
977   case ISD::SETO:
978     llvm_unreachable("Operation should already be optimised!");
979   case ISD::SETULE:
980   case ISD::SETULT:
981   case ISD::SETOLE:
982   case ISD::SETOLT:
983   case ISD::SETLE:
984   case ISD::SETLT: {
985     unsigned Opc = (LHS == True) ? AMDGPUISD::FMIN : AMDGPUISD::FMAX;
986     return DAG.getNode(Opc, DL, VT, LHS, RHS);
987   }
988   case ISD::SETGT:
989   case ISD::SETGE:
990   case ISD::SETUGE:
991   case ISD::SETOGE:
992   case ISD::SETUGT:
993   case ISD::SETOGT: {
994     unsigned Opc = (LHS == True) ? AMDGPUISD::FMAX : AMDGPUISD::FMIN;
995     return DAG.getNode(Opc, DL, VT, LHS, RHS);
996   }
997   case ISD::SETCC_INVALID:
998     llvm_unreachable("Invalid setcc condcode!");
999   }
1000   return SDValue();
1001 }
1002
1003 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue &Op,
1004                                               SelectionDAG &DAG) const {
1005   LoadSDNode *Load = dyn_cast<LoadSDNode>(Op);
1006   EVT MemEltVT = Load->getMemoryVT().getVectorElementType();
1007   EVT LoadVT = Op.getValueType();
1008   EVT EltVT = Op.getValueType().getVectorElementType();
1009   EVT PtrVT = Load->getBasePtr().getValueType();
1010
1011   unsigned NumElts = Load->getMemoryVT().getVectorNumElements();
1012   SmallVector<SDValue, 8> Loads;
1013   SmallVector<SDValue, 8> Chains;
1014
1015   SDLoc SL(Op);
1016
1017   for (unsigned i = 0, e = NumElts; i != e; ++i) {
1018     SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Load->getBasePtr(),
1019                     DAG.getConstant(i * (MemEltVT.getSizeInBits() / 8), PtrVT));
1020
1021     SDValue NewLoad
1022       = DAG.getExtLoad(Load->getExtensionType(), SL, EltVT,
1023                        Load->getChain(), Ptr,
1024                        MachinePointerInfo(Load->getMemOperand()->getValue()),
1025                        MemEltVT, Load->isVolatile(), Load->isNonTemporal(),
1026                        Load->getAlignment());
1027     Loads.push_back(NewLoad.getValue(0));
1028     Chains.push_back(NewLoad.getValue(1));
1029   }
1030
1031   SDValue Ops[] = {
1032     DAG.getNode(ISD::BUILD_VECTOR, SL, LoadVT, Loads),
1033     DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains)
1034   };
1035
1036   return DAG.getMergeValues(Ops, SL);
1037 }
1038
1039 SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op,
1040                                                SelectionDAG &DAG) const {
1041   StoreSDNode *Store = cast<StoreSDNode>(Op);
1042   EVT MemVT = Store->getMemoryVT();
1043   unsigned MemBits = MemVT.getSizeInBits();
1044
1045   // Byte stores are really expensive, so if possible, try to pack 32-bit vector
1046   // truncating store into an i32 store.
1047   // XXX: We could also handle optimize other vector bitwidths.
1048   if (!MemVT.isVector() || MemBits > 32) {
1049     return SDValue();
1050   }
1051
1052   SDLoc DL(Op);
1053   SDValue Value = Store->getValue();
1054   EVT VT = Value.getValueType();
1055   EVT ElemVT = VT.getVectorElementType();
1056   SDValue Ptr = Store->getBasePtr();
1057   EVT MemEltVT = MemVT.getVectorElementType();
1058   unsigned MemEltBits = MemEltVT.getSizeInBits();
1059   unsigned MemNumElements = MemVT.getVectorNumElements();
1060   unsigned PackedSize = MemVT.getStoreSizeInBits();
1061   SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, MVT::i32);
1062
1063   assert(Value.getValueType().getScalarSizeInBits() >= 32);
1064
1065   SDValue PackedValue;
1066   for (unsigned i = 0; i < MemNumElements; ++i) {
1067     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value,
1068                               DAG.getConstant(i, MVT::i32));
1069     Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32);
1070     Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg
1071
1072     SDValue Shift = DAG.getConstant(MemEltBits * i, MVT::i32);
1073     Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift);
1074
1075     if (i == 0) {
1076       PackedValue = Elt;
1077     } else {
1078       PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt);
1079     }
1080   }
1081
1082   if (PackedSize < 32) {
1083     EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize);
1084     return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr,
1085                              Store->getMemOperand()->getPointerInfo(),
1086                              PackedVT,
1087                              Store->isNonTemporal(), Store->isVolatile(),
1088                              Store->getAlignment());
1089   }
1090
1091   return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr,
1092                       Store->getMemOperand()->getPointerInfo(),
1093                       Store->isVolatile(),  Store->isNonTemporal(),
1094                       Store->getAlignment());
1095 }
1096
1097 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1098                                             SelectionDAG &DAG) const {
1099   StoreSDNode *Store = cast<StoreSDNode>(Op);
1100   EVT MemEltVT = Store->getMemoryVT().getVectorElementType();
1101   EVT EltVT = Store->getValue().getValueType().getVectorElementType();
1102   EVT PtrVT = Store->getBasePtr().getValueType();
1103   unsigned NumElts = Store->getMemoryVT().getVectorNumElements();
1104   SDLoc SL(Op);
1105
1106   SmallVector<SDValue, 8> Chains;
1107
1108   for (unsigned i = 0, e = NumElts; i != e; ++i) {
1109     SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
1110                               Store->getValue(), DAG.getConstant(i, MVT::i32));
1111     SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT,
1112                               Store->getBasePtr(),
1113                             DAG.getConstant(i * (MemEltVT.getSizeInBits() / 8),
1114                                             PtrVT));
1115     Chains.push_back(DAG.getTruncStore(Store->getChain(), SL, Val, Ptr,
1116                          MachinePointerInfo(Store->getMemOperand()->getValue()),
1117                          MemEltVT, Store->isVolatile(), Store->isNonTemporal(),
1118                          Store->getAlignment()));
1119   }
1120   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains);
1121 }
1122
1123 SDValue AMDGPUTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1124   SDLoc DL(Op);
1125   LoadSDNode *Load = cast<LoadSDNode>(Op);
1126   ISD::LoadExtType ExtType = Load->getExtensionType();
1127   EVT VT = Op.getValueType();
1128   EVT MemVT = Load->getMemoryVT();
1129
1130   if (ExtType != ISD::NON_EXTLOAD && !VT.isVector() && VT.getSizeInBits() > 32) {
1131     // We can do the extload to 32-bits, and then need to separately extend to
1132     // 64-bits.
1133
1134     SDValue ExtLoad32 = DAG.getExtLoad(ExtType, DL, MVT::i32,
1135                                        Load->getChain(),
1136                                        Load->getBasePtr(),
1137                                        MemVT,
1138                                        Load->getMemOperand());
1139
1140     SDValue Ops[] = {
1141       DAG.getNode(ISD::getExtForLoadExtType(ExtType), DL, VT, ExtLoad32),
1142       ExtLoad32.getValue(1)
1143     };
1144
1145     return DAG.getMergeValues(Ops, DL);
1146   }
1147
1148   if (ExtType == ISD::NON_EXTLOAD && VT.getSizeInBits() < 32) {
1149     assert(VT == MVT::i1 && "Only i1 non-extloads expected");
1150     // FIXME: Copied from PPC
1151     // First, load into 32 bits, then truncate to 1 bit.
1152
1153     SDValue Chain = Load->getChain();
1154     SDValue BasePtr = Load->getBasePtr();
1155     MachineMemOperand *MMO = Load->getMemOperand();
1156
1157     SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
1158                                    BasePtr, MVT::i8, MMO);
1159
1160     SDValue Ops[] = {
1161       DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD),
1162       NewLD.getValue(1)
1163     };
1164
1165     return DAG.getMergeValues(Ops, DL);
1166   }
1167
1168   // Lower loads constant address space global variable loads
1169   if (Load->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS &&
1170       isa<GlobalVariable>(
1171           GetUnderlyingObject(Load->getMemOperand()->getValue()))) {
1172
1173
1174     SDValue Ptr = DAG.getZExtOrTrunc(Load->getBasePtr(), DL,
1175         getPointerTy(AMDGPUAS::PRIVATE_ADDRESS));
1176     Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr,
1177         DAG.getConstant(2, MVT::i32));
1178     return DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, Op->getVTList(),
1179                        Load->getChain(), Ptr,
1180                        DAG.getTargetConstant(0, MVT::i32), Op.getOperand(2));
1181   }
1182
1183   if (Load->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS ||
1184       ExtType == ISD::NON_EXTLOAD || Load->getMemoryVT().bitsGE(MVT::i32))
1185     return SDValue();
1186
1187
1188   SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Load->getBasePtr(),
1189                             DAG.getConstant(2, MVT::i32));
1190   SDValue Ret = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, Op.getValueType(),
1191                             Load->getChain(), Ptr,
1192                             DAG.getTargetConstant(0, MVT::i32),
1193                             Op.getOperand(2));
1194   SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32,
1195                                 Load->getBasePtr(),
1196                                 DAG.getConstant(0x3, MVT::i32));
1197   SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1198                                  DAG.getConstant(3, MVT::i32));
1199
1200   Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Ret, ShiftAmt);
1201
1202   EVT MemEltVT = MemVT.getScalarType();
1203   if (ExtType == ISD::SEXTLOAD) {
1204     SDValue MemEltVTNode = DAG.getValueType(MemEltVT);
1205
1206     SDValue Ops[] = {
1207       DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode),
1208       Load->getChain()
1209     };
1210
1211     return DAG.getMergeValues(Ops, DL);
1212   }
1213
1214   SDValue Ops[] = {
1215     DAG.getZeroExtendInReg(Ret, DL, MemEltVT),
1216     Load->getChain()
1217   };
1218
1219   return DAG.getMergeValues(Ops, DL);
1220 }
1221
1222 SDValue AMDGPUTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1223   SDLoc DL(Op);
1224   SDValue Result = AMDGPUTargetLowering::MergeVectorStore(Op, DAG);
1225   if (Result.getNode()) {
1226     return Result;
1227   }
1228
1229   StoreSDNode *Store = cast<StoreSDNode>(Op);
1230   SDValue Chain = Store->getChain();
1231   if ((Store->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1232        Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) &&
1233       Store->getValue().getValueType().isVector()) {
1234     return SplitVectorStore(Op, DAG);
1235   }
1236
1237   EVT MemVT = Store->getMemoryVT();
1238   if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS &&
1239       MemVT.bitsLT(MVT::i32)) {
1240     unsigned Mask = 0;
1241     if (Store->getMemoryVT() == MVT::i8) {
1242       Mask = 0xff;
1243     } else if (Store->getMemoryVT() == MVT::i16) {
1244       Mask = 0xffff;
1245     }
1246     SDValue BasePtr = Store->getBasePtr();
1247     SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, BasePtr,
1248                               DAG.getConstant(2, MVT::i32));
1249     SDValue Dst = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, MVT::i32,
1250                               Chain, Ptr, DAG.getTargetConstant(0, MVT::i32));
1251
1252     SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, BasePtr,
1253                                   DAG.getConstant(0x3, MVT::i32));
1254
1255     SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1256                                    DAG.getConstant(3, MVT::i32));
1257
1258     SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32,
1259                                     Store->getValue());
1260
1261     SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT);
1262
1263     SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32,
1264                                        MaskedValue, ShiftAmt);
1265
1266     SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, DAG.getConstant(Mask, MVT::i32),
1267                                   ShiftAmt);
1268     DstMask = DAG.getNode(ISD::XOR, DL, MVT::i32, DstMask,
1269                           DAG.getConstant(0xffffffff, MVT::i32));
1270     Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask);
1271
1272     SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue);
1273     return DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other,
1274                        Chain, Value, Ptr, DAG.getTargetConstant(0, MVT::i32));
1275   }
1276   return SDValue();
1277 }
1278
1279 SDValue AMDGPUTargetLowering::LowerSDIV24(SDValue Op, SelectionDAG &DAG) const {
1280   SDLoc DL(Op);
1281   EVT OVT = Op.getValueType();
1282   SDValue LHS = Op.getOperand(0);
1283   SDValue RHS = Op.getOperand(1);
1284   MVT INTTY;
1285   MVT FLTTY;
1286   if (!OVT.isVector()) {
1287     INTTY = MVT::i32;
1288     FLTTY = MVT::f32;
1289   } else if (OVT.getVectorNumElements() == 2) {
1290     INTTY = MVT::v2i32;
1291     FLTTY = MVT::v2f32;
1292   } else if (OVT.getVectorNumElements() == 4) {
1293     INTTY = MVT::v4i32;
1294     FLTTY = MVT::v4f32;
1295   }
1296   unsigned bitsize = OVT.getScalarType().getSizeInBits();
1297   // char|short jq = ia ^ ib;
1298   SDValue jq = DAG.getNode(ISD::XOR, DL, OVT, LHS, RHS);
1299
1300   // jq = jq >> (bitsize - 2)
1301   jq = DAG.getNode(ISD::SRA, DL, OVT, jq, DAG.getConstant(bitsize - 2, OVT));
1302
1303   // jq = jq | 0x1
1304   jq = DAG.getNode(ISD::OR, DL, OVT, jq, DAG.getConstant(1, OVT));
1305
1306   // jq = (int)jq
1307   jq = DAG.getSExtOrTrunc(jq, DL, INTTY);
1308
1309   // int ia = (int)LHS;
1310   SDValue ia = DAG.getSExtOrTrunc(LHS, DL, INTTY);
1311
1312   // int ib, (int)RHS;
1313   SDValue ib = DAG.getSExtOrTrunc(RHS, DL, INTTY);
1314
1315   // float fa = (float)ia;
1316   SDValue fa = DAG.getNode(ISD::SINT_TO_FP, DL, FLTTY, ia);
1317
1318   // float fb = (float)ib;
1319   SDValue fb = DAG.getNode(ISD::SINT_TO_FP, DL, FLTTY, ib);
1320
1321   // float fq = native_divide(fa, fb);
1322   SDValue fq = DAG.getNode(ISD::FMUL, DL, FLTTY,
1323                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FLTTY, fb));
1324
1325   // fq = trunc(fq);
1326   fq = DAG.getNode(ISD::FTRUNC, DL, FLTTY, fq);
1327
1328   // float fqneg = -fq;
1329   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FLTTY, fq);
1330
1331   // float fr = mad(fqneg, fb, fa);
1332   SDValue fr = DAG.getNode(ISD::FADD, DL, FLTTY,
1333       DAG.getNode(ISD::MUL, DL, FLTTY, fqneg, fb), fa);
1334
1335   // int iq = (int)fq;
1336   SDValue iq = DAG.getNode(ISD::FP_TO_SINT, DL, INTTY, fq);
1337
1338   // fr = fabs(fr);
1339   fr = DAG.getNode(ISD::FABS, DL, FLTTY, fr);
1340
1341   // fb = fabs(fb);
1342   fb = DAG.getNode(ISD::FABS, DL, FLTTY, fb);
1343
1344   // int cv = fr >= fb;
1345   SDValue cv;
1346   if (INTTY == MVT::i32) {
1347     cv = DAG.getSetCC(DL, INTTY, fr, fb, ISD::SETOGE);
1348   } else {
1349     cv = DAG.getSetCC(DL, INTTY, fr, fb, ISD::SETOGE);
1350   }
1351   // jq = (cv ? jq : 0);
1352   jq = DAG.getNode(ISD::SELECT, DL, OVT, cv, jq,
1353       DAG.getConstant(0, OVT));
1354   // dst = iq + jq;
1355   iq = DAG.getSExtOrTrunc(iq, DL, OVT);
1356   iq = DAG.getNode(ISD::ADD, DL, OVT, iq, jq);
1357   return iq;
1358 }
1359
1360 SDValue AMDGPUTargetLowering::LowerSDIV32(SDValue Op, SelectionDAG &DAG) const {
1361   SDLoc DL(Op);
1362   EVT OVT = Op.getValueType();
1363   SDValue LHS = Op.getOperand(0);
1364   SDValue RHS = Op.getOperand(1);
1365   // The LowerSDIV32 function generates equivalent to the following IL.
1366   // mov r0, LHS
1367   // mov r1, RHS
1368   // ilt r10, r0, 0
1369   // ilt r11, r1, 0
1370   // iadd r0, r0, r10
1371   // iadd r1, r1, r11
1372   // ixor r0, r0, r10
1373   // ixor r1, r1, r11
1374   // udiv r0, r0, r1
1375   // ixor r10, r10, r11
1376   // iadd r0, r0, r10
1377   // ixor DST, r0, r10
1378
1379   // mov r0, LHS
1380   SDValue r0 = LHS;
1381
1382   // mov r1, RHS
1383   SDValue r1 = RHS;
1384
1385   // ilt r10, r0, 0
1386   SDValue r10 = DAG.getSelectCC(DL,
1387       r0, DAG.getConstant(0, OVT),
1388       DAG.getConstant(-1, OVT),
1389       DAG.getConstant(0, OVT),
1390       ISD::SETLT);
1391
1392   // ilt r11, r1, 0
1393   SDValue r11 = DAG.getSelectCC(DL,
1394       r1, DAG.getConstant(0, OVT),
1395       DAG.getConstant(-1, OVT),
1396       DAG.getConstant(0, OVT),
1397       ISD::SETLT);
1398
1399   // iadd r0, r0, r10
1400   r0 = DAG.getNode(ISD::ADD, DL, OVT, r0, r10);
1401
1402   // iadd r1, r1, r11
1403   r1 = DAG.getNode(ISD::ADD, DL, OVT, r1, r11);
1404
1405   // ixor r0, r0, r10
1406   r0 = DAG.getNode(ISD::XOR, DL, OVT, r0, r10);
1407
1408   // ixor r1, r1, r11
1409   r1 = DAG.getNode(ISD::XOR, DL, OVT, r1, r11);
1410
1411   // udiv r0, r0, r1
1412   r0 = DAG.getNode(ISD::UDIV, DL, OVT, r0, r1);
1413
1414   // ixor r10, r10, r11
1415   r10 = DAG.getNode(ISD::XOR, DL, OVT, r10, r11);
1416
1417   // iadd r0, r0, r10
1418   r0 = DAG.getNode(ISD::ADD, DL, OVT, r0, r10);
1419
1420   // ixor DST, r0, r10
1421   SDValue DST = DAG.getNode(ISD::XOR, DL, OVT, r0, r10);
1422   return DST;
1423 }
1424
1425 SDValue AMDGPUTargetLowering::LowerSDIV64(SDValue Op, SelectionDAG &DAG) const {
1426   return SDValue(Op.getNode(), 0);
1427 }
1428
1429 SDValue AMDGPUTargetLowering::LowerSDIV(SDValue Op, SelectionDAG &DAG) const {
1430   EVT OVT = Op.getValueType().getScalarType();
1431
1432   if (OVT == MVT::i64)
1433     return LowerSDIV64(Op, DAG);
1434
1435   if (OVT.getScalarType() == MVT::i32)
1436     return LowerSDIV32(Op, DAG);
1437
1438   if (OVT == MVT::i16 || OVT == MVT::i8) {
1439     // FIXME: We should be checking for the masked bits. This isn't reached
1440     // because i8 and i16 are not legal types.
1441     return LowerSDIV24(Op, DAG);
1442   }
1443
1444   return SDValue(Op.getNode(), 0);
1445 }
1446
1447 SDValue AMDGPUTargetLowering::LowerSREM32(SDValue Op, SelectionDAG &DAG) const {
1448   SDLoc DL(Op);
1449   EVT OVT = Op.getValueType();
1450   SDValue LHS = Op.getOperand(0);
1451   SDValue RHS = Op.getOperand(1);
1452   // The LowerSREM32 function generates equivalent to the following IL.
1453   // mov r0, LHS
1454   // mov r1, RHS
1455   // ilt r10, r0, 0
1456   // ilt r11, r1, 0
1457   // iadd r0, r0, r10
1458   // iadd r1, r1, r11
1459   // ixor r0, r0, r10
1460   // ixor r1, r1, r11
1461   // udiv r20, r0, r1
1462   // umul r20, r20, r1
1463   // sub r0, r0, r20
1464   // iadd r0, r0, r10
1465   // ixor DST, r0, r10
1466
1467   // mov r0, LHS
1468   SDValue r0 = LHS;
1469
1470   // mov r1, RHS
1471   SDValue r1 = RHS;
1472
1473   // ilt r10, r0, 0
1474   SDValue r10 = DAG.getSetCC(DL, OVT, r0, DAG.getConstant(0, OVT), ISD::SETLT);
1475
1476   // ilt r11, r1, 0
1477   SDValue r11 = DAG.getSetCC(DL, OVT, r1, DAG.getConstant(0, OVT), ISD::SETLT);
1478
1479   // iadd r0, r0, r10
1480   r0 = DAG.getNode(ISD::ADD, DL, OVT, r0, r10);
1481
1482   // iadd r1, r1, r11
1483   r1 = DAG.getNode(ISD::ADD, DL, OVT, r1, r11);
1484
1485   // ixor r0, r0, r10
1486   r0 = DAG.getNode(ISD::XOR, DL, OVT, r0, r10);
1487
1488   // ixor r1, r1, r11
1489   r1 = DAG.getNode(ISD::XOR, DL, OVT, r1, r11);
1490
1491   // udiv r20, r0, r1
1492   SDValue r20 = DAG.getNode(ISD::UREM, DL, OVT, r0, r1);
1493
1494   // umul r20, r20, r1
1495   r20 = DAG.getNode(AMDGPUISD::UMUL, DL, OVT, r20, r1);
1496
1497   // sub r0, r0, r20
1498   r0 = DAG.getNode(ISD::SUB, DL, OVT, r0, r20);
1499
1500   // iadd r0, r0, r10
1501   r0 = DAG.getNode(ISD::ADD, DL, OVT, r0, r10);
1502
1503   // ixor DST, r0, r10
1504   SDValue DST = DAG.getNode(ISD::XOR, DL, OVT, r0, r10);
1505   return DST;
1506 }
1507
1508 SDValue AMDGPUTargetLowering::LowerSREM64(SDValue Op, SelectionDAG &DAG) const {
1509   return SDValue(Op.getNode(), 0);
1510 }
1511
1512 SDValue AMDGPUTargetLowering::LowerSREM(SDValue Op, SelectionDAG &DAG) const {
1513   EVT OVT = Op.getValueType();
1514
1515   if (OVT.getScalarType() == MVT::i64)
1516     return LowerSREM64(Op, DAG);
1517
1518   if (OVT.getScalarType() == MVT::i32)
1519     return LowerSREM32(Op, DAG);
1520
1521   return SDValue(Op.getNode(), 0);
1522 }
1523
1524 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1525                                            SelectionDAG &DAG) const {
1526   SDLoc DL(Op);
1527   EVT VT = Op.getValueType();
1528
1529   SDValue Num = Op.getOperand(0);
1530   SDValue Den = Op.getOperand(1);
1531
1532   // RCP =  URECIP(Den) = 2^32 / Den + e
1533   // e is rounding error.
1534   SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1535
1536   // RCP_LO = umulo(RCP, Den) */
1537   SDValue RCP_LO = DAG.getNode(ISD::UMULO, DL, VT, RCP, Den);
1538
1539   // RCP_HI = mulhu (RCP, Den) */
1540   SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1541
1542   // NEG_RCP_LO = -RCP_LO
1543   SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
1544                                                      RCP_LO);
1545
1546   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1547   SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, VT),
1548                                            NEG_RCP_LO, RCP_LO,
1549                                            ISD::SETEQ);
1550   // Calculate the rounding error from the URECIP instruction
1551   // E = mulhu(ABS_RCP_LO, RCP)
1552   SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1553
1554   // RCP_A_E = RCP + E
1555   SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1556
1557   // RCP_S_E = RCP - E
1558   SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1559
1560   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1561   SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, VT),
1562                                      RCP_A_E, RCP_S_E,
1563                                      ISD::SETEQ);
1564   // Quotient = mulhu(Tmp0, Num)
1565   SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1566
1567   // Num_S_Remainder = Quotient * Den
1568   SDValue Num_S_Remainder = DAG.getNode(ISD::UMULO, DL, VT, Quotient, Den);
1569
1570   // Remainder = Num - Num_S_Remainder
1571   SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1572
1573   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1574   SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1575                                                  DAG.getConstant(-1, VT),
1576                                                  DAG.getConstant(0, VT),
1577                                                  ISD::SETUGE);
1578   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1579   SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1580                                                   Num_S_Remainder,
1581                                                   DAG.getConstant(-1, VT),
1582                                                   DAG.getConstant(0, VT),
1583                                                   ISD::SETUGE);
1584   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1585   SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1586                                                Remainder_GE_Zero);
1587
1588   // Calculate Division result:
1589
1590   // Quotient_A_One = Quotient + 1
1591   SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1592                                                          DAG.getConstant(1, VT));
1593
1594   // Quotient_S_One = Quotient - 1
1595   SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1596                                                          DAG.getConstant(1, VT));
1597
1598   // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1599   SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, VT),
1600                                      Quotient, Quotient_A_One, ISD::SETEQ);
1601
1602   // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1603   Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, VT),
1604                             Quotient_S_One, Div, ISD::SETEQ);
1605
1606   // Calculate Rem result:
1607
1608   // Remainder_S_Den = Remainder - Den
1609   SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1610
1611   // Remainder_A_Den = Remainder + Den
1612   SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1613
1614   // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1615   SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, VT),
1616                                     Remainder, Remainder_S_Den, ISD::SETEQ);
1617
1618   // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1619   Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, VT),
1620                             Remainder_A_Den, Rem, ISD::SETEQ);
1621   SDValue Ops[2] = {
1622     Div,
1623     Rem
1624   };
1625   return DAG.getMergeValues(Ops, DL);
1626 }
1627
1628 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
1629                                            SelectionDAG &DAG) const {
1630   SDLoc DL(Op);
1631   EVT VT = Op.getValueType();
1632
1633   SDValue Zero = DAG.getConstant(0, VT);
1634   SDValue NegOne = DAG.getConstant(-1, VT);
1635
1636   SDValue LHS = Op.getOperand(0);
1637   SDValue RHS = Op.getOperand(1);
1638
1639   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
1640   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
1641   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
1642   SDValue RSign = LHSign; // Remainder sign is the same as LHS
1643
1644   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
1645   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
1646
1647   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
1648   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
1649
1650   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
1651   SDValue Rem = Div.getValue(1);
1652
1653   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
1654   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
1655
1656   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
1657   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
1658
1659   SDValue Res[2] = {
1660     Div,
1661     Rem
1662   };
1663   return DAG.getMergeValues(Res, DL);
1664 }
1665
1666 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
1667   SDLoc SL(Op);
1668   SDValue Src = Op.getOperand(0);
1669
1670   // result = trunc(src)
1671   // if (src > 0.0 && src != result)
1672   //   result += 1.0
1673
1674   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1675
1676   const SDValue Zero = DAG.getConstantFP(0.0, MVT::f64);
1677   const SDValue One = DAG.getConstantFP(1.0, MVT::f64);
1678
1679   EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f64);
1680
1681   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
1682   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
1683   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
1684
1685   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
1686   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
1687 }
1688
1689 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
1690   SDLoc SL(Op);
1691   SDValue Src = Op.getOperand(0);
1692
1693   assert(Op.getValueType() == MVT::f64);
1694
1695   const SDValue Zero = DAG.getConstant(0, MVT::i32);
1696   const SDValue One = DAG.getConstant(1, MVT::i32);
1697
1698   SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1699
1700   // Extract the upper half, since this is where we will find the sign and
1701   // exponent.
1702   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
1703
1704   const unsigned FractBits = 52;
1705   const unsigned ExpBits = 11;
1706
1707   // Extract the exponent.
1708   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_I32, SL, MVT::i32,
1709                                 Hi,
1710                                 DAG.getConstant(FractBits - 32, MVT::i32),
1711                                 DAG.getConstant(ExpBits, MVT::i32));
1712   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
1713                             DAG.getConstant(1023, MVT::i32));
1714
1715   // Extract the sign bit.
1716   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, MVT::i32);
1717   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
1718
1719   // Extend back to to 64-bits.
1720   SDValue SignBit64 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
1721                                   Zero, SignBit);
1722   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
1723
1724   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
1725   const SDValue FractMask
1726     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, MVT::i64);
1727
1728   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
1729   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
1730   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
1731
1732   EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::i32);
1733
1734   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, MVT::i32);
1735
1736   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
1737   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
1738
1739   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
1740   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
1741
1742   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
1743 }
1744
1745 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
1746   SDLoc SL(Op);
1747   SDValue Src = Op.getOperand(0);
1748
1749   assert(Op.getValueType() == MVT::f64);
1750
1751   APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52");
1752   SDValue C1 = DAG.getConstantFP(C1Val, MVT::f64);
1753   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
1754
1755   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
1756   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
1757
1758   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
1759
1760   APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51");
1761   SDValue C2 = DAG.getConstantFP(C2Val, MVT::f64);
1762
1763   EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f64);
1764   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
1765
1766   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
1767 }
1768
1769 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
1770   // FNEARBYINT and FRINT are the same, except in their handling of FP
1771   // exceptions. Those aren't really meaningful for us, and OpenCL only has
1772   // rint, so just treat them as equivalent.
1773   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
1774 }
1775
1776 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
1777   SDLoc SL(Op);
1778   SDValue Src = Op.getOperand(0);
1779
1780   // result = trunc(src);
1781   // if (src < 0.0 && src != result)
1782   //   result += -1.0.
1783
1784   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1785
1786   const SDValue Zero = DAG.getConstantFP(0.0, MVT::f64);
1787   const SDValue NegOne = DAG.getConstantFP(-1.0, MVT::f64);
1788
1789   EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f64);
1790
1791   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
1792   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
1793   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
1794
1795   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
1796   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
1797 }
1798
1799 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
1800                                                SelectionDAG &DAG) const {
1801   SDValue S0 = Op.getOperand(0);
1802   SDLoc DL(Op);
1803   if (Op.getValueType() != MVT::f32 || S0.getValueType() != MVT::i64)
1804     return SDValue();
1805
1806   // f32 uint_to_fp i64
1807   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0,
1808                            DAG.getConstant(0, MVT::i32));
1809   SDValue FloatLo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Lo);
1810   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0,
1811                            DAG.getConstant(1, MVT::i32));
1812   SDValue FloatHi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Hi);
1813   FloatHi = DAG.getNode(ISD::FMUL, DL, MVT::f32, FloatHi,
1814                         DAG.getConstantFP(4294967296.0f, MVT::f32)); // 2^32
1815   return DAG.getNode(ISD::FADD, DL, MVT::f32, FloatLo, FloatHi);
1816 }
1817
1818 SDValue AMDGPUTargetLowering::ExpandSIGN_EXTEND_INREG(SDValue Op,
1819                                                       unsigned BitsDiff,
1820                                                       SelectionDAG &DAG) const {
1821   MVT VT = Op.getSimpleValueType();
1822   SDLoc DL(Op);
1823   SDValue Shift = DAG.getConstant(BitsDiff, VT);
1824   // Shift left by 'Shift' bits.
1825   SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Op.getOperand(0), Shift);
1826   // Signed shift Right by 'Shift' bits.
1827   return DAG.getNode(ISD::SRA, DL, VT, Shl, Shift);
1828 }
1829
1830 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1831                                                      SelectionDAG &DAG) const {
1832   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1833   MVT VT = Op.getSimpleValueType();
1834   MVT ScalarVT = VT.getScalarType();
1835
1836   if (!VT.isVector())
1837     return SDValue();
1838
1839   SDValue Src = Op.getOperand(0);
1840   SDLoc DL(Op);
1841
1842   // TODO: Don't scalarize on Evergreen?
1843   unsigned NElts = VT.getVectorNumElements();
1844   SmallVector<SDValue, 8> Args;
1845   DAG.ExtractVectorElements(Src, Args, 0, NElts);
1846
1847   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
1848   for (unsigned I = 0; I < NElts; ++I)
1849     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
1850
1851   return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Args);
1852 }
1853
1854 //===----------------------------------------------------------------------===//
1855 // Custom DAG optimizations
1856 //===----------------------------------------------------------------------===//
1857
1858 static bool isU24(SDValue Op, SelectionDAG &DAG) {
1859   APInt KnownZero, KnownOne;
1860   EVT VT = Op.getValueType();
1861   DAG.computeKnownBits(Op, KnownZero, KnownOne);
1862
1863   return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24;
1864 }
1865
1866 static bool isI24(SDValue Op, SelectionDAG &DAG) {
1867   EVT VT = Op.getValueType();
1868
1869   // In order for this to be a signed 24-bit value, bit 23, must
1870   // be a sign bit.
1871   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
1872                                      // as unsigned 24-bit values.
1873          (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24;
1874 }
1875
1876 static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) {
1877
1878   SelectionDAG &DAG = DCI.DAG;
1879   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1880   EVT VT = Op.getValueType();
1881
1882   APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24);
1883   APInt KnownZero, KnownOne;
1884   TargetLowering::TargetLoweringOpt TLO(DAG, true, true);
1885   if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
1886     DCI.CommitTargetLoweringOpt(TLO);
1887 }
1888
1889 template <typename IntTy>
1890 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0,
1891                                uint32_t Offset, uint32_t Width) {
1892   if (Width + Offset < 32) {
1893     IntTy Result = (Src0 << (32 - Offset - Width)) >> (32 - Width);
1894     return DAG.getConstant(Result, MVT::i32);
1895   }
1896
1897   return DAG.getConstant(Src0 >> Offset, MVT::i32);
1898 }
1899
1900 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
1901                                                 DAGCombinerInfo &DCI) const {
1902   EVT VT = N->getValueType(0);
1903
1904   if (VT.isVector() || VT.getSizeInBits() > 32)
1905     return SDValue();
1906
1907   SelectionDAG &DAG = DCI.DAG;
1908   SDLoc DL(N);
1909
1910   SDValue N0 = N->getOperand(0);
1911   SDValue N1 = N->getOperand(1);
1912   SDValue Mul;
1913
1914   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
1915     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
1916     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
1917     Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1);
1918   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
1919     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
1920     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
1921     Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1);
1922   } else {
1923     return SDValue();
1924   }
1925
1926   // We need to use sext even for MUL_U24, because MUL_U24 is used
1927   // for signed multiply of 8 and 16-bit types.
1928   return DAG.getSExtOrTrunc(Mul, DL, VT);
1929 }
1930
1931 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
1932                                             DAGCombinerInfo &DCI) const {
1933   SelectionDAG &DAG = DCI.DAG;
1934   SDLoc DL(N);
1935
1936   switch(N->getOpcode()) {
1937     default: break;
1938     case ISD::MUL:
1939       return performMulCombine(N, DCI);
1940     case AMDGPUISD::MUL_I24:
1941     case AMDGPUISD::MUL_U24: {
1942       SDValue N0 = N->getOperand(0);
1943       SDValue N1 = N->getOperand(1);
1944       simplifyI24(N0, DCI);
1945       simplifyI24(N1, DCI);
1946       return SDValue();
1947     }
1948     case ISD::SELECT_CC: {
1949       return CombineMinMax(N, DAG);
1950     }
1951   case AMDGPUISD::BFE_I32:
1952   case AMDGPUISD::BFE_U32: {
1953     assert(!N->getValueType(0).isVector() &&
1954            "Vector handling of BFE not implemented");
1955     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
1956     if (!Width)
1957       break;
1958
1959     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
1960     if (WidthVal == 0)
1961       return DAG.getConstant(0, MVT::i32);
1962
1963     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
1964     if (!Offset)
1965       break;
1966
1967     SDValue BitsFrom = N->getOperand(0);
1968     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
1969
1970     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
1971
1972     if (OffsetVal == 0) {
1973       // This is already sign / zero extended, so try to fold away extra BFEs.
1974       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
1975
1976       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
1977       if (OpSignBits >= SignBits)
1978         return BitsFrom;
1979
1980       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
1981       if (Signed) {
1982         // This is a sign_extend_inreg. Replace it to take advantage of existing
1983         // DAG Combines. If not eliminated, we will match back to BFE during
1984         // selection.
1985
1986         // TODO: The sext_inreg of extended types ends, although we can could
1987         // handle them in a single BFE.
1988         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
1989                            DAG.getValueType(SmallVT));
1990       }
1991
1992       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
1993     }
1994
1995     if (ConstantSDNode *Val = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
1996       if (Signed) {
1997         return constantFoldBFE<int32_t>(DAG,
1998                                         Val->getSExtValue(),
1999                                         OffsetVal,
2000                                         WidthVal);
2001       }
2002
2003       return constantFoldBFE<uint32_t>(DAG,
2004                                        Val->getZExtValue(),
2005                                        OffsetVal,
2006                                        WidthVal);
2007     }
2008
2009     APInt Demanded = APInt::getBitsSet(32,
2010                                        OffsetVal,
2011                                        OffsetVal + WidthVal);
2012
2013     if ((OffsetVal + WidthVal) >= 32) {
2014       SDValue ShiftVal = DAG.getConstant(OffsetVal, MVT::i32);
2015       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
2016                          BitsFrom, ShiftVal);
2017     }
2018
2019     APInt KnownZero, KnownOne;
2020     TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2021                                           !DCI.isBeforeLegalizeOps());
2022     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2023     if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) ||
2024         TLI.SimplifyDemandedBits(BitsFrom, Demanded, KnownZero, KnownOne, TLO)) {
2025       DCI.CommitTargetLoweringOpt(TLO);
2026     }
2027
2028     break;
2029   }
2030   }
2031   return SDValue();
2032 }
2033
2034 //===----------------------------------------------------------------------===//
2035 // Helper functions
2036 //===----------------------------------------------------------------------===//
2037
2038 void AMDGPUTargetLowering::getOriginalFunctionArgs(
2039                                SelectionDAG &DAG,
2040                                const Function *F,
2041                                const SmallVectorImpl<ISD::InputArg> &Ins,
2042                                SmallVectorImpl<ISD::InputArg> &OrigIns) const {
2043
2044   for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
2045     if (Ins[i].ArgVT == Ins[i].VT) {
2046       OrigIns.push_back(Ins[i]);
2047       continue;
2048     }
2049
2050     EVT VT;
2051     if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) {
2052       // Vector has been split into scalars.
2053       VT = Ins[i].ArgVT.getVectorElementType();
2054     } else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() &&
2055                Ins[i].ArgVT.getVectorElementType() !=
2056                Ins[i].VT.getVectorElementType()) {
2057       // Vector elements have been promoted
2058       VT = Ins[i].ArgVT;
2059     } else {
2060       // Vector has been spilt into smaller vectors.
2061       VT = Ins[i].VT;
2062     }
2063
2064     ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used,
2065                       Ins[i].OrigArgIndex, Ins[i].PartOffset);
2066     OrigIns.push_back(Arg);
2067   }
2068 }
2069
2070 bool AMDGPUTargetLowering::isHWTrueValue(SDValue Op) const {
2071   if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
2072     return CFP->isExactlyValue(1.0);
2073   }
2074   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2075     return C->isAllOnesValue();
2076   }
2077   return false;
2078 }
2079
2080 bool AMDGPUTargetLowering::isHWFalseValue(SDValue Op) const {
2081   if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
2082     return CFP->getValueAPF().isZero();
2083   }
2084   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2085     return C->isNullValue();
2086   }
2087   return false;
2088 }
2089
2090 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
2091                                                   const TargetRegisterClass *RC,
2092                                                    unsigned Reg, EVT VT) const {
2093   MachineFunction &MF = DAG.getMachineFunction();
2094   MachineRegisterInfo &MRI = MF.getRegInfo();
2095   unsigned VirtualRegister;
2096   if (!MRI.isLiveIn(Reg)) {
2097     VirtualRegister = MRI.createVirtualRegister(RC);
2098     MRI.addLiveIn(Reg, VirtualRegister);
2099   } else {
2100     VirtualRegister = MRI.getLiveInVirtReg(Reg);
2101   }
2102   return DAG.getRegister(VirtualRegister, VT);
2103 }
2104
2105 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
2106
2107 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
2108   switch (Opcode) {
2109   default: return nullptr;
2110   // AMDIL DAG nodes
2111   NODE_NAME_CASE(CALL);
2112   NODE_NAME_CASE(UMUL);
2113   NODE_NAME_CASE(RET_FLAG);
2114   NODE_NAME_CASE(BRANCH_COND);
2115
2116   // AMDGPU DAG nodes
2117   NODE_NAME_CASE(DWORDADDR)
2118   NODE_NAME_CASE(FRACT)
2119   NODE_NAME_CASE(CLAMP)
2120   NODE_NAME_CASE(FMAX)
2121   NODE_NAME_CASE(SMAX)
2122   NODE_NAME_CASE(UMAX)
2123   NODE_NAME_CASE(FMIN)
2124   NODE_NAME_CASE(SMIN)
2125   NODE_NAME_CASE(UMIN)
2126   NODE_NAME_CASE(URECIP)
2127   NODE_NAME_CASE(DIV_SCALE)
2128   NODE_NAME_CASE(DIV_FMAS)
2129   NODE_NAME_CASE(DIV_FIXUP)
2130   NODE_NAME_CASE(TRIG_PREOP)
2131   NODE_NAME_CASE(RCP)
2132   NODE_NAME_CASE(RSQ)
2133   NODE_NAME_CASE(RSQ_LEGACY)
2134   NODE_NAME_CASE(RSQ_CLAMPED)
2135   NODE_NAME_CASE(DOT4)
2136   NODE_NAME_CASE(BFE_U32)
2137   NODE_NAME_CASE(BFE_I32)
2138   NODE_NAME_CASE(BFI)
2139   NODE_NAME_CASE(BFM)
2140   NODE_NAME_CASE(BREV)
2141   NODE_NAME_CASE(MUL_U24)
2142   NODE_NAME_CASE(MUL_I24)
2143   NODE_NAME_CASE(MAD_U24)
2144   NODE_NAME_CASE(MAD_I24)
2145   NODE_NAME_CASE(EXPORT)
2146   NODE_NAME_CASE(CONST_ADDRESS)
2147   NODE_NAME_CASE(REGISTER_LOAD)
2148   NODE_NAME_CASE(REGISTER_STORE)
2149   NODE_NAME_CASE(LOAD_CONSTANT)
2150   NODE_NAME_CASE(LOAD_INPUT)
2151   NODE_NAME_CASE(SAMPLE)
2152   NODE_NAME_CASE(SAMPLEB)
2153   NODE_NAME_CASE(SAMPLED)
2154   NODE_NAME_CASE(SAMPLEL)
2155   NODE_NAME_CASE(CVT_F32_UBYTE0)
2156   NODE_NAME_CASE(CVT_F32_UBYTE1)
2157   NODE_NAME_CASE(CVT_F32_UBYTE2)
2158   NODE_NAME_CASE(CVT_F32_UBYTE3)
2159   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
2160   NODE_NAME_CASE(STORE_MSKOR)
2161   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
2162   }
2163 }
2164
2165 static void computeKnownBitsForMinMax(const SDValue Op0,
2166                                       const SDValue Op1,
2167                                       APInt &KnownZero,
2168                                       APInt &KnownOne,
2169                                       const SelectionDAG &DAG,
2170                                       unsigned Depth) {
2171   APInt Op0Zero, Op0One;
2172   APInt Op1Zero, Op1One;
2173   DAG.computeKnownBits(Op0, Op0Zero, Op0One, Depth);
2174   DAG.computeKnownBits(Op1, Op1Zero, Op1One, Depth);
2175
2176   KnownZero = Op0Zero & Op1Zero;
2177   KnownOne = Op0One & Op1One;
2178 }
2179
2180 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
2181   const SDValue Op,
2182   APInt &KnownZero,
2183   APInt &KnownOne,
2184   const SelectionDAG &DAG,
2185   unsigned Depth) const {
2186
2187   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything.
2188
2189   APInt KnownZero2;
2190   APInt KnownOne2;
2191   unsigned Opc = Op.getOpcode();
2192
2193   switch (Opc) {
2194   default:
2195     break;
2196   case ISD::INTRINSIC_WO_CHAIN: {
2197     // FIXME: The intrinsic should just use the node.
2198     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
2199     case AMDGPUIntrinsic::AMDGPU_imax:
2200     case AMDGPUIntrinsic::AMDGPU_umax:
2201     case AMDGPUIntrinsic::AMDGPU_imin:
2202     case AMDGPUIntrinsic::AMDGPU_umin:
2203       computeKnownBitsForMinMax(Op.getOperand(1), Op.getOperand(2),
2204                                 KnownZero, KnownOne, DAG, Depth);
2205       break;
2206     default:
2207       break;
2208     }
2209
2210     break;
2211   }
2212   case AMDGPUISD::SMAX:
2213   case AMDGPUISD::UMAX:
2214   case AMDGPUISD::SMIN:
2215   case AMDGPUISD::UMIN:
2216     computeKnownBitsForMinMax(Op.getOperand(0), Op.getOperand(1),
2217                               KnownZero, KnownOne, DAG, Depth);
2218     break;
2219
2220   case AMDGPUISD::BFE_I32:
2221   case AMDGPUISD::BFE_U32: {
2222     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2223     if (!CWidth)
2224       return;
2225
2226     unsigned BitWidth = 32;
2227     uint32_t Width = CWidth->getZExtValue() & 0x1f;
2228     if (Width == 0) {
2229       KnownZero = APInt::getAllOnesValue(BitWidth);
2230       KnownOne = APInt::getNullValue(BitWidth);
2231       return;
2232     }
2233
2234     // FIXME: This could do a lot more. If offset is 0, should be the same as
2235     // sign_extend_inreg implementation, but that involves duplicating it.
2236     if (Opc == AMDGPUISD::BFE_I32)
2237       KnownOne = APInt::getHighBitsSet(BitWidth, BitWidth - Width);
2238     else
2239       KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width);
2240
2241     break;
2242   }
2243   }
2244 }
2245
2246 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
2247   SDValue Op,
2248   const SelectionDAG &DAG,
2249   unsigned Depth) const {
2250   switch (Op.getOpcode()) {
2251   case AMDGPUISD::BFE_I32: {
2252     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2253     if (!Width)
2254       return 1;
2255
2256     unsigned SignBits = 32 - Width->getZExtValue() + 1;
2257     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2258     if (!Offset || !Offset->isNullValue())
2259       return SignBits;
2260
2261     // TODO: Could probably figure something out with non-0 offsets.
2262     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
2263     return std::max(SignBits, Op0SignBits);
2264   }
2265
2266   case AMDGPUISD::BFE_U32: {
2267     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2268     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
2269   }
2270
2271   default:
2272     return 1;
2273   }
2274 }