Taints the non-acquire RMW's store address with the load part
[oota-llvm.git] / lib / Target / PowerPC / PPCTargetTransformInfo.cpp
1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "PPCTargetTransformInfo.h"
11 #include "llvm/Analysis/TargetTransformInfo.h"
12 #include "llvm/CodeGen/BasicTTIImpl.h"
13 #include "llvm/Support/CommandLine.h"
14 #include "llvm/Support/Debug.h"
15 #include "llvm/Target/CostTable.h"
16 #include "llvm/Target/TargetLowering.h"
17 using namespace llvm;
18
19 #define DEBUG_TYPE "ppctti"
20
21 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
22 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);
23
24 //===----------------------------------------------------------------------===//
25 //
26 // PPC cost model.
27 //
28 //===----------------------------------------------------------------------===//
29
30 TargetTransformInfo::PopcntSupportKind
31 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) {
32   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
33   if (ST->hasPOPCNTD() && TyWidth <= 64)
34     return TTI::PSK_FastHardware;
35   return TTI::PSK_Software;
36 }
37
38 int PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
39   if (DisablePPCConstHoist)
40     return BaseT::getIntImmCost(Imm, Ty);
41
42   assert(Ty->isIntegerTy());
43
44   unsigned BitSize = Ty->getPrimitiveSizeInBits();
45   if (BitSize == 0)
46     return ~0U;
47
48   if (Imm == 0)
49     return TTI::TCC_Free;
50
51   if (Imm.getBitWidth() <= 64) {
52     if (isInt<16>(Imm.getSExtValue()))
53       return TTI::TCC_Basic;
54
55     if (isInt<32>(Imm.getSExtValue())) {
56       // A constant that can be materialized using lis.
57       if ((Imm.getZExtValue() & 0xFFFF) == 0)
58         return TTI::TCC_Basic;
59
60       return 2 * TTI::TCC_Basic;
61     }
62   }
63
64   return 4 * TTI::TCC_Basic;
65 }
66
67 int PPCTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
68                               Type *Ty) {
69   if (DisablePPCConstHoist)
70     return BaseT::getIntImmCost(IID, Idx, Imm, Ty);
71
72   assert(Ty->isIntegerTy());
73
74   unsigned BitSize = Ty->getPrimitiveSizeInBits();
75   if (BitSize == 0)
76     return ~0U;
77
78   switch (IID) {
79   default:
80     return TTI::TCC_Free;
81   case Intrinsic::sadd_with_overflow:
82   case Intrinsic::uadd_with_overflow:
83   case Intrinsic::ssub_with_overflow:
84   case Intrinsic::usub_with_overflow:
85     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
86       return TTI::TCC_Free;
87     break;
88   case Intrinsic::experimental_stackmap:
89     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
90       return TTI::TCC_Free;
91     break;
92   case Intrinsic::experimental_patchpoint_void:
93   case Intrinsic::experimental_patchpoint_i64:
94     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
95       return TTI::TCC_Free;
96     break;
97   }
98   return PPCTTIImpl::getIntImmCost(Imm, Ty);
99 }
100
101 int PPCTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
102                               Type *Ty) {
103   if (DisablePPCConstHoist)
104     return BaseT::getIntImmCost(Opcode, Idx, Imm, Ty);
105
106   assert(Ty->isIntegerTy());
107
108   unsigned BitSize = Ty->getPrimitiveSizeInBits();
109   if (BitSize == 0)
110     return ~0U;
111
112   unsigned ImmIdx = ~0U;
113   bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
114        ZeroFree = false;
115   switch (Opcode) {
116   default:
117     return TTI::TCC_Free;
118   case Instruction::GetElementPtr:
119     // Always hoist the base address of a GetElementPtr. This prevents the
120     // creation of new constants for every base constant that gets constant
121     // folded with the offset.
122     if (Idx == 0)
123       return 2 * TTI::TCC_Basic;
124     return TTI::TCC_Free;
125   case Instruction::And:
126     RunFree = true; // (for the rotate-and-mask instructions)
127     // Fallthrough...
128   case Instruction::Add:
129   case Instruction::Or:
130   case Instruction::Xor:
131     ShiftedFree = true;
132     // Fallthrough...
133   case Instruction::Sub:
134   case Instruction::Mul:
135   case Instruction::Shl:
136   case Instruction::LShr:
137   case Instruction::AShr:
138     ImmIdx = 1;
139     break;
140   case Instruction::ICmp:
141     UnsignedFree = true;
142     ImmIdx = 1;
143     // Fallthrough... (zero comparisons can use record-form instructions)
144   case Instruction::Select:
145     ZeroFree = true;
146     break;
147   case Instruction::PHI:
148   case Instruction::Call:
149   case Instruction::Ret:
150   case Instruction::Load:
151   case Instruction::Store:
152     break;
153   }
154
155   if (ZeroFree && Imm == 0)
156     return TTI::TCC_Free;
157
158   if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
159     if (isInt<16>(Imm.getSExtValue()))
160       return TTI::TCC_Free;
161
162     if (RunFree) {
163       if (Imm.getBitWidth() <= 32 &&
164           (isShiftedMask_32(Imm.getZExtValue()) ||
165            isShiftedMask_32(~Imm.getZExtValue())))
166         return TTI::TCC_Free;
167
168       if (ST->isPPC64() &&
169           (isShiftedMask_64(Imm.getZExtValue()) ||
170            isShiftedMask_64(~Imm.getZExtValue())))
171         return TTI::TCC_Free;
172     }
173
174     if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
175       return TTI::TCC_Free;
176
177     if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
178       return TTI::TCC_Free;
179   }
180
181   return PPCTTIImpl::getIntImmCost(Imm, Ty);
182 }
183
184 void PPCTTIImpl::getUnrollingPreferences(Loop *L,
185                                          TTI::UnrollingPreferences &UP) {
186   if (ST->getDarwinDirective() == PPC::DIR_A2) {
187     // The A2 is in-order with a deep pipeline, and concatenation unrolling
188     // helps expose latency-hiding opportunities to the instruction scheduler.
189     UP.Partial = UP.Runtime = true;
190
191     // We unroll a lot on the A2 (hundreds of instructions), and the benefits
192     // often outweigh the cost of a division to compute the trip count.
193     UP.AllowExpensiveTripCount = true;
194   }
195
196   BaseT::getUnrollingPreferences(L, UP);
197 }
198
199 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) {
200   // On the A2, always unroll aggressively. For QPX unaligned loads, we depend
201   // on combining the loads generated for consecutive accesses, and failure to
202   // do so is particularly expensive. This makes it much more likely (compared
203   // to only using concatenation unrolling).
204   if (ST->getDarwinDirective() == PPC::DIR_A2)
205     return true;
206
207   return LoopHasReductions;
208 }
209
210 bool PPCTTIImpl::enableInterleavedAccessVectorization() {
211   return true;
212 }
213
214 unsigned PPCTTIImpl::getNumberOfRegisters(bool Vector) {
215   if (Vector && !ST->hasAltivec() && !ST->hasQPX())
216     return 0;
217   return ST->hasVSX() ? 64 : 32;
218 }
219
220 unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) {
221   if (Vector) {
222     if (ST->hasQPX()) return 256;
223     if (ST->hasAltivec()) return 128;
224     return 0;
225   }
226
227   if (ST->isPPC64())
228     return 64;
229   return 32;
230
231 }
232
233 unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) {
234   unsigned Directive = ST->getDarwinDirective();
235   // The 440 has no SIMD support, but floating-point instructions
236   // have a 5-cycle latency, so unroll by 5x for latency hiding.
237   if (Directive == PPC::DIR_440)
238     return 5;
239
240   // The A2 has no SIMD support, but floating-point instructions
241   // have a 6-cycle latency, so unroll by 6x for latency hiding.
242   if (Directive == PPC::DIR_A2)
243     return 6;
244
245   // FIXME: For lack of any better information, do no harm...
246   if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
247     return 1;
248
249   // For P7 and P8, floating-point instructions have a 6-cycle latency and
250   // there are two execution units, so unroll by 12x for latency hiding.
251   if (Directive == PPC::DIR_PWR7 ||
252       Directive == PPC::DIR_PWR8)
253     return 12;
254
255   // For most things, modern systems have two execution units (and
256   // out-of-order execution).
257   return 2;
258 }
259
260 int PPCTTIImpl::getArithmeticInstrCost(
261     unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
262     TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
263     TTI::OperandValueProperties Opd2PropInfo) {
264   assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
265
266   // Fallback to the default implementation.
267   return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
268                                        Opd1PropInfo, Opd2PropInfo);
269 }
270
271 int PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
272                                Type *SubTp) {
273   // Legalize the type.
274   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
275
276   // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
277   // (at least in the sense that there need only be one non-loop-invariant
278   // instruction). We need one such shuffle instruction for each actual
279   // register (this is not true for arbitrary shuffles, but is true for the
280   // structured types of shuffles covered by TTI::ShuffleKind).
281   return LT.first;
282 }
283
284 int PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
285   assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
286
287   return BaseT::getCastInstrCost(Opcode, Dst, Src);
288 }
289
290 int PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
291   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
292 }
293
294 int PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
295   assert(Val->isVectorTy() && "This must be a vector type");
296
297   int ISD = TLI->InstructionOpcodeToISD(Opcode);
298   assert(ISD && "Invalid opcode");
299
300   if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
301     // Double-precision scalars are already located in index #0.
302     if (Index == 0)
303       return 0;
304
305     return BaseT::getVectorInstrCost(Opcode, Val, Index);
306   } else if (ST->hasQPX() && Val->getScalarType()->isFloatingPointTy()) {
307     // Floating point scalars are already located in index #0.
308     if (Index == 0)
309       return 0;
310
311     return BaseT::getVectorInstrCost(Opcode, Val, Index);
312   }
313
314   // Estimated cost of a load-hit-store delay.  This was obtained
315   // experimentally as a minimum needed to prevent unprofitable
316   // vectorization for the paq8p benchmark.  It may need to be
317   // raised further if other unprofitable cases remain.
318   unsigned LHSPenalty = 2;
319   if (ISD == ISD::INSERT_VECTOR_ELT)
320     LHSPenalty += 7;
321
322   // Vector element insert/extract with Altivec is very expensive,
323   // because they require store and reload with the attendant
324   // processor stall for load-hit-store.  Until VSX is available,
325   // these need to be estimated as very costly.
326   if (ISD == ISD::EXTRACT_VECTOR_ELT ||
327       ISD == ISD::INSERT_VECTOR_ELT)
328     return LHSPenalty + BaseT::getVectorInstrCost(Opcode, Val, Index);
329
330   return BaseT::getVectorInstrCost(Opcode, Val, Index);
331 }
332
333 int PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
334                                 unsigned AddressSpace) {
335   // Legalize the type.
336   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
337   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
338          "Invalid Opcode");
339
340   int Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
341
342   // Aligned loads and stores are easy.
343   unsigned SrcBytes = LT.second.getStoreSize();
344   if (!SrcBytes || !Alignment || Alignment >= SrcBytes)
345     return Cost;
346
347   bool IsAltivecType = ST->hasAltivec() &&
348                        (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 ||
349                         LT.second == MVT::v4i32 || LT.second == MVT::v4f32);
350   bool IsVSXType = ST->hasVSX() &&
351                    (LT.second == MVT::v2f64 || LT.second == MVT::v2i64);
352   bool IsQPXType = ST->hasQPX() &&
353                    (LT.second == MVT::v4f64 || LT.second == MVT::v4f32);
354
355   // If we can use the permutation-based load sequence, then this is also
356   // relatively cheap (not counting loop-invariant instructions): one load plus
357   // one permute (the last load in a series has extra cost, but we're
358   // neglecting that here). Note that on the P7, we should do unaligned loads
359   // for Altivec types using the VSX instructions, but that's more expensive
360   // than using the permutation-based load sequence. On the P8, that's no
361   // longer true.
362   if (Opcode == Instruction::Load &&
363       ((!ST->hasP8Vector() && IsAltivecType) || IsQPXType) &&
364       Alignment >= LT.second.getScalarType().getStoreSize())
365     return Cost + LT.first; // Add the cost of the permutations.
366
367   // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the
368   // P7, unaligned vector loads are more expensive than the permutation-based
369   // load sequence, so that might be used instead, but regardless, the net cost
370   // is about the same (not counting loop-invariant instructions).
371   if (IsVSXType || (ST->hasVSX() && IsAltivecType))
372     return Cost;
373
374   // PPC in general does not support unaligned loads and stores. They'll need
375   // to be decomposed based on the alignment factor.
376
377   // Add the cost of each scalar load or store.
378   Cost += LT.first*(SrcBytes/Alignment-1);
379
380   // For a vector type, there is also scalarization overhead (only for
381   // stores, loads are expanded using the vector-load + permutation sequence,
382   // which is much less expensive).
383   if (Src->isVectorTy() && Opcode == Instruction::Store)
384     for (int i = 0, e = Src->getVectorNumElements(); i < e; ++i)
385       Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i);
386
387   return Cost;
388 }
389
390 int PPCTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
391                                            unsigned Factor,
392                                            ArrayRef<unsigned> Indices,
393                                            unsigned Alignment,
394                                            unsigned AddressSpace) {
395   assert(isa<VectorType>(VecTy) &&
396          "Expect a vector type for interleaved memory op");
397
398   // Legalize the type.
399   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy);
400
401   // Firstly, the cost of load/store operation.
402   int Cost = getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace);
403
404   // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
405   // (at least in the sense that there need only be one non-loop-invariant
406   // instruction). For each result vector, we need one shuffle per incoming
407   // vector (except that the first shuffle can take two incoming vectors
408   // because it does not need to take itself).
409   Cost += Factor*(LT.first-1);
410
411   return Cost;
412 }
413