add ppc64/pwr8 as target
[oota-llvm.git] / lib / Target / PowerPC / PPCInstrInfo.cpp
1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the PowerPC implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "PPCInstrInfo.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCHazardRecognizers.h"
18 #include "PPCInstrBuilder.h"
19 #include "PPCMachineFunctionInfo.h"
20 #include "PPCTargetMachine.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/CodeGen/ScheduleDAG.h"
31 #include "llvm/CodeGen/SlotIndexes.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/TargetRegistry.h"
37 #include "llvm/Support/raw_ostream.h"
38
39 using namespace llvm;
40
41 #define DEBUG_TYPE "ppc-instr-info"
42
43 #define GET_INSTRMAP_INFO
44 #define GET_INSTRINFO_CTOR_DTOR
45 #include "PPCGenInstrInfo.inc"
46
47 static cl::
48 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
49             cl::desc("Disable analysis for CTR loops"));
50
51 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
52 cl::desc("Disable compare instruction optimization"), cl::Hidden);
53
54 static cl::opt<bool> DisableVSXFMAMutate("disable-ppc-vsx-fma-mutation",
55 cl::desc("Disable VSX FMA instruction mutation"), cl::Hidden);
56
57 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
58 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
59 cl::Hidden);
60
61 // Pin the vtable to this file.
62 void PPCInstrInfo::anchor() {}
63
64 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
65     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP),
66       Subtarget(STI), RI(STI) {}
67
68 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
69 /// this target when scheduling the DAG.
70 ScheduleHazardRecognizer *
71 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
72                                            const ScheduleDAG *DAG) const {
73   unsigned Directive =
74       static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
75   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
76       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
77     const InstrItineraryData *II =
78         &static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
79     return new ScoreboardHazardRecognizer(II, DAG);
80   }
81
82   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
83 }
84
85 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
86 /// to use for this target when scheduling the DAG.
87 ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetPostRAHazardRecognizer(
88   const InstrItineraryData *II,
89   const ScheduleDAG *DAG) const {
90   unsigned Directive =
91       DAG->TM.getSubtarget<PPCSubtarget>().getDarwinDirective();
92
93   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
94     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
95
96   // Most subtargets use a PPC970 recognizer.
97   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
98       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
99     assert(DAG->TII && "No InstrInfo?");
100
101     return new PPCHazardRecognizer970(*DAG);
102   }
103
104   return new ScoreboardHazardRecognizer(II, DAG);
105 }
106
107
108 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
109                                     const MachineInstr *DefMI, unsigned DefIdx,
110                                     const MachineInstr *UseMI,
111                                     unsigned UseIdx) const {
112   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
113                                                    UseMI, UseIdx);
114
115   const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
116   unsigned Reg = DefMO.getReg();
117
118   const TargetRegisterInfo *TRI = &getRegisterInfo();
119   bool IsRegCR;
120   if (TRI->isVirtualRegister(Reg)) {
121     const MachineRegisterInfo *MRI =
122       &DefMI->getParent()->getParent()->getRegInfo();
123     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
124               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
125   } else {
126     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
127               PPC::CRBITRCRegClass.contains(Reg);
128   }
129
130   if (UseMI->isBranch() && IsRegCR) {
131     if (Latency < 0)
132       Latency = getInstrLatency(ItinData, DefMI);
133
134     // On some cores, there is an additional delay between writing to a condition
135     // register, and using it from a branch.
136     unsigned Directive = Subtarget.getDarwinDirective();
137     switch (Directive) {
138     default: break;
139     case PPC::DIR_7400:
140     case PPC::DIR_750:
141     case PPC::DIR_970:
142     case PPC::DIR_E5500:
143     case PPC::DIR_PWR4:
144     case PPC::DIR_PWR5:
145     case PPC::DIR_PWR5X:
146     case PPC::DIR_PWR6:
147     case PPC::DIR_PWR6X:
148     case PPC::DIR_PWR7:
149     case PPC::DIR_PWR8:
150       Latency += 2;
151       break;
152     }
153   }
154
155   return Latency;
156 }
157
158 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
159 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
160                                          unsigned &SrcReg, unsigned &DstReg,
161                                          unsigned &SubIdx) const {
162   switch (MI.getOpcode()) {
163   default: return false;
164   case PPC::EXTSW:
165   case PPC::EXTSW_32_64:
166     SrcReg = MI.getOperand(1).getReg();
167     DstReg = MI.getOperand(0).getReg();
168     SubIdx = PPC::sub_32;
169     return true;
170   }
171 }
172
173 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
174                                            int &FrameIndex) const {
175   // Note: This list must be kept consistent with LoadRegFromStackSlot.
176   switch (MI->getOpcode()) {
177   default: break;
178   case PPC::LD:
179   case PPC::LWZ:
180   case PPC::LFS:
181   case PPC::LFD:
182   case PPC::RESTORE_CR:
183   case PPC::RESTORE_CRBIT:
184   case PPC::LVX:
185   case PPC::LXVD2X:
186   case PPC::RESTORE_VRSAVE:
187     // Check for the operands added by addFrameReference (the immediate is the
188     // offset which defaults to 0).
189     if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
190         MI->getOperand(2).isFI()) {
191       FrameIndex = MI->getOperand(2).getIndex();
192       return MI->getOperand(0).getReg();
193     }
194     break;
195   }
196   return 0;
197 }
198
199 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
200                                           int &FrameIndex) const {
201   // Note: This list must be kept consistent with StoreRegToStackSlot.
202   switch (MI->getOpcode()) {
203   default: break;
204   case PPC::STD:
205   case PPC::STW:
206   case PPC::STFS:
207   case PPC::STFD:
208   case PPC::SPILL_CR:
209   case PPC::SPILL_CRBIT:
210   case PPC::STVX:
211   case PPC::STXVD2X:
212   case PPC::SPILL_VRSAVE:
213     // Check for the operands added by addFrameReference (the immediate is the
214     // offset which defaults to 0).
215     if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
216         MI->getOperand(2).isFI()) {
217       FrameIndex = MI->getOperand(2).getIndex();
218       return MI->getOperand(0).getReg();
219     }
220     break;
221   }
222   return 0;
223 }
224
225 // commuteInstruction - We can commute rlwimi instructions, but only if the
226 // rotate amt is zero.  We also have to munge the immediates a bit.
227 MachineInstr *
228 PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
229   MachineFunction &MF = *MI->getParent()->getParent();
230
231   // Normal instructions can be commuted the obvious way.
232   if (MI->getOpcode() != PPC::RLWIMI &&
233       MI->getOpcode() != PPC::RLWIMIo &&
234       MI->getOpcode() != PPC::RLWIMI8 &&
235       MI->getOpcode() != PPC::RLWIMI8o)
236     return TargetInstrInfo::commuteInstruction(MI, NewMI);
237
238   // Cannot commute if it has a non-zero rotate count.
239   if (MI->getOperand(3).getImm() != 0)
240     return nullptr;
241
242   // If we have a zero rotate count, we have:
243   //   M = mask(MB,ME)
244   //   Op0 = (Op1 & ~M) | (Op2 & M)
245   // Change this to:
246   //   M = mask((ME+1)&31, (MB-1)&31)
247   //   Op0 = (Op2 & ~M) | (Op1 & M)
248
249   // Swap op1/op2
250   unsigned Reg0 = MI->getOperand(0).getReg();
251   unsigned Reg1 = MI->getOperand(1).getReg();
252   unsigned Reg2 = MI->getOperand(2).getReg();
253   unsigned SubReg1 = MI->getOperand(1).getSubReg();
254   unsigned SubReg2 = MI->getOperand(2).getSubReg();
255   bool Reg1IsKill = MI->getOperand(1).isKill();
256   bool Reg2IsKill = MI->getOperand(2).isKill();
257   bool ChangeReg0 = false;
258   // If machine instrs are no longer in two-address forms, update
259   // destination register as well.
260   if (Reg0 == Reg1) {
261     // Must be two address instruction!
262     assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
263            "Expecting a two-address instruction!");
264     assert(MI->getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
265     Reg2IsKill = false;
266     ChangeReg0 = true;
267   }
268
269   // Masks.
270   unsigned MB = MI->getOperand(4).getImm();
271   unsigned ME = MI->getOperand(5).getImm();
272
273   if (NewMI) {
274     // Create a new instruction.
275     unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg();
276     bool Reg0IsDead = MI->getOperand(0).isDead();
277     return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
278       .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
279       .addReg(Reg2, getKillRegState(Reg2IsKill))
280       .addReg(Reg1, getKillRegState(Reg1IsKill))
281       .addImm((ME+1) & 31)
282       .addImm((MB-1) & 31);
283   }
284
285   if (ChangeReg0) {
286     MI->getOperand(0).setReg(Reg2);
287     MI->getOperand(0).setSubReg(SubReg2);
288   }
289   MI->getOperand(2).setReg(Reg1);
290   MI->getOperand(1).setReg(Reg2);
291   MI->getOperand(2).setSubReg(SubReg1);
292   MI->getOperand(1).setSubReg(SubReg2);
293   MI->getOperand(2).setIsKill(Reg1IsKill);
294   MI->getOperand(1).setIsKill(Reg2IsKill);
295
296   // Swap the mask around.
297   MI->getOperand(4).setImm((ME+1) & 31);
298   MI->getOperand(5).setImm((MB-1) & 31);
299   return MI;
300 }
301
302 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
303                                          unsigned &SrcOpIdx2) const {
304   // For VSX A-Type FMA instructions, it is the first two operands that can be
305   // commuted, however, because the non-encoded tied input operand is listed
306   // first, the operands to swap are actually the second and third.
307
308   int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode());
309   if (AltOpc == -1)
310     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
311
312   SrcOpIdx1 = 2;
313   SrcOpIdx2 = 3;
314   return true;
315 }
316
317 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
318                               MachineBasicBlock::iterator MI) const {
319   // This function is used for scheduling, and the nop wanted here is the type
320   // that terminates dispatch groups on the POWER cores.
321   unsigned Directive = Subtarget.getDarwinDirective();
322   unsigned Opcode;
323   switch (Directive) {
324   default:            Opcode = PPC::NOP; break;
325   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
326   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
327   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
328   }
329
330   DebugLoc DL;
331   BuildMI(MBB, MI, DL, get(Opcode));
332 }
333
334 // Branch analysis.
335 // Note: If the condition register is set to CTR or CTR8 then this is a
336 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
337 bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
338                                  MachineBasicBlock *&FBB,
339                                  SmallVectorImpl<MachineOperand> &Cond,
340                                  bool AllowModify) const {
341   bool isPPC64 = Subtarget.isPPC64();
342
343   // If the block has no terminators, it just falls into the block after it.
344   MachineBasicBlock::iterator I = MBB.end();
345   if (I == MBB.begin())
346     return false;
347   --I;
348   while (I->isDebugValue()) {
349     if (I == MBB.begin())
350       return false;
351     --I;
352   }
353   if (!isUnpredicatedTerminator(I))
354     return false;
355
356   // Get the last instruction in the block.
357   MachineInstr *LastInst = I;
358
359   // If there is only one terminator instruction, process it.
360   if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
361     if (LastInst->getOpcode() == PPC::B) {
362       if (!LastInst->getOperand(0).isMBB())
363         return true;
364       TBB = LastInst->getOperand(0).getMBB();
365       return false;
366     } else if (LastInst->getOpcode() == PPC::BCC) {
367       if (!LastInst->getOperand(2).isMBB())
368         return true;
369       // Block ends with fall-through condbranch.
370       TBB = LastInst->getOperand(2).getMBB();
371       Cond.push_back(LastInst->getOperand(0));
372       Cond.push_back(LastInst->getOperand(1));
373       return false;
374     } else if (LastInst->getOpcode() == PPC::BC) {
375       if (!LastInst->getOperand(1).isMBB())
376         return true;
377       // Block ends with fall-through condbranch.
378       TBB = LastInst->getOperand(1).getMBB();
379       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
380       Cond.push_back(LastInst->getOperand(0));
381       return false;
382     } else if (LastInst->getOpcode() == PPC::BCn) {
383       if (!LastInst->getOperand(1).isMBB())
384         return true;
385       // Block ends with fall-through condbranch.
386       TBB = LastInst->getOperand(1).getMBB();
387       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
388       Cond.push_back(LastInst->getOperand(0));
389       return false;
390     } else if (LastInst->getOpcode() == PPC::BDNZ8 ||
391                LastInst->getOpcode() == PPC::BDNZ) {
392       if (!LastInst->getOperand(0).isMBB())
393         return true;
394       if (DisableCTRLoopAnal)
395         return true;
396       TBB = LastInst->getOperand(0).getMBB();
397       Cond.push_back(MachineOperand::CreateImm(1));
398       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
399                                                true));
400       return false;
401     } else if (LastInst->getOpcode() == PPC::BDZ8 ||
402                LastInst->getOpcode() == PPC::BDZ) {
403       if (!LastInst->getOperand(0).isMBB())
404         return true;
405       if (DisableCTRLoopAnal)
406         return true;
407       TBB = LastInst->getOperand(0).getMBB();
408       Cond.push_back(MachineOperand::CreateImm(0));
409       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
410                                                true));
411       return false;
412     }
413
414     // Otherwise, don't know what this is.
415     return true;
416   }
417
418   // Get the instruction before it if it's a terminator.
419   MachineInstr *SecondLastInst = I;
420
421   // If there are three terminators, we don't know what sort of block this is.
422   if (SecondLastInst && I != MBB.begin() &&
423       isUnpredicatedTerminator(--I))
424     return true;
425
426   // If the block ends with PPC::B and PPC:BCC, handle it.
427   if (SecondLastInst->getOpcode() == PPC::BCC &&
428       LastInst->getOpcode() == PPC::B) {
429     if (!SecondLastInst->getOperand(2).isMBB() ||
430         !LastInst->getOperand(0).isMBB())
431       return true;
432     TBB =  SecondLastInst->getOperand(2).getMBB();
433     Cond.push_back(SecondLastInst->getOperand(0));
434     Cond.push_back(SecondLastInst->getOperand(1));
435     FBB = LastInst->getOperand(0).getMBB();
436     return false;
437   } else if (SecondLastInst->getOpcode() == PPC::BC &&
438       LastInst->getOpcode() == PPC::B) {
439     if (!SecondLastInst->getOperand(1).isMBB() ||
440         !LastInst->getOperand(0).isMBB())
441       return true;
442     TBB =  SecondLastInst->getOperand(1).getMBB();
443     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
444     Cond.push_back(SecondLastInst->getOperand(0));
445     FBB = LastInst->getOperand(0).getMBB();
446     return false;
447   } else if (SecondLastInst->getOpcode() == PPC::BCn &&
448       LastInst->getOpcode() == PPC::B) {
449     if (!SecondLastInst->getOperand(1).isMBB() ||
450         !LastInst->getOperand(0).isMBB())
451       return true;
452     TBB =  SecondLastInst->getOperand(1).getMBB();
453     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
454     Cond.push_back(SecondLastInst->getOperand(0));
455     FBB = LastInst->getOperand(0).getMBB();
456     return false;
457   } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 ||
458               SecondLastInst->getOpcode() == PPC::BDNZ) &&
459       LastInst->getOpcode() == PPC::B) {
460     if (!SecondLastInst->getOperand(0).isMBB() ||
461         !LastInst->getOperand(0).isMBB())
462       return true;
463     if (DisableCTRLoopAnal)
464       return true;
465     TBB = SecondLastInst->getOperand(0).getMBB();
466     Cond.push_back(MachineOperand::CreateImm(1));
467     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
468                                              true));
469     FBB = LastInst->getOperand(0).getMBB();
470     return false;
471   } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 ||
472               SecondLastInst->getOpcode() == PPC::BDZ) &&
473       LastInst->getOpcode() == PPC::B) {
474     if (!SecondLastInst->getOperand(0).isMBB() ||
475         !LastInst->getOperand(0).isMBB())
476       return true;
477     if (DisableCTRLoopAnal)
478       return true;
479     TBB = SecondLastInst->getOperand(0).getMBB();
480     Cond.push_back(MachineOperand::CreateImm(0));
481     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
482                                              true));
483     FBB = LastInst->getOperand(0).getMBB();
484     return false;
485   }
486
487   // If the block ends with two PPC:Bs, handle it.  The second one is not
488   // executed, so remove it.
489   if (SecondLastInst->getOpcode() == PPC::B &&
490       LastInst->getOpcode() == PPC::B) {
491     if (!SecondLastInst->getOperand(0).isMBB())
492       return true;
493     TBB = SecondLastInst->getOperand(0).getMBB();
494     I = LastInst;
495     if (AllowModify)
496       I->eraseFromParent();
497     return false;
498   }
499
500   // Otherwise, can't handle this.
501   return true;
502 }
503
504 unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
505   MachineBasicBlock::iterator I = MBB.end();
506   if (I == MBB.begin()) return 0;
507   --I;
508   while (I->isDebugValue()) {
509     if (I == MBB.begin())
510       return 0;
511     --I;
512   }
513   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
514       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
515       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
516       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
517     return 0;
518
519   // Remove the branch.
520   I->eraseFromParent();
521
522   I = MBB.end();
523
524   if (I == MBB.begin()) return 1;
525   --I;
526   if (I->getOpcode() != PPC::BCC &&
527       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
528       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
529       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
530     return 1;
531
532   // Remove the branch.
533   I->eraseFromParent();
534   return 2;
535 }
536
537 unsigned
538 PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
539                            MachineBasicBlock *FBB,
540                            const SmallVectorImpl<MachineOperand> &Cond,
541                            DebugLoc DL) const {
542   // Shouldn't be a fall through.
543   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
544   assert((Cond.size() == 2 || Cond.size() == 0) &&
545          "PPC branch conditions have two components!");
546
547   bool isPPC64 = Subtarget.isPPC64();
548
549   // One-way branch.
550   if (!FBB) {
551     if (Cond.empty())   // Unconditional branch
552       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
553     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
554       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
555                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
556                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
557     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
558       BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
559     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
560       BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
561     else                // Conditional branch
562       BuildMI(&MBB, DL, get(PPC::BCC))
563         .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
564     return 1;
565   }
566
567   // Two-way Conditional Branch.
568   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
569     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
570                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
571                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
572   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
573     BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
574   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
575     BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
576   else
577     BuildMI(&MBB, DL, get(PPC::BCC))
578       .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
579   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
580   return 2;
581 }
582
583 // Select analysis.
584 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
585                 const SmallVectorImpl<MachineOperand> &Cond,
586                 unsigned TrueReg, unsigned FalseReg,
587                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
588   if (!Subtarget.hasISEL())
589     return false;
590
591   if (Cond.size() != 2)
592     return false;
593
594   // If this is really a bdnz-like condition, then it cannot be turned into a
595   // select.
596   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
597     return false;
598
599   // Check register classes.
600   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
601   const TargetRegisterClass *RC =
602     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
603   if (!RC)
604     return false;
605
606   // isel is for regular integer GPRs only.
607   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
608       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
609       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
610       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
611     return false;
612
613   // FIXME: These numbers are for the A2, how well they work for other cores is
614   // an open question. On the A2, the isel instruction has a 2-cycle latency
615   // but single-cycle throughput. These numbers are used in combination with
616   // the MispredictPenalty setting from the active SchedMachineModel.
617   CondCycles = 1;
618   TrueCycles = 1;
619   FalseCycles = 1;
620
621   return true;
622 }
623
624 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
625                                 MachineBasicBlock::iterator MI, DebugLoc dl,
626                                 unsigned DestReg,
627                                 const SmallVectorImpl<MachineOperand> &Cond,
628                                 unsigned TrueReg, unsigned FalseReg) const {
629   assert(Cond.size() == 2 &&
630          "PPC branch conditions have two components!");
631
632   assert(Subtarget.hasISEL() &&
633          "Cannot insert select on target without ISEL support");
634
635   // Get the register classes.
636   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
637   const TargetRegisterClass *RC =
638     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
639   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
640
641   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
642                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
643   assert((Is64Bit ||
644           PPC::GPRCRegClass.hasSubClassEq(RC) ||
645           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
646          "isel is for regular integer GPRs only");
647
648   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
649   unsigned SelectPred = Cond[0].getImm();
650
651   unsigned SubIdx;
652   bool SwapOps;
653   switch (SelectPred) {
654   default: llvm_unreachable("invalid predicate for isel");
655   case PPC::PRED_EQ: SubIdx = PPC::sub_eq; SwapOps = false; break;
656   case PPC::PRED_NE: SubIdx = PPC::sub_eq; SwapOps = true; break;
657   case PPC::PRED_LT: SubIdx = PPC::sub_lt; SwapOps = false; break;
658   case PPC::PRED_GE: SubIdx = PPC::sub_lt; SwapOps = true; break;
659   case PPC::PRED_GT: SubIdx = PPC::sub_gt; SwapOps = false; break;
660   case PPC::PRED_LE: SubIdx = PPC::sub_gt; SwapOps = true; break;
661   case PPC::PRED_UN: SubIdx = PPC::sub_un; SwapOps = false; break;
662   case PPC::PRED_NU: SubIdx = PPC::sub_un; SwapOps = true; break;
663   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
664   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
665   }
666
667   unsigned FirstReg =  SwapOps ? FalseReg : TrueReg,
668            SecondReg = SwapOps ? TrueReg  : FalseReg;
669
670   // The first input register of isel cannot be r0. If it is a member
671   // of a register class that can be r0, then copy it first (the
672   // register allocator should eliminate the copy).
673   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
674       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
675     const TargetRegisterClass *FirstRC =
676       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
677         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
678     unsigned OldFirstReg = FirstReg;
679     FirstReg = MRI.createVirtualRegister(FirstRC);
680     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
681       .addReg(OldFirstReg);
682   }
683
684   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
685     .addReg(FirstReg).addReg(SecondReg)
686     .addReg(Cond[1].getReg(), 0, SubIdx);
687 }
688
689 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
690                                MachineBasicBlock::iterator I, DebugLoc DL,
691                                unsigned DestReg, unsigned SrcReg,
692                                bool KillSrc) const {
693   // We can end up with self copies and similar things as a result of VSX copy
694   // legalization. Promote them here.
695   const TargetRegisterInfo *TRI = &getRegisterInfo();
696   if (PPC::F8RCRegClass.contains(DestReg) &&
697       PPC::VSLRCRegClass.contains(SrcReg)) {
698     unsigned SuperReg =
699       TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
700
701     if (VSXSelfCopyCrash && SrcReg == SuperReg)
702       llvm_unreachable("nop VSX copy");
703
704     DestReg = SuperReg;
705   } else if (PPC::VRRCRegClass.contains(DestReg) &&
706              PPC::VSHRCRegClass.contains(SrcReg)) {
707     unsigned SuperReg =
708       TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass);
709
710     if (VSXSelfCopyCrash && SrcReg == SuperReg)
711       llvm_unreachable("nop VSX copy");
712
713     DestReg = SuperReg;
714   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
715              PPC::VSLRCRegClass.contains(DestReg)) {
716     unsigned SuperReg =
717       TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
718
719     if (VSXSelfCopyCrash && DestReg == SuperReg)
720       llvm_unreachable("nop VSX copy");
721
722     SrcReg = SuperReg;
723   } else if (PPC::VRRCRegClass.contains(SrcReg) &&
724              PPC::VSHRCRegClass.contains(DestReg)) {
725     unsigned SuperReg =
726       TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass);
727
728     if (VSXSelfCopyCrash && DestReg == SuperReg)
729       llvm_unreachable("nop VSX copy");
730
731     SrcReg = SuperReg;
732   }
733
734   unsigned Opc;
735   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
736     Opc = PPC::OR;
737   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
738     Opc = PPC::OR8;
739   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
740     Opc = PPC::FMR;
741   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
742     Opc = PPC::MCRF;
743   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
744     Opc = PPC::VOR;
745   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
746     // There are two different ways this can be done:
747     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
748     //      issue in VSU pipeline 0.
749     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
750     //      can go to either pipeline.
751     // We'll always use xxlor here, because in practically all cases where
752     // copies are generated, they are close enough to some use that the
753     // lower-latency form is preferable.
754     Opc = PPC::XXLOR;
755   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg))
756     Opc = PPC::XXLORf;
757   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
758     Opc = PPC::CROR;
759   else
760     llvm_unreachable("Impossible reg-to-reg copy");
761
762   const MCInstrDesc &MCID = get(Opc);
763   if (MCID.getNumOperands() == 3)
764     BuildMI(MBB, I, DL, MCID, DestReg)
765       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
766   else
767     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
768 }
769
770 // This function returns true if a CR spill is necessary and false otherwise.
771 bool
772 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF,
773                                   unsigned SrcReg, bool isKill,
774                                   int FrameIdx,
775                                   const TargetRegisterClass *RC,
776                                   SmallVectorImpl<MachineInstr*> &NewMIs,
777                                   bool &NonRI, bool &SpillsVRS) const{
778   // Note: If additional store instructions are added here,
779   // update isStoreToStackSlot.
780
781   DebugLoc DL;
782   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
783       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
784     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
785                                        .addReg(SrcReg,
786                                                getKillRegState(isKill)),
787                                        FrameIdx));
788   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
789              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
790     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
791                                        .addReg(SrcReg,
792                                                getKillRegState(isKill)),
793                                        FrameIdx));
794   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
795     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD))
796                                        .addReg(SrcReg,
797                                                getKillRegState(isKill)),
798                                        FrameIdx));
799   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
800     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS))
801                                        .addReg(SrcReg,
802                                                getKillRegState(isKill)),
803                                        FrameIdx));
804   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
805     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR))
806                                        .addReg(SrcReg,
807                                                getKillRegState(isKill)),
808                                        FrameIdx));
809     return true;
810   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
811     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT))
812                                        .addReg(SrcReg,
813                                                getKillRegState(isKill)),
814                                        FrameIdx));
815     return true;
816   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
817     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX))
818                                        .addReg(SrcReg,
819                                                getKillRegState(isKill)),
820                                        FrameIdx));
821     NonRI = true;
822   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
823     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXVD2X))
824                                        .addReg(SrcReg,
825                                                getKillRegState(isKill)),
826                                        FrameIdx));
827     NonRI = true;
828   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
829     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSDX))
830                                        .addReg(SrcReg,
831                                                getKillRegState(isKill)),
832                                        FrameIdx));
833     NonRI = true;
834   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
835     assert(Subtarget.isDarwin() &&
836            "VRSAVE only needs spill/restore on Darwin");
837     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE))
838                                        .addReg(SrcReg,
839                                                getKillRegState(isKill)),
840                                        FrameIdx));
841     SpillsVRS = true;
842   } else {
843     llvm_unreachable("Unknown regclass!");
844   }
845
846   return false;
847 }
848
849 void
850 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
851                                   MachineBasicBlock::iterator MI,
852                                   unsigned SrcReg, bool isKill, int FrameIdx,
853                                   const TargetRegisterClass *RC,
854                                   const TargetRegisterInfo *TRI) const {
855   MachineFunction &MF = *MBB.getParent();
856   SmallVector<MachineInstr*, 4> NewMIs;
857
858   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
859   FuncInfo->setHasSpills();
860
861   bool NonRI = false, SpillsVRS = false;
862   if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs,
863                           NonRI, SpillsVRS))
864     FuncInfo->setSpillsCR();
865
866   if (SpillsVRS)
867     FuncInfo->setSpillsVRSAVE();
868
869   if (NonRI)
870     FuncInfo->setHasNonRISpills();
871
872   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
873     MBB.insert(MI, NewMIs[i]);
874
875   const MachineFrameInfo &MFI = *MF.getFrameInfo();
876   MachineMemOperand *MMO =
877     MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
878                             MachineMemOperand::MOStore,
879                             MFI.getObjectSize(FrameIdx),
880                             MFI.getObjectAlignment(FrameIdx));
881   NewMIs.back()->addMemOperand(MF, MMO);
882 }
883
884 bool
885 PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL,
886                                    unsigned DestReg, int FrameIdx,
887                                    const TargetRegisterClass *RC,
888                                    SmallVectorImpl<MachineInstr*> &NewMIs,
889                                    bool &NonRI, bool &SpillsVRS) const{
890   // Note: If additional load instructions are added here,
891   // update isLoadFromStackSlot.
892
893   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
894       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
895     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
896                                                DestReg), FrameIdx));
897   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
898              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
899     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg),
900                                        FrameIdx));
901   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
902     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg),
903                                        FrameIdx));
904   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
905     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg),
906                                        FrameIdx));
907   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
908     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
909                                                get(PPC::RESTORE_CR), DestReg),
910                                        FrameIdx));
911     return true;
912   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
913     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
914                                                get(PPC::RESTORE_CRBIT), DestReg),
915                                        FrameIdx));
916     return true;
917   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
918     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg),
919                                        FrameIdx));
920     NonRI = true;
921   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
922     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXVD2X), DestReg),
923                                        FrameIdx));
924     NonRI = true;
925   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
926     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSDX), DestReg),
927                                        FrameIdx));
928     NonRI = true;
929   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
930     assert(Subtarget.isDarwin() &&
931            "VRSAVE only needs spill/restore on Darwin");
932     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
933                                                get(PPC::RESTORE_VRSAVE),
934                                                DestReg),
935                                        FrameIdx));
936     SpillsVRS = true;
937   } else {
938     llvm_unreachable("Unknown regclass!");
939   }
940
941   return false;
942 }
943
944 void
945 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
946                                    MachineBasicBlock::iterator MI,
947                                    unsigned DestReg, int FrameIdx,
948                                    const TargetRegisterClass *RC,
949                                    const TargetRegisterInfo *TRI) const {
950   MachineFunction &MF = *MBB.getParent();
951   SmallVector<MachineInstr*, 4> NewMIs;
952   DebugLoc DL;
953   if (MI != MBB.end()) DL = MI->getDebugLoc();
954
955   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
956   FuncInfo->setHasSpills();
957
958   bool NonRI = false, SpillsVRS = false;
959   if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs,
960                            NonRI, SpillsVRS))
961     FuncInfo->setSpillsCR();
962
963   if (SpillsVRS)
964     FuncInfo->setSpillsVRSAVE();
965
966   if (NonRI)
967     FuncInfo->setHasNonRISpills();
968
969   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
970     MBB.insert(MI, NewMIs[i]);
971
972   const MachineFrameInfo &MFI = *MF.getFrameInfo();
973   MachineMemOperand *MMO =
974     MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
975                             MachineMemOperand::MOLoad,
976                             MFI.getObjectSize(FrameIdx),
977                             MFI.getObjectAlignment(FrameIdx));
978   NewMIs.back()->addMemOperand(MF, MMO);
979 }
980
981 bool PPCInstrInfo::
982 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
983   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
984   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
985     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
986   else
987     // Leave the CR# the same, but invert the condition.
988     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
989   return false;
990 }
991
992 bool PPCInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
993                              unsigned Reg, MachineRegisterInfo *MRI) const {
994   // For some instructions, it is legal to fold ZERO into the RA register field.
995   // A zero immediate should always be loaded with a single li.
996   unsigned DefOpc = DefMI->getOpcode();
997   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
998     return false;
999   if (!DefMI->getOperand(1).isImm())
1000     return false;
1001   if (DefMI->getOperand(1).getImm() != 0)
1002     return false;
1003
1004   // Note that we cannot here invert the arguments of an isel in order to fold
1005   // a ZERO into what is presented as the second argument. All we have here
1006   // is the condition bit, and that might come from a CR-logical bit operation.
1007
1008   const MCInstrDesc &UseMCID = UseMI->getDesc();
1009
1010   // Only fold into real machine instructions.
1011   if (UseMCID.isPseudo())
1012     return false;
1013
1014   unsigned UseIdx;
1015   for (UseIdx = 0; UseIdx < UseMI->getNumOperands(); ++UseIdx)
1016     if (UseMI->getOperand(UseIdx).isReg() &&
1017         UseMI->getOperand(UseIdx).getReg() == Reg)
1018       break;
1019
1020   assert(UseIdx < UseMI->getNumOperands() && "Cannot find Reg in UseMI");
1021   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1022
1023   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1024
1025   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1026   // register (which might also be specified as a pointer class kind).
1027   if (UseInfo->isLookupPtrRegClass()) {
1028     if (UseInfo->RegClass /* Kind */ != 1)
1029       return false;
1030   } else {
1031     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1032         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1033       return false;
1034   }
1035
1036   // Make sure this is not tied to an output register (or otherwise
1037   // constrained). This is true for ST?UX registers, for example, which
1038   // are tied to their output registers.
1039   if (UseInfo->Constraints != 0)
1040     return false;
1041
1042   unsigned ZeroReg;
1043   if (UseInfo->isLookupPtrRegClass()) {
1044     bool isPPC64 = Subtarget.isPPC64();
1045     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1046   } else {
1047     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1048               PPC::ZERO8 : PPC::ZERO;
1049   }
1050
1051   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1052   UseMI->getOperand(UseIdx).setReg(ZeroReg);
1053
1054   if (DeleteDef)
1055     DefMI->eraseFromParent();
1056
1057   return true;
1058 }
1059
1060 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1061   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1062        I != IE; ++I)
1063     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1064       return true;
1065   return false;
1066 }
1067
1068 // We should make sure that, if we're going to predicate both sides of a
1069 // condition (a diamond), that both sides don't define the counter register. We
1070 // can predicate counter-decrement-based branches, but while that predicates
1071 // the branching, it does not predicate the counter decrement. If we tried to
1072 // merge the triangle into one predicated block, we'd decrement the counter
1073 // twice.
1074 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1075                      unsigned NumT, unsigned ExtraT,
1076                      MachineBasicBlock &FMBB,
1077                      unsigned NumF, unsigned ExtraF,
1078                      const BranchProbability &Probability) const {
1079   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1080 }
1081
1082
1083 bool PPCInstrInfo::isPredicated(const MachineInstr *MI) const {
1084   // The predicated branches are identified by their type, not really by the
1085   // explicit presence of a predicate. Furthermore, some of them can be
1086   // predicated more than once. Because if conversion won't try to predicate
1087   // any instruction which already claims to be predicated (by returning true
1088   // here), always return false. In doing so, we let isPredicable() be the
1089   // final word on whether not the instruction can be (further) predicated.
1090
1091   return false;
1092 }
1093
1094 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
1095   if (!MI->isTerminator())
1096     return false;
1097
1098   // Conditional branch is a special case.
1099   if (MI->isBranch() && !MI->isBarrier())
1100     return true;
1101
1102   return !isPredicated(MI);
1103 }
1104
1105 bool PPCInstrInfo::PredicateInstruction(
1106                      MachineInstr *MI,
1107                      const SmallVectorImpl<MachineOperand> &Pred) const {
1108   unsigned OpC = MI->getOpcode();
1109   if (OpC == PPC::BLR) {
1110     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1111       bool isPPC64 = Subtarget.isPPC64();
1112       MI->setDesc(get(Pred[0].getImm() ?
1113                       (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) :
1114                       (isPPC64 ? PPC::BDZLR8  : PPC::BDZLR)));
1115     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1116       MI->setDesc(get(PPC::BCLR));
1117       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1118         .addReg(Pred[1].getReg());
1119     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1120       MI->setDesc(get(PPC::BCLRn));
1121       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1122         .addReg(Pred[1].getReg());
1123     } else {
1124       MI->setDesc(get(PPC::BCCLR));
1125       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1126         .addImm(Pred[0].getImm())
1127         .addReg(Pred[1].getReg());
1128     }
1129
1130     return true;
1131   } else if (OpC == PPC::B) {
1132     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1133       bool isPPC64 = Subtarget.isPPC64();
1134       MI->setDesc(get(Pred[0].getImm() ?
1135                       (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1136                       (isPPC64 ? PPC::BDZ8  : PPC::BDZ)));
1137     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1138       MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
1139       MI->RemoveOperand(0);
1140
1141       MI->setDesc(get(PPC::BC));
1142       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1143         .addReg(Pred[1].getReg())
1144         .addMBB(MBB);
1145     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1146       MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
1147       MI->RemoveOperand(0);
1148
1149       MI->setDesc(get(PPC::BCn));
1150       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1151         .addReg(Pred[1].getReg())
1152         .addMBB(MBB);
1153     } else {
1154       MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
1155       MI->RemoveOperand(0);
1156
1157       MI->setDesc(get(PPC::BCC));
1158       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1159         .addImm(Pred[0].getImm())
1160         .addReg(Pred[1].getReg())
1161         .addMBB(MBB);
1162     }
1163
1164     return true;
1165   } else if (OpC == PPC::BCTR  || OpC == PPC::BCTR8 ||
1166              OpC == PPC::BCTRL || OpC == PPC::BCTRL8) {
1167     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1168       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1169
1170     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1171     bool isPPC64 = Subtarget.isPPC64();
1172
1173     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1174       MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) :
1175                                 (setLR ? PPC::BCCTRL  : PPC::BCCTR)));
1176       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1177         .addReg(Pred[1].getReg());
1178       return true;
1179     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1180       MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) :
1181                                 (setLR ? PPC::BCCTRLn  : PPC::BCCTRn)));
1182       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1183         .addReg(Pred[1].getReg());
1184       return true;
1185     }
1186
1187     MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) :
1188                               (setLR ? PPC::BCCCTRL  : PPC::BCCCTR)));
1189     MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1190       .addImm(Pred[0].getImm())
1191       .addReg(Pred[1].getReg());
1192     return true;
1193   }
1194
1195   return false;
1196 }
1197
1198 bool PPCInstrInfo::SubsumesPredicate(
1199                      const SmallVectorImpl<MachineOperand> &Pred1,
1200                      const SmallVectorImpl<MachineOperand> &Pred2) const {
1201   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1202   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1203
1204   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1205     return false;
1206   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1207     return false;
1208
1209   // P1 can only subsume P2 if they test the same condition register.
1210   if (Pred1[1].getReg() != Pred2[1].getReg())
1211     return false;
1212
1213   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1214   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1215
1216   if (P1 == P2)
1217     return true;
1218
1219   // Does P1 subsume P2, e.g. GE subsumes GT.
1220   if (P1 == PPC::PRED_LE &&
1221       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1222     return true;
1223   if (P1 == PPC::PRED_GE &&
1224       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1225     return true;
1226
1227   return false;
1228 }
1229
1230 bool PPCInstrInfo::DefinesPredicate(MachineInstr *MI,
1231                                     std::vector<MachineOperand> &Pred) const {
1232   // Note: At the present time, the contents of Pred from this function is
1233   // unused by IfConversion. This implementation follows ARM by pushing the
1234   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1235   // predicate, instructions defining CTR or CTR8 are also included as
1236   // predicate-defining instructions.
1237
1238   const TargetRegisterClass *RCs[] =
1239     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1240       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1241
1242   bool Found = false;
1243   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1244     const MachineOperand &MO = MI->getOperand(i);
1245     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1246       const TargetRegisterClass *RC = RCs[c];
1247       if (MO.isReg()) {
1248         if (MO.isDef() && RC->contains(MO.getReg())) {
1249           Pred.push_back(MO);
1250           Found = true;
1251         }
1252       } else if (MO.isRegMask()) {
1253         for (TargetRegisterClass::iterator I = RC->begin(),
1254              IE = RC->end(); I != IE; ++I)
1255           if (MO.clobbersPhysReg(*I)) {
1256             Pred.push_back(MO);
1257             Found = true;
1258           }
1259       }
1260     }
1261   }
1262
1263   return Found;
1264 }
1265
1266 bool PPCInstrInfo::isPredicable(MachineInstr *MI) const {
1267   unsigned OpC = MI->getOpcode();
1268   switch (OpC) {
1269   default:
1270     return false;
1271   case PPC::B:
1272   case PPC::BLR:
1273   case PPC::BCTR:
1274   case PPC::BCTR8:
1275   case PPC::BCTRL:
1276   case PPC::BCTRL8:
1277     return true;
1278   }
1279 }
1280
1281 bool PPCInstrInfo::analyzeCompare(const MachineInstr *MI,
1282                                   unsigned &SrcReg, unsigned &SrcReg2,
1283                                   int &Mask, int &Value) const {
1284   unsigned Opc = MI->getOpcode();
1285
1286   switch (Opc) {
1287   default: return false;
1288   case PPC::CMPWI:
1289   case PPC::CMPLWI:
1290   case PPC::CMPDI:
1291   case PPC::CMPLDI:
1292     SrcReg = MI->getOperand(1).getReg();
1293     SrcReg2 = 0;
1294     Value = MI->getOperand(2).getImm();
1295     Mask = 0xFFFF;
1296     return true;
1297   case PPC::CMPW:
1298   case PPC::CMPLW:
1299   case PPC::CMPD:
1300   case PPC::CMPLD:
1301   case PPC::FCMPUS:
1302   case PPC::FCMPUD:
1303     SrcReg = MI->getOperand(1).getReg();
1304     SrcReg2 = MI->getOperand(2).getReg();
1305     return true;
1306   }
1307 }
1308
1309 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr *CmpInstr,
1310                                         unsigned SrcReg, unsigned SrcReg2,
1311                                         int Mask, int Value,
1312                                         const MachineRegisterInfo *MRI) const {
1313   if (DisableCmpOpt)
1314     return false;
1315
1316   int OpC = CmpInstr->getOpcode();
1317   unsigned CRReg = CmpInstr->getOperand(0).getReg();
1318
1319   // FP record forms set CR1 based on the execption status bits, not a
1320   // comparison with zero.
1321   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1322     return false;
1323
1324   // The record forms set the condition register based on a signed comparison
1325   // with zero (so says the ISA manual). This is not as straightforward as it
1326   // seems, however, because this is always a 64-bit comparison on PPC64, even
1327   // for instructions that are 32-bit in nature (like slw for example).
1328   // So, on PPC32, for unsigned comparisons, we can use the record forms only
1329   // for equality checks (as those don't depend on the sign). On PPC64,
1330   // we are restricted to equality for unsigned 64-bit comparisons and for
1331   // signed 32-bit comparisons the applicability is more restricted.
1332   bool isPPC64 = Subtarget.isPPC64();
1333   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
1334   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1335   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1336
1337   // Get the unique definition of SrcReg.
1338   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1339   if (!MI) return false;
1340   int MIOpC = MI->getOpcode();
1341
1342   bool equalityOnly = false;
1343   bool noSub = false;
1344   if (isPPC64) {
1345     if (is32BitSignedCompare) {
1346       // We can perform this optimization only if MI is sign-extending.
1347       if (MIOpC == PPC::SRAW  || MIOpC == PPC::SRAWo ||
1348           MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo ||
1349           MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo ||
1350           MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo ||
1351           MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) {
1352         noSub = true;
1353       } else
1354         return false;
1355     } else if (is32BitUnsignedCompare) {
1356       // We can perform this optimization, equality only, if MI is
1357       // zero-extending.
1358       if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo ||
1359           MIOpC == PPC::SLW    || MIOpC == PPC::SLWo ||
1360           MIOpC == PPC::SRW    || MIOpC == PPC::SRWo) {
1361         noSub = true;
1362         equalityOnly = true;
1363       } else
1364         return false;
1365     } else
1366       equalityOnly = is64BitUnsignedCompare;
1367   } else
1368     equalityOnly = is32BitUnsignedCompare;
1369
1370   if (equalityOnly) {
1371     // We need to check the uses of the condition register in order to reject
1372     // non-equality comparisons.
1373     for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg),
1374          IE = MRI->use_instr_end(); I != IE; ++I) {
1375       MachineInstr *UseMI = &*I;
1376       if (UseMI->getOpcode() == PPC::BCC) {
1377         unsigned Pred = UseMI->getOperand(0).getImm();
1378         if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE)
1379           return false;
1380       } else if (UseMI->getOpcode() == PPC::ISEL ||
1381                  UseMI->getOpcode() == PPC::ISEL8) {
1382         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1383         if (SubIdx != PPC::sub_eq)
1384           return false;
1385       } else
1386         return false;
1387     }
1388   }
1389
1390   MachineBasicBlock::iterator I = CmpInstr;
1391
1392   // Scan forward to find the first use of the compare.
1393   for (MachineBasicBlock::iterator EL = CmpInstr->getParent()->end();
1394        I != EL; ++I) {
1395     bool FoundUse = false;
1396     for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg),
1397          JE = MRI->use_instr_end(); J != JE; ++J)
1398       if (&*J == &*I) {
1399         FoundUse = true;
1400         break;
1401       }
1402
1403     if (FoundUse)
1404       break;
1405   }
1406
1407   // There are two possible candidates which can be changed to set CR[01].
1408   // One is MI, the other is a SUB instruction.
1409   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1410   MachineInstr *Sub = nullptr;
1411   if (SrcReg2 != 0)
1412     // MI is not a candidate for CMPrr.
1413     MI = nullptr;
1414   // FIXME: Conservatively refuse to convert an instruction which isn't in the
1415   // same BB as the comparison. This is to allow the check below to avoid calls
1416   // (and other explicit clobbers); instead we should really check for these
1417   // more explicitly (in at least a few predecessors).
1418   else if (MI->getParent() != CmpInstr->getParent() || Value != 0) {
1419     // PPC does not have a record-form SUBri.
1420     return false;
1421   }
1422
1423   // Search for Sub.
1424   const TargetRegisterInfo *TRI = &getRegisterInfo();
1425   --I;
1426
1427   // Get ready to iterate backward from CmpInstr.
1428   MachineBasicBlock::iterator E = MI,
1429                               B = CmpInstr->getParent()->begin();
1430
1431   for (; I != E && !noSub; --I) {
1432     const MachineInstr &Instr = *I;
1433     unsigned IOpC = Instr.getOpcode();
1434
1435     if (&*I != CmpInstr && (
1436         Instr.modifiesRegister(PPC::CR0, TRI) ||
1437         Instr.readsRegister(PPC::CR0, TRI)))
1438       // This instruction modifies or uses the record condition register after
1439       // the one we want to change. While we could do this transformation, it
1440       // would likely not be profitable. This transformation removes one
1441       // instruction, and so even forcing RA to generate one move probably
1442       // makes it unprofitable.
1443       return false;
1444
1445     // Check whether CmpInstr can be made redundant by the current instruction.
1446     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1447          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1448         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1449         ((Instr.getOperand(1).getReg() == SrcReg &&
1450           Instr.getOperand(2).getReg() == SrcReg2) ||
1451         (Instr.getOperand(1).getReg() == SrcReg2 &&
1452          Instr.getOperand(2).getReg() == SrcReg))) {
1453       Sub = &*I;
1454       break;
1455     }
1456
1457     if (I == B)
1458       // The 'and' is below the comparison instruction.
1459       return false;
1460   }
1461
1462   // Return false if no candidates exist.
1463   if (!MI && !Sub)
1464     return false;
1465
1466   // The single candidate is called MI.
1467   if (!MI) MI = Sub;
1468
1469   int NewOpC = -1;
1470   MIOpC = MI->getOpcode();
1471   if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8)
1472     NewOpC = MIOpC;
1473   else {
1474     NewOpC = PPC::getRecordFormOpcode(MIOpC);
1475     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1476       NewOpC = MIOpC;
1477   }
1478
1479   // FIXME: On the non-embedded POWER architectures, only some of the record
1480   // forms are fast, and we should use only the fast ones.
1481
1482   // The defining instruction has a record form (or is already a record
1483   // form). It is possible, however, that we'll need to reverse the condition
1484   // code of the users.
1485   if (NewOpC == -1)
1486     return false;
1487
1488   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1489   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1490
1491   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1492   // needs to be updated to be based on SUB.  Push the condition code
1493   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
1494   // condition code of these operands will be modified.
1495   bool ShouldSwap = false;
1496   if (Sub) {
1497     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1498       Sub->getOperand(2).getReg() == SrcReg;
1499
1500     // The operands to subf are the opposite of sub, so only in the fixed-point
1501     // case, invert the order.
1502     ShouldSwap = !ShouldSwap;
1503   }
1504
1505   if (ShouldSwap)
1506     for (MachineRegisterInfo::use_instr_iterator
1507          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1508          I != IE; ++I) {
1509       MachineInstr *UseMI = &*I;
1510       if (UseMI->getOpcode() == PPC::BCC) {
1511         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1512         assert((!equalityOnly ||
1513                 Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) &&
1514                "Invalid predicate for equality-only optimization");
1515         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1516                                 PPC::getSwappedPredicate(Pred)));
1517       } else if (UseMI->getOpcode() == PPC::ISEL ||
1518                  UseMI->getOpcode() == PPC::ISEL8) {
1519         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1520         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1521                "Invalid CR bit for equality-only optimization");
1522
1523         if (NewSubReg == PPC::sub_lt)
1524           NewSubReg = PPC::sub_gt;
1525         else if (NewSubReg == PPC::sub_gt)
1526           NewSubReg = PPC::sub_lt;
1527
1528         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
1529                                                  NewSubReg));
1530       } else // We need to abort on a user we don't understand.
1531         return false;
1532     }
1533
1534   // Create a new virtual register to hold the value of the CR set by the
1535   // record-form instruction. If the instruction was not previously in
1536   // record form, then set the kill flag on the CR.
1537   CmpInstr->eraseFromParent();
1538
1539   MachineBasicBlock::iterator MII = MI;
1540   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
1541           get(TargetOpcode::COPY), CRReg)
1542     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1543
1544   if (MIOpC != NewOpC) {
1545     // We need to be careful here: we're replacing one instruction with
1546     // another, and we need to make sure that we get all of the right
1547     // implicit uses and defs. On the other hand, the caller may be holding
1548     // an iterator to this instruction, and so we can't delete it (this is
1549     // specifically the case if this is the instruction directly after the
1550     // compare).
1551
1552     const MCInstrDesc &NewDesc = get(NewOpC);
1553     MI->setDesc(NewDesc);
1554
1555     if (NewDesc.ImplicitDefs)
1556       for (const uint16_t *ImpDefs = NewDesc.getImplicitDefs();
1557            *ImpDefs; ++ImpDefs)
1558         if (!MI->definesRegister(*ImpDefs))
1559           MI->addOperand(*MI->getParent()->getParent(),
1560                          MachineOperand::CreateReg(*ImpDefs, true, true));
1561     if (NewDesc.ImplicitUses)
1562       for (const uint16_t *ImpUses = NewDesc.getImplicitUses();
1563            *ImpUses; ++ImpUses)
1564         if (!MI->readsRegister(*ImpUses))
1565           MI->addOperand(*MI->getParent()->getParent(),
1566                          MachineOperand::CreateReg(*ImpUses, false, true));
1567   }
1568
1569   // Modify the condition code of operands in OperandsToUpdate.
1570   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
1571   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
1572   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
1573     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
1574
1575   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
1576     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
1577
1578   return true;
1579 }
1580
1581 /// GetInstSize - Return the number of bytes of code the specified
1582 /// instruction may be.  This returns the maximum number of bytes.
1583 ///
1584 unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
1585   unsigned Opcode = MI->getOpcode();
1586
1587   if (Opcode == PPC::INLINEASM) {
1588     const MachineFunction *MF = MI->getParent()->getParent();
1589     const char *AsmStr = MI->getOperand(0).getSymbolName();
1590     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1591   } else {
1592     const MCInstrDesc &Desc = get(Opcode);
1593     return Desc.getSize();
1594   }
1595 }
1596
1597 #undef DEBUG_TYPE
1598 #define DEBUG_TYPE "ppc-vsx-fma-mutate"
1599
1600 namespace {
1601   // PPCVSXFMAMutate pass - For copies between VSX registers and non-VSX registers
1602   // (Altivec and scalar floating-point registers), we need to transform the
1603   // copies into subregister copies with other restrictions.
1604   struct PPCVSXFMAMutate : public MachineFunctionPass {
1605     static char ID;
1606     PPCVSXFMAMutate() : MachineFunctionPass(ID) {
1607       initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry());
1608     }
1609
1610     LiveIntervals *LIS;
1611
1612     const PPCTargetMachine *TM;
1613     const PPCInstrInfo *TII;
1614
1615 protected:
1616     bool processBlock(MachineBasicBlock &MBB) {
1617       bool Changed = false;
1618
1619       MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1620       for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1621            I != IE; ++I) {
1622         MachineInstr *MI = I;
1623
1624         // The default (A-type) VSX FMA form kills the addend (it is taken from
1625         // the target register, which is then updated to reflect the result of
1626         // the FMA). If the instruction, however, kills one of the registers
1627         // used for the product, then we can use the M-form instruction (which
1628         // will take that value from the to-be-defined register).
1629
1630         int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode());
1631         if (AltOpc == -1)
1632           continue;
1633
1634         // This pass is run after register coalescing, and so we're looking for
1635         // a situation like this:
1636         //   ...
1637         //   %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9
1638         //   %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16,
1639         //                         %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16
1640         //   ...
1641         //   %vreg9<def,tied1> = XSMADDADP %vreg9<tied0>, %vreg17, %vreg19,
1642         //                         %RM<imp-use>; VSLRC:%vreg9,%vreg17,%vreg19
1643         //   ...
1644         // Where we can eliminate the copy by changing from the A-type to the
1645         // M-type instruction. Specifically, for this example, this means:
1646         //   %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16,
1647         //                         %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16
1648         // is replaced by:
1649         //   %vreg16<def,tied1> = XSMADDMDP %vreg16<tied0>, %vreg18, %vreg9,
1650         //                         %RM<imp-use>; VSLRC:%vreg16,%vreg18,%vreg9
1651         // and we remove: %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9
1652
1653         SlotIndex FMAIdx = LIS->getInstructionIndex(MI);
1654
1655         VNInfo *AddendValNo =
1656           LIS->getInterval(MI->getOperand(1).getReg()).Query(FMAIdx).valueIn();
1657         MachineInstr *AddendMI = LIS->getInstructionFromIndex(AddendValNo->def);
1658
1659         // The addend and this instruction must be in the same block.
1660
1661         if (!AddendMI || AddendMI->getParent() != MI->getParent())
1662           continue;
1663
1664         // The addend must be a full copy within the same register class.
1665
1666         if (!AddendMI->isFullCopy())
1667           continue;
1668
1669         unsigned AddendSrcReg = AddendMI->getOperand(1).getReg();
1670         if (TargetRegisterInfo::isVirtualRegister(AddendSrcReg)) {
1671           if (MRI.getRegClass(AddendMI->getOperand(0).getReg()) !=
1672               MRI.getRegClass(AddendSrcReg))
1673             continue;
1674         } else {
1675           // If AddendSrcReg is a physical register, make sure the destination
1676           // register class contains it.
1677           if (!MRI.getRegClass(AddendMI->getOperand(0).getReg())
1678                 ->contains(AddendSrcReg))
1679             continue;
1680         }
1681
1682         // In theory, there could be other uses of the addend copy before this
1683         // fma.  We could deal with this, but that would require additional
1684         // logic below and I suspect it will not occur in any relevant
1685         // situations.
1686         bool OtherUsers = false;
1687         for (auto J = std::prev(I), JE = MachineBasicBlock::iterator(AddendMI);
1688              J != JE; --J)
1689           if (J->readsVirtualRegister(AddendMI->getOperand(0).getReg())) {
1690             OtherUsers = true;
1691             break;
1692           }
1693
1694         if (OtherUsers)
1695           continue;
1696
1697         // Find one of the product operands that is killed by this instruction.
1698
1699         unsigned KilledProdOp = 0, OtherProdOp = 0;
1700         if (LIS->getInterval(MI->getOperand(2).getReg())
1701                      .Query(FMAIdx).isKill()) {
1702           KilledProdOp = 2;
1703           OtherProdOp  = 3;
1704         } else if (LIS->getInterval(MI->getOperand(3).getReg())
1705                      .Query(FMAIdx).isKill()) {
1706           KilledProdOp = 3;
1707           OtherProdOp  = 2;
1708         }
1709
1710         // If there are no killed product operands, then this transformation is
1711         // likely not profitable.
1712         if (!KilledProdOp)
1713           continue;
1714
1715         // In order to replace the addend here with the source of the copy,
1716         // it must still be live here.
1717         if (!LIS->getInterval(AddendMI->getOperand(1).getReg()).liveAt(FMAIdx))
1718           continue;
1719
1720         // Transform: (O2 * O3) + O1 -> (O2 * O1) + O3.
1721
1722         unsigned AddReg = AddendMI->getOperand(1).getReg();
1723         unsigned KilledProdReg = MI->getOperand(KilledProdOp).getReg();
1724         unsigned OtherProdReg  = MI->getOperand(OtherProdOp).getReg();
1725
1726         unsigned AddSubReg = AddendMI->getOperand(1).getSubReg();
1727         unsigned KilledProdSubReg = MI->getOperand(KilledProdOp).getSubReg();
1728         unsigned OtherProdSubReg  = MI->getOperand(OtherProdOp).getSubReg();
1729
1730         bool AddRegKill = AddendMI->getOperand(1).isKill();
1731         bool KilledProdRegKill = MI->getOperand(KilledProdOp).isKill();
1732         bool OtherProdRegKill  = MI->getOperand(OtherProdOp).isKill();
1733
1734         bool AddRegUndef = AddendMI->getOperand(1).isUndef();
1735         bool KilledProdRegUndef = MI->getOperand(KilledProdOp).isUndef();
1736         bool OtherProdRegUndef  = MI->getOperand(OtherProdOp).isUndef();
1737
1738         unsigned OldFMAReg = MI->getOperand(0).getReg();
1739
1740         assert(OldFMAReg == AddendMI->getOperand(0).getReg() &&
1741                "Addend copy not tied to old FMA output!");
1742
1743         DEBUG(dbgs() << "VSX FMA Mutation:\n    " << *MI;);
1744
1745         MI->getOperand(0).setReg(KilledProdReg);
1746         MI->getOperand(1).setReg(KilledProdReg);
1747         MI->getOperand(3).setReg(AddReg);
1748         MI->getOperand(2).setReg(OtherProdReg);
1749
1750         MI->getOperand(0).setSubReg(KilledProdSubReg);
1751         MI->getOperand(1).setSubReg(KilledProdSubReg);
1752         MI->getOperand(3).setSubReg(AddSubReg);
1753         MI->getOperand(2).setSubReg(OtherProdSubReg);
1754
1755         MI->getOperand(1).setIsKill(KilledProdRegKill);
1756         MI->getOperand(3).setIsKill(AddRegKill);
1757         MI->getOperand(2).setIsKill(OtherProdRegKill);
1758
1759         MI->getOperand(1).setIsUndef(KilledProdRegUndef);
1760         MI->getOperand(3).setIsUndef(AddRegUndef);
1761         MI->getOperand(2).setIsUndef(OtherProdRegUndef);
1762
1763         MI->setDesc(TII->get(AltOpc));
1764
1765         DEBUG(dbgs() << " -> " << *MI);
1766
1767         // The killed product operand was killed here, so we can reuse it now
1768         // for the result of the fma.
1769
1770         LiveInterval &FMAInt = LIS->getInterval(OldFMAReg);
1771         VNInfo *FMAValNo = FMAInt.getVNInfoAt(FMAIdx.getRegSlot());
1772         for (auto UI = MRI.reg_nodbg_begin(OldFMAReg), UE = MRI.reg_nodbg_end();
1773              UI != UE;) {
1774           MachineOperand &UseMO = *UI;
1775           MachineInstr *UseMI = UseMO.getParent();
1776           ++UI;
1777
1778           // Don't replace the result register of the copy we're about to erase.
1779           if (UseMI == AddendMI)
1780             continue;
1781
1782           UseMO.setReg(KilledProdReg);
1783           UseMO.setSubReg(KilledProdSubReg);
1784         }
1785
1786         // Extend the live intervals of the killed product operand to hold the
1787         // fma result.
1788
1789         LiveInterval &NewFMAInt = LIS->getInterval(KilledProdReg);
1790         for (LiveInterval::iterator AI = FMAInt.begin(), AE = FMAInt.end();
1791              AI != AE; ++AI) {
1792           // Don't add the segment that corresponds to the original copy.
1793           if (AI->valno == AddendValNo)
1794             continue;
1795
1796           VNInfo *NewFMAValNo =
1797             NewFMAInt.getNextValue(AI->start,
1798                                    LIS->getVNInfoAllocator());
1799
1800           NewFMAInt.addSegment(LiveInterval::Segment(AI->start, AI->end,
1801                                                      NewFMAValNo));
1802         }
1803         DEBUG(dbgs() << "  extended: " << NewFMAInt << '\n');
1804
1805         FMAInt.removeValNo(FMAValNo);
1806         DEBUG(dbgs() << "  trimmed:  " << FMAInt << '\n');
1807
1808         // Remove the (now unused) copy.
1809
1810         DEBUG(dbgs() << "  removing: " << *AddendMI << '\n');
1811         LIS->RemoveMachineInstrFromMaps(AddendMI);
1812         AddendMI->eraseFromParent();
1813
1814         Changed = true;
1815       }
1816
1817       return Changed;
1818     }
1819
1820 public:
1821     bool runOnMachineFunction(MachineFunction &MF) override {
1822       TM = static_cast<const PPCTargetMachine *>(&MF.getTarget());
1823       // If we don't have VSX then go ahead and return without doing
1824       // anything.
1825       if (!TM->getSubtargetImpl()->hasVSX())
1826         return false;
1827
1828       LIS = &getAnalysis<LiveIntervals>();
1829
1830       TII = TM->getInstrInfo();
1831
1832       bool Changed = false;
1833
1834       if (DisableVSXFMAMutate)
1835         return Changed;
1836
1837       for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
1838         MachineBasicBlock &B = *I++;
1839         if (processBlock(B))
1840           Changed = true;
1841       }
1842
1843       return Changed;
1844     }
1845
1846     void getAnalysisUsage(AnalysisUsage &AU) const override {
1847       AU.addRequired<LiveIntervals>();
1848       AU.addPreserved<LiveIntervals>();
1849       AU.addRequired<SlotIndexes>();
1850       AU.addPreserved<SlotIndexes>();
1851       MachineFunctionPass::getAnalysisUsage(AU);
1852     }
1853   };
1854 }
1855
1856 INITIALIZE_PASS_BEGIN(PPCVSXFMAMutate, DEBUG_TYPE,
1857                       "PowerPC VSX FMA Mutation", false, false)
1858 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
1859 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
1860 INITIALIZE_PASS_END(PPCVSXFMAMutate, DEBUG_TYPE,
1861                     "PowerPC VSX FMA Mutation", false, false)
1862
1863 char &llvm::PPCVSXFMAMutateID = PPCVSXFMAMutate::ID;
1864
1865 char PPCVSXFMAMutate::ID = 0;
1866 FunctionPass*
1867 llvm::createPPCVSXFMAMutatePass() { return new PPCVSXFMAMutate(); }
1868
1869 #undef DEBUG_TYPE
1870 #define DEBUG_TYPE "ppc-vsx-copy"
1871
1872 namespace llvm {
1873   void initializePPCVSXCopyPass(PassRegistry&);
1874 }
1875
1876 namespace {
1877   // PPCVSXCopy pass - For copies between VSX registers and non-VSX registers
1878   // (Altivec and scalar floating-point registers), we need to transform the
1879   // copies into subregister copies with other restrictions.
1880   struct PPCVSXCopy : public MachineFunctionPass {
1881     static char ID;
1882     PPCVSXCopy() : MachineFunctionPass(ID) {
1883       initializePPCVSXCopyPass(*PassRegistry::getPassRegistry());
1884     }
1885
1886     const PPCTargetMachine *TM;
1887     const PPCInstrInfo *TII;
1888
1889     bool IsRegInClass(unsigned Reg, const TargetRegisterClass *RC,
1890                       MachineRegisterInfo &MRI) {
1891       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1892         return RC->hasSubClassEq(MRI.getRegClass(Reg));
1893       } else if (RC->contains(Reg)) {
1894         return true;
1895       }
1896
1897       return false;
1898     }
1899
1900     bool IsVSReg(unsigned Reg, MachineRegisterInfo &MRI) {
1901       return IsRegInClass(Reg, &PPC::VSRCRegClass, MRI);
1902     }
1903
1904     bool IsVRReg(unsigned Reg, MachineRegisterInfo &MRI) {
1905       return IsRegInClass(Reg, &PPC::VRRCRegClass, MRI);
1906     }
1907
1908     bool IsF8Reg(unsigned Reg, MachineRegisterInfo &MRI) {
1909       return IsRegInClass(Reg, &PPC::F8RCRegClass, MRI);
1910     }
1911
1912 protected:
1913     bool processBlock(MachineBasicBlock &MBB) {
1914       bool Changed = false;
1915
1916       MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1917       for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1918            I != IE; ++I) {
1919         MachineInstr *MI = I;
1920         if (!MI->isFullCopy())
1921           continue;
1922
1923         MachineOperand &DstMO = MI->getOperand(0);
1924         MachineOperand &SrcMO = MI->getOperand(1);
1925
1926         if ( IsVSReg(DstMO.getReg(), MRI) &&
1927             !IsVSReg(SrcMO.getReg(), MRI)) {
1928           // This is a copy *to* a VSX register from a non-VSX register.
1929           Changed = true;
1930
1931           const TargetRegisterClass *SrcRC =
1932             IsVRReg(SrcMO.getReg(), MRI) ? &PPC::VSHRCRegClass :
1933                                            &PPC::VSLRCRegClass;
1934           assert((IsF8Reg(SrcMO.getReg(), MRI) ||
1935                   IsVRReg(SrcMO.getReg(), MRI)) &&
1936                  "Unknown source for a VSX copy");
1937
1938           unsigned NewVReg = MRI.createVirtualRegister(SrcRC);
1939           BuildMI(MBB, MI, MI->getDebugLoc(),
1940                   TII->get(TargetOpcode::SUBREG_TO_REG), NewVReg)
1941             .addImm(1) // add 1, not 0, because there is no implicit clearing
1942                        // of the high bits.
1943             .addOperand(SrcMO)
1944             .addImm(IsVRReg(SrcMO.getReg(), MRI) ? PPC::sub_128 :
1945                                                    PPC::sub_64);
1946
1947           // The source of the original copy is now the new virtual register.
1948           SrcMO.setReg(NewVReg);
1949         } else if (!IsVSReg(DstMO.getReg(), MRI) &&
1950                     IsVSReg(SrcMO.getReg(), MRI)) {
1951           // This is a copy *from* a VSX register to a non-VSX register.
1952           Changed = true;
1953
1954           const TargetRegisterClass *DstRC =
1955             IsVRReg(DstMO.getReg(), MRI) ? &PPC::VSHRCRegClass :
1956                                            &PPC::VSLRCRegClass;
1957           assert((IsF8Reg(DstMO.getReg(), MRI) ||
1958                   IsVRReg(DstMO.getReg(), MRI)) &&
1959                  "Unknown destination for a VSX copy");
1960
1961           // Copy the VSX value into a new VSX register of the correct subclass.
1962           unsigned NewVReg = MRI.createVirtualRegister(DstRC);
1963           BuildMI(MBB, MI, MI->getDebugLoc(),
1964                   TII->get(TargetOpcode::COPY), NewVReg)
1965             .addOperand(SrcMO);
1966
1967           // Transform the original copy into a subregister extraction copy.
1968           SrcMO.setReg(NewVReg);
1969           SrcMO.setSubReg(IsVRReg(DstMO.getReg(), MRI) ? PPC::sub_128 :
1970                                                          PPC::sub_64);
1971         }
1972       }
1973
1974       return Changed;
1975     }
1976
1977 public:
1978     bool runOnMachineFunction(MachineFunction &MF) override {
1979       TM = static_cast<const PPCTargetMachine *>(&MF.getTarget());
1980       // If we don't have VSX on the subtarget, don't do anything.
1981       if (!TM->getSubtargetImpl()->hasVSX())
1982         return false;
1983       TII = TM->getInstrInfo();
1984
1985       bool Changed = false;
1986
1987       for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
1988         MachineBasicBlock &B = *I++;
1989         if (processBlock(B))
1990           Changed = true;
1991       }
1992
1993       return Changed;
1994     }
1995
1996     void getAnalysisUsage(AnalysisUsage &AU) const override {
1997       MachineFunctionPass::getAnalysisUsage(AU);
1998     }
1999   };
2000 }
2001
2002 INITIALIZE_PASS(PPCVSXCopy, DEBUG_TYPE,
2003                 "PowerPC VSX Copy Legalization", false, false)
2004
2005 char PPCVSXCopy::ID = 0;
2006 FunctionPass*
2007 llvm::createPPCVSXCopyPass() { return new PPCVSXCopy(); }
2008
2009 #undef DEBUG_TYPE
2010 #define DEBUG_TYPE "ppc-vsx-copy-cleanup"
2011
2012 namespace llvm {
2013   void initializePPCVSXCopyCleanupPass(PassRegistry&);
2014 }
2015
2016 namespace {
2017   // PPCVSXCopyCleanup pass - We sometimes end up generating self copies of VSX
2018   // registers (mostly because the ABI code still places all values into the
2019   // "traditional" floating-point and vector registers). Remove them here.
2020   struct PPCVSXCopyCleanup : public MachineFunctionPass {
2021     static char ID;
2022     PPCVSXCopyCleanup() : MachineFunctionPass(ID) {
2023       initializePPCVSXCopyCleanupPass(*PassRegistry::getPassRegistry());
2024     }
2025
2026     const PPCTargetMachine *TM;
2027     const PPCInstrInfo *TII;
2028
2029 protected:
2030     bool processBlock(MachineBasicBlock &MBB) {
2031       bool Changed = false;
2032
2033       SmallVector<MachineInstr *, 4> ToDelete;
2034       for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
2035            I != IE; ++I) {
2036         MachineInstr *MI = I;
2037         if (MI->getOpcode() == PPC::XXLOR &&
2038             MI->getOperand(0).getReg() == MI->getOperand(1).getReg() &&
2039             MI->getOperand(0).getReg() == MI->getOperand(2).getReg())
2040           ToDelete.push_back(MI);
2041       }
2042
2043       if (!ToDelete.empty())
2044         Changed = true;
2045
2046       for (unsigned i = 0, ie = ToDelete.size(); i != ie; ++i) {
2047         DEBUG(dbgs() << "Removing VSX self-copy: " << *ToDelete[i]);
2048         ToDelete[i]->eraseFromParent();
2049       }
2050
2051       return Changed;
2052     }
2053
2054 public:
2055     bool runOnMachineFunction(MachineFunction &MF) override {
2056       TM = static_cast<const PPCTargetMachine *>(&MF.getTarget());
2057       // If we don't have VSX don't bother doing anything here.
2058       if (!TM->getSubtargetImpl()->hasVSX())
2059         return false;
2060       TII = TM->getInstrInfo();
2061
2062       bool Changed = false;
2063
2064       for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
2065         MachineBasicBlock &B = *I++;
2066         if (processBlock(B))
2067           Changed = true;
2068       }
2069
2070       return Changed;
2071     }
2072
2073     void getAnalysisUsage(AnalysisUsage &AU) const override {
2074       MachineFunctionPass::getAnalysisUsage(AU);
2075     }
2076   };
2077 }
2078
2079 INITIALIZE_PASS(PPCVSXCopyCleanup, DEBUG_TYPE,
2080                 "PowerPC VSX Copy Cleanup", false, false)
2081
2082 char PPCVSXCopyCleanup::ID = 0;
2083 FunctionPass*
2084 llvm::createPPCVSXCopyCleanupPass() { return new PPCVSXCopyCleanup(); }
2085
2086 #undef DEBUG_TYPE
2087 #define DEBUG_TYPE "ppc-early-ret"
2088 STATISTIC(NumBCLR, "Number of early conditional returns");
2089 STATISTIC(NumBLR,  "Number of early returns");
2090
2091 namespace llvm {
2092   void initializePPCEarlyReturnPass(PassRegistry&);
2093 }
2094
2095 namespace {
2096   // PPCEarlyReturn pass - For simple functions without epilogue code, move
2097   // returns up, and create conditional returns, to avoid unnecessary
2098   // branch-to-blr sequences.
2099   struct PPCEarlyReturn : public MachineFunctionPass {
2100     static char ID;
2101     PPCEarlyReturn() : MachineFunctionPass(ID) {
2102       initializePPCEarlyReturnPass(*PassRegistry::getPassRegistry());
2103     }
2104
2105     const PPCTargetMachine *TM;
2106     const PPCInstrInfo *TII;
2107
2108 protected:
2109     bool processBlock(MachineBasicBlock &ReturnMBB) {
2110       bool Changed = false;
2111
2112       MachineBasicBlock::iterator I = ReturnMBB.begin();
2113       I = ReturnMBB.SkipPHIsAndLabels(I);
2114
2115       // The block must be essentially empty except for the blr.
2116       if (I == ReturnMBB.end() || I->getOpcode() != PPC::BLR ||
2117           I != ReturnMBB.getLastNonDebugInstr())
2118         return Changed;
2119
2120       SmallVector<MachineBasicBlock*, 8> PredToRemove;
2121       for (MachineBasicBlock::pred_iterator PI = ReturnMBB.pred_begin(),
2122            PIE = ReturnMBB.pred_end(); PI != PIE; ++PI) {
2123         bool OtherReference = false, BlockChanged = false;
2124         for (MachineBasicBlock::iterator J = (*PI)->getLastNonDebugInstr();;) {
2125           if (J->getOpcode() == PPC::B) {
2126             if (J->getOperand(0).getMBB() == &ReturnMBB) {
2127               // This is an unconditional branch to the return. Replace the
2128               // branch with a blr.
2129               BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BLR));
2130               MachineBasicBlock::iterator K = J--;
2131               K->eraseFromParent();
2132               BlockChanged = true;
2133               ++NumBLR;
2134               continue;
2135             }
2136           } else if (J->getOpcode() == PPC::BCC) {
2137             if (J->getOperand(2).getMBB() == &ReturnMBB) {
2138               // This is a conditional branch to the return. Replace the branch
2139               // with a bclr.
2140               BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BCCLR))
2141                 .addImm(J->getOperand(0).getImm())
2142                 .addReg(J->getOperand(1).getReg());
2143               MachineBasicBlock::iterator K = J--;
2144               K->eraseFromParent();
2145               BlockChanged = true;
2146               ++NumBCLR;
2147               continue;
2148             }
2149           } else if (J->getOpcode() == PPC::BC || J->getOpcode() == PPC::BCn) {
2150             if (J->getOperand(1).getMBB() == &ReturnMBB) {
2151               // This is a conditional branch to the return. Replace the branch
2152               // with a bclr.
2153               BuildMI(**PI, J, J->getDebugLoc(),
2154                       TII->get(J->getOpcode() == PPC::BC ?
2155                                PPC::BCLR : PPC::BCLRn))
2156                 .addReg(J->getOperand(0).getReg());
2157               MachineBasicBlock::iterator K = J--;
2158               K->eraseFromParent();
2159               BlockChanged = true;
2160               ++NumBCLR;
2161               continue;
2162             }
2163           } else if (J->isBranch()) {
2164             if (J->isIndirectBranch()) {
2165               if (ReturnMBB.hasAddressTaken())
2166                 OtherReference = true;
2167             } else
2168               for (unsigned i = 0; i < J->getNumOperands(); ++i)
2169                 if (J->getOperand(i).isMBB() &&
2170                     J->getOperand(i).getMBB() == &ReturnMBB)
2171                   OtherReference = true;
2172           } else if (!J->isTerminator() && !J->isDebugValue())
2173             break;
2174
2175           if (J == (*PI)->begin())
2176             break;
2177
2178           --J;
2179         }
2180
2181         if ((*PI)->canFallThrough() && (*PI)->isLayoutSuccessor(&ReturnMBB))
2182           OtherReference = true;
2183
2184         // Predecessors are stored in a vector and can't be removed here.
2185         if (!OtherReference && BlockChanged) {
2186           PredToRemove.push_back(*PI);
2187         }
2188
2189         if (BlockChanged)
2190           Changed = true;
2191       }
2192
2193       for (unsigned i = 0, ie = PredToRemove.size(); i != ie; ++i)
2194         PredToRemove[i]->removeSuccessor(&ReturnMBB);
2195
2196       if (Changed && !ReturnMBB.hasAddressTaken()) {
2197         // We now might be able to merge this blr-only block into its
2198         // by-layout predecessor.
2199         if (ReturnMBB.pred_size() == 1 &&
2200             (*ReturnMBB.pred_begin())->isLayoutSuccessor(&ReturnMBB)) {
2201           // Move the blr into the preceding block.
2202           MachineBasicBlock &PrevMBB = **ReturnMBB.pred_begin();
2203           PrevMBB.splice(PrevMBB.end(), &ReturnMBB, I);
2204           PrevMBB.removeSuccessor(&ReturnMBB);
2205         }
2206
2207         if (ReturnMBB.pred_empty())
2208           ReturnMBB.eraseFromParent();
2209       }
2210
2211       return Changed;
2212     }
2213
2214 public:
2215     bool runOnMachineFunction(MachineFunction &MF) override {
2216       TM = static_cast<const PPCTargetMachine *>(&MF.getTarget());
2217       TII = TM->getInstrInfo();
2218
2219       bool Changed = false;
2220
2221       // If the function does not have at least two blocks, then there is
2222       // nothing to do.
2223       if (MF.size() < 2)
2224         return Changed;
2225
2226       for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
2227         MachineBasicBlock &B = *I++;
2228         if (processBlock(B))
2229           Changed = true;
2230       }
2231
2232       return Changed;
2233     }
2234
2235     void getAnalysisUsage(AnalysisUsage &AU) const override {
2236       MachineFunctionPass::getAnalysisUsage(AU);
2237     }
2238   };
2239 }
2240
2241 INITIALIZE_PASS(PPCEarlyReturn, DEBUG_TYPE,
2242                 "PowerPC Early-Return Creation", false, false)
2243
2244 char PPCEarlyReturn::ID = 0;
2245 FunctionPass*
2246 llvm::createPPCEarlyReturnPass() { return new PPCEarlyReturn(); }