Revert "[DebugInfo] Add debug locations to constant SD nodes"
[oota-llvm.git] / lib / Target / PowerPC / PPCISelDAGToDAG.cpp
1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a pattern matching instruction selector for PowerPC,
11 // converting from a legalized dag to a PPC dag.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "PPC.h"
16 #include "MCTargetDesc/PPCPredicates.h"
17 #include "PPCMachineFunctionInfo.h"
18 #include "PPCTargetMachine.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/SelectionDAGISel.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalAlias.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/IR/GlobalVariable.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetOptions.h"
37 using namespace llvm;
38
39 #define DEBUG_TYPE "ppc-codegen"
40
41 // FIXME: Remove this once the bug has been fixed!
42 cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
43 cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
44
45 static cl::opt<bool>
46     UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true),
47                        cl::desc("use aggressive ppc isel for bit permutations"),
48                        cl::Hidden);
49 static cl::opt<bool> BPermRewriterNoMasking(
50     "ppc-bit-perm-rewriter-stress-rotates",
51     cl::desc("stress rotate selection in aggressive ppc isel for "
52              "bit permutations"),
53     cl::Hidden);
54
55 namespace llvm {
56   void initializePPCDAGToDAGISelPass(PassRegistry&);
57 }
58
59 namespace {
60   //===--------------------------------------------------------------------===//
61   /// PPCDAGToDAGISel - PPC specific code to select PPC machine
62   /// instructions for SelectionDAG operations.
63   ///
64   class PPCDAGToDAGISel : public SelectionDAGISel {
65     const PPCTargetMachine &TM;
66     const PPCSubtarget *PPCSubTarget;
67     const PPCTargetLowering *PPCLowering;
68     unsigned GlobalBaseReg;
69   public:
70     explicit PPCDAGToDAGISel(PPCTargetMachine &tm)
71         : SelectionDAGISel(tm), TM(tm) {
72       initializePPCDAGToDAGISelPass(*PassRegistry::getPassRegistry());
73     }
74
75     bool runOnMachineFunction(MachineFunction &MF) override {
76       // Make sure we re-emit a set of the global base reg if necessary
77       GlobalBaseReg = 0;
78       PPCSubTarget = &MF.getSubtarget<PPCSubtarget>();
79       PPCLowering = PPCSubTarget->getTargetLowering();
80       SelectionDAGISel::runOnMachineFunction(MF);
81
82       if (!PPCSubTarget->isSVR4ABI())
83         InsertVRSaveCode(MF);
84
85       return true;
86     }
87
88     void PreprocessISelDAG() override;
89     void PostprocessISelDAG() override;
90
91     /// getI32Imm - Return a target constant with the specified value, of type
92     /// i32.
93     inline SDValue getI32Imm(unsigned Imm) {
94       return CurDAG->getTargetConstant(Imm, MVT::i32);
95     }
96
97     /// getI64Imm - Return a target constant with the specified value, of type
98     /// i64.
99     inline SDValue getI64Imm(uint64_t Imm) {
100       return CurDAG->getTargetConstant(Imm, MVT::i64);
101     }
102
103     /// getSmallIPtrImm - Return a target constant of pointer type.
104     inline SDValue getSmallIPtrImm(unsigned Imm) {
105       return CurDAG->getTargetConstant(Imm, PPCLowering->getPointerTy());
106     }
107
108     /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
109     /// rotate and mask opcode and mask operation.
110     static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
111                                 unsigned &SH, unsigned &MB, unsigned &ME);
112
113     /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
114     /// base register.  Return the virtual register that holds this value.
115     SDNode *getGlobalBaseReg();
116
117     SDNode *getFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0);
118
119     // Select - Convert the specified operand from a target-independent to a
120     // target-specific node if it hasn't already been changed.
121     SDNode *Select(SDNode *N) override;
122
123     SDNode *SelectBitfieldInsert(SDNode *N);
124     SDNode *SelectBitPermutation(SDNode *N);
125
126     /// SelectCC - Select a comparison of the specified values with the
127     /// specified condition code, returning the CR# of the expression.
128     SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDLoc dl);
129
130     /// SelectAddrImm - Returns true if the address N can be represented by
131     /// a base register plus a signed 16-bit displacement [r+imm].
132     bool SelectAddrImm(SDValue N, SDValue &Disp,
133                        SDValue &Base) {
134       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, false);
135     }
136
137     /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
138     /// immediate field.  Note that the operand at this point is already the
139     /// result of a prior SelectAddressRegImm call.
140     bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
141       if (N.getOpcode() == ISD::TargetConstant ||
142           N.getOpcode() == ISD::TargetGlobalAddress) {
143         Out = N;
144         return true;
145       }
146
147       return false;
148     }
149
150     /// SelectAddrIdx - Given the specified addressed, check to see if it can be
151     /// represented as an indexed [r+r] operation.  Returns false if it can
152     /// be represented by [r+imm], which are preferred.
153     bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
154       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG);
155     }
156
157     /// SelectAddrIdxOnly - Given the specified addressed, force it to be
158     /// represented as an indexed [r+r] operation.
159     bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
160       return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
161     }
162
163     /// SelectAddrImmX4 - Returns true if the address N can be represented by
164     /// a base register plus a signed 16-bit displacement that is a multiple of 4.
165     /// Suitable for use by STD and friends.
166     bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
167       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, true);
168     }
169
170     // Select an address into a single register.
171     bool SelectAddr(SDValue N, SDValue &Base) {
172       Base = N;
173       return true;
174     }
175
176     /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
177     /// inline asm expressions.  It is always correct to compute the value into
178     /// a register.  The case of adding a (possibly relocatable) constant to a
179     /// register can be improved, but it is wrong to substitute Reg+Reg for
180     /// Reg in an asm, because the load or store opcode would have to change.
181     bool SelectInlineAsmMemoryOperand(const SDValue &Op,
182                                       unsigned ConstraintID,
183                                       std::vector<SDValue> &OutOps) override {
184
185       switch(ConstraintID) {
186       default:
187         errs() << "ConstraintID: " << ConstraintID << "\n";
188         llvm_unreachable("Unexpected asm memory constraint");
189       case InlineAsm::Constraint_es:
190       case InlineAsm::Constraint_i:
191       case InlineAsm::Constraint_m:
192       case InlineAsm::Constraint_o:
193       case InlineAsm::Constraint_Q:
194       case InlineAsm::Constraint_Z:
195       case InlineAsm::Constraint_Zy:
196         // We need to make sure that this one operand does not end up in r0
197         // (because we might end up lowering this as 0(%op)).
198         const TargetRegisterInfo *TRI = PPCSubTarget->getRegisterInfo();
199         const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1);
200         SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
201         SDValue NewOp =
202           SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
203                                          SDLoc(Op), Op.getValueType(),
204                                          Op, RC), 0);
205
206         OutOps.push_back(NewOp);
207         return false;
208       }
209       return true;
210     }
211
212     void InsertVRSaveCode(MachineFunction &MF);
213
214     const char *getPassName() const override {
215       return "PowerPC DAG->DAG Pattern Instruction Selection";
216     }
217
218 // Include the pieces autogenerated from the target description.
219 #include "PPCGenDAGISel.inc"
220
221 private:
222     SDNode *SelectSETCC(SDNode *N);
223
224     void PeepholePPC64();
225     void PeepholePPC64ZExt();
226     void PeepholeCROps();
227
228     SDValue combineToCMPB(SDNode *N);
229     void foldBoolExts(SDValue &Res, SDNode *&N);
230
231     bool AllUsersSelectZero(SDNode *N);
232     void SwapAllSelectUsers(SDNode *N);
233
234     SDNode *transferMemOperands(SDNode *N, SDNode *Result);
235   };
236 }
237
238 /// InsertVRSaveCode - Once the entire function has been instruction selected,
239 /// all virtual registers are created and all machine instructions are built,
240 /// check to see if we need to save/restore VRSAVE.  If so, do it.
241 void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
242   // Check to see if this function uses vector registers, which means we have to
243   // save and restore the VRSAVE register and update it with the regs we use.
244   //
245   // In this case, there will be virtual registers of vector type created
246   // by the scheduler.  Detect them now.
247   bool HasVectorVReg = false;
248   for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) {
249     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
250     if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) {
251       HasVectorVReg = true;
252       break;
253     }
254   }
255   if (!HasVectorVReg) return;  // nothing to do.
256
257   // If we have a vector register, we want to emit code into the entry and exit
258   // blocks to save and restore the VRSAVE register.  We do this here (instead
259   // of marking all vector instructions as clobbering VRSAVE) for two reasons:
260   //
261   // 1. This (trivially) reduces the load on the register allocator, by not
262   //    having to represent the live range of the VRSAVE register.
263   // 2. This (more significantly) allows us to create a temporary virtual
264   //    register to hold the saved VRSAVE value, allowing this temporary to be
265   //    register allocated, instead of forcing it to be spilled to the stack.
266
267   // Create two vregs - one to hold the VRSAVE register that is live-in to the
268   // function and one for the value after having bits or'd into it.
269   unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
270   unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
271
272   const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
273   MachineBasicBlock &EntryBB = *Fn.begin();
274   DebugLoc dl;
275   // Emit the following code into the entry block:
276   // InVRSAVE = MFVRSAVE
277   // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
278   // MTVRSAVE UpdatedVRSAVE
279   MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point
280   BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
281   BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
282           UpdatedVRSAVE).addReg(InVRSAVE);
283   BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
284
285   // Find all return blocks, outputting a restore in each epilog.
286   for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
287     if (!BB->empty() && BB->back().isReturn()) {
288       IP = BB->end(); --IP;
289
290       // Skip over all terminator instructions, which are part of the return
291       // sequence.
292       MachineBasicBlock::iterator I2 = IP;
293       while (I2 != BB->begin() && (--I2)->isTerminator())
294         IP = I2;
295
296       // Emit: MTVRSAVE InVRSave
297       BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
298     }
299   }
300 }
301
302
303 /// getGlobalBaseReg - Output the instructions required to put the
304 /// base address to use for accessing globals into a register.
305 ///
306 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
307   if (!GlobalBaseReg) {
308     const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
309     // Insert the set of GlobalBaseReg into the first MBB of the function
310     MachineBasicBlock &FirstMBB = MF->front();
311     MachineBasicBlock::iterator MBBI = FirstMBB.begin();
312     const Module *M = MF->getFunction()->getParent();
313     DebugLoc dl;
314
315     if (PPCLowering->getPointerTy() == MVT::i32) {
316       if (PPCSubTarget->isTargetELF()) {
317         GlobalBaseReg = PPC::R30;
318         if (M->getPICLevel() == PICLevel::Small) {
319           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
320           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
321           MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
322         } else {
323           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
324           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
325           unsigned TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
326           BuildMI(FirstMBB, MBBI, dl,
327                   TII.get(PPC::UpdateGBR), GlobalBaseReg)
328                   .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg);
329           MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
330         }
331       } else {
332         GlobalBaseReg =
333           RegInfo->createVirtualRegister(&PPC::GPRC_NOR0RegClass);
334         BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
335         BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
336       }
337     } else {
338       GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_NOX0RegClass);
339       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
340       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
341     }
342   }
343   return CurDAG->getRegister(GlobalBaseReg,
344                              PPCLowering->getPointerTy()).getNode();
345 }
346
347 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
348 /// or 64-bit immediate, and if the value can be accurately represented as a
349 /// sign extension from a 16-bit value.  If so, this returns true and the
350 /// immediate.
351 static bool isIntS16Immediate(SDNode *N, short &Imm) {
352   if (N->getOpcode() != ISD::Constant)
353     return false;
354
355   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
356   if (N->getValueType(0) == MVT::i32)
357     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
358   else
359     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
360 }
361
362 static bool isIntS16Immediate(SDValue Op, short &Imm) {
363   return isIntS16Immediate(Op.getNode(), Imm);
364 }
365
366
367 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
368 /// operand. If so Imm will receive the 32-bit value.
369 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
370   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
371     Imm = cast<ConstantSDNode>(N)->getZExtValue();
372     return true;
373   }
374   return false;
375 }
376
377 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant
378 /// operand.  If so Imm will receive the 64-bit value.
379 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
380   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
381     Imm = cast<ConstantSDNode>(N)->getZExtValue();
382     return true;
383   }
384   return false;
385 }
386
387 // isInt32Immediate - This method tests to see if a constant operand.
388 // If so Imm will receive the 32 bit value.
389 static bool isInt32Immediate(SDValue N, unsigned &Imm) {
390   return isInt32Immediate(N.getNode(), Imm);
391 }
392
393
394 // isOpcWithIntImmediate - This method tests to see if the node is a specific
395 // opcode and that it has a immediate integer right operand.
396 // If so Imm will receive the 32 bit value.
397 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
398   return N->getOpcode() == Opc
399          && isInt32Immediate(N->getOperand(1).getNode(), Imm);
400 }
401
402 SDNode *PPCDAGToDAGISel::getFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) {
403   SDLoc dl(SN);
404   int FI = cast<FrameIndexSDNode>(N)->getIndex();
405   SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
406   unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
407   if (SN->hasOneUse())
408     return CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
409                                 getSmallIPtrImm(Offset));
410   return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
411                                 getSmallIPtrImm(Offset));
412 }
413
414 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
415                                       bool isShiftMask, unsigned &SH,
416                                       unsigned &MB, unsigned &ME) {
417   // Don't even go down this path for i64, since different logic will be
418   // necessary for rldicl/rldicr/rldimi.
419   if (N->getValueType(0) != MVT::i32)
420     return false;
421
422   unsigned Shift  = 32;
423   unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
424   unsigned Opcode = N->getOpcode();
425   if (N->getNumOperands() != 2 ||
426       !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
427     return false;
428
429   if (Opcode == ISD::SHL) {
430     // apply shift left to mask if it comes first
431     if (isShiftMask) Mask = Mask << Shift;
432     // determine which bits are made indeterminant by shift
433     Indeterminant = ~(0xFFFFFFFFu << Shift);
434   } else if (Opcode == ISD::SRL) {
435     // apply shift right to mask if it comes first
436     if (isShiftMask) Mask = Mask >> Shift;
437     // determine which bits are made indeterminant by shift
438     Indeterminant = ~(0xFFFFFFFFu >> Shift);
439     // adjust for the left rotate
440     Shift = 32 - Shift;
441   } else if (Opcode == ISD::ROTL) {
442     Indeterminant = 0;
443   } else {
444     return false;
445   }
446
447   // if the mask doesn't intersect any Indeterminant bits
448   if (Mask && !(Mask & Indeterminant)) {
449     SH = Shift & 31;
450     // make sure the mask is still a mask (wrap arounds may not be)
451     return isRunOfOnes(Mask, MB, ME);
452   }
453   return false;
454 }
455
456 /// SelectBitfieldInsert - turn an or of two masked values into
457 /// the rotate left word immediate then mask insert (rlwimi) instruction.
458 SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
459   SDValue Op0 = N->getOperand(0);
460   SDValue Op1 = N->getOperand(1);
461   SDLoc dl(N);
462
463   APInt LKZ, LKO, RKZ, RKO;
464   CurDAG->computeKnownBits(Op0, LKZ, LKO);
465   CurDAG->computeKnownBits(Op1, RKZ, RKO);
466
467   unsigned TargetMask = LKZ.getZExtValue();
468   unsigned InsertMask = RKZ.getZExtValue();
469
470   if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
471     unsigned Op0Opc = Op0.getOpcode();
472     unsigned Op1Opc = Op1.getOpcode();
473     unsigned Value, SH = 0;
474     TargetMask = ~TargetMask;
475     InsertMask = ~InsertMask;
476
477     // If the LHS has a foldable shift and the RHS does not, then swap it to the
478     // RHS so that we can fold the shift into the insert.
479     if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
480       if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
481           Op0.getOperand(0).getOpcode() == ISD::SRL) {
482         if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
483             Op1.getOperand(0).getOpcode() != ISD::SRL) {
484           std::swap(Op0, Op1);
485           std::swap(Op0Opc, Op1Opc);
486           std::swap(TargetMask, InsertMask);
487         }
488       }
489     } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
490       if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
491           Op1.getOperand(0).getOpcode() != ISD::SRL) {
492         std::swap(Op0, Op1);
493         std::swap(Op0Opc, Op1Opc);
494         std::swap(TargetMask, InsertMask);
495       }
496     }
497
498     unsigned MB, ME;
499     if (isRunOfOnes(InsertMask, MB, ME)) {
500       SDValue Tmp1, Tmp2;
501
502       if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
503           isInt32Immediate(Op1.getOperand(1), Value)) {
504         Op1 = Op1.getOperand(0);
505         SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
506       }
507       if (Op1Opc == ISD::AND) {
508        // The AND mask might not be a constant, and we need to make sure that
509        // if we're going to fold the masking with the insert, all bits not
510        // know to be zero in the mask are known to be one.
511         APInt MKZ, MKO;
512         CurDAG->computeKnownBits(Op1.getOperand(1), MKZ, MKO);
513         bool CanFoldMask = InsertMask == MKO.getZExtValue();
514
515         unsigned SHOpc = Op1.getOperand(0).getOpcode();
516         if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask &&
517             isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
518           // Note that Value must be in range here (less than 32) because
519           // otherwise there would not be any bits set in InsertMask.
520           Op1 = Op1.getOperand(0).getOperand(0);
521           SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
522         }
523       }
524
525       SH &= 31;
526       SDValue Ops[] = { Op0, Op1, getI32Imm(SH), getI32Imm(MB),
527                           getI32Imm(ME) };
528       return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops);
529     }
530   }
531   return nullptr;
532 }
533
534 // Predict the number of instructions that would be generated by calling
535 // SelectInt64(N).
536 static unsigned SelectInt64CountDirect(int64_t Imm) {
537   // Assume no remaining bits.
538   unsigned Remainder = 0;
539   // Assume no shift required.
540   unsigned Shift = 0;
541
542   // If it can't be represented as a 32 bit value.
543   if (!isInt<32>(Imm)) {
544     Shift = countTrailingZeros<uint64_t>(Imm);
545     int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
546
547     // If the shifted value fits 32 bits.
548     if (isInt<32>(ImmSh)) {
549       // Go with the shifted value.
550       Imm = ImmSh;
551     } else {
552       // Still stuck with a 64 bit value.
553       Remainder = Imm;
554       Shift = 32;
555       Imm >>= 32;
556     }
557   }
558
559   // Intermediate operand.
560   unsigned Result = 0;
561
562   // Handle first 32 bits.
563   unsigned Lo = Imm & 0xFFFF;
564   unsigned Hi = (Imm >> 16) & 0xFFFF;
565
566   // Simple value.
567   if (isInt<16>(Imm)) {
568     // Just the Lo bits.
569     ++Result;
570   } else if (Lo) {
571     // Handle the Hi bits and Lo bits.
572     Result += 2;
573   } else {
574     // Just the Hi bits.
575     ++Result;
576   }
577
578   // If no shift, we're done.
579   if (!Shift) return Result;
580
581   // Shift for next step if the upper 32-bits were not zero.
582   if (Imm)
583     ++Result;
584
585   // Add in the last bits as required.
586   if ((Hi = (Remainder >> 16) & 0xFFFF))
587     ++Result;
588   if ((Lo = Remainder & 0xFFFF))
589     ++Result;
590
591   return Result;
592 }
593
594 static uint64_t Rot64(uint64_t Imm, unsigned R) {
595   return (Imm << R) | (Imm >> (64 - R));
596 }
597
598 static unsigned SelectInt64Count(int64_t Imm) {
599   unsigned Count = SelectInt64CountDirect(Imm);
600   if (Count == 1)
601     return Count;
602
603   for (unsigned r = 1; r < 63; ++r) {
604     uint64_t RImm = Rot64(Imm, r);
605     unsigned RCount = SelectInt64CountDirect(RImm) + 1;
606     Count = std::min(Count, RCount);
607
608     // See comments in SelectInt64 for an explanation of the logic below.
609     unsigned LS = findLastSet(RImm);
610     if (LS != r-1)
611       continue;
612
613     uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
614     uint64_t RImmWithOnes = RImm | OnesMask;
615
616     RCount = SelectInt64CountDirect(RImmWithOnes) + 1;
617     Count = std::min(Count, RCount);
618   }
619
620   return Count;
621 }
622
623 // Select a 64-bit constant. For cost-modeling purposes, SelectInt64Count
624 // (above) needs to be kept in sync with this function.
625 static SDNode *SelectInt64Direct(SelectionDAG *CurDAG, SDLoc dl, int64_t Imm) {
626   // Assume no remaining bits.
627   unsigned Remainder = 0;
628   // Assume no shift required.
629   unsigned Shift = 0;
630
631   // If it can't be represented as a 32 bit value.
632   if (!isInt<32>(Imm)) {
633     Shift = countTrailingZeros<uint64_t>(Imm);
634     int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
635
636     // If the shifted value fits 32 bits.
637     if (isInt<32>(ImmSh)) {
638       // Go with the shifted value.
639       Imm = ImmSh;
640     } else {
641       // Still stuck with a 64 bit value.
642       Remainder = Imm;
643       Shift = 32;
644       Imm >>= 32;
645     }
646   }
647
648   // Intermediate operand.
649   SDNode *Result;
650
651   // Handle first 32 bits.
652   unsigned Lo = Imm & 0xFFFF;
653   unsigned Hi = (Imm >> 16) & 0xFFFF;
654
655   auto getI32Imm = [CurDAG](unsigned Imm) {
656       return CurDAG->getTargetConstant(Imm, MVT::i32);
657   };
658
659   // Simple value.
660   if (isInt<16>(Imm)) {
661     // Just the Lo bits.
662     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo));
663   } else if (Lo) {
664     // Handle the Hi bits.
665     unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
666     Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
667     // And Lo bits.
668     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
669                                     SDValue(Result, 0), getI32Imm(Lo));
670   } else {
671     // Just the Hi bits.
672     Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
673   }
674
675   // If no shift, we're done.
676   if (!Shift) return Result;
677
678   // Shift for next step if the upper 32-bits were not zero.
679   if (Imm) {
680     Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
681                                     SDValue(Result, 0),
682                                     getI32Imm(Shift),
683                                     getI32Imm(63 - Shift));
684   }
685
686   // Add in the last bits as required.
687   if ((Hi = (Remainder >> 16) & 0xFFFF)) {
688     Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
689                                     SDValue(Result, 0), getI32Imm(Hi));
690   }
691   if ((Lo = Remainder & 0xFFFF)) {
692     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
693                                     SDValue(Result, 0), getI32Imm(Lo));
694   }
695
696   return Result;
697 }
698
699 static SDNode *SelectInt64(SelectionDAG *CurDAG, SDLoc dl, int64_t Imm) {
700   unsigned Count = SelectInt64CountDirect(Imm);
701   if (Count == 1)
702     return SelectInt64Direct(CurDAG, dl, Imm);
703
704   unsigned RMin = 0;
705
706   int64_t MatImm;
707   unsigned MaskEnd;
708
709   for (unsigned r = 1; r < 63; ++r) {
710     uint64_t RImm = Rot64(Imm, r);
711     unsigned RCount = SelectInt64CountDirect(RImm) + 1;
712     if (RCount < Count) {
713       Count = RCount;
714       RMin = r;
715       MatImm = RImm;
716       MaskEnd = 63;
717     }
718
719     // If the immediate to generate has many trailing zeros, it might be
720     // worthwhile to generate a rotated value with too many leading ones
721     // (because that's free with li/lis's sign-extension semantics), and then
722     // mask them off after rotation.
723
724     unsigned LS = findLastSet(RImm);
725     // We're adding (63-LS) higher-order ones, and we expect to mask them off
726     // after performing the inverse rotation by (64-r). So we need that:
727     //   63-LS == 64-r => LS == r-1
728     if (LS != r-1)
729       continue;
730
731     uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
732     uint64_t RImmWithOnes = RImm | OnesMask;
733
734     RCount = SelectInt64CountDirect(RImmWithOnes) + 1;
735     if (RCount < Count) {
736       Count = RCount;
737       RMin = r;
738       MatImm = RImmWithOnes;
739       MaskEnd = LS;
740     }
741   }
742
743   if (!RMin)
744     return SelectInt64Direct(CurDAG, dl, Imm);
745
746   auto getI32Imm = [CurDAG](unsigned Imm) {
747       return CurDAG->getTargetConstant(Imm, MVT::i32);
748   };
749
750   SDValue Val = SDValue(SelectInt64Direct(CurDAG, dl, MatImm), 0);
751   return CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Val,
752                                 getI32Imm(64 - RMin), getI32Imm(MaskEnd));
753 }
754
755 // Select a 64-bit constant.
756 static SDNode *SelectInt64(SelectionDAG *CurDAG, SDNode *N) {
757   SDLoc dl(N);
758
759   // Get 64 bit value.
760   int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
761   return SelectInt64(CurDAG, dl, Imm);
762 }
763
764 namespace {
765 class BitPermutationSelector {
766   struct ValueBit {
767     SDValue V;
768
769     // The bit number in the value, using a convention where bit 0 is the
770     // lowest-order bit.
771     unsigned Idx;
772
773     enum Kind {
774       ConstZero,
775       Variable
776     } K;
777
778     ValueBit(SDValue V, unsigned I, Kind K = Variable)
779       : V(V), Idx(I), K(K) {}
780     ValueBit(Kind K = Variable)
781       : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {}
782
783     bool isZero() const {
784       return K == ConstZero;
785     }
786
787     bool hasValue() const {
788       return K == Variable;
789     }
790
791     SDValue getValue() const {
792       assert(hasValue() && "Cannot get the value of a constant bit");
793       return V;
794     }
795
796     unsigned getValueBitIndex() const {
797       assert(hasValue() && "Cannot get the value bit index of a constant bit");
798       return Idx;
799     }
800   };
801
802   // A bit group has the same underlying value and the same rotate factor.
803   struct BitGroup {
804     SDValue V;
805     unsigned RLAmt;
806     unsigned StartIdx, EndIdx;
807
808     // This rotation amount assumes that the lower 32 bits of the quantity are
809     // replicated in the high 32 bits by the rotation operator (which is done
810     // by rlwinm and friends in 64-bit mode).
811     bool Repl32;
812     // Did converting to Repl32 == true change the rotation factor? If it did,
813     // it decreased it by 32.
814     bool Repl32CR;
815     // Was this group coalesced after setting Repl32 to true?
816     bool Repl32Coalesced;
817
818     BitGroup(SDValue V, unsigned R, unsigned S, unsigned E)
819       : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false),
820         Repl32Coalesced(false) {
821       DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R <<
822                       " [" << S << ", " << E << "]\n");
823     }
824   };
825
826   // Information on each (Value, RLAmt) pair (like the number of groups
827   // associated with each) used to choose the lowering method.
828   struct ValueRotInfo {
829     SDValue V;
830     unsigned RLAmt;
831     unsigned NumGroups;
832     unsigned FirstGroupStartIdx;
833     bool Repl32;
834
835     ValueRotInfo()
836       : RLAmt(UINT32_MAX), NumGroups(0), FirstGroupStartIdx(UINT32_MAX),
837         Repl32(false) {}
838
839     // For sorting (in reverse order) by NumGroups, and then by
840     // FirstGroupStartIdx.
841     bool operator < (const ValueRotInfo &Other) const {
842       // We need to sort so that the non-Repl32 come first because, when we're
843       // doing masking, the Repl32 bit groups might be subsumed into the 64-bit
844       // masking operation.
845       if (Repl32 < Other.Repl32)
846         return true;
847       else if (Repl32 > Other.Repl32)
848         return false;
849       else if (NumGroups > Other.NumGroups)
850         return true;
851       else if (NumGroups < Other.NumGroups)
852         return false;
853       else if (FirstGroupStartIdx < Other.FirstGroupStartIdx)
854         return true;
855       return false;
856     }
857   };
858
859   // Return true if something interesting was deduced, return false if we're
860   // providing only a generic representation of V (or something else likewise
861   // uninteresting for instruction selection).
862   bool getValueBits(SDValue V, SmallVector<ValueBit, 64> &Bits) {
863     switch (V.getOpcode()) {
864     default: break;
865     case ISD::ROTL:
866       if (isa<ConstantSDNode>(V.getOperand(1))) {
867         unsigned RotAmt = V.getConstantOperandVal(1);
868
869         SmallVector<ValueBit, 64> LHSBits(Bits.size());
870         getValueBits(V.getOperand(0), LHSBits);
871
872         for (unsigned i = 0; i < Bits.size(); ++i)
873           Bits[i] = LHSBits[i < RotAmt ? i + (Bits.size() - RotAmt) : i - RotAmt];
874
875         return true;
876       }
877       break;
878     case ISD::SHL:
879       if (isa<ConstantSDNode>(V.getOperand(1))) {
880         unsigned ShiftAmt = V.getConstantOperandVal(1);
881
882         SmallVector<ValueBit, 64> LHSBits(Bits.size());
883         getValueBits(V.getOperand(0), LHSBits);
884
885         for (unsigned i = ShiftAmt; i < Bits.size(); ++i)
886           Bits[i] = LHSBits[i - ShiftAmt];
887
888         for (unsigned i = 0; i < ShiftAmt; ++i)
889           Bits[i] = ValueBit(ValueBit::ConstZero);
890
891         return true;
892       }
893       break;
894     case ISD::SRL:
895       if (isa<ConstantSDNode>(V.getOperand(1))) {
896         unsigned ShiftAmt = V.getConstantOperandVal(1);
897
898         SmallVector<ValueBit, 64> LHSBits(Bits.size());
899         getValueBits(V.getOperand(0), LHSBits);
900
901         for (unsigned i = 0; i < Bits.size() - ShiftAmt; ++i)
902           Bits[i] = LHSBits[i + ShiftAmt];
903
904         for (unsigned i = Bits.size() - ShiftAmt; i < Bits.size(); ++i)
905           Bits[i] = ValueBit(ValueBit::ConstZero);
906
907         return true;
908       }
909       break;
910     case ISD::AND:
911       if (isa<ConstantSDNode>(V.getOperand(1))) {
912         uint64_t Mask = V.getConstantOperandVal(1);
913
914         SmallVector<ValueBit, 64> LHSBits(Bits.size());
915         bool LHSTrivial = getValueBits(V.getOperand(0), LHSBits);
916
917         for (unsigned i = 0; i < Bits.size(); ++i)
918           if (((Mask >> i) & 1) == 1)
919             Bits[i] = LHSBits[i];
920           else
921             Bits[i] = ValueBit(ValueBit::ConstZero);
922
923         // Mark this as interesting, only if the LHS was also interesting. This
924         // prevents the overall procedure from matching a single immediate 'and'
925         // (which is non-optimal because such an and might be folded with other
926         // things if we don't select it here).
927         return LHSTrivial;
928       }
929       break;
930     case ISD::OR: {
931       SmallVector<ValueBit, 64> LHSBits(Bits.size()), RHSBits(Bits.size());
932       getValueBits(V.getOperand(0), LHSBits);
933       getValueBits(V.getOperand(1), RHSBits);
934
935       bool AllDisjoint = true;
936       for (unsigned i = 0; i < Bits.size(); ++i)
937         if (LHSBits[i].isZero())
938           Bits[i] = RHSBits[i];
939         else if (RHSBits[i].isZero())
940           Bits[i] = LHSBits[i];
941         else {
942           AllDisjoint = false;
943           break;
944         }
945
946       if (!AllDisjoint)
947         break;
948
949       return true;
950     }
951     }
952
953     for (unsigned i = 0; i < Bits.size(); ++i)
954       Bits[i] = ValueBit(V, i);
955
956     return false;
957   }
958
959   // For each value (except the constant ones), compute the left-rotate amount
960   // to get it from its original to final position.
961   void computeRotationAmounts() {
962     HasZeros = false;
963     RLAmt.resize(Bits.size());
964     for (unsigned i = 0; i < Bits.size(); ++i)
965       if (Bits[i].hasValue()) {
966         unsigned VBI = Bits[i].getValueBitIndex();
967         if (i >= VBI)
968           RLAmt[i] = i - VBI;
969         else
970           RLAmt[i] = Bits.size() - (VBI - i);
971       } else if (Bits[i].isZero()) {
972         HasZeros = true;
973         RLAmt[i] = UINT32_MAX;
974       } else {
975         llvm_unreachable("Unknown value bit type");
976       }
977   }
978
979   // Collect groups of consecutive bits with the same underlying value and
980   // rotation factor. If we're doing late masking, we ignore zeros, otherwise
981   // they break up groups.
982   void collectBitGroups(bool LateMask) {
983     BitGroups.clear();
984
985     unsigned LastRLAmt = RLAmt[0];
986     SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue();
987     unsigned LastGroupStartIdx = 0;
988     for (unsigned i = 1; i < Bits.size(); ++i) {
989       unsigned ThisRLAmt = RLAmt[i];
990       SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue();
991       if (LateMask && !ThisValue) {
992         ThisValue = LastValue;
993         ThisRLAmt = LastRLAmt;
994         // If we're doing late masking, then the first bit group always starts
995         // at zero (even if the first bits were zero).
996         if (BitGroups.empty())
997           LastGroupStartIdx = 0;
998       }
999
1000       // If this bit has the same underlying value and the same rotate factor as
1001       // the last one, then they're part of the same group.
1002       if (ThisRLAmt == LastRLAmt && ThisValue == LastValue)
1003         continue;
1004
1005       if (LastValue.getNode())
1006         BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1007                                      i-1));
1008       LastRLAmt = ThisRLAmt;
1009       LastValue = ThisValue;
1010       LastGroupStartIdx = i;
1011     }
1012     if (LastValue.getNode())
1013       BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1014                                    Bits.size()-1));
1015
1016     if (BitGroups.empty())
1017       return;
1018
1019     // We might be able to combine the first and last groups.
1020     if (BitGroups.size() > 1) {
1021       // If the first and last groups are the same, then remove the first group
1022       // in favor of the last group, making the ending index of the last group
1023       // equal to the ending index of the to-be-removed first group.
1024       if (BitGroups[0].StartIdx == 0 &&
1025           BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 &&
1026           BitGroups[0].V == BitGroups[BitGroups.size()-1].V &&
1027           BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) {
1028         DEBUG(dbgs() << "\tcombining final bit group with inital one\n");
1029         BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx;
1030         BitGroups.erase(BitGroups.begin());
1031       }
1032     }
1033   }
1034
1035   // Take all (SDValue, RLAmt) pairs and sort them by the number of groups
1036   // associated with each. If there is a degeneracy, pick the one that occurs
1037   // first (in the final value).
1038   void collectValueRotInfo() {
1039     ValueRots.clear();
1040
1041     for (auto &BG : BitGroups) {
1042       unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0);
1043       ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)];
1044       VRI.V = BG.V;
1045       VRI.RLAmt = BG.RLAmt;
1046       VRI.Repl32 = BG.Repl32;
1047       VRI.NumGroups += 1;
1048       VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx);
1049     }
1050
1051     // Now that we've collected the various ValueRotInfo instances, we need to
1052     // sort them.
1053     ValueRotsVec.clear();
1054     for (auto &I : ValueRots) {
1055       ValueRotsVec.push_back(I.second);
1056     }
1057     std::sort(ValueRotsVec.begin(), ValueRotsVec.end());
1058   }
1059
1060   // In 64-bit mode, rlwinm and friends have a rotation operator that
1061   // replicates the low-order 32 bits into the high-order 32-bits. The mask
1062   // indices of these instructions can only be in the lower 32 bits, so they
1063   // can only represent some 64-bit bit groups. However, when they can be used,
1064   // the 32-bit replication can be used to represent, as a single bit group,
1065   // otherwise separate bit groups. We'll convert to replicated-32-bit bit
1066   // groups when possible. Returns true if any of the bit groups were
1067   // converted.
1068   void assignRepl32BitGroups() {
1069     // If we have bits like this:
1070     //
1071     // Indices:    15 14 13 12 11 10 9 8  7  6  5  4  3  2  1  0
1072     // V bits: ... 7  6  5  4  3  2  1 0 31 30 29 28 27 26 25 24
1073     // Groups:    |      RLAmt = 8      |      RLAmt = 40       |
1074     //
1075     // But, making use of a 32-bit operation that replicates the low-order 32
1076     // bits into the high-order 32 bits, this can be one bit group with a RLAmt
1077     // of 8.
1078
1079     auto IsAllLow32 = [this](BitGroup & BG) {
1080       if (BG.StartIdx <= BG.EndIdx) {
1081         for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) {
1082           if (!Bits[i].hasValue())
1083             continue;
1084           if (Bits[i].getValueBitIndex() >= 32)
1085             return false;
1086         }
1087       } else {
1088         for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) {
1089           if (!Bits[i].hasValue())
1090             continue;
1091           if (Bits[i].getValueBitIndex() >= 32)
1092             return false;
1093         }
1094         for (unsigned i = 0; i <= BG.EndIdx; ++i) {
1095           if (!Bits[i].hasValue())
1096             continue;
1097           if (Bits[i].getValueBitIndex() >= 32)
1098             return false;
1099         }
1100       }
1101
1102       return true;
1103     };
1104
1105     for (auto &BG : BitGroups) {
1106       if (BG.StartIdx < 32 && BG.EndIdx < 32) {
1107         if (IsAllLow32(BG)) {
1108           if (BG.RLAmt >= 32) {
1109             BG.RLAmt -= 32;
1110             BG.Repl32CR = true;
1111           }
1112
1113           BG.Repl32 = true;
1114
1115           DEBUG(dbgs() << "\t32-bit replicated bit group for " <<
1116                           BG.V.getNode() << " RLAmt = " << BG.RLAmt <<
1117                           " [" << BG.StartIdx << ", " << BG.EndIdx << "]\n");
1118         }
1119       }
1120     }
1121
1122     // Now walk through the bit groups, consolidating where possible.
1123     for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1124       // We might want to remove this bit group by merging it with the previous
1125       // group (which might be the ending group).
1126       auto IP = (I == BitGroups.begin()) ?
1127                 std::prev(BitGroups.end()) : std::prev(I);
1128       if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt &&
1129           I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) {
1130
1131         DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for " <<
1132                         I->V.getNode() << " RLAmt = " << I->RLAmt <<
1133                         " [" << I->StartIdx << ", " << I->EndIdx <<
1134                         "] with group with range [" <<
1135                         IP->StartIdx << ", " << IP->EndIdx << "]\n");
1136
1137         IP->EndIdx = I->EndIdx;
1138         IP->Repl32CR = IP->Repl32CR || I->Repl32CR;
1139         IP->Repl32Coalesced = true;
1140         I = BitGroups.erase(I);
1141         continue;
1142       } else {
1143         // There is a special case worth handling: If there is a single group
1144         // covering the entire upper 32 bits, and it can be merged with both
1145         // the next and previous groups (which might be the same group), then
1146         // do so. If it is the same group (so there will be only one group in
1147         // total), then we need to reverse the order of the range so that it
1148         // covers the entire 64 bits.
1149         if (I->StartIdx == 32 && I->EndIdx == 63) {
1150           assert(std::next(I) == BitGroups.end() &&
1151                  "bit group ends at index 63 but there is another?");
1152           auto IN = BitGroups.begin();
1153
1154           if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V && 
1155               (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt &&
1156               IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP &&
1157               IsAllLow32(*I)) {
1158
1159             DEBUG(dbgs() << "\tcombining bit group for " <<
1160                             I->V.getNode() << " RLAmt = " << I->RLAmt <<
1161                             " [" << I->StartIdx << ", " << I->EndIdx <<
1162                             "] with 32-bit replicated groups with ranges [" <<
1163                             IP->StartIdx << ", " << IP->EndIdx << "] and [" <<
1164                             IN->StartIdx << ", " << IN->EndIdx << "]\n");
1165
1166             if (IP == IN) {
1167               // There is only one other group; change it to cover the whole
1168               // range (backward, so that it can still be Repl32 but cover the
1169               // whole 64-bit range).
1170               IP->StartIdx = 31;
1171               IP->EndIdx = 30;
1172               IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32;
1173               IP->Repl32Coalesced = true;
1174               I = BitGroups.erase(I);
1175             } else {
1176               // There are two separate groups, one before this group and one
1177               // after us (at the beginning). We're going to remove this group,
1178               // but also the group at the very beginning.
1179               IP->EndIdx = IN->EndIdx;
1180               IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32;
1181               IP->Repl32Coalesced = true;
1182               I = BitGroups.erase(I);
1183               BitGroups.erase(BitGroups.begin());
1184             }
1185
1186             // This must be the last group in the vector (and we might have
1187             // just invalidated the iterator above), so break here.
1188             break;
1189           }
1190         }
1191       }
1192
1193       ++I;
1194     }
1195   }
1196
1197   SDValue getI32Imm(unsigned Imm) {
1198     return CurDAG->getTargetConstant(Imm, MVT::i32);
1199   }
1200
1201   uint64_t getZerosMask() {
1202     uint64_t Mask = 0;
1203     for (unsigned i = 0; i < Bits.size(); ++i) {
1204       if (Bits[i].hasValue())
1205         continue;
1206       Mask |= (UINT64_C(1) << i);
1207     }
1208
1209     return ~Mask;
1210   }
1211
1212   // Depending on the number of groups for a particular value, it might be
1213   // better to rotate, mask explicitly (using andi/andis), and then or the
1214   // result. Select this part of the result first.
1215   void SelectAndParts32(SDLoc dl, SDValue &Res, unsigned *InstCnt) {
1216     if (BPermRewriterNoMasking)
1217       return;
1218
1219     for (ValueRotInfo &VRI : ValueRotsVec) {
1220       unsigned Mask = 0;
1221       for (unsigned i = 0; i < Bits.size(); ++i) {
1222         if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V)
1223           continue;
1224         if (RLAmt[i] != VRI.RLAmt)
1225           continue;
1226         Mask |= (1u << i);
1227       }
1228
1229       // Compute the masks for andi/andis that would be necessary.
1230       unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
1231       assert((ANDIMask != 0 || ANDISMask != 0) &&
1232              "No set bits in mask for value bit groups");
1233       bool NeedsRotate = VRI.RLAmt != 0;
1234
1235       // We're trying to minimize the number of instructions. If we have one
1236       // group, using one of andi/andis can break even.  If we have three
1237       // groups, we can use both andi and andis and break even (to use both
1238       // andi and andis we also need to or the results together). We need four
1239       // groups if we also need to rotate. To use andi/andis we need to do more
1240       // than break even because rotate-and-mask instructions tend to be easier
1241       // to schedule.
1242
1243       // FIXME: We've biased here against using andi/andis, which is right for
1244       // POWER cores, but not optimal everywhere. For example, on the A2,
1245       // andi/andis have single-cycle latency whereas the rotate-and-mask
1246       // instructions take two cycles, and it would be better to bias toward
1247       // andi/andis in break-even cases.
1248
1249       unsigned NumAndInsts = (unsigned) NeedsRotate +
1250                              (unsigned) (ANDIMask != 0) +
1251                              (unsigned) (ANDISMask != 0) +
1252                              (unsigned) (ANDIMask != 0 && ANDISMask != 0) +
1253                              (unsigned) (bool) Res;
1254
1255       DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() <<
1256                       " RL: " << VRI.RLAmt << ":" <<
1257                       "\n\t\t\tisel using masking: " << NumAndInsts <<
1258                       " using rotates: " << VRI.NumGroups << "\n");
1259
1260       if (NumAndInsts >= VRI.NumGroups)
1261         continue;
1262
1263       DEBUG(dbgs() << "\t\t\t\tusing masking\n");
1264
1265       if (InstCnt) *InstCnt += NumAndInsts;
1266
1267       SDValue VRot;
1268       if (VRI.RLAmt) {
1269         SDValue Ops[] =
1270           { VRI.V, getI32Imm(VRI.RLAmt), getI32Imm(0), getI32Imm(31) };
1271         VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
1272                                               Ops), 0);
1273       } else {
1274         VRot = VRI.V;
1275       }
1276
1277       SDValue ANDIVal, ANDISVal;
1278       if (ANDIMask != 0)
1279         ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
1280                             VRot, getI32Imm(ANDIMask)), 0);
1281       if (ANDISMask != 0)
1282         ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
1283                              VRot, getI32Imm(ANDISMask)), 0);
1284
1285       SDValue TotalVal;
1286       if (!ANDIVal)
1287         TotalVal = ANDISVal;
1288       else if (!ANDISVal)
1289         TotalVal = ANDIVal;
1290       else
1291         TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1292                              ANDIVal, ANDISVal), 0);
1293
1294       if (!Res)
1295         Res = TotalVal;
1296       else
1297         Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1298                         Res, TotalVal), 0);
1299
1300       // Now, remove all groups with this underlying value and rotation
1301       // factor.
1302       for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1303         if (I->V == VRI.V && I->RLAmt == VRI.RLAmt)
1304           I = BitGroups.erase(I);
1305         else
1306           ++I;
1307       }
1308     }
1309   }
1310
1311   // Instruction selection for the 32-bit case.
1312   SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) {
1313     SDLoc dl(N);
1314     SDValue Res;
1315
1316     if (InstCnt) *InstCnt = 0;
1317
1318     // Take care of cases that should use andi/andis first.
1319     SelectAndParts32(dl, Res, InstCnt);
1320
1321     // If we've not yet selected a 'starting' instruction, and we have no zeros
1322     // to fill in, select the (Value, RLAmt) with the highest priority (largest
1323     // number of groups), and start with this rotated value.
1324     if ((!HasZeros || LateMask) && !Res) {
1325       ValueRotInfo &VRI = ValueRotsVec[0];
1326       if (VRI.RLAmt) {
1327         if (InstCnt) *InstCnt += 1;
1328         SDValue Ops[] =
1329           { VRI.V, getI32Imm(VRI.RLAmt), getI32Imm(0), getI32Imm(31) };
1330         Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
1331       } else {
1332         Res = VRI.V;
1333       }
1334
1335       // Now, remove all groups with this underlying value and rotation factor.
1336       for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1337         if (I->V == VRI.V && I->RLAmt == VRI.RLAmt)
1338           I = BitGroups.erase(I);
1339         else
1340           ++I;
1341       }
1342     }
1343
1344     if (InstCnt) *InstCnt += BitGroups.size();
1345
1346     // Insert the other groups (one at a time).
1347     for (auto &BG : BitGroups) {
1348       if (!Res) {
1349         SDValue Ops[] =
1350           { BG.V, getI32Imm(BG.RLAmt), getI32Imm(Bits.size() - BG.EndIdx - 1),
1351             getI32Imm(Bits.size() - BG.StartIdx - 1) };
1352         Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
1353       } else {
1354         SDValue Ops[] =
1355           { Res, BG.V, getI32Imm(BG.RLAmt), getI32Imm(Bits.size() - BG.EndIdx - 1),
1356             getI32Imm(Bits.size() - BG.StartIdx - 1) };
1357         Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0);
1358       }
1359     }
1360
1361     if (LateMask) {
1362       unsigned Mask = (unsigned) getZerosMask();
1363
1364       unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
1365       assert((ANDIMask != 0 || ANDISMask != 0) &&
1366              "No set bits in zeros mask?");
1367
1368       if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
1369                                (unsigned) (ANDISMask != 0) +
1370                                (unsigned) (ANDIMask != 0 && ANDISMask != 0);
1371
1372       SDValue ANDIVal, ANDISVal;
1373       if (ANDIMask != 0)
1374         ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
1375                             Res, getI32Imm(ANDIMask)), 0);
1376       if (ANDISMask != 0)
1377         ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
1378                              Res, getI32Imm(ANDISMask)), 0);
1379
1380       if (!ANDIVal)
1381         Res = ANDISVal;
1382       else if (!ANDISVal)
1383         Res = ANDIVal;
1384       else
1385         Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1386                         ANDIVal, ANDISVal), 0);
1387     }
1388
1389     return Res.getNode();
1390   }
1391
1392   unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32,
1393                                 unsigned MaskStart, unsigned MaskEnd,
1394                                 bool IsIns) {
1395     // In the notation used by the instructions, 'start' and 'end' are reversed
1396     // because bits are counted from high to low order.
1397     unsigned InstMaskStart = 64 - MaskEnd - 1,
1398              InstMaskEnd   = 64 - MaskStart - 1;
1399
1400     if (Repl32)
1401       return 1;
1402
1403     if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) ||
1404         InstMaskEnd == 63 - RLAmt)
1405       return 1;
1406
1407     return 2;
1408   }
1409
1410   // For 64-bit values, not all combinations of rotates and masks are
1411   // available. Produce one if it is available.
1412   SDValue SelectRotMask64(SDValue V, SDLoc dl, unsigned RLAmt, bool Repl32,
1413                           unsigned MaskStart, unsigned MaskEnd,
1414                           unsigned *InstCnt = nullptr) {
1415     // In the notation used by the instructions, 'start' and 'end' are reversed
1416     // because bits are counted from high to low order.
1417     unsigned InstMaskStart = 64 - MaskEnd - 1,
1418              InstMaskEnd   = 64 - MaskStart - 1;
1419
1420     if (InstCnt) *InstCnt += 1;
1421
1422     if (Repl32) {
1423       // This rotation amount assumes that the lower 32 bits of the quantity
1424       // are replicated in the high 32 bits by the rotation operator (which is
1425       // done by rlwinm and friends).
1426       assert(InstMaskStart >= 32 && "Mask cannot start out of range");
1427       assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
1428       SDValue Ops[] =
1429         { V, getI32Imm(RLAmt), getI32Imm(InstMaskStart - 32),
1430           getI32Imm(InstMaskEnd - 32) };
1431       return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64,
1432                                             Ops), 0);
1433     }
1434
1435     if (InstMaskEnd == 63) {
1436       SDValue Ops[] =
1437         { V, getI32Imm(RLAmt), getI32Imm(InstMaskStart) };
1438       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0);
1439     }
1440
1441     if (InstMaskStart == 0) {
1442       SDValue Ops[] =
1443         { V, getI32Imm(RLAmt), getI32Imm(InstMaskEnd) };
1444       return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0);
1445     }
1446
1447     if (InstMaskEnd == 63 - RLAmt) {
1448       SDValue Ops[] =
1449         { V, getI32Imm(RLAmt), getI32Imm(InstMaskStart) };
1450       return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0);
1451     }
1452
1453     // We cannot do this with a single instruction, so we'll use two. The
1454     // problem is that we're not free to choose both a rotation amount and mask
1455     // start and end independently. We can choose an arbitrary mask start and
1456     // end, but then the rotation amount is fixed. Rotation, however, can be
1457     // inverted, and so by applying an "inverse" rotation first, we can get the
1458     // desired result.
1459     if (InstCnt) *InstCnt += 1;
1460
1461     // The rotation mask for the second instruction must be MaskStart.
1462     unsigned RLAmt2 = MaskStart;
1463     // The first instruction must rotate V so that the overall rotation amount
1464     // is RLAmt.
1465     unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
1466     if (RLAmt1)
1467       V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
1468     return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd);
1469   }
1470
1471   // For 64-bit values, not all combinations of rotates and masks are
1472   // available. Produce a rotate-mask-and-insert if one is available.
1473   SDValue SelectRotMaskIns64(SDValue Base, SDValue V, SDLoc dl, unsigned RLAmt,
1474                              bool Repl32, unsigned MaskStart,
1475                              unsigned MaskEnd, unsigned *InstCnt = nullptr) {
1476     // In the notation used by the instructions, 'start' and 'end' are reversed
1477     // because bits are counted from high to low order.
1478     unsigned InstMaskStart = 64 - MaskEnd - 1,
1479              InstMaskEnd   = 64 - MaskStart - 1;
1480
1481     if (InstCnt) *InstCnt += 1;
1482
1483     if (Repl32) {
1484       // This rotation amount assumes that the lower 32 bits of the quantity
1485       // are replicated in the high 32 bits by the rotation operator (which is
1486       // done by rlwinm and friends).
1487       assert(InstMaskStart >= 32 && "Mask cannot start out of range");
1488       assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
1489       SDValue Ops[] =
1490         { Base, V, getI32Imm(RLAmt), getI32Imm(InstMaskStart - 32),
1491           getI32Imm(InstMaskEnd - 32) };
1492       return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64,
1493                                             Ops), 0);
1494     }
1495
1496     if (InstMaskEnd == 63 - RLAmt) {
1497       SDValue Ops[] =
1498         { Base, V, getI32Imm(RLAmt), getI32Imm(InstMaskStart) };
1499       return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0);
1500     }
1501
1502     // We cannot do this with a single instruction, so we'll use two. The
1503     // problem is that we're not free to choose both a rotation amount and mask
1504     // start and end independently. We can choose an arbitrary mask start and
1505     // end, but then the rotation amount is fixed. Rotation, however, can be
1506     // inverted, and so by applying an "inverse" rotation first, we can get the
1507     // desired result.
1508     if (InstCnt) *InstCnt += 1;
1509
1510     // The rotation mask for the second instruction must be MaskStart.
1511     unsigned RLAmt2 = MaskStart;
1512     // The first instruction must rotate V so that the overall rotation amount
1513     // is RLAmt.
1514     unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
1515     if (RLAmt1)
1516       V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
1517     return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd);
1518   }
1519
1520   void SelectAndParts64(SDLoc dl, SDValue &Res, unsigned *InstCnt) {
1521     if (BPermRewriterNoMasking)
1522       return;
1523
1524     // The idea here is the same as in the 32-bit version, but with additional
1525     // complications from the fact that Repl32 might be true. Because we
1526     // aggressively convert bit groups to Repl32 form (which, for small
1527     // rotation factors, involves no other change), and then coalesce, it might
1528     // be the case that a single 64-bit masking operation could handle both
1529     // some Repl32 groups and some non-Repl32 groups. If converting to Repl32
1530     // form allowed coalescing, then we must use a 32-bit rotaton in order to
1531     // completely capture the new combined bit group.
1532
1533     for (ValueRotInfo &VRI : ValueRotsVec) {
1534       uint64_t Mask = 0;
1535
1536       // We need to add to the mask all bits from the associated bit groups.
1537       // If Repl32 is false, we need to add bits from bit groups that have
1538       // Repl32 true, but are trivially convertable to Repl32 false. Such a
1539       // group is trivially convertable if it overlaps only with the lower 32
1540       // bits, and the group has not been coalesced.
1541       auto MatchingBG = [VRI](BitGroup &BG) {
1542         if (VRI.V != BG.V)
1543           return false;
1544
1545         unsigned EffRLAmt = BG.RLAmt;
1546         if (!VRI.Repl32 && BG.Repl32) {
1547           if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx &&
1548               !BG.Repl32Coalesced) {
1549             if (BG.Repl32CR)
1550               EffRLAmt += 32;
1551           } else {
1552             return false;
1553           }
1554         } else if (VRI.Repl32 != BG.Repl32) {
1555           return false;
1556         }
1557
1558         if (VRI.RLAmt != EffRLAmt)
1559           return false;
1560
1561         return true;
1562       };
1563
1564       for (auto &BG : BitGroups) {
1565         if (!MatchingBG(BG))
1566           continue;
1567
1568         if (BG.StartIdx <= BG.EndIdx) {
1569           for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i)
1570             Mask |= (UINT64_C(1) << i);
1571         } else {
1572           for (unsigned i = BG.StartIdx; i < Bits.size(); ++i)
1573             Mask |= (UINT64_C(1) << i);
1574           for (unsigned i = 0; i <= BG.EndIdx; ++i)
1575             Mask |= (UINT64_C(1) << i);
1576         }
1577       }
1578
1579       // We can use the 32-bit andi/andis technique if the mask does not
1580       // require any higher-order bits. This can save an instruction compared
1581       // to always using the general 64-bit technique.
1582       bool Use32BitInsts = isUInt<32>(Mask);
1583       // Compute the masks for andi/andis that would be necessary.
1584       unsigned ANDIMask = (Mask & UINT16_MAX),
1585                ANDISMask = (Mask >> 16) & UINT16_MAX;
1586
1587       bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask));
1588
1589       unsigned NumAndInsts = (unsigned) NeedsRotate +
1590                              (unsigned) (bool) Res;
1591       if (Use32BitInsts)
1592         NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) +
1593                        (unsigned) (ANDIMask != 0 && ANDISMask != 0);
1594       else
1595         NumAndInsts += SelectInt64Count(Mask) + /* and */ 1;
1596
1597       unsigned NumRLInsts = 0;
1598       bool FirstBG = true;
1599       for (auto &BG : BitGroups) {
1600         if (!MatchingBG(BG))
1601           continue;
1602         NumRLInsts +=
1603           SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx,
1604                                !FirstBG);
1605         FirstBG = false;
1606       }
1607
1608       DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() <<
1609                       " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") <<
1610                       "\n\t\t\tisel using masking: " << NumAndInsts <<
1611                       " using rotates: " << NumRLInsts << "\n");
1612
1613       // When we'd use andi/andis, we bias toward using the rotates (andi only
1614       // has a record form, and is cracked on POWER cores). However, when using
1615       // general 64-bit constant formation, bias toward the constant form,
1616       // because that exposes more opportunities for CSE.
1617       if (NumAndInsts > NumRLInsts)
1618         continue;
1619       if (Use32BitInsts && NumAndInsts == NumRLInsts)
1620         continue;
1621
1622       DEBUG(dbgs() << "\t\t\t\tusing masking\n");
1623
1624       if (InstCnt) *InstCnt += NumAndInsts;
1625
1626       SDValue VRot;
1627       // We actually need to generate a rotation if we have a non-zero rotation
1628       // factor or, in the Repl32 case, if we care about any of the
1629       // higher-order replicated bits. In the latter case, we generate a mask
1630       // backward so that it actually includes the entire 64 bits.
1631       if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)))
1632         VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
1633                                VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63);
1634       else
1635         VRot = VRI.V;
1636
1637       SDValue TotalVal;
1638       if (Use32BitInsts) {
1639         assert((ANDIMask != 0 || ANDISMask != 0) &&
1640                "No set bits in mask when using 32-bit ands for 64-bit value");
1641
1642         SDValue ANDIVal, ANDISVal;
1643         if (ANDIMask != 0)
1644           ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
1645                               VRot, getI32Imm(ANDIMask)), 0);
1646         if (ANDISMask != 0)
1647           ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
1648                                VRot, getI32Imm(ANDISMask)), 0);
1649
1650         if (!ANDIVal)
1651           TotalVal = ANDISVal;
1652         else if (!ANDISVal)
1653           TotalVal = ANDIVal;
1654         else
1655           TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
1656                                ANDIVal, ANDISVal), 0);
1657       } else {
1658         TotalVal = SDValue(SelectInt64(CurDAG, dl, Mask), 0);
1659         TotalVal =
1660           SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
1661                                          VRot, TotalVal), 0);
1662      }
1663
1664       if (!Res)
1665         Res = TotalVal;
1666       else
1667         Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
1668                                              Res, TotalVal), 0);
1669
1670       // Now, remove all groups with this underlying value and rotation
1671       // factor.
1672       for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1673         if (MatchingBG(*I))
1674           I = BitGroups.erase(I);
1675         else
1676           ++I;
1677       }
1678     }
1679   }
1680
1681   // Instruction selection for the 64-bit case.
1682   SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) {
1683     SDLoc dl(N);
1684     SDValue Res;
1685
1686     if (InstCnt) *InstCnt = 0;
1687
1688     // Take care of cases that should use andi/andis first.
1689     SelectAndParts64(dl, Res, InstCnt);
1690
1691     // If we've not yet selected a 'starting' instruction, and we have no zeros
1692     // to fill in, select the (Value, RLAmt) with the highest priority (largest
1693     // number of groups), and start with this rotated value.
1694     if ((!HasZeros || LateMask) && !Res) {
1695       // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32
1696       // groups will come first, and so the VRI representing the largest number
1697       // of groups might not be first (it might be the first Repl32 groups).
1698       unsigned MaxGroupsIdx = 0;
1699       if (!ValueRotsVec[0].Repl32) {
1700         for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i)
1701           if (ValueRotsVec[i].Repl32) {
1702             if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups)
1703               MaxGroupsIdx = i;
1704             break;
1705           }
1706       }
1707
1708       ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx];
1709       bool NeedsRotate = false;
1710       if (VRI.RLAmt) {
1711         NeedsRotate = true;
1712       } else if (VRI.Repl32) {
1713         for (auto &BG : BitGroups) {
1714           if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt ||
1715               BG.Repl32 != VRI.Repl32)
1716             continue;
1717
1718           // We don't need a rotate if the bit group is confined to the lower
1719           // 32 bits.
1720           if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx)
1721             continue;
1722
1723           NeedsRotate = true;
1724           break;
1725         }
1726       }
1727
1728       if (NeedsRotate)
1729         Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
1730                               VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63,
1731                               InstCnt);
1732       else
1733         Res = VRI.V;
1734
1735       // Now, remove all groups with this underlying value and rotation factor.
1736       if (Res)
1737         for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1738           if (I->V == VRI.V && I->RLAmt == VRI.RLAmt && I->Repl32 == VRI.Repl32)
1739             I = BitGroups.erase(I);
1740           else
1741             ++I;
1742         }
1743     }
1744
1745     // Because 64-bit rotates are more flexible than inserts, we might have a
1746     // preference regarding which one we do first (to save one instruction).
1747     if (!Res)
1748       for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) {
1749         if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
1750                                 false) <
1751             SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
1752                                 true)) {
1753           if (I != BitGroups.begin()) {
1754             BitGroup BG = *I;
1755             BitGroups.erase(I);
1756             BitGroups.insert(BitGroups.begin(), BG);
1757           }
1758
1759           break;
1760         }
1761       }
1762
1763     // Insert the other groups (one at a time).
1764     for (auto &BG : BitGroups) {
1765       if (!Res)
1766         Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx,
1767                               BG.EndIdx, InstCnt);
1768       else
1769         Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32,
1770                                  BG.StartIdx, BG.EndIdx, InstCnt);
1771     }
1772
1773     if (LateMask) {
1774       uint64_t Mask = getZerosMask();
1775
1776       // We can use the 32-bit andi/andis technique if the mask does not
1777       // require any higher-order bits. This can save an instruction compared
1778       // to always using the general 64-bit technique.
1779       bool Use32BitInsts = isUInt<32>(Mask);
1780       // Compute the masks for andi/andis that would be necessary.
1781       unsigned ANDIMask = (Mask & UINT16_MAX),
1782                ANDISMask = (Mask >> 16) & UINT16_MAX;
1783
1784       if (Use32BitInsts) {
1785         assert((ANDIMask != 0 || ANDISMask != 0) &&
1786                "No set bits in mask when using 32-bit ands for 64-bit value");
1787
1788         if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
1789                                  (unsigned) (ANDISMask != 0) +
1790                                  (unsigned) (ANDIMask != 0 && ANDISMask != 0);
1791
1792         SDValue ANDIVal, ANDISVal;
1793         if (ANDIMask != 0)
1794           ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
1795                               Res, getI32Imm(ANDIMask)), 0);
1796         if (ANDISMask != 0)
1797           ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
1798                                Res, getI32Imm(ANDISMask)), 0);
1799
1800         if (!ANDIVal)
1801           Res = ANDISVal;
1802         else if (!ANDISVal)
1803           Res = ANDIVal;
1804         else
1805           Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
1806                           ANDIVal, ANDISVal), 0);
1807       } else {
1808         if (InstCnt) *InstCnt += SelectInt64Count(Mask) + /* and */ 1;
1809
1810         SDValue MaskVal = SDValue(SelectInt64(CurDAG, dl, Mask), 0);
1811         Res =
1812           SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
1813                                          Res, MaskVal), 0);
1814       }
1815     }
1816
1817     return Res.getNode();
1818   }
1819
1820   SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) {
1821     // Fill in BitGroups.
1822     collectBitGroups(LateMask);
1823     if (BitGroups.empty())
1824       return nullptr;
1825
1826     // For 64-bit values, figure out when we can use 32-bit instructions.
1827     if (Bits.size() == 64)
1828       assignRepl32BitGroups();
1829
1830     // Fill in ValueRotsVec.
1831     collectValueRotInfo();
1832
1833     if (Bits.size() == 32) {
1834       return Select32(N, LateMask, InstCnt);
1835     } else {
1836       assert(Bits.size() == 64 && "Not 64 bits here?");
1837       return Select64(N, LateMask, InstCnt);
1838     }
1839
1840     return nullptr;
1841   }
1842
1843   SmallVector<ValueBit, 64> Bits;
1844
1845   bool HasZeros;
1846   SmallVector<unsigned, 64> RLAmt;
1847
1848   SmallVector<BitGroup, 16> BitGroups;
1849
1850   DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots;
1851   SmallVector<ValueRotInfo, 16> ValueRotsVec;
1852
1853   SelectionDAG *CurDAG;
1854
1855 public:
1856   BitPermutationSelector(SelectionDAG *DAG)
1857     : CurDAG(DAG) {}
1858
1859   // Here we try to match complex bit permutations into a set of
1860   // rotate-and-shift/shift/and/or instructions, using a set of heuristics
1861   // known to produce optimial code for common cases (like i32 byte swapping).
1862   SDNode *Select(SDNode *N) {
1863     Bits.resize(N->getValueType(0).getSizeInBits());
1864     if (!getValueBits(SDValue(N, 0), Bits))
1865       return nullptr;
1866
1867     DEBUG(dbgs() << "Considering bit-permutation-based instruction"
1868                     " selection for:    ");
1869     DEBUG(N->dump(CurDAG));
1870
1871     // Fill it RLAmt and set HasZeros.
1872     computeRotationAmounts();
1873
1874     if (!HasZeros)
1875       return Select(N, false);
1876
1877     // We currently have two techniques for handling results with zeros: early
1878     // masking (the default) and late masking. Late masking is sometimes more
1879     // efficient, but because the structure of the bit groups is different, it
1880     // is hard to tell without generating both and comparing the results. With
1881     // late masking, we ignore zeros in the resulting value when inserting each
1882     // set of bit groups, and then mask in the zeros at the end. With early
1883     // masking, we only insert the non-zero parts of the result at every step.
1884
1885     unsigned InstCnt, InstCntLateMask;
1886     DEBUG(dbgs() << "\tEarly masking:\n");
1887     SDNode *RN = Select(N, false, &InstCnt);
1888     DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n");
1889
1890     DEBUG(dbgs() << "\tLate masking:\n");
1891     SDNode *RNLM = Select(N, true, &InstCntLateMask);
1892     DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask <<
1893                     " instructions\n");
1894
1895     if (InstCnt <= InstCntLateMask) {
1896       DEBUG(dbgs() << "\tUsing early-masking for isel\n");
1897       return RN;
1898     }
1899
1900     DEBUG(dbgs() << "\tUsing late-masking for isel\n");
1901     return RNLM;
1902   }
1903 };
1904 } // anonymous namespace
1905
1906 SDNode *PPCDAGToDAGISel::SelectBitPermutation(SDNode *N) {
1907   if (N->getValueType(0) != MVT::i32 &&
1908       N->getValueType(0) != MVT::i64)
1909     return nullptr;
1910
1911   if (!UseBitPermRewriter)
1912     return nullptr;
1913
1914   switch (N->getOpcode()) {
1915   default: break;
1916   case ISD::ROTL:
1917   case ISD::SHL:
1918   case ISD::SRL:
1919   case ISD::AND:
1920   case ISD::OR: {
1921     BitPermutationSelector BPS(CurDAG);
1922     return BPS.Select(N);
1923   }
1924   }
1925
1926   return nullptr;
1927 }
1928
1929 /// SelectCC - Select a comparison of the specified values with the specified
1930 /// condition code, returning the CR# of the expression.
1931 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS,
1932                                     ISD::CondCode CC, SDLoc dl) {
1933   // Always select the LHS.
1934   unsigned Opc;
1935
1936   if (LHS.getValueType() == MVT::i32) {
1937     unsigned Imm;
1938     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
1939       if (isInt32Immediate(RHS, Imm)) {
1940         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
1941         if (isUInt<16>(Imm))
1942           return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
1943                                                 getI32Imm(Imm & 0xFFFF)), 0);
1944         // If this is a 16-bit signed immediate, fold it.
1945         if (isInt<16>((int)Imm))
1946           return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
1947                                                 getI32Imm(Imm & 0xFFFF)), 0);
1948
1949         // For non-equality comparisons, the default code would materialize the
1950         // constant, then compare against it, like this:
1951         //   lis r2, 4660
1952         //   ori r2, r2, 22136
1953         //   cmpw cr0, r3, r2
1954         // Since we are just comparing for equality, we can emit this instead:
1955         //   xoris r0,r3,0x1234
1956         //   cmplwi cr0,r0,0x5678
1957         //   beq cr0,L6
1958         SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
1959                                            getI32Imm(Imm >> 16)), 0);
1960         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
1961                                               getI32Imm(Imm & 0xFFFF)), 0);
1962       }
1963       Opc = PPC::CMPLW;
1964     } else if (ISD::isUnsignedIntSetCC(CC)) {
1965       if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
1966         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
1967                                               getI32Imm(Imm & 0xFFFF)), 0);
1968       Opc = PPC::CMPLW;
1969     } else {
1970       short SImm;
1971       if (isIntS16Immediate(RHS, SImm))
1972         return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
1973                                               getI32Imm((int)SImm & 0xFFFF)),
1974                          0);
1975       Opc = PPC::CMPW;
1976     }
1977   } else if (LHS.getValueType() == MVT::i64) {
1978     uint64_t Imm;
1979     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
1980       if (isInt64Immediate(RHS.getNode(), Imm)) {
1981         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
1982         if (isUInt<16>(Imm))
1983           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
1984                                                 getI32Imm(Imm & 0xFFFF)), 0);
1985         // If this is a 16-bit signed immediate, fold it.
1986         if (isInt<16>(Imm))
1987           return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
1988                                                 getI32Imm(Imm & 0xFFFF)), 0);
1989
1990         // For non-equality comparisons, the default code would materialize the
1991         // constant, then compare against it, like this:
1992         //   lis r2, 4660
1993         //   ori r2, r2, 22136
1994         //   cmpd cr0, r3, r2
1995         // Since we are just comparing for equality, we can emit this instead:
1996         //   xoris r0,r3,0x1234
1997         //   cmpldi cr0,r0,0x5678
1998         //   beq cr0,L6
1999         if (isUInt<32>(Imm)) {
2000           SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
2001                                              getI64Imm(Imm >> 16)), 0);
2002           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
2003                                                 getI64Imm(Imm & 0xFFFF)), 0);
2004         }
2005       }
2006       Opc = PPC::CMPLD;
2007     } else if (ISD::isUnsignedIntSetCC(CC)) {
2008       if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
2009         return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
2010                                               getI64Imm(Imm & 0xFFFF)), 0);
2011       Opc = PPC::CMPLD;
2012     } else {
2013       short SImm;
2014       if (isIntS16Immediate(RHS, SImm))
2015         return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
2016                                               getI64Imm(SImm & 0xFFFF)),
2017                          0);
2018       Opc = PPC::CMPD;
2019     }
2020   } else if (LHS.getValueType() == MVT::f32) {
2021     Opc = PPC::FCMPUS;
2022   } else {
2023     assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
2024     Opc = PPCSubTarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
2025   }
2026   return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
2027 }
2028
2029 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
2030   switch (CC) {
2031   case ISD::SETUEQ:
2032   case ISD::SETONE:
2033   case ISD::SETOLE:
2034   case ISD::SETOGE:
2035     llvm_unreachable("Should be lowered by legalize!");
2036   default: llvm_unreachable("Unknown condition!");
2037   case ISD::SETOEQ:
2038   case ISD::SETEQ:  return PPC::PRED_EQ;
2039   case ISD::SETUNE:
2040   case ISD::SETNE:  return PPC::PRED_NE;
2041   case ISD::SETOLT:
2042   case ISD::SETLT:  return PPC::PRED_LT;
2043   case ISD::SETULE:
2044   case ISD::SETLE:  return PPC::PRED_LE;
2045   case ISD::SETOGT:
2046   case ISD::SETGT:  return PPC::PRED_GT;
2047   case ISD::SETUGE:
2048   case ISD::SETGE:  return PPC::PRED_GE;
2049   case ISD::SETO:   return PPC::PRED_NU;
2050   case ISD::SETUO:  return PPC::PRED_UN;
2051     // These two are invalid for floating point.  Assume we have int.
2052   case ISD::SETULT: return PPC::PRED_LT;
2053   case ISD::SETUGT: return PPC::PRED_GT;
2054   }
2055 }
2056
2057 /// getCRIdxForSetCC - Return the index of the condition register field
2058 /// associated with the SetCC condition, and whether or not the field is
2059 /// treated as inverted.  That is, lt = 0; ge = 0 inverted.
2060 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
2061   Invert = false;
2062   switch (CC) {
2063   default: llvm_unreachable("Unknown condition!");
2064   case ISD::SETOLT:
2065   case ISD::SETLT:  return 0;                  // Bit #0 = SETOLT
2066   case ISD::SETOGT:
2067   case ISD::SETGT:  return 1;                  // Bit #1 = SETOGT
2068   case ISD::SETOEQ:
2069   case ISD::SETEQ:  return 2;                  // Bit #2 = SETOEQ
2070   case ISD::SETUO:  return 3;                  // Bit #3 = SETUO
2071   case ISD::SETUGE:
2072   case ISD::SETGE:  Invert = true; return 0;   // !Bit #0 = SETUGE
2073   case ISD::SETULE:
2074   case ISD::SETLE:  Invert = true; return 1;   // !Bit #1 = SETULE
2075   case ISD::SETUNE:
2076   case ISD::SETNE:  Invert = true; return 2;   // !Bit #2 = SETUNE
2077   case ISD::SETO:   Invert = true; return 3;   // !Bit #3 = SETO
2078   case ISD::SETUEQ:
2079   case ISD::SETOGE:
2080   case ISD::SETOLE:
2081   case ISD::SETONE:
2082     llvm_unreachable("Invalid branch code: should be expanded by legalize");
2083   // These are invalid for floating point.  Assume integer.
2084   case ISD::SETULT: return 0;
2085   case ISD::SETUGT: return 1;
2086   }
2087 }
2088
2089 // getVCmpInst: return the vector compare instruction for the specified
2090 // vector type and condition code. Since this is for altivec specific code,
2091 // only support the altivec types (v16i8, v8i16, v4i32, v2i64, and v4f32).
2092 static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC,
2093                                 bool HasVSX, bool &Swap, bool &Negate) {
2094   Swap = false;
2095   Negate = false;
2096
2097   if (VecVT.isFloatingPoint()) {
2098     /* Handle some cases by swapping input operands.  */
2099     switch (CC) {
2100       case ISD::SETLE: CC = ISD::SETGE; Swap = true; break;
2101       case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
2102       case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break;
2103       case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break;
2104       case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
2105       case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break;
2106       default: break;
2107     }
2108     /* Handle some cases by negating the result.  */
2109     switch (CC) {
2110       case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
2111       case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break;
2112       case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break;
2113       case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break;
2114       default: break;
2115     }
2116     /* We have instructions implementing the remaining cases.  */
2117     switch (CC) {
2118       case ISD::SETEQ:
2119       case ISD::SETOEQ:
2120         if (VecVT == MVT::v4f32)
2121           return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
2122         else if (VecVT == MVT::v2f64)
2123           return PPC::XVCMPEQDP;
2124         break;
2125       case ISD::SETGT:
2126       case ISD::SETOGT:
2127         if (VecVT == MVT::v4f32)
2128           return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
2129         else if (VecVT == MVT::v2f64)
2130           return PPC::XVCMPGTDP;
2131         break;
2132       case ISD::SETGE:
2133       case ISD::SETOGE:
2134         if (VecVT == MVT::v4f32)
2135           return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP;
2136         else if (VecVT == MVT::v2f64)
2137           return PPC::XVCMPGEDP;
2138         break;
2139       default:
2140         break;
2141     }
2142     llvm_unreachable("Invalid floating-point vector compare condition");
2143   } else {
2144     /* Handle some cases by swapping input operands.  */
2145     switch (CC) {
2146       case ISD::SETGE: CC = ISD::SETLE; Swap = true; break;
2147       case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
2148       case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
2149       case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break;
2150       default: break;
2151     }
2152     /* Handle some cases by negating the result.  */
2153     switch (CC) {
2154       case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
2155       case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break;
2156       case ISD::SETLE: CC = ISD::SETGT; Negate = true; break;
2157       case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break;
2158       default: break;
2159     }
2160     /* We have instructions implementing the remaining cases.  */
2161     switch (CC) {
2162       case ISD::SETEQ:
2163       case ISD::SETUEQ:
2164         if (VecVT == MVT::v16i8)
2165           return PPC::VCMPEQUB;
2166         else if (VecVT == MVT::v8i16)
2167           return PPC::VCMPEQUH;
2168         else if (VecVT == MVT::v4i32)
2169           return PPC::VCMPEQUW;
2170         else if (VecVT == MVT::v2i64)
2171           return PPC::VCMPEQUD;
2172         break;
2173       case ISD::SETGT:
2174         if (VecVT == MVT::v16i8)
2175           return PPC::VCMPGTSB;
2176         else if (VecVT == MVT::v8i16)
2177           return PPC::VCMPGTSH;
2178         else if (VecVT == MVT::v4i32)
2179           return PPC::VCMPGTSW;
2180         else if (VecVT == MVT::v2i64)
2181           return PPC::VCMPGTSD;
2182         break;
2183       case ISD::SETUGT:
2184         if (VecVT == MVT::v16i8)
2185           return PPC::VCMPGTUB;
2186         else if (VecVT == MVT::v8i16)
2187           return PPC::VCMPGTUH;
2188         else if (VecVT == MVT::v4i32)
2189           return PPC::VCMPGTUW;
2190         else if (VecVT == MVT::v2i64)
2191           return PPC::VCMPGTUD;
2192         break;
2193       default:
2194         break;
2195     }
2196     llvm_unreachable("Invalid integer vector compare condition");
2197   }
2198 }
2199
2200 SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) {
2201   SDLoc dl(N);
2202   unsigned Imm;
2203   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
2204   EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
2205   bool isPPC64 = (PtrVT == MVT::i64);
2206
2207   if (!PPCSubTarget->useCRBits() &&
2208       isInt32Immediate(N->getOperand(1), Imm)) {
2209     // We can codegen setcc op, imm very efficiently compared to a brcond.
2210     // Check for those cases here.
2211     // setcc op, 0
2212     if (Imm == 0) {
2213       SDValue Op = N->getOperand(0);
2214       switch (CC) {
2215       default: break;
2216       case ISD::SETEQ: {
2217         Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
2218         SDValue Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) };
2219         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2220       }
2221       case ISD::SETNE: {
2222         if (isPPC64) break;
2223         SDValue AD =
2224           SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
2225                                          Op, getI32Imm(~0U)), 0);
2226         return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op,
2227                                     AD.getValue(1));
2228       }
2229       case ISD::SETLT: {
2230         SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
2231         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2232       }
2233       case ISD::SETGT: {
2234         SDValue T =
2235           SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
2236         T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
2237         SDValue Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
2238         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2239       }
2240       }
2241     } else if (Imm == ~0U) {        // setcc op, -1
2242       SDValue Op = N->getOperand(0);
2243       switch (CC) {
2244       default: break;
2245       case ISD::SETEQ:
2246         if (isPPC64) break;
2247         Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
2248                                             Op, getI32Imm(1)), 0);
2249         return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
2250                               SDValue(CurDAG->getMachineNode(PPC::LI, dl,
2251                                                              MVT::i32,
2252                                                              getI32Imm(0)), 0),
2253                                       Op.getValue(1));
2254       case ISD::SETNE: {
2255         if (isPPC64) break;
2256         Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
2257         SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
2258                                             Op, getI32Imm(~0U));
2259         return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0),
2260                                     Op, SDValue(AD, 1));
2261       }
2262       case ISD::SETLT: {
2263         SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
2264                                                     getI32Imm(1)), 0);
2265         SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
2266                                                     Op), 0);
2267         SDValue Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
2268         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2269       }
2270       case ISD::SETGT: {
2271         SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
2272         Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
2273                      0);
2274         return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op,
2275                                     getI32Imm(1));
2276       }
2277       }
2278     }
2279   }
2280
2281   SDValue LHS = N->getOperand(0);
2282   SDValue RHS = N->getOperand(1);
2283
2284   // Altivec Vector compare instructions do not set any CR register by default and
2285   // vector compare operations return the same type as the operands.
2286   if (LHS.getValueType().isVector()) {
2287     if (PPCSubTarget->hasQPX())
2288       return nullptr;
2289
2290     EVT VecVT = LHS.getValueType();
2291     bool Swap, Negate;
2292     unsigned int VCmpInst = getVCmpInst(VecVT.getSimpleVT(), CC,
2293                                         PPCSubTarget->hasVSX(), Swap, Negate);
2294     if (Swap)
2295       std::swap(LHS, RHS);
2296
2297     if (Negate) {
2298       SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, VecVT, LHS, RHS), 0);
2299       return CurDAG->SelectNodeTo(N, PPCSubTarget->hasVSX() ? PPC::XXLNOR :
2300                                                               PPC::VNOR,
2301                                   VecVT, VCmp, VCmp);
2302     }
2303
2304     return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS);
2305   }
2306
2307   if (PPCSubTarget->useCRBits())
2308     return nullptr;
2309
2310   bool Inv;
2311   unsigned Idx = getCRIdxForSetCC(CC, Inv);
2312   SDValue CCReg = SelectCC(LHS, RHS, CC, dl);
2313   SDValue IntCR;
2314
2315   // Force the ccreg into CR7.
2316   SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
2317
2318   SDValue InFlag(nullptr, 0);  // Null incoming flag value.
2319   CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
2320                                InFlag).getValue(1);
2321
2322   IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
2323                                          CCReg), 0);
2324
2325   SDValue Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31),
2326                       getI32Imm(31), getI32Imm(31) };
2327   if (!Inv)
2328     return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2329
2330   // Get the specified bit.
2331   SDValue Tmp =
2332     SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
2333   return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
2334 }
2335
2336 SDNode *PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
2337   // Transfer memoperands.
2338   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
2339   MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
2340   cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
2341   return Result;
2342 }
2343
2344
2345 // Select - Convert the specified operand from a target-independent to a
2346 // target-specific node if it hasn't already been changed.
2347 SDNode *PPCDAGToDAGISel::Select(SDNode *N) {
2348   SDLoc dl(N);
2349   if (N->isMachineOpcode()) {
2350     N->setNodeId(-1);
2351     return nullptr;   // Already selected.
2352   }
2353
2354   // In case any misguided DAG-level optimizations form an ADD with a
2355   // TargetConstant operand, crash here instead of miscompiling (by selecting
2356   // an r+r add instead of some kind of r+i add).
2357   if (N->getOpcode() == ISD::ADD &&
2358       N->getOperand(1).getOpcode() == ISD::TargetConstant)
2359     llvm_unreachable("Invalid ADD with TargetConstant operand");
2360
2361   // Try matching complex bit permutations before doing anything else.
2362   if (SDNode *NN = SelectBitPermutation(N))
2363     return NN;
2364
2365   switch (N->getOpcode()) {
2366   default: break;
2367
2368   case ISD::Constant: {
2369     if (N->getValueType(0) == MVT::i64)
2370       return SelectInt64(CurDAG, N);
2371     break;
2372   }
2373
2374   case ISD::SETCC: {
2375     SDNode *SN = SelectSETCC(N);
2376     if (SN)
2377       return SN;
2378     break;
2379   }
2380   case PPCISD::GlobalBaseReg:
2381     return getGlobalBaseReg();
2382
2383   case ISD::FrameIndex:
2384     return getFrameIndex(N, N);
2385
2386   case PPCISD::MFOCRF: {
2387     SDValue InFlag = N->getOperand(1);
2388     return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
2389                                   N->getOperand(0), InFlag);
2390   }
2391
2392   case PPCISD::READ_TIME_BASE: {
2393     return CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
2394                                   MVT::Other, N->getOperand(0));
2395   }
2396
2397   case PPCISD::SRA_ADDZE: {
2398     SDValue N0 = N->getOperand(0);
2399     SDValue ShiftAmt =
2400       CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))->
2401                                   getConstantIntValue(), N->getValueType(0));
2402     if (N->getValueType(0) == MVT::i64) {
2403       SDNode *Op =
2404         CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue,
2405                                N0, ShiftAmt);
2406       return CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64,
2407                                   SDValue(Op, 0), SDValue(Op, 1));
2408     } else {
2409       assert(N->getValueType(0) == MVT::i32 &&
2410              "Expecting i64 or i32 in PPCISD::SRA_ADDZE");
2411       SDNode *Op =
2412         CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
2413                                N0, ShiftAmt);
2414       return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
2415                                   SDValue(Op, 0), SDValue(Op, 1));
2416     }
2417   }
2418
2419   case ISD::LOAD: {
2420     // Handle preincrement loads.
2421     LoadSDNode *LD = cast<LoadSDNode>(N);
2422     EVT LoadedVT = LD->getMemoryVT();
2423
2424     // Normal loads are handled by code generated from the .td file.
2425     if (LD->getAddressingMode() != ISD::PRE_INC)
2426       break;
2427
2428     SDValue Offset = LD->getOffset();
2429     if (Offset.getOpcode() == ISD::TargetConstant ||
2430         Offset.getOpcode() == ISD::TargetGlobalAddress) {
2431
2432       unsigned Opcode;
2433       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
2434       if (LD->getValueType(0) != MVT::i64) {
2435         // Handle PPC32 integer and normal FP loads.
2436         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
2437         switch (LoadedVT.getSimpleVT().SimpleTy) {
2438           default: llvm_unreachable("Invalid PPC load type!");
2439           case MVT::f64: Opcode = PPC::LFDU; break;
2440           case MVT::f32: Opcode = PPC::LFSU; break;
2441           case MVT::i32: Opcode = PPC::LWZU; break;
2442           case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
2443           case MVT::i1:
2444           case MVT::i8:  Opcode = PPC::LBZU; break;
2445         }
2446       } else {
2447         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
2448         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
2449         switch (LoadedVT.getSimpleVT().SimpleTy) {
2450           default: llvm_unreachable("Invalid PPC load type!");
2451           case MVT::i64: Opcode = PPC::LDU; break;
2452           case MVT::i32: Opcode = PPC::LWZU8; break;
2453           case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
2454           case MVT::i1:
2455           case MVT::i8:  Opcode = PPC::LBZU8; break;
2456         }
2457       }
2458
2459       SDValue Chain = LD->getChain();
2460       SDValue Base = LD->getBasePtr();
2461       SDValue Ops[] = { Offset, Base, Chain };
2462       return transferMemOperands(N, CurDAG->getMachineNode(Opcode, dl,
2463                                       LD->getValueType(0),
2464                                       PPCLowering->getPointerTy(),
2465                                       MVT::Other, Ops));
2466     } else {
2467       unsigned Opcode;
2468       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
2469       if (LD->getValueType(0) != MVT::i64) {
2470         // Handle PPC32 integer and normal FP loads.
2471         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
2472         switch (LoadedVT.getSimpleVT().SimpleTy) {
2473           default: llvm_unreachable("Invalid PPC load type!");
2474           case MVT::v4f64: Opcode = PPC::QVLFDUX; break; // QPX
2475           case MVT::v4f32: Opcode = PPC::QVLFSUX; break; // QPX
2476           case MVT::f64: Opcode = PPC::LFDUX; break;
2477           case MVT::f32: Opcode = PPC::LFSUX; break;
2478           case MVT::i32: Opcode = PPC::LWZUX; break;
2479           case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
2480           case MVT::i1:
2481           case MVT::i8:  Opcode = PPC::LBZUX; break;
2482         }
2483       } else {
2484         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
2485         assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
2486                "Invalid sext update load");
2487         switch (LoadedVT.getSimpleVT().SimpleTy) {
2488           default: llvm_unreachable("Invalid PPC load type!");
2489           case MVT::i64: Opcode = PPC::LDUX; break;
2490           case MVT::i32: Opcode = isSExt ? PPC::LWAUX  : PPC::LWZUX8; break;
2491           case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
2492           case MVT::i1:
2493           case MVT::i8:  Opcode = PPC::LBZUX8; break;
2494         }
2495       }
2496
2497       SDValue Chain = LD->getChain();
2498       SDValue Base = LD->getBasePtr();
2499       SDValue Ops[] = { Base, Offset, Chain };
2500       return transferMemOperands(N, CurDAG->getMachineNode(Opcode, dl,
2501                                       LD->getValueType(0),
2502                                       PPCLowering->getPointerTy(),
2503                                       MVT::Other, Ops));
2504     }
2505   }
2506
2507   case ISD::AND: {
2508     unsigned Imm, Imm2, SH, MB, ME;
2509     uint64_t Imm64;
2510
2511     // If this is an and of a value rotated between 0 and 31 bits and then and'd
2512     // with a mask, emit rlwinm
2513     if (isInt32Immediate(N->getOperand(1), Imm) &&
2514         isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
2515       SDValue Val = N->getOperand(0).getOperand(0);
2516       SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
2517       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2518     }
2519     // If this is just a masked value where the input is not handled above, and
2520     // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
2521     if (isInt32Immediate(N->getOperand(1), Imm) &&
2522         isRunOfOnes(Imm, MB, ME) &&
2523         N->getOperand(0).getOpcode() != ISD::ROTL) {
2524       SDValue Val = N->getOperand(0);
2525       SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) };
2526       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2527     }
2528     // If this is a 64-bit zero-extension mask, emit rldicl.
2529     if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) &&
2530         isMask_64(Imm64)) {
2531       SDValue Val = N->getOperand(0);
2532       MB = 64 - countTrailingOnes(Imm64);
2533       SH = 0;
2534
2535       // If the operand is a logical right shift, we can fold it into this
2536       // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
2537       // for n <= mb. The right shift is really a left rotate followed by a
2538       // mask, and this mask is a more-restrictive sub-mask of the mask implied
2539       // by the shift.
2540       if (Val.getOpcode() == ISD::SRL &&
2541           isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
2542         assert(Imm < 64 && "Illegal shift amount");
2543         Val = Val.getOperand(0);
2544         SH = 64 - Imm;
2545       }
2546
2547       SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB) };
2548       return CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
2549     }
2550     // AND X, 0 -> 0, not "rlwinm 32".
2551     if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
2552       ReplaceUses(SDValue(N, 0), N->getOperand(1));
2553       return nullptr;
2554     }
2555     // ISD::OR doesn't get all the bitfield insertion fun.
2556     // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
2557     if (isInt32Immediate(N->getOperand(1), Imm) &&
2558         N->getOperand(0).getOpcode() == ISD::OR &&
2559         isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
2560       unsigned MB, ME;
2561       Imm = ~(Imm^Imm2);
2562       if (isRunOfOnes(Imm, MB, ME)) {
2563         SDValue Ops[] = { N->getOperand(0).getOperand(0),
2564                             N->getOperand(0).getOperand(1),
2565                             getI32Imm(0), getI32Imm(MB),getI32Imm(ME) };
2566         return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops);
2567       }
2568     }
2569
2570     // Other cases are autogenerated.
2571     break;
2572   }
2573   case ISD::OR: {
2574     if (N->getValueType(0) == MVT::i32)
2575       if (SDNode *I = SelectBitfieldInsert(N))
2576         return I;
2577
2578     short Imm;
2579     if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
2580         isIntS16Immediate(N->getOperand(1), Imm)) {
2581       APInt LHSKnownZero, LHSKnownOne;
2582       CurDAG->computeKnownBits(N->getOperand(0), LHSKnownZero, LHSKnownOne);
2583
2584       // If this is equivalent to an add, then we can fold it with the
2585       // FrameIndex calculation.
2586       if ((LHSKnownZero.getZExtValue()|~(uint64_t)Imm) == ~0ULL)
2587         return getFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
2588     }
2589
2590     // Other cases are autogenerated.
2591     break;
2592   }
2593   case ISD::ADD: {
2594     short Imm;
2595     if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
2596         isIntS16Immediate(N->getOperand(1), Imm))
2597       return getFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
2598
2599     break;
2600   }
2601   case ISD::SHL: {
2602     unsigned Imm, SH, MB, ME;
2603     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
2604         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
2605       SDValue Ops[] = { N->getOperand(0).getOperand(0),
2606                           getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
2607       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2608     }
2609
2610     // Other cases are autogenerated.
2611     break;
2612   }
2613   case ISD::SRL: {
2614     unsigned Imm, SH, MB, ME;
2615     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
2616         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
2617       SDValue Ops[] = { N->getOperand(0).getOperand(0),
2618                           getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
2619       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2620     }
2621
2622     // Other cases are autogenerated.
2623     break;
2624   }
2625   // FIXME: Remove this once the ANDI glue bug is fixed:
2626   case PPCISD::ANDIo_1_EQ_BIT:
2627   case PPCISD::ANDIo_1_GT_BIT: {
2628     if (!ANDIGlueBug)
2629       break;
2630
2631     EVT InVT = N->getOperand(0).getValueType();
2632     assert((InVT == MVT::i64 || InVT == MVT::i32) &&
2633            "Invalid input type for ANDIo_1_EQ_BIT");
2634
2635     unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDIo8 : PPC::ANDIo;
2636     SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue,
2637                                         N->getOperand(0),
2638                                         CurDAG->getTargetConstant(1, InVT)), 0);
2639     SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
2640     SDValue SRIdxVal =
2641       CurDAG->getTargetConstant(N->getOpcode() == PPCISD::ANDIo_1_EQ_BIT ?
2642                                 PPC::sub_eq : PPC::sub_gt, MVT::i32);
2643
2644     return CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1,
2645                                 CR0Reg, SRIdxVal,
2646                                 SDValue(AndI.getNode(), 1) /* glue */);
2647   }
2648   case ISD::SELECT_CC: {
2649     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
2650     EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
2651     bool isPPC64 = (PtrVT == MVT::i64);
2652
2653     // If this is a select of i1 operands, we'll pattern match it.
2654     if (PPCSubTarget->useCRBits() &&
2655         N->getOperand(0).getValueType() == MVT::i1)
2656       break;
2657
2658     // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
2659     if (!isPPC64)
2660       if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2661         if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
2662           if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
2663             if (N1C->isNullValue() && N3C->isNullValue() &&
2664                 N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
2665                 // FIXME: Implement this optzn for PPC64.
2666                 N->getValueType(0) == MVT::i32) {
2667               SDNode *Tmp =
2668                 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
2669                                        N->getOperand(0), getI32Imm(~0U));
2670               return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
2671                                           SDValue(Tmp, 0), N->getOperand(0),
2672                                           SDValue(Tmp, 1));
2673             }
2674
2675     SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
2676
2677     if (N->getValueType(0) == MVT::i1) {
2678       // An i1 select is: (c & t) | (!c & f).
2679       bool Inv;
2680       unsigned Idx = getCRIdxForSetCC(CC, Inv);
2681
2682       unsigned SRI;
2683       switch (Idx) {
2684       default: llvm_unreachable("Invalid CC index");
2685       case 0: SRI = PPC::sub_lt; break;
2686       case 1: SRI = PPC::sub_gt; break;
2687       case 2: SRI = PPC::sub_eq; break;
2688       case 3: SRI = PPC::sub_un; break;
2689       }
2690
2691       SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg);
2692
2693       SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1,
2694                                               CCBit, CCBit), 0);
2695       SDValue C =    Inv ? NotCCBit : CCBit,
2696               NotC = Inv ? CCBit    : NotCCBit;
2697
2698       SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
2699                                            C, N->getOperand(2)), 0);
2700       SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
2701                                               NotC, N->getOperand(3)), 0);
2702
2703       return CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
2704     }
2705
2706     unsigned BROpc = getPredicateForSetCC(CC);
2707
2708     unsigned SelectCCOp;
2709     if (N->getValueType(0) == MVT::i32)
2710       SelectCCOp = PPC::SELECT_CC_I4;
2711     else if (N->getValueType(0) == MVT::i64)
2712       SelectCCOp = PPC::SELECT_CC_I8;
2713     else if (N->getValueType(0) == MVT::f32)
2714       SelectCCOp = PPC::SELECT_CC_F4;
2715     else if (N->getValueType(0) == MVT::f64)
2716       if (PPCSubTarget->hasVSX())
2717         SelectCCOp = PPC::SELECT_CC_VSFRC;
2718       else
2719         SelectCCOp = PPC::SELECT_CC_F8;
2720     else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f64)
2721       SelectCCOp = PPC::SELECT_CC_QFRC;
2722     else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f32)
2723       SelectCCOp = PPC::SELECT_CC_QSRC;
2724     else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4i1)
2725       SelectCCOp = PPC::SELECT_CC_QBRC;
2726     else if (N->getValueType(0) == MVT::v2f64 ||
2727              N->getValueType(0) == MVT::v2i64)
2728       SelectCCOp = PPC::SELECT_CC_VSRC;
2729     else
2730       SelectCCOp = PPC::SELECT_CC_VRRC;
2731
2732     SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
2733                         getI32Imm(BROpc) };
2734     return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops);
2735   }
2736   case ISD::VSELECT:
2737     if (PPCSubTarget->hasVSX()) {
2738       SDValue Ops[] = { N->getOperand(2), N->getOperand(1), N->getOperand(0) };
2739       return CurDAG->SelectNodeTo(N, PPC::XXSEL, N->getValueType(0), Ops);
2740     }
2741
2742     break;
2743   case ISD::VECTOR_SHUFFLE:
2744     if (PPCSubTarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
2745                                   N->getValueType(0) == MVT::v2i64)) {
2746       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
2747       
2748       SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1),
2749               Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1);
2750       unsigned DM[2];
2751
2752       for (int i = 0; i < 2; ++i)
2753         if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2)
2754           DM[i] = 0;
2755         else
2756           DM[i] = 1;
2757
2758       // For little endian, we must swap the input operands and adjust
2759       // the mask elements (reverse and invert them).
2760       if (PPCSubTarget->isLittleEndian()) {
2761         std::swap(Op1, Op2);
2762         unsigned tmp = DM[0];
2763         DM[0] = 1 - DM[1];
2764         DM[1] = 1 - tmp;
2765       }
2766
2767       SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), MVT::i32);
2768
2769       if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 &&
2770           Op1.getOpcode() == ISD::SCALAR_TO_VECTOR &&
2771           isa<LoadSDNode>(Op1.getOperand(0))) {
2772         LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0));
2773         SDValue Base, Offset;
2774
2775         if (LD->isUnindexed() &&
2776             SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) {
2777           SDValue Chain = LD->getChain();
2778           SDValue Ops[] = { Base, Offset, Chain };
2779           return CurDAG->SelectNodeTo(N, PPC::LXVDSX,
2780                                       N->getValueType(0), Ops);
2781         }
2782       }
2783
2784       SDValue Ops[] = { Op1, Op2, DMV };
2785       return CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops);
2786     }
2787
2788     break;
2789   case PPCISD::BDNZ:
2790   case PPCISD::BDZ: {
2791     bool IsPPC64 = PPCSubTarget->isPPC64();
2792     SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
2793     return CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ ?
2794                                    (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
2795                                    (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
2796                                 MVT::Other, Ops);
2797   }
2798   case PPCISD::COND_BRANCH: {
2799     // Op #0 is the Chain.
2800     // Op #1 is the PPC::PRED_* number.
2801     // Op #2 is the CR#
2802     // Op #3 is the Dest MBB
2803     // Op #4 is the Flag.
2804     // Prevent PPC::PRED_* from being selected into LI.
2805     SDValue Pred =
2806       getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
2807     SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
2808       N->getOperand(0), N->getOperand(4) };
2809     return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
2810   }
2811   case ISD::BR_CC: {
2812     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
2813     unsigned PCC = getPredicateForSetCC(CC);
2814
2815     if (N->getOperand(2).getValueType() == MVT::i1) {
2816       unsigned Opc;
2817       bool Swap;
2818       switch (PCC) {
2819       default: llvm_unreachable("Unexpected Boolean-operand predicate");
2820       case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true;  break;
2821       case PPC::PRED_LE: Opc = PPC::CRORC;  Swap = true;  break;
2822       case PPC::PRED_EQ: Opc = PPC::CREQV;  Swap = false; break;
2823       case PPC::PRED_GE: Opc = PPC::CRORC;  Swap = false; break;
2824       case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break;
2825       case PPC::PRED_NE: Opc = PPC::CRXOR;  Swap = false; break;
2826       }
2827
2828       SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1,
2829                                              N->getOperand(Swap ? 3 : 2),
2830                                              N->getOperand(Swap ? 2 : 3)), 0);
2831       return CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other,
2832                                   BitComp, N->getOperand(4), N->getOperand(0));
2833     }
2834
2835     SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
2836     SDValue Ops[] = { getI32Imm(PCC), CondCode,
2837                         N->getOperand(4), N->getOperand(0) };
2838     return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
2839   }
2840   case ISD::BRIND: {
2841     // FIXME: Should custom lower this.
2842     SDValue Chain = N->getOperand(0);
2843     SDValue Target = N->getOperand(1);
2844     unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
2845     unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
2846     Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
2847                                            Chain), 0);
2848     return CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
2849   }
2850   case PPCISD::TOC_ENTRY: {
2851     assert ((PPCSubTarget->isPPC64() || PPCSubTarget->isSVR4ABI()) &&
2852             "Only supported for 64-bit ABI and 32-bit SVR4");
2853     if (PPCSubTarget->isSVR4ABI() && !PPCSubTarget->isPPC64()) {
2854       SDValue GA = N->getOperand(0);
2855       return transferMemOperands(N, CurDAG->getMachineNode(PPC::LWZtoc, dl,
2856                                       MVT::i32, GA, N->getOperand(1)));
2857     }
2858
2859     // For medium and large code model, we generate two instructions as
2860     // described below.  Otherwise we allow SelectCodeCommon to handle this,
2861     // selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA.
2862     CodeModel::Model CModel = TM.getCodeModel();
2863     if (CModel != CodeModel::Medium && CModel != CodeModel::Large)
2864       break;
2865
2866     // The first source operand is a TargetGlobalAddress or a TargetJumpTable.
2867     // If it is an externally defined symbol, a symbol with common linkage,
2868     // a non-local function address, or a jump table address, or if we are
2869     // generating code for large code model, we generate:
2870     //   LDtocL(<ga:@sym>, ADDIStocHA(%X2, <ga:@sym>))
2871     // Otherwise we generate:
2872     //   ADDItocL(ADDIStocHA(%X2, <ga:@sym>), <ga:@sym>)
2873     SDValue GA = N->getOperand(0);
2874     SDValue TOCbase = N->getOperand(1);
2875     SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64,
2876                                          TOCbase, GA);
2877
2878     if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA) ||
2879         CModel == CodeModel::Large)
2880       return transferMemOperands(N, CurDAG->getMachineNode(PPC::LDtocL, dl,
2881                                       MVT::i64, GA, SDValue(Tmp, 0)));
2882
2883     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
2884       const GlobalValue *GValue = G->getGlobal();
2885       if ((GValue->getType()->getElementType()->isFunctionTy() &&
2886            (GValue->isDeclaration() || GValue->isWeakForLinker())) ||
2887           GValue->isDeclaration() || GValue->hasCommonLinkage() ||
2888           GValue->hasAvailableExternallyLinkage())
2889         return transferMemOperands(N, CurDAG->getMachineNode(PPC::LDtocL, dl,
2890                                         MVT::i64, GA, SDValue(Tmp, 0)));
2891     }
2892
2893     return CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
2894                                   SDValue(Tmp, 0), GA);
2895   }
2896   case PPCISD::PPC32_PICGOT: {
2897     // Generate a PIC-safe GOT reference.
2898     assert(!PPCSubTarget->isPPC64() && PPCSubTarget->isSVR4ABI() &&
2899       "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
2900     return CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT, PPCLowering->getPointerTy(),  MVT::i32);
2901   }
2902   case PPCISD::VADD_SPLAT: {
2903     // This expands into one of three sequences, depending on whether
2904     // the first operand is odd or even, positive or negative.
2905     assert(isa<ConstantSDNode>(N->getOperand(0)) &&
2906            isa<ConstantSDNode>(N->getOperand(1)) &&
2907            "Invalid operand on VADD_SPLAT!");
2908
2909     int Elt     = N->getConstantOperandVal(0);
2910     int EltSize = N->getConstantOperandVal(1);
2911     unsigned Opc1, Opc2, Opc3;
2912     EVT VT;
2913
2914     if (EltSize == 1) {
2915       Opc1 = PPC::VSPLTISB;
2916       Opc2 = PPC::VADDUBM;
2917       Opc3 = PPC::VSUBUBM;
2918       VT = MVT::v16i8;
2919     } else if (EltSize == 2) {
2920       Opc1 = PPC::VSPLTISH;
2921       Opc2 = PPC::VADDUHM;
2922       Opc3 = PPC::VSUBUHM;
2923       VT = MVT::v8i16;
2924     } else {
2925       assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
2926       Opc1 = PPC::VSPLTISW;
2927       Opc2 = PPC::VADDUWM;
2928       Opc3 = PPC::VSUBUWM;
2929       VT = MVT::v4i32;
2930     }
2931
2932     if ((Elt & 1) == 0) {
2933       // Elt is even, in the range [-32,-18] + [16,30].
2934       //
2935       // Convert: VADD_SPLAT elt, size
2936       // Into:    tmp = VSPLTIS[BHW] elt
2937       //          VADDU[BHW]M tmp, tmp
2938       // Where:   [BHW] = B for size = 1, H for size = 2, W for size = 4
2939       SDValue EltVal = getI32Imm(Elt >> 1);
2940       SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
2941       SDValue TmpVal = SDValue(Tmp, 0);
2942       return CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal);
2943
2944     } else if (Elt > 0) {
2945       // Elt is odd and positive, in the range [17,31].
2946       //
2947       // Convert: VADD_SPLAT elt, size
2948       // Into:    tmp1 = VSPLTIS[BHW] elt-16
2949       //          tmp2 = VSPLTIS[BHW] -16
2950       //          VSUBU[BHW]M tmp1, tmp2
2951       SDValue EltVal = getI32Imm(Elt - 16);
2952       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
2953       EltVal = getI32Imm(-16);
2954       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
2955       return CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
2956                                     SDValue(Tmp2, 0));
2957
2958     } else {
2959       // Elt is odd and negative, in the range [-31,-17].
2960       //
2961       // Convert: VADD_SPLAT elt, size
2962       // Into:    tmp1 = VSPLTIS[BHW] elt+16
2963       //          tmp2 = VSPLTIS[BHW] -16
2964       //          VADDU[BHW]M tmp1, tmp2
2965       SDValue EltVal = getI32Imm(Elt + 16);
2966       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
2967       EltVal = getI32Imm(-16);
2968       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
2969       return CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
2970                                     SDValue(Tmp2, 0));
2971     }
2972   }
2973   }
2974
2975   return SelectCode(N);
2976 }
2977
2978 // If the target supports the cmpb instruction, do the idiom recognition here.
2979 // We don't do this as a DAG combine because we don't want to do it as nodes
2980 // are being combined (because we might miss part of the eventual idiom). We
2981 // don't want to do it during instruction selection because we want to reuse
2982 // the logic for lowering the masking operations already part of the
2983 // instruction selector.
2984 SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
2985   SDLoc dl(N);
2986
2987   assert(N->getOpcode() == ISD::OR &&
2988          "Only OR nodes are supported for CMPB");
2989
2990   SDValue Res;
2991   if (!PPCSubTarget->hasCMPB())
2992     return Res;
2993
2994   if (N->getValueType(0) != MVT::i32 &&
2995       N->getValueType(0) != MVT::i64)
2996     return Res;
2997
2998   EVT VT = N->getValueType(0);
2999
3000   SDValue RHS, LHS;
3001   bool BytesFound[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
3002   uint64_t Mask = 0, Alt = 0;
3003
3004   auto IsByteSelectCC = [this](SDValue O, unsigned &b,
3005                                uint64_t &Mask, uint64_t &Alt,
3006                                SDValue &LHS, SDValue &RHS) {
3007     if (O.getOpcode() != ISD::SELECT_CC)
3008       return false;
3009     ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get();
3010
3011     if (!isa<ConstantSDNode>(O.getOperand(2)) ||
3012         !isa<ConstantSDNode>(O.getOperand(3)))
3013       return false;
3014
3015     uint64_t PM = O.getConstantOperandVal(2);
3016     uint64_t PAlt = O.getConstantOperandVal(3);
3017     for (b = 0; b < 8; ++b) {
3018       uint64_t Mask = UINT64_C(0xFF) << (8*b);
3019       if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt)
3020         break;
3021     }
3022
3023     if (b == 8)
3024       return false;
3025     Mask |= PM;
3026     Alt  |= PAlt;
3027
3028     if (!isa<ConstantSDNode>(O.getOperand(1)) ||
3029         O.getConstantOperandVal(1) != 0) {
3030       SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1);
3031       if (Op0.getOpcode() == ISD::TRUNCATE)
3032         Op0 = Op0.getOperand(0);
3033       if (Op1.getOpcode() == ISD::TRUNCATE)
3034         Op1 = Op1.getOperand(0);
3035
3036       if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL &&
3037           Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ &&
3038           isa<ConstantSDNode>(Op0.getOperand(1))) {
3039
3040         unsigned Bits = Op0.getValueType().getSizeInBits();
3041         if (b != Bits/8-1)
3042           return false;
3043         if (Op0.getConstantOperandVal(1) != Bits-8)
3044           return false;
3045
3046         LHS = Op0.getOperand(0);
3047         RHS = Op1.getOperand(0);
3048         return true;
3049       }
3050
3051       // When we have small integers (i16 to be specific), the form present
3052       // post-legalization uses SETULT in the SELECT_CC for the
3053       // higher-order byte, depending on the fact that the
3054       // even-higher-order bytes are known to all be zero, for example:
3055       //   select_cc (xor $lhs, $rhs), 256, 65280, 0, setult
3056       // (so when the second byte is the same, because all higher-order
3057       // bits from bytes 3 and 4 are known to be zero, the result of the
3058       // xor can be at most 255)
3059       if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT &&
3060           isa<ConstantSDNode>(O.getOperand(1))) {
3061
3062         uint64_t ULim = O.getConstantOperandVal(1);
3063         if (ULim != (UINT64_C(1) << b*8))
3064           return false;
3065
3066         // Now we need to make sure that the upper bytes are known to be
3067         // zero.
3068         unsigned Bits = Op0.getValueType().getSizeInBits();
3069         if (!CurDAG->MaskedValueIsZero(Op0,
3070               APInt::getHighBitsSet(Bits, Bits - (b+1)*8)))
3071           return false;
3072         
3073         LHS = Op0.getOperand(0);
3074         RHS = Op0.getOperand(1);
3075         return true;
3076       }
3077
3078       return false;
3079     }
3080
3081     if (CC != ISD::SETEQ)
3082       return false;
3083
3084     SDValue Op = O.getOperand(0);
3085     if (Op.getOpcode() == ISD::AND) {
3086       if (!isa<ConstantSDNode>(Op.getOperand(1)))
3087         return false;
3088       if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b)))
3089         return false;
3090
3091       SDValue XOR = Op.getOperand(0);
3092       if (XOR.getOpcode() == ISD::TRUNCATE)
3093         XOR = XOR.getOperand(0);
3094       if (XOR.getOpcode() != ISD::XOR)
3095         return false;
3096
3097       LHS = XOR.getOperand(0);
3098       RHS = XOR.getOperand(1);
3099       return true;
3100     } else if (Op.getOpcode() == ISD::SRL) {
3101       if (!isa<ConstantSDNode>(Op.getOperand(1)))
3102         return false;
3103       unsigned Bits = Op.getValueType().getSizeInBits();
3104       if (b != Bits/8-1)
3105         return false;
3106       if (Op.getConstantOperandVal(1) != Bits-8)
3107         return false;
3108
3109       SDValue XOR = Op.getOperand(0);
3110       if (XOR.getOpcode() == ISD::TRUNCATE)
3111         XOR = XOR.getOperand(0);
3112       if (XOR.getOpcode() != ISD::XOR)
3113         return false;
3114
3115       LHS = XOR.getOperand(0);
3116       RHS = XOR.getOperand(1);
3117       return true;
3118     }
3119
3120     return false;
3121   };
3122
3123   SmallVector<SDValue, 8> Queue(1, SDValue(N, 0));
3124   while (!Queue.empty()) {
3125     SDValue V = Queue.pop_back_val();
3126
3127     for (const SDValue &O : V.getNode()->ops()) {
3128       unsigned b;
3129       uint64_t M = 0, A = 0;
3130       SDValue OLHS, ORHS;
3131       if (O.getOpcode() == ISD::OR) {
3132         Queue.push_back(O);
3133       } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) {
3134         if (!LHS) {
3135           LHS = OLHS;
3136           RHS = ORHS;
3137           BytesFound[b] = true;
3138           Mask |= M;
3139           Alt  |= A;
3140         } else if ((LHS == ORHS && RHS == OLHS) ||
3141                    (RHS == ORHS && LHS == OLHS)) {
3142           BytesFound[b] = true;
3143           Mask |= M;
3144           Alt  |= A;
3145         } else {
3146           return Res;
3147         }
3148       } else {
3149         return Res;
3150       }
3151     }
3152   }
3153
3154   unsigned LastB = 0, BCnt = 0;
3155   for (unsigned i = 0; i < 8; ++i)
3156     if (BytesFound[LastB]) {
3157       ++BCnt;
3158       LastB = i;
3159     }
3160
3161   if (!LastB || BCnt < 2)
3162     return Res;
3163
3164   // Because we'll be zero-extending the output anyway if don't have a specific
3165   // value for each input byte (via the Mask), we can 'anyext' the inputs.
3166   if (LHS.getValueType() != VT) {
3167     LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT);
3168     RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT);
3169   }
3170
3171   Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS);
3172
3173   bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1);
3174   if (NonTrivialMask && !Alt) {
3175     // Res = Mask & CMPB
3176     Res = CurDAG->getNode(ISD::AND, dl, VT, Res, CurDAG->getConstant(Mask, VT));
3177   } else if (Alt) {
3178     // Res = (CMPB & Mask) | (~CMPB & Alt)
3179     // Which, as suggested here:
3180     //   https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
3181     // can be written as:
3182     // Res = Alt ^ ((Alt ^ Mask) & CMPB)
3183     // useful because the (Alt ^ Mask) can be pre-computed.
3184     Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
3185                           CurDAG->getConstant(Mask ^ Alt, VT));
3186     Res = CurDAG->getNode(ISD::XOR, dl, VT, Res, CurDAG->getConstant(Alt, VT));
3187   }
3188
3189   return Res;
3190 }
3191
3192 // When CR bit registers are enabled, an extension of an i1 variable to a i32
3193 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus
3194 // involves constant materialization of a 0 or a 1 or both. If the result of
3195 // the extension is then operated upon by some operator that can be constant
3196 // folded with a constant 0 or 1, and that constant can be materialized using
3197 // only one instruction (like a zero or one), then we should fold in those
3198 // operations with the select.
3199 void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
3200   if (!PPCSubTarget->useCRBits())
3201     return;
3202
3203   if (N->getOpcode() != ISD::ZERO_EXTEND &&
3204       N->getOpcode() != ISD::SIGN_EXTEND &&
3205       N->getOpcode() != ISD::ANY_EXTEND)
3206     return;
3207
3208   if (N->getOperand(0).getValueType() != MVT::i1)
3209     return;
3210
3211   if (!N->hasOneUse())
3212     return;
3213
3214   SDLoc dl(N);
3215   EVT VT = N->getValueType(0);
3216   SDValue Cond = N->getOperand(0);
3217   SDValue ConstTrue =
3218     CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, VT);
3219   SDValue ConstFalse = CurDAG->getConstant(0, VT);
3220
3221   do {
3222     SDNode *User = *N->use_begin();
3223     if (User->getNumOperands() != 2)
3224       break;
3225
3226     auto TryFold = [this, N, User](SDValue Val) {
3227       SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1);
3228       SDValue O0 = UserO0.getNode() == N ? Val : UserO0;
3229       SDValue O1 = UserO1.getNode() == N ? Val : UserO1;
3230
3231       return CurDAG->FoldConstantArithmetic(User->getOpcode(),
3232                                             User->getValueType(0),
3233                                             O0.getNode(), O1.getNode());
3234     };
3235
3236     SDValue TrueRes = TryFold(ConstTrue);
3237     if (!TrueRes)
3238       break;
3239     SDValue FalseRes = TryFold(ConstFalse);
3240     if (!FalseRes)
3241       break;
3242
3243     // For us to materialize these using one instruction, we must be able to
3244     // represent them as signed 16-bit integers.
3245     uint64_t True  = cast<ConstantSDNode>(TrueRes)->getZExtValue(),
3246              False = cast<ConstantSDNode>(FalseRes)->getZExtValue();
3247     if (!isInt<16>(True) || !isInt<16>(False))
3248       break;
3249
3250     // We can replace User with a new SELECT node, and try again to see if we
3251     // can fold the select with its user.
3252     Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes);
3253     N = User;
3254     ConstTrue = TrueRes;
3255     ConstFalse = FalseRes;
3256   } while (N->hasOneUse());
3257 }
3258
3259 void PPCDAGToDAGISel::PreprocessISelDAG() {
3260   SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
3261   ++Position;
3262
3263   bool MadeChange = false;
3264   while (Position != CurDAG->allnodes_begin()) {
3265     SDNode *N = --Position;
3266     if (N->use_empty())
3267       continue;
3268
3269     SDValue Res;
3270     switch (N->getOpcode()) {
3271     default: break;
3272     case ISD::OR:
3273       Res = combineToCMPB(N);
3274       break;
3275     }
3276
3277     if (!Res)
3278       foldBoolExts(Res, N);
3279
3280     if (Res) {
3281       DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld:    ");
3282       DEBUG(N->dump(CurDAG));
3283       DEBUG(dbgs() << "\nNew: ");
3284       DEBUG(Res.getNode()->dump(CurDAG));
3285       DEBUG(dbgs() << "\n");
3286
3287       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
3288       MadeChange = true;
3289     }
3290   }
3291
3292   if (MadeChange)
3293     CurDAG->RemoveDeadNodes();
3294 }
3295
3296 /// PostprocessISelDAG - Perform some late peephole optimizations
3297 /// on the DAG representation.
3298 void PPCDAGToDAGISel::PostprocessISelDAG() {
3299
3300   // Skip peepholes at -O0.
3301   if (TM.getOptLevel() == CodeGenOpt::None)
3302     return;
3303
3304   PeepholePPC64();
3305   PeepholeCROps();
3306   PeepholePPC64ZExt();
3307 }
3308
3309 // Check if all users of this node will become isel where the second operand
3310 // is the constant zero. If this is so, and if we can negate the condition,
3311 // then we can flip the true and false operands. This will allow the zero to
3312 // be folded with the isel so that we don't need to materialize a register
3313 // containing zero.
3314 bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) {
3315   // If we're not using isel, then this does not matter.
3316   if (!PPCSubTarget->hasISEL())
3317     return false;
3318
3319   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
3320        UI != UE; ++UI) {
3321     SDNode *User = *UI;
3322     if (!User->isMachineOpcode())
3323       return false;
3324     if (User->getMachineOpcode() != PPC::SELECT_I4 &&
3325         User->getMachineOpcode() != PPC::SELECT_I8)
3326       return false;
3327
3328     SDNode *Op2 = User->getOperand(2).getNode();
3329     if (!Op2->isMachineOpcode())
3330       return false;
3331
3332     if (Op2->getMachineOpcode() != PPC::LI &&
3333         Op2->getMachineOpcode() != PPC::LI8)
3334       return false;
3335
3336     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0));
3337     if (!C)
3338       return false;
3339
3340     if (!C->isNullValue())
3341       return false;
3342   }
3343
3344   return true;
3345 }
3346
3347 void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) {
3348   SmallVector<SDNode *, 4> ToReplace;
3349   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
3350        UI != UE; ++UI) {
3351     SDNode *User = *UI;
3352     assert((User->getMachineOpcode() == PPC::SELECT_I4 ||
3353             User->getMachineOpcode() == PPC::SELECT_I8) &&
3354            "Must have all select users");
3355     ToReplace.push_back(User);
3356   }
3357
3358   for (SmallVector<SDNode *, 4>::iterator UI = ToReplace.begin(),
3359        UE = ToReplace.end(); UI != UE; ++UI) {
3360     SDNode *User = *UI;
3361     SDNode *ResNode =
3362       CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User),
3363                              User->getValueType(0), User->getOperand(0),
3364                              User->getOperand(2),
3365                              User->getOperand(1));
3366
3367       DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
3368       DEBUG(User->dump(CurDAG));
3369       DEBUG(dbgs() << "\nNew: ");
3370       DEBUG(ResNode->dump(CurDAG));
3371       DEBUG(dbgs() << "\n");
3372
3373       ReplaceUses(User, ResNode);
3374   }
3375 }
3376
3377 void PPCDAGToDAGISel::PeepholeCROps() {
3378   bool IsModified;
3379   do {
3380     IsModified = false;
3381     for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
3382          E = CurDAG->allnodes_end(); I != E; ++I) {
3383       MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(I);
3384       if (!MachineNode || MachineNode->use_empty())
3385         continue;
3386       SDNode *ResNode = MachineNode;
3387
3388       bool Op1Set   = false, Op1Unset = false,
3389            Op1Not   = false,
3390            Op2Set   = false, Op2Unset = false,
3391            Op2Not   = false;
3392
3393       unsigned Opcode = MachineNode->getMachineOpcode();
3394       switch (Opcode) {
3395       default: break;
3396       case PPC::CRAND:
3397       case PPC::CRNAND:
3398       case PPC::CROR:
3399       case PPC::CRXOR:
3400       case PPC::CRNOR:
3401       case PPC::CREQV:
3402       case PPC::CRANDC:
3403       case PPC::CRORC: {
3404         SDValue Op = MachineNode->getOperand(1);
3405         if (Op.isMachineOpcode()) {
3406           if (Op.getMachineOpcode() == PPC::CRSET)
3407             Op2Set = true;
3408           else if (Op.getMachineOpcode() == PPC::CRUNSET)
3409             Op2Unset = true;
3410           else if (Op.getMachineOpcode() == PPC::CRNOR &&
3411                    Op.getOperand(0) == Op.getOperand(1))
3412             Op2Not = true;
3413         }
3414         }  // fallthrough
3415       case PPC::BC:
3416       case PPC::BCn:
3417       case PPC::SELECT_I4:
3418       case PPC::SELECT_I8:
3419       case PPC::SELECT_F4:
3420       case PPC::SELECT_F8:
3421       case PPC::SELECT_QFRC:
3422       case PPC::SELECT_QSRC:
3423       case PPC::SELECT_QBRC:
3424       case PPC::SELECT_VRRC:
3425       case PPC::SELECT_VSFRC:
3426       case PPC::SELECT_VSRC: {
3427         SDValue Op = MachineNode->getOperand(0);
3428         if (Op.isMachineOpcode()) {
3429           if (Op.getMachineOpcode() == PPC::CRSET)
3430             Op1Set = true;
3431           else if (Op.getMachineOpcode() == PPC::CRUNSET)
3432             Op1Unset = true;
3433           else if (Op.getMachineOpcode() == PPC::CRNOR &&
3434                    Op.getOperand(0) == Op.getOperand(1))
3435             Op1Not = true;
3436         }
3437         }
3438         break;
3439       }
3440
3441       bool SelectSwap = false;
3442       switch (Opcode) {
3443       default: break;
3444       case PPC::CRAND:
3445         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3446           // x & x = x
3447           ResNode = MachineNode->getOperand(0).getNode();
3448         else if (Op1Set)
3449           // 1 & y = y
3450           ResNode = MachineNode->getOperand(1).getNode();
3451         else if (Op2Set)
3452           // x & 1 = x
3453           ResNode = MachineNode->getOperand(0).getNode();
3454         else if (Op1Unset || Op2Unset)
3455           // x & 0 = 0 & y = 0
3456           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3457                                            MVT::i1);
3458         else if (Op1Not)
3459           // ~x & y = andc(y, x)
3460           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3461                                            MVT::i1, MachineNode->getOperand(1),
3462                                            MachineNode->getOperand(0).
3463                                              getOperand(0));
3464         else if (Op2Not)
3465           // x & ~y = andc(x, y)
3466           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3467                                            MVT::i1, MachineNode->getOperand(0),
3468                                            MachineNode->getOperand(1).
3469                                              getOperand(0));
3470         else if (AllUsersSelectZero(MachineNode))
3471           ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
3472                                            MVT::i1, MachineNode->getOperand(0),
3473                                            MachineNode->getOperand(1)),
3474           SelectSwap = true;
3475         break;
3476       case PPC::CRNAND:
3477         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3478           // nand(x, x) -> nor(x, x)
3479           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3480                                            MVT::i1, MachineNode->getOperand(0),
3481                                            MachineNode->getOperand(0));
3482         else if (Op1Set)
3483           // nand(1, y) -> nor(y, y)
3484           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3485                                            MVT::i1, MachineNode->getOperand(1),
3486                                            MachineNode->getOperand(1));
3487         else if (Op2Set)
3488           // nand(x, 1) -> nor(x, x)
3489           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3490                                            MVT::i1, MachineNode->getOperand(0),
3491                                            MachineNode->getOperand(0));
3492         else if (Op1Unset || Op2Unset)
3493           // nand(x, 0) = nand(0, y) = 1
3494           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3495                                            MVT::i1);
3496         else if (Op1Not)
3497           // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y)
3498           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3499                                            MVT::i1, MachineNode->getOperand(0).
3500                                                       getOperand(0),
3501                                            MachineNode->getOperand(1));
3502         else if (Op2Not)
3503           // nand(x, ~y) = ~x | y = orc(y, x)
3504           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3505                                            MVT::i1, MachineNode->getOperand(1).
3506                                                       getOperand(0),
3507                                            MachineNode->getOperand(0));
3508         else if (AllUsersSelectZero(MachineNode))
3509           ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
3510                                            MVT::i1, MachineNode->getOperand(0),
3511                                            MachineNode->getOperand(1)),
3512           SelectSwap = true;
3513         break;
3514       case PPC::CROR:
3515         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3516           // x | x = x
3517           ResNode = MachineNode->getOperand(0).getNode();
3518         else if (Op1Set || Op2Set)
3519           // x | 1 = 1 | y = 1
3520           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3521                                            MVT::i1);
3522         else if (Op1Unset)
3523           // 0 | y = y
3524           ResNode = MachineNode->getOperand(1).getNode();
3525         else if (Op2Unset)
3526           // x | 0 = x
3527           ResNode = MachineNode->getOperand(0).getNode();
3528         else if (Op1Not)
3529           // ~x | y = orc(y, x)
3530           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3531                                            MVT::i1, MachineNode->getOperand(1),
3532                                            MachineNode->getOperand(0).
3533                                              getOperand(0));
3534         else if (Op2Not)
3535           // x | ~y = orc(x, y)
3536           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3537                                            MVT::i1, MachineNode->getOperand(0),
3538                                            MachineNode->getOperand(1).
3539                                              getOperand(0));
3540         else if (AllUsersSelectZero(MachineNode))
3541           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3542                                            MVT::i1, MachineNode->getOperand(0),
3543                                            MachineNode->getOperand(1)),
3544           SelectSwap = true;
3545         break;
3546       case PPC::CRXOR:
3547         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3548           // xor(x, x) = 0
3549           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3550                                            MVT::i1);
3551         else if (Op1Set)
3552           // xor(1, y) -> nor(y, y)
3553           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3554                                            MVT::i1, MachineNode->getOperand(1),
3555                                            MachineNode->getOperand(1));
3556         else if (Op2Set)
3557           // xor(x, 1) -> nor(x, x)
3558           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3559                                            MVT::i1, MachineNode->getOperand(0),
3560                                            MachineNode->getOperand(0));
3561         else if (Op1Unset)
3562           // xor(0, y) = y
3563           ResNode = MachineNode->getOperand(1).getNode();
3564         else if (Op2Unset)
3565           // xor(x, 0) = x
3566           ResNode = MachineNode->getOperand(0).getNode();
3567         else if (Op1Not)
3568           // xor(~x, y) = eqv(x, y)
3569           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
3570                                            MVT::i1, MachineNode->getOperand(0).
3571                                                       getOperand(0),
3572                                            MachineNode->getOperand(1));
3573         else if (Op2Not)
3574           // xor(x, ~y) = eqv(x, y)
3575           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
3576                                            MVT::i1, MachineNode->getOperand(0),
3577                                            MachineNode->getOperand(1).
3578                                              getOperand(0));
3579         else if (AllUsersSelectZero(MachineNode))
3580           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
3581                                            MVT::i1, MachineNode->getOperand(0),
3582                                            MachineNode->getOperand(1)),
3583           SelectSwap = true;
3584         break;
3585       case PPC::CRNOR:
3586         if (Op1Set || Op2Set)
3587           // nor(1, y) -> 0
3588           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3589                                            MVT::i1);
3590         else if (Op1Unset)
3591           // nor(0, y) = ~y -> nor(y, y)
3592           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3593                                            MVT::i1, MachineNode->getOperand(1),
3594                                            MachineNode->getOperand(1));
3595         else if (Op2Unset)
3596           // nor(x, 0) = ~x
3597           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3598                                            MVT::i1, MachineNode->getOperand(0),
3599                                            MachineNode->getOperand(0));
3600         else if (Op1Not)
3601           // nor(~x, y) = andc(x, y)
3602           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3603                                            MVT::i1, MachineNode->getOperand(0).
3604                                                       getOperand(0),
3605                                            MachineNode->getOperand(1));
3606         else if (Op2Not)
3607           // nor(x, ~y) = andc(y, x)
3608           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3609                                            MVT::i1, MachineNode->getOperand(1).
3610                                                       getOperand(0),
3611                                            MachineNode->getOperand(0));
3612         else if (AllUsersSelectZero(MachineNode))
3613           ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
3614                                            MVT::i1, MachineNode->getOperand(0),
3615                                            MachineNode->getOperand(1)),
3616           SelectSwap = true;
3617         break;
3618       case PPC::CREQV:
3619         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3620           // eqv(x, x) = 1
3621           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3622                                            MVT::i1);
3623         else if (Op1Set)
3624           // eqv(1, y) = y
3625           ResNode = MachineNode->getOperand(1).getNode();
3626         else if (Op2Set)
3627           // eqv(x, 1) = x
3628           ResNode = MachineNode->getOperand(0).getNode();
3629         else if (Op1Unset)
3630           // eqv(0, y) = ~y -> nor(y, y)
3631           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3632                                            MVT::i1, MachineNode->getOperand(1),
3633                                            MachineNode->getOperand(1));
3634         else if (Op2Unset)
3635           // eqv(x, 0) = ~x
3636           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3637                                            MVT::i1, MachineNode->getOperand(0),
3638                                            MachineNode->getOperand(0));
3639         else if (Op1Not)
3640           // eqv(~x, y) = xor(x, y)
3641           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
3642                                            MVT::i1, MachineNode->getOperand(0).
3643                                                       getOperand(0),
3644                                            MachineNode->getOperand(1));
3645         else if (Op2Not)
3646           // eqv(x, ~y) = xor(x, y)
3647           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
3648                                            MVT::i1, MachineNode->getOperand(0),
3649                                            MachineNode->getOperand(1).
3650                                              getOperand(0));
3651         else if (AllUsersSelectZero(MachineNode))
3652           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
3653                                            MVT::i1, MachineNode->getOperand(0),
3654                                            MachineNode->getOperand(1)),
3655           SelectSwap = true;
3656         break;
3657       case PPC::CRANDC:
3658         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3659           // andc(x, x) = 0
3660           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3661                                            MVT::i1);
3662         else if (Op1Set)
3663           // andc(1, y) = ~y
3664           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3665                                            MVT::i1, MachineNode->getOperand(1),
3666                                            MachineNode->getOperand(1));
3667         else if (Op1Unset || Op2Set)
3668           // andc(0, y) = andc(x, 1) = 0
3669           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3670                                            MVT::i1);
3671         else if (Op2Unset)
3672           // andc(x, 0) = x
3673           ResNode = MachineNode->getOperand(0).getNode();
3674         else if (Op1Not)
3675           // andc(~x, y) = ~(x | y) = nor(x, y)
3676           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3677                                            MVT::i1, MachineNode->getOperand(0).
3678                                                       getOperand(0),
3679                                            MachineNode->getOperand(1));
3680         else if (Op2Not)
3681           // andc(x, ~y) = x & y
3682           ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
3683                                            MVT::i1, MachineNode->getOperand(0),
3684                                            MachineNode->getOperand(1).
3685                                              getOperand(0));
3686         else if (AllUsersSelectZero(MachineNode))
3687           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3688                                            MVT::i1, MachineNode->getOperand(1),
3689                                            MachineNode->getOperand(0)),
3690           SelectSwap = true;
3691         break;
3692       case PPC::CRORC:
3693         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3694           // orc(x, x) = 1
3695           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3696                                            MVT::i1);
3697         else if (Op1Set || Op2Unset)
3698           // orc(1, y) = orc(x, 0) = 1
3699           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3700                                            MVT::i1);
3701         else if (Op2Set)
3702           // orc(x, 1) = x
3703           ResNode = MachineNode->getOperand(0).getNode();
3704         else if (Op1Unset)
3705           // orc(0, y) = ~y
3706           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3707                                            MVT::i1, MachineNode->getOperand(1),
3708                                            MachineNode->getOperand(1));
3709         else if (Op1Not)
3710           // orc(~x, y) = ~(x & y) = nand(x, y)
3711           ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
3712                                            MVT::i1, MachineNode->getOperand(0).
3713                                                       getOperand(0),
3714                                            MachineNode->getOperand(1));
3715         else if (Op2Not)
3716           // orc(x, ~y) = x | y
3717           ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
3718                                            MVT::i1, MachineNode->getOperand(0),
3719                                            MachineNode->getOperand(1).
3720                                              getOperand(0));
3721         else if (AllUsersSelectZero(MachineNode))
3722           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3723                                            MVT::i1, MachineNode->getOperand(1),
3724                                            MachineNode->getOperand(0)),
3725           SelectSwap = true;
3726         break;
3727       case PPC::SELECT_I4:
3728       case PPC::SELECT_I8:
3729       case PPC::SELECT_F4:
3730       case PPC::SELECT_F8:
3731       case PPC::SELECT_QFRC:
3732       case PPC::SELECT_QSRC:
3733       case PPC::SELECT_QBRC:
3734       case PPC::SELECT_VRRC:
3735       case PPC::SELECT_VSFRC:
3736       case PPC::SELECT_VSRC:
3737         if (Op1Set)
3738           ResNode = MachineNode->getOperand(1).getNode();
3739         else if (Op1Unset)
3740           ResNode = MachineNode->getOperand(2).getNode();
3741         else if (Op1Not)
3742           ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(),
3743                                            SDLoc(MachineNode),
3744                                            MachineNode->getValueType(0),
3745                                            MachineNode->getOperand(0).
3746                                              getOperand(0),
3747                                            MachineNode->getOperand(2),
3748                                            MachineNode->getOperand(1));
3749         break;
3750       case PPC::BC:
3751       case PPC::BCn:
3752         if (Op1Not)
3753           ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn :
3754                                                                PPC::BC,
3755                                            SDLoc(MachineNode),
3756                                            MVT::Other,
3757                                            MachineNode->getOperand(0).
3758                                              getOperand(0),
3759                                            MachineNode->getOperand(1),
3760                                            MachineNode->getOperand(2));
3761         // FIXME: Handle Op1Set, Op1Unset here too.
3762         break;
3763       }
3764
3765       // If we're inverting this node because it is used only by selects that
3766       // we'd like to swap, then swap the selects before the node replacement.
3767       if (SelectSwap)
3768         SwapAllSelectUsers(MachineNode);
3769
3770       if (ResNode != MachineNode) {
3771         DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
3772         DEBUG(MachineNode->dump(CurDAG));
3773         DEBUG(dbgs() << "\nNew: ");
3774         DEBUG(ResNode->dump(CurDAG));
3775         DEBUG(dbgs() << "\n");
3776
3777         ReplaceUses(MachineNode, ResNode);
3778         IsModified = true;
3779       }
3780     }
3781     if (IsModified)
3782       CurDAG->RemoveDeadNodes();
3783   } while (IsModified);
3784 }
3785
3786 // Gather the set of 32-bit operations that are known to have their
3787 // higher-order 32 bits zero, where ToPromote contains all such operations.
3788 static bool PeepholePPC64ZExtGather(SDValue Op32,
3789                                     SmallPtrSetImpl<SDNode *> &ToPromote) {
3790   if (!Op32.isMachineOpcode())
3791     return false;
3792
3793   // First, check for the "frontier" instructions (those that will clear the
3794   // higher-order 32 bits.
3795
3796   // For RLWINM and RLWNM, we need to make sure that the mask does not wrap
3797   // around. If it does not, then these instructions will clear the
3798   // higher-order bits.
3799   if ((Op32.getMachineOpcode() == PPC::RLWINM ||
3800        Op32.getMachineOpcode() == PPC::RLWNM) &&
3801       Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) {
3802     ToPromote.insert(Op32.getNode());
3803     return true;
3804   }
3805
3806   // SLW and SRW always clear the higher-order bits.
3807   if (Op32.getMachineOpcode() == PPC::SLW ||
3808       Op32.getMachineOpcode() == PPC::SRW) {
3809     ToPromote.insert(Op32.getNode());
3810     return true;
3811   }
3812
3813   // For LI and LIS, we need the immediate to be positive (so that it is not
3814   // sign extended).
3815   if (Op32.getMachineOpcode() == PPC::LI ||
3816       Op32.getMachineOpcode() == PPC::LIS) {
3817     if (!isUInt<15>(Op32.getConstantOperandVal(0)))
3818       return false;
3819
3820     ToPromote.insert(Op32.getNode());
3821     return true;
3822   }
3823
3824   // LHBRX and LWBRX always clear the higher-order bits.
3825   if (Op32.getMachineOpcode() == PPC::LHBRX ||
3826       Op32.getMachineOpcode() == PPC::LWBRX) {
3827     ToPromote.insert(Op32.getNode());
3828     return true;
3829   }
3830
3831   // CNTLZW always produces a 64-bit value in [0,32], and so is zero extended.
3832   if (Op32.getMachineOpcode() == PPC::CNTLZW) {
3833     ToPromote.insert(Op32.getNode());
3834     return true;
3835   }
3836
3837   // Next, check for those instructions we can look through.
3838
3839   // Assuming the mask does not wrap around, then the higher-order bits are
3840   // taken directly from the first operand.
3841   if (Op32.getMachineOpcode() == PPC::RLWIMI &&
3842       Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) {
3843     SmallPtrSet<SDNode *, 16> ToPromote1;
3844     if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
3845       return false;
3846
3847     ToPromote.insert(Op32.getNode());
3848     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
3849     return true;
3850   }
3851
3852   // For OR, the higher-order bits are zero if that is true for both operands.
3853   // For SELECT_I4, the same is true (but the relevant operand numbers are
3854   // shifted by 1).
3855   if (Op32.getMachineOpcode() == PPC::OR ||
3856       Op32.getMachineOpcode() == PPC::SELECT_I4) {
3857     unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0;
3858     SmallPtrSet<SDNode *, 16> ToPromote1;
3859     if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1))
3860       return false;
3861     if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1))
3862       return false;
3863
3864     ToPromote.insert(Op32.getNode());
3865     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
3866     return true;
3867   }
3868
3869   // For ORI and ORIS, we need the higher-order bits of the first operand to be
3870   // zero, and also for the constant to be positive (so that it is not sign
3871   // extended).
3872   if (Op32.getMachineOpcode() == PPC::ORI ||
3873       Op32.getMachineOpcode() == PPC::ORIS) {
3874     SmallPtrSet<SDNode *, 16> ToPromote1;
3875     if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
3876       return false;
3877     if (!isUInt<15>(Op32.getConstantOperandVal(1)))
3878       return false;
3879
3880     ToPromote.insert(Op32.getNode());
3881     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
3882     return true;
3883   }
3884
3885   // The higher-order bits of AND are zero if that is true for at least one of
3886   // the operands.
3887   if (Op32.getMachineOpcode() == PPC::AND) {
3888     SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2;
3889     bool Op0OK =
3890       PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
3891     bool Op1OK =
3892       PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2);
3893     if (!Op0OK && !Op1OK)
3894       return false;
3895
3896     ToPromote.insert(Op32.getNode());
3897
3898     if (Op0OK)
3899       ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
3900
3901     if (Op1OK)
3902       ToPromote.insert(ToPromote2.begin(), ToPromote2.end());
3903
3904     return true;
3905   }
3906
3907   // For ANDI and ANDIS, the higher-order bits are zero if either that is true
3908   // of the first operand, or if the second operand is positive (so that it is
3909   // not sign extended).
3910   if (Op32.getMachineOpcode() == PPC::ANDIo ||
3911       Op32.getMachineOpcode() == PPC::ANDISo) {
3912     SmallPtrSet<SDNode *, 16> ToPromote1;
3913     bool Op0OK =
3914       PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
3915     bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1));
3916     if (!Op0OK && !Op1OK)
3917       return false;
3918
3919     ToPromote.insert(Op32.getNode());
3920
3921     if (Op0OK)
3922       ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
3923
3924     return true;
3925   }
3926
3927   return false;
3928 }
3929
3930 void PPCDAGToDAGISel::PeepholePPC64ZExt() {
3931   if (!PPCSubTarget->isPPC64())
3932     return;
3933
3934   // When we zero-extend from i32 to i64, we use a pattern like this:
3935   // def : Pat<(i64 (zext i32:$in)),
3936   //           (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32),
3937   //                   0, 32)>;
3938   // There are several 32-bit shift/rotate instructions, however, that will
3939   // clear the higher-order bits of their output, rendering the RLDICL
3940   // unnecessary. When that happens, we remove it here, and redefine the
3941   // relevant 32-bit operation to be a 64-bit operation.
3942
3943   SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
3944   ++Position;
3945
3946   bool MadeChange = false;
3947   while (Position != CurDAG->allnodes_begin()) {
3948     SDNode *N = --Position;
3949     // Skip dead nodes and any non-machine opcodes.
3950     if (N->use_empty() || !N->isMachineOpcode())
3951       continue;
3952
3953     if (N->getMachineOpcode() != PPC::RLDICL)
3954       continue;
3955
3956     if (N->getConstantOperandVal(1) != 0 ||
3957         N->getConstantOperandVal(2) != 32)
3958       continue;
3959
3960     SDValue ISR = N->getOperand(0);
3961     if (!ISR.isMachineOpcode() ||
3962         ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG)
3963       continue;
3964
3965     if (!ISR.hasOneUse())
3966       continue;
3967
3968     if (ISR.getConstantOperandVal(2) != PPC::sub_32)
3969       continue;
3970
3971     SDValue IDef = ISR.getOperand(0);
3972     if (!IDef.isMachineOpcode() ||
3973         IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF)
3974       continue;
3975
3976     // We now know that we're looking at a canonical i32 -> i64 zext. See if we
3977     // can get rid of it.
3978
3979     SDValue Op32 = ISR->getOperand(1);
3980     if (!Op32.isMachineOpcode())
3981       continue;
3982
3983     // There are some 32-bit instructions that always clear the high-order 32
3984     // bits, there are also some instructions (like AND) that we can look
3985     // through.
3986     SmallPtrSet<SDNode *, 16> ToPromote;
3987     if (!PeepholePPC64ZExtGather(Op32, ToPromote))
3988       continue;
3989
3990     // If the ToPromote set contains nodes that have uses outside of the set
3991     // (except for the original INSERT_SUBREG), then abort the transformation.
3992     bool OutsideUse = false;
3993     for (SDNode *PN : ToPromote) {
3994       for (SDNode *UN : PN->uses()) {
3995         if (!ToPromote.count(UN) && UN != ISR.getNode()) {
3996           OutsideUse = true;
3997           break;
3998         }
3999       }
4000
4001       if (OutsideUse)
4002         break;
4003     }
4004     if (OutsideUse)
4005       continue;
4006
4007     MadeChange = true;
4008
4009     // We now know that this zero extension can be removed by promoting to
4010     // nodes in ToPromote to 64-bit operations, where for operations in the
4011     // frontier of the set, we need to insert INSERT_SUBREGs for their
4012     // operands.
4013     for (SDNode *PN : ToPromote) {
4014       unsigned NewOpcode;
4015       switch (PN->getMachineOpcode()) {
4016       default:
4017         llvm_unreachable("Don't know the 64-bit variant of this instruction");
4018       case PPC::RLWINM:    NewOpcode = PPC::RLWINM8; break;
4019       case PPC::RLWNM:     NewOpcode = PPC::RLWNM8; break;
4020       case PPC::SLW:       NewOpcode = PPC::SLW8; break;
4021       case PPC::SRW:       NewOpcode = PPC::SRW8; break;
4022       case PPC::LI:        NewOpcode = PPC::LI8; break;
4023       case PPC::LIS:       NewOpcode = PPC::LIS8; break;
4024       case PPC::LHBRX:     NewOpcode = PPC::LHBRX8; break;
4025       case PPC::LWBRX:     NewOpcode = PPC::LWBRX8; break;
4026       case PPC::CNTLZW:    NewOpcode = PPC::CNTLZW8; break;
4027       case PPC::RLWIMI:    NewOpcode = PPC::RLWIMI8; break;
4028       case PPC::OR:        NewOpcode = PPC::OR8; break;
4029       case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break;
4030       case PPC::ORI:       NewOpcode = PPC::ORI8; break;
4031       case PPC::ORIS:      NewOpcode = PPC::ORIS8; break;
4032       case PPC::AND:       NewOpcode = PPC::AND8; break;
4033       case PPC::ANDIo:     NewOpcode = PPC::ANDIo8; break;
4034       case PPC::ANDISo:    NewOpcode = PPC::ANDISo8; break;
4035       }
4036
4037       // Note: During the replacement process, the nodes will be in an
4038       // inconsistent state (some instructions will have operands with values
4039       // of the wrong type). Once done, however, everything should be right
4040       // again.
4041
4042       SmallVector<SDValue, 4> Ops;
4043       for (const SDValue &V : PN->ops()) {
4044         if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 &&
4045             !isa<ConstantSDNode>(V)) {
4046           SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) };
4047           SDNode *ReplOp =
4048             CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V),
4049                                    ISR.getNode()->getVTList(), ReplOpOps);
4050           Ops.push_back(SDValue(ReplOp, 0));
4051         } else {
4052           Ops.push_back(V);
4053         }
4054       }
4055
4056       // Because all to-be-promoted nodes only have users that are other
4057       // promoted nodes (or the original INSERT_SUBREG), we can safely replace
4058       // the i32 result value type with i64.
4059
4060       SmallVector<EVT, 2> NewVTs;
4061       SDVTList VTs = PN->getVTList();
4062       for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i)
4063         if (VTs.VTs[i] == MVT::i32)
4064           NewVTs.push_back(MVT::i64);
4065         else
4066           NewVTs.push_back(VTs.VTs[i]);
4067
4068       DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld:    ");
4069       DEBUG(PN->dump(CurDAG));
4070
4071       CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops);
4072
4073       DEBUG(dbgs() << "\nNew: ");
4074       DEBUG(PN->dump(CurDAG));
4075       DEBUG(dbgs() << "\n");
4076     }
4077
4078     // Now we replace the original zero extend and its associated INSERT_SUBREG
4079     // with the value feeding the INSERT_SUBREG (which has now been promoted to
4080     // return an i64).
4081
4082     DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld:    ");
4083     DEBUG(N->dump(CurDAG));
4084     DEBUG(dbgs() << "\nNew: ");
4085     DEBUG(Op32.getNode()->dump(CurDAG));
4086     DEBUG(dbgs() << "\n");
4087
4088     ReplaceUses(N, Op32.getNode());
4089   }
4090
4091   if (MadeChange)
4092     CurDAG->RemoveDeadNodes();
4093 }
4094
4095 void PPCDAGToDAGISel::PeepholePPC64() {
4096   // These optimizations are currently supported only for 64-bit SVR4.
4097   if (PPCSubTarget->isDarwin() || !PPCSubTarget->isPPC64())
4098     return;
4099
4100   SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
4101   ++Position;
4102
4103   while (Position != CurDAG->allnodes_begin()) {
4104     SDNode *N = --Position;
4105     // Skip dead nodes and any non-machine opcodes.
4106     if (N->use_empty() || !N->isMachineOpcode())
4107       continue;
4108
4109     unsigned FirstOp;
4110     unsigned StorageOpcode = N->getMachineOpcode();
4111
4112     switch (StorageOpcode) {
4113     default: continue;
4114
4115     case PPC::LBZ:
4116     case PPC::LBZ8:
4117     case PPC::LD:
4118     case PPC::LFD:
4119     case PPC::LFS:
4120     case PPC::LHA:
4121     case PPC::LHA8:
4122     case PPC::LHZ:
4123     case PPC::LHZ8:
4124     case PPC::LWA:
4125     case PPC::LWZ:
4126     case PPC::LWZ8:
4127       FirstOp = 0;
4128       break;
4129
4130     case PPC::STB:
4131     case PPC::STB8:
4132     case PPC::STD:
4133     case PPC::STFD:
4134     case PPC::STFS:
4135     case PPC::STH:
4136     case PPC::STH8:
4137     case PPC::STW:
4138     case PPC::STW8:
4139       FirstOp = 1;
4140       break;
4141     }
4142
4143     // If this is a load or store with a zero offset, we may be able to
4144     // fold an add-immediate into the memory operation.
4145     if (!isa<ConstantSDNode>(N->getOperand(FirstOp)) ||
4146         N->getConstantOperandVal(FirstOp) != 0)
4147       continue;
4148
4149     SDValue Base = N->getOperand(FirstOp + 1);
4150     if (!Base.isMachineOpcode())
4151       continue;
4152
4153     unsigned Flags = 0;
4154     bool ReplaceFlags = true;
4155
4156     // When the feeding operation is an add-immediate of some sort,
4157     // determine whether we need to add relocation information to the
4158     // target flags on the immediate operand when we fold it into the
4159     // load instruction.
4160     //
4161     // For something like ADDItocL, the relocation information is
4162     // inferred from the opcode; when we process it in the AsmPrinter,
4163     // we add the necessary relocation there.  A load, though, can receive
4164     // relocation from various flavors of ADDIxxx, so we need to carry
4165     // the relocation information in the target flags.
4166     switch (Base.getMachineOpcode()) {
4167     default: continue;
4168
4169     case PPC::ADDI8:
4170     case PPC::ADDI:
4171       // In some cases (such as TLS) the relocation information
4172       // is already in place on the operand, so copying the operand
4173       // is sufficient.
4174       ReplaceFlags = false;
4175       // For these cases, the immediate may not be divisible by 4, in
4176       // which case the fold is illegal for DS-form instructions.  (The
4177       // other cases provide aligned addresses and are always safe.)
4178       if ((StorageOpcode == PPC::LWA ||
4179            StorageOpcode == PPC::LD  ||
4180            StorageOpcode == PPC::STD) &&
4181           (!isa<ConstantSDNode>(Base.getOperand(1)) ||
4182            Base.getConstantOperandVal(1) % 4 != 0))
4183         continue;
4184       break;
4185     case PPC::ADDIdtprelL:
4186       Flags = PPCII::MO_DTPREL_LO;
4187       break;
4188     case PPC::ADDItlsldL:
4189       Flags = PPCII::MO_TLSLD_LO;
4190       break;
4191     case PPC::ADDItocL:
4192       Flags = PPCII::MO_TOC_LO;
4193       break;
4194     }
4195
4196     // We found an opportunity.  Reverse the operands from the add
4197     // immediate and substitute them into the load or store.  If
4198     // needed, update the target flags for the immediate operand to
4199     // reflect the necessary relocation information.
4200     DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase:    ");
4201     DEBUG(Base->dump(CurDAG));
4202     DEBUG(dbgs() << "\nN: ");
4203     DEBUG(N->dump(CurDAG));
4204     DEBUG(dbgs() << "\n");
4205
4206     SDValue ImmOpnd = Base.getOperand(1);
4207
4208     // If the relocation information isn't already present on the
4209     // immediate operand, add it now.
4210     if (ReplaceFlags) {
4211       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
4212         SDLoc dl(GA);
4213         const GlobalValue *GV = GA->getGlobal();
4214         // We can't perform this optimization for data whose alignment
4215         // is insufficient for the instruction encoding.
4216         if (GV->getAlignment() < 4 &&
4217             (StorageOpcode == PPC::LD || StorageOpcode == PPC::STD ||
4218              StorageOpcode == PPC::LWA)) {
4219           DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
4220           continue;
4221         }
4222         ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, 0, Flags);
4223       } else if (ConstantPoolSDNode *CP =
4224                  dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
4225         const Constant *C = CP->getConstVal();
4226         ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64,
4227                                                 CP->getAlignment(),
4228                                                 0, Flags);
4229       }
4230     }
4231
4232     if (FirstOp == 1) // Store
4233       (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
4234                                        Base.getOperand(0), N->getOperand(3));
4235     else // Load
4236       (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
4237                                        N->getOperand(2));
4238
4239     // The add-immediate may now be dead, in which case remove it.
4240     if (Base.getNode()->use_empty())
4241       CurDAG->RemoveDeadNode(Base.getNode());
4242   }
4243 }
4244
4245
4246 /// createPPCISelDag - This pass converts a legalized DAG into a
4247 /// PowerPC-specific DAG, ready for instruction scheduling.
4248 ///
4249 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
4250   return new PPCDAGToDAGISel(TM);
4251 }
4252
4253 static void initializePassOnce(PassRegistry &Registry) {
4254   const char *Name = "PowerPC DAG->DAG Pattern Instruction Selection";
4255   PassInfo *PI = new PassInfo(Name, "ppc-codegen", &SelectionDAGISel::ID,
4256                               nullptr, false, false);
4257   Registry.registerPass(*PI, true);
4258 }
4259
4260 void llvm::initializePPCDAGToDAGISelPass(PassRegistry &Registry) {
4261   CALL_ONCE_INITIALIZATION(initializePassOnce);
4262 }
4263