Add direct moves to/from VSR and exploit them for FP/INT conversions
[oota-llvm.git] / lib / Target / PowerPC / PPCFastISel.cpp
1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the PowerPC-specific support for the FastISel class. Some
11 // of the target-specific code is generated by tablegen in the file
12 // PPCGenFastISel.inc, which is #included here.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "PPC.h"
17 #include "MCTargetDesc/PPCPredicates.h"
18 #include "PPCCallingConv.h"
19 #include "PPCISelLowering.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCSubtarget.h"
22 #include "PPCTargetMachine.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/FastISel.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/GetElementPtrTypeIterator.h"
33 #include "llvm/IR/GlobalAlias.h"
34 #include "llvm/IR/GlobalVariable.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Target/TargetLowering.h"
39 #include "llvm/Target/TargetMachine.h"
40
41 //===----------------------------------------------------------------------===//
42 //
43 // TBD:
44 //   fastLowerArguments: Handle simple cases.
45 //   PPCMaterializeGV: Handle TLS.
46 //   SelectCall: Handle function pointers.
47 //   SelectCall: Handle multi-register return values.
48 //   SelectCall: Optimize away nops for local calls.
49 //   processCallArgs: Handle bit-converted arguments.
50 //   finishCall: Handle multi-register return values.
51 //   PPCComputeAddress: Handle parameter references as FrameIndex's.
52 //   PPCEmitCmp: Handle immediate as operand 1.
53 //   SelectCall: Handle small byval arguments.
54 //   SelectIntrinsicCall: Implement.
55 //   SelectSelect: Implement.
56 //   Consider factoring isTypeLegal into the base class.
57 //   Implement switches and jump tables.
58 //
59 //===----------------------------------------------------------------------===//
60 using namespace llvm;
61
62 #define DEBUG_TYPE "ppcfastisel"
63
64 namespace {
65
66 typedef struct Address {
67   enum {
68     RegBase,
69     FrameIndexBase
70   } BaseType;
71
72   union {
73     unsigned Reg;
74     int FI;
75   } Base;
76
77   long Offset;
78
79   // Innocuous defaults for our address.
80   Address()
81    : BaseType(RegBase), Offset(0) {
82      Base.Reg = 0;
83    }
84 } Address;
85
86 class PPCFastISel final : public FastISel {
87
88   const TargetMachine &TM;
89   const PPCSubtarget *PPCSubTarget;
90   PPCFunctionInfo *PPCFuncInfo;
91   const TargetInstrInfo &TII;
92   const TargetLowering &TLI;
93   LLVMContext *Context;
94
95   public:
96     explicit PPCFastISel(FunctionLoweringInfo &FuncInfo,
97                          const TargetLibraryInfo *LibInfo)
98         : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()),
99           PPCSubTarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()),
100           PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()),
101           TII(*PPCSubTarget->getInstrInfo()),
102           TLI(*PPCSubTarget->getTargetLowering()),
103           Context(&FuncInfo.Fn->getContext()) {}
104
105   // Backend specific FastISel code.
106   private:
107     bool fastSelectInstruction(const Instruction *I) override;
108     unsigned fastMaterializeConstant(const Constant *C) override;
109     unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
110     bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
111                              const LoadInst *LI) override;
112     bool fastLowerArguments() override;
113     unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override;
114     unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
115                              const TargetRegisterClass *RC,
116                              unsigned Op0, bool Op0IsKill,
117                              uint64_t Imm);
118     unsigned fastEmitInst_r(unsigned MachineInstOpcode,
119                             const TargetRegisterClass *RC,
120                             unsigned Op0, bool Op0IsKill);
121     unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
122                              const TargetRegisterClass *RC,
123                              unsigned Op0, bool Op0IsKill,
124                              unsigned Op1, bool Op1IsKill);
125
126     bool fastLowerCall(CallLoweringInfo &CLI) override;
127
128   // Instruction selection routines.
129   private:
130     bool SelectLoad(const Instruction *I);
131     bool SelectStore(const Instruction *I);
132     bool SelectBranch(const Instruction *I);
133     bool SelectIndirectBr(const Instruction *I);
134     bool SelectFPExt(const Instruction *I);
135     bool SelectFPTrunc(const Instruction *I);
136     bool SelectIToFP(const Instruction *I, bool IsSigned);
137     bool SelectFPToI(const Instruction *I, bool IsSigned);
138     bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
139     bool SelectRet(const Instruction *I);
140     bool SelectTrunc(const Instruction *I);
141     bool SelectIntExt(const Instruction *I);
142
143   // Utility routines.
144   private:
145     bool isTypeLegal(Type *Ty, MVT &VT);
146     bool isLoadTypeLegal(Type *Ty, MVT &VT);
147     bool isVSFRCRegister(unsigned Register) const {
148       return MRI.getRegClass(Register)->getID() == PPC::VSFRCRegClassID;
149     }
150     bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value,
151                     bool isZExt, unsigned DestReg);
152     bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
153                      const TargetRegisterClass *RC, bool IsZExt = true,
154                      unsigned FP64LoadOpc = PPC::LFD);
155     bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr);
156     bool PPCComputeAddress(const Value *Obj, Address &Addr);
157     void PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset,
158                             unsigned &IndexReg);
159     bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
160                            unsigned DestReg, bool IsZExt);
161     unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT);
162     unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT);
163     unsigned PPCMaterializeInt(const Constant *C, MVT VT, bool UseSExt = true);
164     unsigned PPCMaterialize32BitInt(int64_t Imm,
165                                     const TargetRegisterClass *RC);
166     unsigned PPCMaterialize64BitInt(int64_t Imm,
167                                     const TargetRegisterClass *RC);
168     unsigned PPCMoveToIntReg(const Instruction *I, MVT VT,
169                              unsigned SrcReg, bool IsSigned);
170     unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned);
171
172   // Call handling routines.
173   private:
174     bool processCallArgs(SmallVectorImpl<Value*> &Args,
175                          SmallVectorImpl<unsigned> &ArgRegs,
176                          SmallVectorImpl<MVT> &ArgVTs,
177                          SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
178                          SmallVectorImpl<unsigned> &RegArgs,
179                          CallingConv::ID CC,
180                          unsigned &NumBytes,
181                          bool IsVarArg);
182     bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes);
183     CCAssignFn *usePPC32CCs(unsigned Flag);
184
185   private:
186   #include "PPCGenFastISel.inc"
187
188 };
189
190 } // end anonymous namespace
191
192 #include "PPCGenCallingConv.inc"
193
194 // Function whose sole purpose is to kill compiler warnings 
195 // stemming from unused functions included from PPCGenCallingConv.inc.
196 CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) {
197   if (Flag == 1)
198     return CC_PPC32_SVR4;
199   else if (Flag == 2)
200     return CC_PPC32_SVR4_ByVal;
201   else if (Flag == 3)
202     return CC_PPC32_SVR4_VarArg;
203   else
204     return RetCC_PPC;
205 }
206
207 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) {
208   switch (Pred) {
209     // These are not representable with any single compare.
210     case CmpInst::FCMP_FALSE:
211     case CmpInst::FCMP_UEQ:
212     case CmpInst::FCMP_UGT:
213     case CmpInst::FCMP_UGE:
214     case CmpInst::FCMP_ULT:
215     case CmpInst::FCMP_ULE:
216     case CmpInst::FCMP_UNE:
217     case CmpInst::FCMP_TRUE:
218     default:
219       return Optional<PPC::Predicate>();
220
221     case CmpInst::FCMP_OEQ:
222     case CmpInst::ICMP_EQ:
223       return PPC::PRED_EQ;
224
225     case CmpInst::FCMP_OGT:
226     case CmpInst::ICMP_UGT:
227     case CmpInst::ICMP_SGT:
228       return PPC::PRED_GT;
229
230     case CmpInst::FCMP_OGE:
231     case CmpInst::ICMP_UGE:
232     case CmpInst::ICMP_SGE:
233       return PPC::PRED_GE;
234
235     case CmpInst::FCMP_OLT:
236     case CmpInst::ICMP_ULT:
237     case CmpInst::ICMP_SLT:
238       return PPC::PRED_LT;
239
240     case CmpInst::FCMP_OLE:
241     case CmpInst::ICMP_ULE:
242     case CmpInst::ICMP_SLE:
243       return PPC::PRED_LE;
244
245     case CmpInst::FCMP_ONE:
246     case CmpInst::ICMP_NE:
247       return PPC::PRED_NE;
248
249     case CmpInst::FCMP_ORD:
250       return PPC::PRED_NU;
251
252     case CmpInst::FCMP_UNO:
253       return PPC::PRED_UN;
254   }
255 }
256
257 // Determine whether the type Ty is simple enough to be handled by
258 // fast-isel, and return its equivalent machine type in VT.
259 // FIXME: Copied directly from ARM -- factor into base class?
260 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) {
261   EVT Evt = TLI.getValueType(Ty, true);
262
263   // Only handle simple types.
264   if (Evt == MVT::Other || !Evt.isSimple()) return false;
265   VT = Evt.getSimpleVT();
266
267   // Handle all legal types, i.e. a register that will directly hold this
268   // value.
269   return TLI.isTypeLegal(VT);
270 }
271
272 // Determine whether the type Ty is simple enough to be handled by
273 // fast-isel as a load target, and return its equivalent machine type in VT.
274 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
275   if (isTypeLegal(Ty, VT)) return true;
276
277   // If this is a type than can be sign or zero-extended to a basic operation
278   // go ahead and accept it now.
279   if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) {
280     return true;
281   }
282
283   return false;
284 }
285
286 // Given a value Obj, create an Address object Addr that represents its
287 // address.  Return false if we can't handle it.
288 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) {
289   const User *U = nullptr;
290   unsigned Opcode = Instruction::UserOp1;
291   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
292     // Don't walk into other basic blocks unless the object is an alloca from
293     // another block, otherwise it may not have a virtual register assigned.
294     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
295         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
296       Opcode = I->getOpcode();
297       U = I;
298     }
299   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
300     Opcode = C->getOpcode();
301     U = C;
302   }
303
304   switch (Opcode) {
305     default:
306       break;
307     case Instruction::BitCast:
308       // Look through bitcasts.
309       return PPCComputeAddress(U->getOperand(0), Addr);
310     case Instruction::IntToPtr:
311       // Look past no-op inttoptrs.
312       if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
313         return PPCComputeAddress(U->getOperand(0), Addr);
314       break;
315     case Instruction::PtrToInt:
316       // Look past no-op ptrtoints.
317       if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
318         return PPCComputeAddress(U->getOperand(0), Addr);
319       break;
320     case Instruction::GetElementPtr: {
321       Address SavedAddr = Addr;
322       long TmpOffset = Addr.Offset;
323
324       // Iterate through the GEP folding the constants into offsets where
325       // we can.
326       gep_type_iterator GTI = gep_type_begin(U);
327       for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end();
328            II != IE; ++II, ++GTI) {
329         const Value *Op = *II;
330         if (StructType *STy = dyn_cast<StructType>(*GTI)) {
331           const StructLayout *SL = DL.getStructLayout(STy);
332           unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
333           TmpOffset += SL->getElementOffset(Idx);
334         } else {
335           uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
336           for (;;) {
337             if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
338               // Constant-offset addressing.
339               TmpOffset += CI->getSExtValue() * S;
340               break;
341             }
342             if (canFoldAddIntoGEP(U, Op)) {
343               // A compatible add with a constant operand. Fold the constant.
344               ConstantInt *CI =
345               cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
346               TmpOffset += CI->getSExtValue() * S;
347               // Iterate on the other operand.
348               Op = cast<AddOperator>(Op)->getOperand(0);
349               continue;
350             }
351             // Unsupported
352             goto unsupported_gep;
353           }
354         }
355       }
356
357       // Try to grab the base operand now.
358       Addr.Offset = TmpOffset;
359       if (PPCComputeAddress(U->getOperand(0), Addr)) return true;
360
361       // We failed, restore everything and try the other options.
362       Addr = SavedAddr;
363
364       unsupported_gep:
365       break;
366     }
367     case Instruction::Alloca: {
368       const AllocaInst *AI = cast<AllocaInst>(Obj);
369       DenseMap<const AllocaInst*, int>::iterator SI =
370         FuncInfo.StaticAllocaMap.find(AI);
371       if (SI != FuncInfo.StaticAllocaMap.end()) {
372         Addr.BaseType = Address::FrameIndexBase;
373         Addr.Base.FI = SI->second;
374         return true;
375       }
376       break;
377     }
378   }
379
380   // FIXME: References to parameters fall through to the behavior
381   // below.  They should be able to reference a frame index since
382   // they are stored to the stack, so we can get "ld rx, offset(r1)"
383   // instead of "addi ry, r1, offset / ld rx, 0(ry)".  Obj will
384   // just contain the parameter.  Try to handle this with a FI.
385
386   // Try to get this in a register if nothing else has worked.
387   if (Addr.Base.Reg == 0)
388     Addr.Base.Reg = getRegForValue(Obj);
389
390   // Prevent assignment of base register to X0, which is inappropriate
391   // for loads and stores alike.
392   if (Addr.Base.Reg != 0)
393     MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass);
394
395   return Addr.Base.Reg != 0;
396 }
397
398 // Fix up some addresses that can't be used directly.  For example, if
399 // an offset won't fit in an instruction field, we may need to move it
400 // into an index register.
401 void PPCFastISel::PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset,
402                                      unsigned &IndexReg) {
403
404   // Check whether the offset fits in the instruction field.
405   if (!isInt<16>(Addr.Offset))
406     UseOffset = false;
407
408   // If this is a stack pointer and the offset needs to be simplified then
409   // put the alloca address into a register, set the base type back to
410   // register and continue. This should almost never happen.
411   if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) {
412     unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
413     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
414             ResultReg).addFrameIndex(Addr.Base.FI).addImm(0);
415     Addr.Base.Reg = ResultReg;
416     Addr.BaseType = Address::RegBase;
417   }
418
419   if (!UseOffset) {
420     IntegerType *OffsetTy = ((VT == MVT::i32) ? Type::getInt32Ty(*Context)
421                              : Type::getInt64Ty(*Context));
422     const ConstantInt *Offset =
423       ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset));
424     IndexReg = PPCMaterializeInt(Offset, MVT::i64);
425     assert(IndexReg && "Unexpected error in PPCMaterializeInt!");
426   }
427 }
428
429 // Emit a load instruction if possible, returning true if we succeeded,
430 // otherwise false.  See commentary below for how the register class of
431 // the load is determined. 
432 bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
433                               const TargetRegisterClass *RC,
434                               bool IsZExt, unsigned FP64LoadOpc) {
435   unsigned Opc;
436   bool UseOffset = true;
437
438   // If ResultReg is given, it determines the register class of the load.
439   // Otherwise, RC is the register class to use.  If the result of the
440   // load isn't anticipated in this block, both may be zero, in which
441   // case we must make a conservative guess.  In particular, don't assign
442   // R0 or X0 to the result register, as the result may be used in a load,
443   // store, add-immediate, or isel that won't permit this.  (Though
444   // perhaps the spill and reload of live-exit values would handle this?)
445   const TargetRegisterClass *UseRC =
446     (ResultReg ? MRI.getRegClass(ResultReg) :
447      (RC ? RC :
448       (VT == MVT::f64 ? &PPC::F8RCRegClass :
449        (VT == MVT::f32 ? &PPC::F4RCRegClass :
450         (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
451          &PPC::GPRC_and_GPRC_NOR0RegClass)))));
452
453   bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass);
454
455   switch (VT.SimpleTy) {
456     default: // e.g., vector types not handled
457       return false;
458     case MVT::i8:
459       Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8;
460       break;
461     case MVT::i16:
462       Opc = (IsZExt ?
463              (Is32BitInt ? PPC::LHZ : PPC::LHZ8) : 
464              (Is32BitInt ? PPC::LHA : PPC::LHA8));
465       break;
466     case MVT::i32:
467       Opc = (IsZExt ? 
468              (Is32BitInt ? PPC::LWZ : PPC::LWZ8) :
469              (Is32BitInt ? PPC::LWA_32 : PPC::LWA));
470       if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0))
471         UseOffset = false;
472       break;
473     case MVT::i64:
474       Opc = PPC::LD;
475       assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) && 
476              "64-bit load with 32-bit target??");
477       UseOffset = ((Addr.Offset & 3) == 0);
478       break;
479     case MVT::f32:
480       Opc = PPC::LFS;
481       break;
482     case MVT::f64:
483       Opc = FP64LoadOpc;
484       break;
485   }
486
487   // If necessary, materialize the offset into a register and use
488   // the indexed form.  Also handle stack pointers with special needs.
489   unsigned IndexReg = 0;
490   PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg);
491
492   // If this is a potential VSX load with an offset of 0, a VSX indexed load can
493   // be used.
494   bool IsVSFRC = (ResultReg != 0) && isVSFRCRegister(ResultReg);
495   if (IsVSFRC && (Opc == PPC::LFD) && 
496       (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
497       (Addr.Offset == 0)) {
498     UseOffset = false;
499   }
500
501   if (ResultReg == 0)
502     ResultReg = createResultReg(UseRC);
503
504   // Note: If we still have a frame index here, we know the offset is
505   // in range, as otherwise PPCSimplifyAddress would have converted it
506   // into a RegBase.
507   if (Addr.BaseType == Address::FrameIndexBase) {
508     // VSX only provides an indexed load.
509     if (IsVSFRC && Opc == PPC::LFD) return false;
510
511     MachineMemOperand *MMO =
512       FuncInfo.MF->getMachineMemOperand(
513         MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset),
514         MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI),
515         MFI.getObjectAlignment(Addr.Base.FI));
516
517     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
518       .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO);
519
520   // Base reg with offset in range.
521   } else if (UseOffset) {
522     // VSX only provides an indexed load.
523     if (IsVSFRC && Opc == PPC::LFD) return false;
524
525     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
526       .addImm(Addr.Offset).addReg(Addr.Base.Reg);
527
528   // Indexed form.
529   } else {
530     // Get the RR opcode corresponding to the RI one.  FIXME: It would be
531     // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
532     // is hard to get at.
533     switch (Opc) {
534       default:        llvm_unreachable("Unexpected opcode!");
535       case PPC::LBZ:    Opc = PPC::LBZX;    break;
536       case PPC::LBZ8:   Opc = PPC::LBZX8;   break;
537       case PPC::LHZ:    Opc = PPC::LHZX;    break;
538       case PPC::LHZ8:   Opc = PPC::LHZX8;   break;
539       case PPC::LHA:    Opc = PPC::LHAX;    break;
540       case PPC::LHA8:   Opc = PPC::LHAX8;   break;
541       case PPC::LWZ:    Opc = PPC::LWZX;    break;
542       case PPC::LWZ8:   Opc = PPC::LWZX8;   break;
543       case PPC::LWA:    Opc = PPC::LWAX;    break;
544       case PPC::LWA_32: Opc = PPC::LWAX_32; break;
545       case PPC::LD:     Opc = PPC::LDX;     break;
546       case PPC::LFS:    Opc = PPC::LFSX;    break;
547       case PPC::LFD:    Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break;
548     }
549     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
550       .addReg(Addr.Base.Reg).addReg(IndexReg);
551   }
552
553   return true;
554 }
555
556 // Attempt to fast-select a load instruction.
557 bool PPCFastISel::SelectLoad(const Instruction *I) {
558   // FIXME: No atomic loads are supported.
559   if (cast<LoadInst>(I)->isAtomic())
560     return false;
561
562   // Verify we have a legal type before going any further.
563   MVT VT;
564   if (!isLoadTypeLegal(I->getType(), VT))
565     return false;
566
567   // See if we can handle this address.
568   Address Addr;
569   if (!PPCComputeAddress(I->getOperand(0), Addr))
570     return false;
571
572   // Look at the currently assigned register for this instruction
573   // to determine the required register class.  This is necessary
574   // to constrain RA from using R0/X0 when this is not legal.
575   unsigned AssignedReg = FuncInfo.ValueMap[I];
576   const TargetRegisterClass *RC =
577     AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
578
579   unsigned ResultReg = 0;
580   if (!PPCEmitLoad(VT, ResultReg, Addr, RC))
581     return false;
582   updateValueMap(I, ResultReg);
583   return true;
584 }
585
586 // Emit a store instruction to store SrcReg at Addr.
587 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) {
588   assert(SrcReg && "Nothing to store!");
589   unsigned Opc;
590   bool UseOffset = true;
591
592   const TargetRegisterClass *RC = MRI.getRegClass(SrcReg);
593   bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass);
594
595   switch (VT.SimpleTy) {
596     default: // e.g., vector types not handled
597       return false;
598     case MVT::i8:
599       Opc = Is32BitInt ? PPC::STB : PPC::STB8;
600       break;
601     case MVT::i16:
602       Opc = Is32BitInt ? PPC::STH : PPC::STH8;
603       break;
604     case MVT::i32:
605       assert(Is32BitInt && "Not GPRC for i32??");
606       Opc = PPC::STW;
607       break;
608     case MVT::i64:
609       Opc = PPC::STD;
610       UseOffset = ((Addr.Offset & 3) == 0);
611       break;
612     case MVT::f32:
613       Opc = PPC::STFS;
614       break;
615     case MVT::f64:
616       Opc = PPC::STFD;
617       break;
618   }
619
620   // If necessary, materialize the offset into a register and use
621   // the indexed form.  Also handle stack pointers with special needs.
622   unsigned IndexReg = 0;
623   PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg);
624
625   // If this is a potential VSX store with an offset of 0, a VSX indexed store
626   // can be used.
627   bool IsVSFRC = isVSFRCRegister(SrcReg);
628   if (IsVSFRC && (Opc == PPC::STFD) && 
629       (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 
630       (Addr.Offset == 0)) {
631     UseOffset = false;
632   }
633
634   // Note: If we still have a frame index here, we know the offset is
635   // in range, as otherwise PPCSimplifyAddress would have converted it
636   // into a RegBase.
637   if (Addr.BaseType == Address::FrameIndexBase) {
638     // VSX only provides an indexed store.
639     if (IsVSFRC && Opc == PPC::STFD) return false;
640
641     MachineMemOperand *MMO =
642       FuncInfo.MF->getMachineMemOperand(
643         MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset),
644         MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI),
645         MFI.getObjectAlignment(Addr.Base.FI));
646
647     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
648         .addReg(SrcReg)
649         .addImm(Addr.Offset)
650         .addFrameIndex(Addr.Base.FI)
651         .addMemOperand(MMO);
652
653   // Base reg with offset in range.
654   } else if (UseOffset) {
655     // VSX only provides an indexed store.
656     if (IsVSFRC && Opc == PPC::STFD) return false;
657     
658     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
659       .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg);
660
661   // Indexed form.
662   } else {
663     // Get the RR opcode corresponding to the RI one.  FIXME: It would be
664     // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
665     // is hard to get at.
666     switch (Opc) {
667       default:        llvm_unreachable("Unexpected opcode!");
668       case PPC::STB:  Opc = PPC::STBX;  break;
669       case PPC::STH : Opc = PPC::STHX;  break;
670       case PPC::STW : Opc = PPC::STWX;  break;
671       case PPC::STB8: Opc = PPC::STBX8; break;
672       case PPC::STH8: Opc = PPC::STHX8; break;
673       case PPC::STW8: Opc = PPC::STWX8; break;
674       case PPC::STD:  Opc = PPC::STDX;  break;
675       case PPC::STFS: Opc = PPC::STFSX; break;
676       case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break;
677     }
678
679     auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
680         .addReg(SrcReg);
681
682     // If we have an index register defined we use it in the store inst,
683     // otherwise we use X0 as base as it makes the vector instructions to
684     // use zero in the computation of the effective address regardless the
685     // content of the register.
686     if (IndexReg)
687       MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
688     else
689       MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
690   }
691
692   return true;
693 }
694
695 // Attempt to fast-select a store instruction.
696 bool PPCFastISel::SelectStore(const Instruction *I) {
697   Value *Op0 = I->getOperand(0);
698   unsigned SrcReg = 0;
699
700   // FIXME: No atomics loads are supported.
701   if (cast<StoreInst>(I)->isAtomic())
702     return false;
703
704   // Verify we have a legal type before going any further.
705   MVT VT;
706   if (!isLoadTypeLegal(Op0->getType(), VT))
707     return false;
708
709   // Get the value to be stored into a register.
710   SrcReg = getRegForValue(Op0);
711   if (SrcReg == 0)
712     return false;
713
714   // See if we can handle this address.
715   Address Addr;
716   if (!PPCComputeAddress(I->getOperand(1), Addr))
717     return false;
718
719   if (!PPCEmitStore(VT, SrcReg, Addr))
720     return false;
721
722   return true;
723 }
724
725 // Attempt to fast-select a branch instruction.
726 bool PPCFastISel::SelectBranch(const Instruction *I) {
727   const BranchInst *BI = cast<BranchInst>(I);
728   MachineBasicBlock *BrBB = FuncInfo.MBB;
729   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
730   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
731
732   // For now, just try the simplest case where it's fed by a compare.
733   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
734     Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate());
735     if (!OptPPCPred)
736       return false;
737
738     PPC::Predicate PPCPred = OptPPCPred.getValue();
739
740     // Take advantage of fall-through opportunities.
741     if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
742       std::swap(TBB, FBB);
743       PPCPred = PPC::InvertPredicate(PPCPred);
744     }
745
746     unsigned CondReg = createResultReg(&PPC::CRRCRegClass);
747
748     if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
749                     CondReg))
750       return false;
751
752     BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC))
753       .addImm(PPCPred).addReg(CondReg).addMBB(TBB);
754     fastEmitBranch(FBB, DbgLoc);
755     FuncInfo.MBB->addSuccessor(TBB);
756     return true;
757
758   } else if (const ConstantInt *CI =
759              dyn_cast<ConstantInt>(BI->getCondition())) {
760     uint64_t Imm = CI->getZExtValue();
761     MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
762     fastEmitBranch(Target, DbgLoc);
763     return true;
764   }
765
766   // FIXME: ARM looks for a case where the block containing the compare
767   // has been split from the block containing the branch.  If this happens,
768   // there is a vreg available containing the result of the compare.  I'm
769   // not sure we can do much, as we've lost the predicate information with
770   // the compare instruction -- we have a 4-bit CR but don't know which bit
771   // to test here.
772   return false;
773 }
774
775 // Attempt to emit a compare of the two source values.  Signed and unsigned
776 // comparisons are supported.  Return false if we can't handle it.
777 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2,
778                              bool IsZExt, unsigned DestReg) {
779   Type *Ty = SrcValue1->getType();
780   EVT SrcEVT = TLI.getValueType(Ty, true);
781   if (!SrcEVT.isSimple())
782     return false;
783   MVT SrcVT = SrcEVT.getSimpleVT();
784
785   if (SrcVT == MVT::i1 && PPCSubTarget->useCRBits())
786     return false;
787
788   // See if operand 2 is an immediate encodeable in the compare.
789   // FIXME: Operands are not in canonical order at -O0, so an immediate
790   // operand in position 1 is a lost opportunity for now.  We are
791   // similar to ARM in this regard.
792   long Imm = 0;
793   bool UseImm = false;
794
795   // Only 16-bit integer constants can be represented in compares for 
796   // PowerPC.  Others will be materialized into a register.
797   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) {
798     if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
799         SrcVT == MVT::i8 || SrcVT == MVT::i1) {
800       const APInt &CIVal = ConstInt->getValue();
801       Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue();
802       if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm)))
803         UseImm = true;
804     }
805   }
806
807   unsigned CmpOpc;
808   bool NeedsExt = false;
809   switch (SrcVT.SimpleTy) {
810     default: return false;
811     case MVT::f32:
812       CmpOpc = PPC::FCMPUS;
813       break;
814     case MVT::f64:
815       CmpOpc = PPC::FCMPUD;
816       break;
817     case MVT::i1:
818     case MVT::i8:
819     case MVT::i16:
820       NeedsExt = true;
821       // Intentional fall-through.
822     case MVT::i32:
823       if (!UseImm)
824         CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW;
825       else
826         CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI;
827       break;
828     case MVT::i64:
829       if (!UseImm)
830         CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD;
831       else
832         CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI;
833       break;
834   }
835
836   unsigned SrcReg1 = getRegForValue(SrcValue1);
837   if (SrcReg1 == 0)
838     return false;
839
840   unsigned SrcReg2 = 0;
841   if (!UseImm) {
842     SrcReg2 = getRegForValue(SrcValue2);
843     if (SrcReg2 == 0)
844       return false;
845   }
846
847   if (NeedsExt) {
848     unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
849     if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt))
850       return false;
851     SrcReg1 = ExtReg;
852
853     if (!UseImm) {
854       unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
855       if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt))
856         return false;
857       SrcReg2 = ExtReg;
858     }
859   }
860
861   if (!UseImm)
862     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
863       .addReg(SrcReg1).addReg(SrcReg2);
864   else
865     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
866       .addReg(SrcReg1).addImm(Imm);
867
868   return true;
869 }
870
871 // Attempt to fast-select a floating-point extend instruction.
872 bool PPCFastISel::SelectFPExt(const Instruction *I) {
873   Value *Src  = I->getOperand(0);
874   EVT SrcVT  = TLI.getValueType(Src->getType(), true);
875   EVT DestVT = TLI.getValueType(I->getType(), true);
876
877   if (SrcVT != MVT::f32 || DestVT != MVT::f64)
878     return false;
879
880   unsigned SrcReg = getRegForValue(Src);
881   if (!SrcReg)
882     return false;
883
884   // No code is generated for a FP extend.
885   updateValueMap(I, SrcReg);
886   return true;
887 }
888
889 // Attempt to fast-select a floating-point truncate instruction.
890 bool PPCFastISel::SelectFPTrunc(const Instruction *I) {
891   Value *Src  = I->getOperand(0);
892   EVT SrcVT  = TLI.getValueType(Src->getType(), true);
893   EVT DestVT = TLI.getValueType(I->getType(), true);
894
895   if (SrcVT != MVT::f64 || DestVT != MVT::f32)
896     return false;
897
898   unsigned SrcReg = getRegForValue(Src);
899   if (!SrcReg)
900     return false;
901
902   // Round the result to single precision.
903   unsigned DestReg = createResultReg(&PPC::F4RCRegClass);
904   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), DestReg)
905     .addReg(SrcReg);
906
907   updateValueMap(I, DestReg);
908   return true;
909 }
910
911 // Move an i32 or i64 value in a GPR to an f64 value in an FPR.
912 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
913 // those should be used instead of moving via a stack slot when the
914 // subtarget permits.
915 // FIXME: The code here is sloppy for the 4-byte case.  Can use a 4-byte
916 // stack slot and 4-byte store/load sequence.  Or just sext the 4-byte
917 // case to 8 bytes which produces tighter code but wastes stack space.
918 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg,
919                                      bool IsSigned) {
920
921   // If necessary, extend 32-bit int to 64-bit.
922   if (SrcVT == MVT::i32) {
923     unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
924     if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned))
925       return 0;
926     SrcReg = TmpReg;
927   }
928
929   // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
930   Address Addr;
931   Addr.BaseType = Address::FrameIndexBase;
932   Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
933
934   // Store the value from the GPR.
935   if (!PPCEmitStore(MVT::i64, SrcReg, Addr))
936     return 0;
937
938   // Load the integer value into an FPR.  The kind of load used depends
939   // on a number of conditions.
940   unsigned LoadOpc = PPC::LFD;
941
942   if (SrcVT == MVT::i32) {
943     if (!IsSigned) {
944       LoadOpc = PPC::LFIWZX;
945       Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;
946     } else if (PPCSubTarget->hasLFIWAX()) {
947       LoadOpc = PPC::LFIWAX;
948       Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;
949     }
950   }
951
952   const TargetRegisterClass *RC = &PPC::F8RCRegClass;
953   unsigned ResultReg = 0;
954   if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc))
955     return 0;
956
957   return ResultReg;
958 }
959
960 // Attempt to fast-select an integer-to-floating-point conversion.
961 // FIXME: Once fast-isel has better support for VSX, conversions using
962 //        direct moves should be implemented.
963 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) {
964   MVT DstVT;
965   Type *DstTy = I->getType();
966   if (!isTypeLegal(DstTy, DstVT))
967     return false;
968
969   if (DstVT != MVT::f32 && DstVT != MVT::f64)
970     return false;
971
972   Value *Src = I->getOperand(0);
973   EVT SrcEVT = TLI.getValueType(Src->getType(), true);
974   if (!SrcEVT.isSimple())
975     return false;
976
977   MVT SrcVT = SrcEVT.getSimpleVT();
978
979   if (SrcVT != MVT::i8  && SrcVT != MVT::i16 &&
980       SrcVT != MVT::i32 && SrcVT != MVT::i64)
981     return false;
982
983   unsigned SrcReg = getRegForValue(Src);
984   if (SrcReg == 0)
985     return false;
986
987   // We can only lower an unsigned convert if we have the newer
988   // floating-point conversion operations.
989   if (!IsSigned && !PPCSubTarget->hasFPCVT())
990     return false;
991
992   // FIXME: For now we require the newer floating-point conversion operations
993   // (which are present only on P7 and A2 server models) when converting
994   // to single-precision float.  Otherwise we have to generate a lot of
995   // fiddly code to avoid double rounding.  If necessary, the fiddly code
996   // can be found in PPCTargetLowering::LowerINT_TO_FP().
997   if (DstVT == MVT::f32 && !PPCSubTarget->hasFPCVT())
998     return false;
999
1000   // Extend the input if necessary.
1001   if (SrcVT == MVT::i8 || SrcVT == MVT::i16) {
1002     unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
1003     if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned))
1004       return false;
1005     SrcVT = MVT::i64;
1006     SrcReg = TmpReg;
1007   }
1008
1009   // Move the integer value to an FPR.
1010   unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned);
1011   if (FPReg == 0)
1012     return false;
1013
1014   // Determine the opcode for the conversion.
1015   const TargetRegisterClass *RC = &PPC::F8RCRegClass;
1016   unsigned DestReg = createResultReg(RC);
1017   unsigned Opc;
1018
1019   if (DstVT == MVT::f32)
1020     Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS;
1021   else
1022     Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU;
1023
1024   // Generate the convert.
1025   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1026     .addReg(FPReg);
1027
1028   updateValueMap(I, DestReg);
1029   return true;
1030 }
1031
1032 // Move the floating-point value in SrcReg into an integer destination
1033 // register, and return the register (or zero if we can't handle it).
1034 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1035 // those should be used instead of moving via a stack slot when the
1036 // subtarget permits.
1037 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT,
1038                                       unsigned SrcReg, bool IsSigned) {
1039   // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1040   // Note that if have STFIWX available, we could use a 4-byte stack
1041   // slot for i32, but this being fast-isel we'll just go with the
1042   // easiest code gen possible.
1043   Address Addr;
1044   Addr.BaseType = Address::FrameIndexBase;
1045   Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
1046
1047   // Store the value from the FPR.
1048   if (!PPCEmitStore(MVT::f64, SrcReg, Addr))
1049     return 0;
1050
1051   // Reload it into a GPR.  If we want an i32, modify the address
1052   // to have a 4-byte offset so we load from the right place.
1053   if (VT == MVT::i32)
1054     Addr.Offset = 4;
1055
1056   // Look at the currently assigned register for this instruction
1057   // to determine the required register class.
1058   unsigned AssignedReg = FuncInfo.ValueMap[I];
1059   const TargetRegisterClass *RC =
1060     AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
1061
1062   unsigned ResultReg = 0;
1063   if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned))
1064     return 0;
1065
1066   return ResultReg;
1067 }
1068
1069 // Attempt to fast-select a floating-point-to-integer conversion.
1070 // FIXME: Once fast-isel has better support for VSX, conversions using
1071 //        direct moves should be implemented.
1072 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) {
1073   MVT DstVT, SrcVT;
1074   Type *DstTy = I->getType();
1075   if (!isTypeLegal(DstTy, DstVT))
1076     return false;
1077
1078   if (DstVT != MVT::i32 && DstVT != MVT::i64)
1079     return false;
1080
1081   // If we don't have FCTIDUZ and we need it, punt to SelectionDAG.
1082   if (DstVT == MVT::i64 && !IsSigned && !PPCSubTarget->hasFPCVT())
1083     return false;
1084
1085   Value *Src = I->getOperand(0);
1086   Type *SrcTy = Src->getType();
1087   if (!isTypeLegal(SrcTy, SrcVT))
1088     return false;
1089
1090   if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1091     return false;
1092
1093   unsigned SrcReg = getRegForValue(Src);
1094   if (SrcReg == 0)
1095     return false;
1096
1097   // Convert f32 to f64 if necessary.  This is just a meaningless copy
1098   // to get the register class right.  COPY_TO_REGCLASS is needed since
1099   // a COPY from F4RC to F8RC is converted to a F4RC-F4RC copy downstream.
1100   const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg);
1101   if (InRC == &PPC::F4RCRegClass) {
1102     unsigned TmpReg = createResultReg(&PPC::F8RCRegClass);
1103     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1104             TII.get(TargetOpcode::COPY_TO_REGCLASS), TmpReg)
1105       .addReg(SrcReg).addImm(PPC::F8RCRegClassID);
1106     SrcReg = TmpReg;
1107   }
1108
1109   // Determine the opcode for the conversion, which takes place
1110   // entirely within FPRs.
1111   unsigned DestReg = createResultReg(&PPC::F8RCRegClass);
1112   unsigned Opc;
1113
1114   if (DstVT == MVT::i32)
1115     if (IsSigned)
1116       Opc = PPC::FCTIWZ;
1117     else
1118       Opc = PPCSubTarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ;
1119   else
1120     Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ;
1121
1122   // Generate the convert.
1123   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1124     .addReg(SrcReg);
1125
1126   // Now move the integer value from a float register to an integer register.
1127   unsigned IntReg = PPCMoveToIntReg(I, DstVT, DestReg, IsSigned);
1128   if (IntReg == 0)
1129     return false;
1130
1131   updateValueMap(I, IntReg);
1132   return true;
1133 }
1134
1135 // Attempt to fast-select a binary integer operation that isn't already
1136 // handled automatically.
1137 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1138   EVT DestVT  = TLI.getValueType(I->getType(), true);
1139
1140   // We can get here in the case when we have a binary operation on a non-legal
1141   // type and the target independent selector doesn't know how to handle it.
1142   if (DestVT != MVT::i16 && DestVT != MVT::i8)
1143     return false;
1144
1145   // Look at the currently assigned register for this instruction
1146   // to determine the required register class.  If there is no register,
1147   // make a conservative choice (don't assign R0).
1148   unsigned AssignedReg = FuncInfo.ValueMap[I];
1149   const TargetRegisterClass *RC =
1150     (AssignedReg ? MRI.getRegClass(AssignedReg) :
1151      &PPC::GPRC_and_GPRC_NOR0RegClass);
1152   bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
1153
1154   unsigned Opc;
1155   switch (ISDOpcode) {
1156     default: return false;
1157     case ISD::ADD:
1158       Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8;
1159       break;
1160     case ISD::OR:
1161       Opc = IsGPRC ? PPC::OR : PPC::OR8;
1162       break;
1163     case ISD::SUB:
1164       Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8;
1165       break;
1166   }
1167
1168   unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass);
1169   unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1170   if (SrcReg1 == 0) return false;
1171
1172   // Handle case of small immediate operand.
1173   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) {
1174     const APInt &CIVal = ConstInt->getValue();
1175     int Imm = (int)CIVal.getSExtValue();
1176     bool UseImm = true;
1177     if (isInt<16>(Imm)) {
1178       switch (Opc) {
1179         default:
1180           llvm_unreachable("Missing case!");
1181         case PPC::ADD4:
1182           Opc = PPC::ADDI;
1183           MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1184           break;
1185         case PPC::ADD8:
1186           Opc = PPC::ADDI8;
1187           MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1188           break;
1189         case PPC::OR:
1190           Opc = PPC::ORI;
1191           break;
1192         case PPC::OR8:
1193           Opc = PPC::ORI8;
1194           break;
1195         case PPC::SUBF:
1196           if (Imm == -32768)
1197             UseImm = false;
1198           else {
1199             Opc = PPC::ADDI;
1200             MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1201             Imm = -Imm;
1202           }
1203           break;
1204         case PPC::SUBF8:
1205           if (Imm == -32768)
1206             UseImm = false;
1207           else {
1208             Opc = PPC::ADDI8;
1209             MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1210             Imm = -Imm;
1211           }
1212           break;
1213       }
1214
1215       if (UseImm) {
1216         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
1217                 ResultReg)
1218             .addReg(SrcReg1)
1219             .addImm(Imm);
1220         updateValueMap(I, ResultReg);
1221         return true;
1222       }
1223     }
1224   }
1225
1226   // Reg-reg case.
1227   unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1228   if (SrcReg2 == 0) return false;
1229
1230   // Reverse operands for subtract-from.
1231   if (ISDOpcode == ISD::SUB)
1232     std::swap(SrcReg1, SrcReg2);
1233
1234   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
1235     .addReg(SrcReg1).addReg(SrcReg2);
1236   updateValueMap(I, ResultReg);
1237   return true;
1238 }
1239
1240 // Handle arguments to a call that we're attempting to fast-select.
1241 // Return false if the arguments are too complex for us at the moment.
1242 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args,
1243                                   SmallVectorImpl<unsigned> &ArgRegs,
1244                                   SmallVectorImpl<MVT> &ArgVTs,
1245                                   SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1246                                   SmallVectorImpl<unsigned> &RegArgs,
1247                                   CallingConv::ID CC,
1248                                   unsigned &NumBytes,
1249                                   bool IsVarArg) {
1250   SmallVector<CCValAssign, 16> ArgLocs;
1251   CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context);
1252
1253   // Reserve space for the linkage area on the stack.
1254   unsigned LinkageSize = PPCSubTarget->getFrameLowering()->getLinkageSize();
1255   CCInfo.AllocateStack(LinkageSize, 8);
1256
1257   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS);
1258
1259   // Bail out if we can't handle any of the arguments.
1260   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1261     CCValAssign &VA = ArgLocs[I];
1262     MVT ArgVT = ArgVTs[VA.getValNo()];
1263
1264     // Skip vector arguments for now, as well as long double and
1265     // uint128_t, and anything that isn't passed in a register.
1266     if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 ||
1267         !VA.isRegLoc() || VA.needsCustom())
1268       return false;
1269
1270     // Skip bit-converted arguments for now.
1271     if (VA.getLocInfo() == CCValAssign::BCvt)
1272       return false;
1273   }
1274
1275   // Get a count of how many bytes are to be pushed onto the stack.
1276   NumBytes = CCInfo.getNextStackOffset();
1277
1278   // The prolog code of the callee may store up to 8 GPR argument registers to
1279   // the stack, allowing va_start to index over them in memory if its varargs.
1280   // Because we cannot tell if this is needed on the caller side, we have to
1281   // conservatively assume that it is needed.  As such, make sure we have at
1282   // least enough stack space for the caller to store the 8 GPRs.
1283   // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
1284   NumBytes = std::max(NumBytes, LinkageSize + 64);
1285
1286   // Issue CALLSEQ_START.
1287   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1288           TII.get(TII.getCallFrameSetupOpcode()))
1289     .addImm(NumBytes);
1290
1291   // Prepare to assign register arguments.  Every argument uses up a
1292   // GPR protocol register even if it's passed in a floating-point
1293   // register (unless we're using the fast calling convention).
1294   unsigned NextGPR = PPC::X3;
1295   unsigned NextFPR = PPC::F1;
1296
1297   // Process arguments.
1298   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1299     CCValAssign &VA = ArgLocs[I];
1300     unsigned Arg = ArgRegs[VA.getValNo()];
1301     MVT ArgVT = ArgVTs[VA.getValNo()];
1302
1303     // Handle argument promotion and bitcasts.
1304     switch (VA.getLocInfo()) {
1305       default:
1306         llvm_unreachable("Unknown loc info!");
1307       case CCValAssign::Full:
1308         break;
1309       case CCValAssign::SExt: {
1310         MVT DestVT = VA.getLocVT();
1311         const TargetRegisterClass *RC =
1312           (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1313         unsigned TmpReg = createResultReg(RC);
1314         if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false))
1315           llvm_unreachable("Failed to emit a sext!");
1316         ArgVT = DestVT;
1317         Arg = TmpReg;
1318         break;
1319       }
1320       case CCValAssign::AExt:
1321       case CCValAssign::ZExt: {
1322         MVT DestVT = VA.getLocVT();
1323         const TargetRegisterClass *RC =
1324           (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1325         unsigned TmpReg = createResultReg(RC);
1326         if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true))
1327           llvm_unreachable("Failed to emit a zext!");
1328         ArgVT = DestVT;
1329         Arg = TmpReg;
1330         break;
1331       }
1332       case CCValAssign::BCvt: {
1333         // FIXME: Not yet handled.
1334         llvm_unreachable("Should have bailed before getting here!");
1335         break;
1336       }
1337     }
1338
1339     // Copy this argument to the appropriate register.
1340     unsigned ArgReg;
1341     if (ArgVT == MVT::f32 || ArgVT == MVT::f64) {
1342       ArgReg = NextFPR++;
1343       if (CC != CallingConv::Fast)
1344         ++NextGPR;
1345     } else
1346       ArgReg = NextGPR++;
1347
1348     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1349             TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg);
1350     RegArgs.push_back(ArgReg);
1351   }
1352
1353   return true;
1354 }
1355
1356 // For a call that we've determined we can fast-select, finish the
1357 // call sequence and generate a copy to obtain the return value (if any).
1358 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) {
1359   CallingConv::ID CC = CLI.CallConv;
1360
1361   // Issue CallSEQ_END.
1362   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1363           TII.get(TII.getCallFrameDestroyOpcode()))
1364     .addImm(NumBytes).addImm(0);
1365
1366   // Next, generate a copy to obtain the return value.
1367   // FIXME: No multi-register return values yet, though I don't foresee
1368   // any real difficulties there.
1369   if (RetVT != MVT::isVoid) {
1370     SmallVector<CCValAssign, 16> RVLocs;
1371     CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
1372     CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1373     CCValAssign &VA = RVLocs[0];
1374     assert(RVLocs.size() == 1 && "No support for multi-reg return values!");
1375     assert(VA.isRegLoc() && "Can only return in registers!");
1376
1377     MVT DestVT = VA.getValVT();
1378     MVT CopyVT = DestVT;
1379
1380     // Ints smaller than a register still arrive in a full 64-bit
1381     // register, so make sure we recognize this.
1382     if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32)
1383       CopyVT = MVT::i64;
1384
1385     unsigned SourcePhysReg = VA.getLocReg();
1386     unsigned ResultReg = 0;
1387
1388     if (RetVT == CopyVT) {
1389       const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT);
1390       ResultReg = createResultReg(CpyRC);
1391
1392       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1393               TII.get(TargetOpcode::COPY), ResultReg)
1394         .addReg(SourcePhysReg);
1395
1396     // If necessary, round the floating result to single precision.
1397     } else if (CopyVT == MVT::f64) {
1398       ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1399       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP),
1400               ResultReg).addReg(SourcePhysReg);
1401
1402     // If only the low half of a general register is needed, generate
1403     // a GPRC copy instead of a G8RC copy.  (EXTRACT_SUBREG can't be
1404     // used along the fast-isel path (not lowered), and downstream logic
1405     // also doesn't like a direct subreg copy on a physical reg.)
1406     } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) {
1407       ResultReg = createResultReg(&PPC::GPRCRegClass);
1408       // Convert physical register from G8RC to GPRC.
1409       SourcePhysReg -= PPC::X0 - PPC::R0;
1410       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1411               TII.get(TargetOpcode::COPY), ResultReg)
1412         .addReg(SourcePhysReg);
1413     }
1414
1415     assert(ResultReg && "ResultReg unset!");
1416     CLI.InRegs.push_back(SourcePhysReg);
1417     CLI.ResultReg = ResultReg;
1418     CLI.NumResultRegs = 1;
1419   }
1420
1421   return true;
1422 }
1423
1424 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) {
1425   CallingConv::ID CC  = CLI.CallConv;
1426   bool IsTailCall     = CLI.IsTailCall;
1427   bool IsVarArg       = CLI.IsVarArg;
1428   const Value *Callee = CLI.Callee;
1429   const char *SymName = CLI.SymName;
1430
1431   if (!Callee && !SymName)
1432     return false;
1433
1434   // Allow SelectionDAG isel to handle tail calls.
1435   if (IsTailCall)
1436     return false;
1437
1438   // Let SDISel handle vararg functions.
1439   if (IsVarArg)
1440     return false;
1441
1442   // Handle simple calls for now, with legal return types and
1443   // those that can be extended.
1444   Type *RetTy = CLI.RetTy;
1445   MVT RetVT;
1446   if (RetTy->isVoidTy())
1447     RetVT = MVT::isVoid;
1448   else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
1449            RetVT != MVT::i8)
1450     return false;
1451   else if (RetVT == MVT::i1 && PPCSubTarget->useCRBits())
1452     // We can't handle boolean returns when CR bits are in use.
1453     return false;
1454
1455   // FIXME: No multi-register return values yet.
1456   if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 &&
1457       RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 &&
1458       RetVT != MVT::f64) {
1459     SmallVector<CCValAssign, 16> RVLocs;
1460     CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context);
1461     CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1462     if (RVLocs.size() > 1)
1463       return false;
1464   }
1465
1466   // Bail early if more than 8 arguments, as we only currently
1467   // handle arguments passed in registers.
1468   unsigned NumArgs = CLI.OutVals.size();
1469   if (NumArgs > 8)
1470     return false;
1471
1472   // Set up the argument vectors.
1473   SmallVector<Value*, 8> Args;
1474   SmallVector<unsigned, 8> ArgRegs;
1475   SmallVector<MVT, 8> ArgVTs;
1476   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1477
1478   Args.reserve(NumArgs);
1479   ArgRegs.reserve(NumArgs);
1480   ArgVTs.reserve(NumArgs);
1481   ArgFlags.reserve(NumArgs);
1482
1483   for (unsigned i = 0, ie = NumArgs; i != ie; ++i) {
1484     // Only handle easy calls for now.  It would be reasonably easy
1485     // to handle <= 8-byte structures passed ByVal in registers, but we
1486     // have to ensure they are right-justified in the register.
1487     ISD::ArgFlagsTy Flags = CLI.OutFlags[i];
1488     if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal())
1489       return false;
1490
1491     Value *ArgValue = CLI.OutVals[i];
1492     Type *ArgTy = ArgValue->getType();
1493     MVT ArgVT;
1494     if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8)
1495       return false;
1496
1497     if (ArgVT.isVector())
1498       return false;
1499
1500     unsigned Arg = getRegForValue(ArgValue);
1501     if (Arg == 0)
1502       return false;
1503
1504     Args.push_back(ArgValue);
1505     ArgRegs.push_back(Arg);
1506     ArgVTs.push_back(ArgVT);
1507     ArgFlags.push_back(Flags);
1508   }
1509
1510   // Process the arguments.
1511   SmallVector<unsigned, 8> RegArgs;
1512   unsigned NumBytes;
1513
1514   if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
1515                        RegArgs, CC, NumBytes, IsVarArg))
1516     return false;
1517
1518   MachineInstrBuilder MIB;
1519   // FIXME: No handling for function pointers yet.  This requires
1520   // implementing the function descriptor (OPD) setup.
1521   const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1522   if (!GV) {
1523     // patchpoints are a special case; they always dispatch to a pointer value.
1524     // However, we don't actually want to generate the indirect call sequence
1525     // here (that will be generated, as necessary, during asm printing), and
1526     // the call we generate here will be erased by FastISel::selectPatchpoint,
1527     // so don't try very hard...
1528     if (CLI.IsPatchPoint)
1529       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP));
1530     else
1531       return false;
1532   } else {
1533     // Build direct call with NOP for TOC restore.
1534     // FIXME: We can and should optimize away the NOP for local calls.
1535     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1536                   TII.get(PPC::BL8_NOP));
1537     // Add callee.
1538     MIB.addGlobalAddress(GV);
1539   }
1540
1541   // Add implicit physical register uses to the call.
1542   for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II)
1543     MIB.addReg(RegArgs[II], RegState::Implicit);
1544
1545   // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live
1546   // into the call.
1547   PPCFuncInfo->setUsesTOCBasePtr();
1548   MIB.addReg(PPC::X2, RegState::Implicit);
1549
1550   // Add a register mask with the call-preserved registers.  Proper
1551   // defs for return values will be added by setPhysRegsDeadExcept().
1552   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
1553
1554   CLI.Call = MIB;
1555
1556   // Finish off the call including any return values.
1557   return finishCall(RetVT, CLI, NumBytes);
1558 }
1559
1560 // Attempt to fast-select a return instruction.
1561 bool PPCFastISel::SelectRet(const Instruction *I) {
1562
1563   if (!FuncInfo.CanLowerReturn)
1564     return false;
1565
1566   const ReturnInst *Ret = cast<ReturnInst>(I);
1567   const Function &F = *I->getParent()->getParent();
1568
1569   // Build a list of return value registers.
1570   SmallVector<unsigned, 4> RetRegs;
1571   CallingConv::ID CC = F.getCallingConv();
1572
1573   if (Ret->getNumOperands() > 0) {
1574     SmallVector<ISD::OutputArg, 4> Outs;
1575     GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
1576
1577     // Analyze operands of the call, assigning locations to each operand.
1578     SmallVector<CCValAssign, 16> ValLocs;
1579     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context);
1580     CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS);
1581     const Value *RV = Ret->getOperand(0);
1582     
1583     // FIXME: Only one output register for now.
1584     if (ValLocs.size() > 1)
1585       return false;
1586
1587     // Special case for returning a constant integer of any size.
1588     // Materialize the constant as an i64 and copy it to the return
1589     // register. We still need to worry about properly extending the sign. E.g:
1590     // If the constant has only one bit, it means it is a boolean. Therefore
1591     // we can't use PPCMaterializeInt because it extends the sign which will
1592     // cause negations of the returned value to be incorrect as they are
1593     // implemented as the flip of the least significant bit.
1594     if (isa<ConstantInt>(*RV)) {
1595       const Constant *C = cast<Constant>(RV);
1596
1597       CCValAssign &VA = ValLocs[0];
1598
1599       unsigned RetReg = VA.getLocReg();
1600       unsigned SrcReg = PPCMaterializeInt(C, MVT::i64,
1601                                           VA.getLocInfo() == CCValAssign::SExt);
1602
1603       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1604             TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg);
1605
1606       RetRegs.push_back(RetReg);
1607
1608     } else {
1609       unsigned Reg = getRegForValue(RV);
1610
1611       if (Reg == 0)
1612         return false;
1613
1614       // Copy the result values into the output registers.
1615       for (unsigned i = 0; i < ValLocs.size(); ++i) {
1616
1617         CCValAssign &VA = ValLocs[i];
1618         assert(VA.isRegLoc() && "Can only return in registers!");
1619         RetRegs.push_back(VA.getLocReg());
1620         unsigned SrcReg = Reg + VA.getValNo();
1621
1622         EVT RVEVT = TLI.getValueType(RV->getType());
1623         if (!RVEVT.isSimple())
1624           return false;
1625         MVT RVVT = RVEVT.getSimpleVT();
1626         MVT DestVT = VA.getLocVT();
1627
1628         if (RVVT != DestVT && RVVT != MVT::i8 &&
1629             RVVT != MVT::i16 && RVVT != MVT::i32)
1630           return false;
1631       
1632         if (RVVT != DestVT) {
1633           switch (VA.getLocInfo()) {
1634             default:
1635               llvm_unreachable("Unknown loc info!");
1636             case CCValAssign::Full:
1637               llvm_unreachable("Full value assign but types don't match?");
1638             case CCValAssign::AExt:
1639             case CCValAssign::ZExt: {
1640               const TargetRegisterClass *RC =
1641                 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1642               unsigned TmpReg = createResultReg(RC);
1643               if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true))
1644                 return false;
1645               SrcReg = TmpReg;
1646               break;
1647             }
1648             case CCValAssign::SExt: {
1649               const TargetRegisterClass *RC =
1650                 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1651               unsigned TmpReg = createResultReg(RC);
1652               if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false))
1653                 return false;
1654               SrcReg = TmpReg;
1655               break;
1656             }
1657           }
1658         }
1659
1660         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1661                 TII.get(TargetOpcode::COPY), RetRegs[i])
1662           .addReg(SrcReg);
1663       }
1664     }
1665   }
1666
1667   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1668                                     TII.get(PPC::BLR8));
1669
1670   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1671     MIB.addReg(RetRegs[i], RegState::Implicit);
1672
1673   return true;
1674 }
1675
1676 // Attempt to emit an integer extend of SrcReg into DestReg.  Both
1677 // signed and zero extensions are supported.  Return false if we
1678 // can't handle it.
1679 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1680                                 unsigned DestReg, bool IsZExt) {
1681   if (DestVT != MVT::i32 && DestVT != MVT::i64)
1682     return false;
1683   if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32)
1684     return false;
1685
1686   // Signed extensions use EXTSB, EXTSH, EXTSW.
1687   if (!IsZExt) {
1688     unsigned Opc;
1689     if (SrcVT == MVT::i8)
1690       Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64;
1691     else if (SrcVT == MVT::i16)
1692       Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64;
1693     else {
1694       assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??");
1695       Opc = PPC::EXTSW_32_64;
1696     }
1697     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1698       .addReg(SrcReg);
1699
1700   // Unsigned 32-bit extensions use RLWINM.
1701   } else if (DestVT == MVT::i32) {
1702     unsigned MB;
1703     if (SrcVT == MVT::i8)
1704       MB = 24;
1705     else {
1706       assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??");
1707       MB = 16;
1708     }
1709     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM),
1710             DestReg)
1711       .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31);
1712
1713   // Unsigned 64-bit extensions use RLDICL (with a 32-bit source).
1714   } else {
1715     unsigned MB;
1716     if (SrcVT == MVT::i8)
1717       MB = 56;
1718     else if (SrcVT == MVT::i16)
1719       MB = 48;
1720     else
1721       MB = 32;
1722     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1723             TII.get(PPC::RLDICL_32_64), DestReg)
1724       .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB);
1725   }
1726
1727   return true;
1728 }
1729
1730 // Attempt to fast-select an indirect branch instruction.
1731 bool PPCFastISel::SelectIndirectBr(const Instruction *I) {
1732   unsigned AddrReg = getRegForValue(I->getOperand(0));
1733   if (AddrReg == 0)
1734     return false;
1735
1736   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8))
1737     .addReg(AddrReg);
1738   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8));
1739
1740   const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1741   for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i)
1742     FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]);
1743
1744   return true;
1745 }
1746
1747 // Attempt to fast-select an integer truncate instruction.
1748 bool PPCFastISel::SelectTrunc(const Instruction *I) {
1749   Value *Src  = I->getOperand(0);
1750   EVT SrcVT  = TLI.getValueType(Src->getType(), true);
1751   EVT DestVT = TLI.getValueType(I->getType(), true);
1752
1753   if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16)
1754     return false;
1755
1756   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
1757     return false;
1758
1759   unsigned SrcReg = getRegForValue(Src);
1760   if (!SrcReg)
1761     return false;
1762
1763   // The only interesting case is when we need to switch register classes.
1764   if (SrcVT == MVT::i64) {
1765     unsigned ResultReg = createResultReg(&PPC::GPRCRegClass);
1766     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1767             TII.get(TargetOpcode::COPY),
1768             ResultReg).addReg(SrcReg, 0, PPC::sub_32);
1769     SrcReg = ResultReg;
1770   }
1771
1772   updateValueMap(I, SrcReg);
1773   return true;
1774 }
1775
1776 // Attempt to fast-select an integer extend instruction.
1777 bool PPCFastISel::SelectIntExt(const Instruction *I) {
1778   Type *DestTy = I->getType();
1779   Value *Src = I->getOperand(0);
1780   Type *SrcTy = Src->getType();
1781
1782   bool IsZExt = isa<ZExtInst>(I);
1783   unsigned SrcReg = getRegForValue(Src);
1784   if (!SrcReg) return false;
1785
1786   EVT SrcEVT, DestEVT;
1787   SrcEVT = TLI.getValueType(SrcTy, true);
1788   DestEVT = TLI.getValueType(DestTy, true);
1789   if (!SrcEVT.isSimple())
1790     return false;
1791   if (!DestEVT.isSimple())
1792     return false;
1793
1794   MVT SrcVT = SrcEVT.getSimpleVT();
1795   MVT DestVT = DestEVT.getSimpleVT();
1796
1797   // If we know the register class needed for the result of this
1798   // instruction, use it.  Otherwise pick the register class of the
1799   // correct size that does not contain X0/R0, since we don't know
1800   // whether downstream uses permit that assignment.
1801   unsigned AssignedReg = FuncInfo.ValueMap[I];
1802   const TargetRegisterClass *RC =
1803     (AssignedReg ? MRI.getRegClass(AssignedReg) :
1804      (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
1805       &PPC::GPRC_and_GPRC_NOR0RegClass));
1806   unsigned ResultReg = createResultReg(RC);
1807
1808   if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt))
1809     return false;
1810
1811   updateValueMap(I, ResultReg);
1812   return true;
1813 }
1814
1815 // Attempt to fast-select an instruction that wasn't handled by
1816 // the table-generated machinery.
1817 bool PPCFastISel::fastSelectInstruction(const Instruction *I) {
1818
1819   switch (I->getOpcode()) {
1820     case Instruction::Load:
1821       return SelectLoad(I);
1822     case Instruction::Store:
1823       return SelectStore(I);
1824     case Instruction::Br:
1825       return SelectBranch(I);
1826     case Instruction::IndirectBr:
1827       return SelectIndirectBr(I);
1828     case Instruction::FPExt:
1829       return SelectFPExt(I);
1830     case Instruction::FPTrunc:
1831       return SelectFPTrunc(I);
1832     case Instruction::SIToFP:
1833       return SelectIToFP(I, /*IsSigned*/ true);
1834     case Instruction::UIToFP:
1835       return SelectIToFP(I, /*IsSigned*/ false);
1836     case Instruction::FPToSI:
1837       return SelectFPToI(I, /*IsSigned*/ true);
1838     case Instruction::FPToUI:
1839       return SelectFPToI(I, /*IsSigned*/ false);
1840     case Instruction::Add:
1841       return SelectBinaryIntOp(I, ISD::ADD);
1842     case Instruction::Or:
1843       return SelectBinaryIntOp(I, ISD::OR);
1844     case Instruction::Sub:
1845       return SelectBinaryIntOp(I, ISD::SUB);
1846     case Instruction::Call:
1847       return selectCall(I);
1848     case Instruction::Ret:
1849       return SelectRet(I);
1850     case Instruction::Trunc:
1851       return SelectTrunc(I);
1852     case Instruction::ZExt:
1853     case Instruction::SExt:
1854       return SelectIntExt(I);
1855     // Here add other flavors of Instruction::XXX that automated
1856     // cases don't catch.  For example, switches are terminators
1857     // that aren't yet handled.
1858     default:
1859       break;
1860   }
1861   return false;
1862 }
1863
1864 // Materialize a floating-point constant into a register, and return
1865 // the register number (or zero if we failed to handle it).
1866 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) {
1867   // No plans to handle long double here.
1868   if (VT != MVT::f32 && VT != MVT::f64)
1869     return 0;
1870
1871   // All FP constants are loaded from the constant pool.
1872   unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
1873   assert(Align > 0 && "Unexpectedly missing alignment information!");
1874   unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
1875   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
1876   CodeModel::Model CModel = TM.getCodeModel();
1877
1878   MachineMemOperand *MMO =
1879     FuncInfo.MF->getMachineMemOperand(
1880       MachinePointerInfo::getConstantPool(), MachineMemOperand::MOLoad,
1881       (VT == MVT::f32) ? 4 : 8, Align);
1882
1883   unsigned Opc = (VT == MVT::f32) ? PPC::LFS : PPC::LFD;
1884   unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
1885
1886   PPCFuncInfo->setUsesTOCBasePtr();
1887   // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)).
1888   if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) {
1889     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT),
1890             TmpReg)
1891       .addConstantPoolIndex(Idx).addReg(PPC::X2);
1892     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1893       .addImm(0).addReg(TmpReg).addMemOperand(MMO);
1894   } else {
1895     // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)).
1896     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA),
1897             TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx);
1898     // But for large code model, we must generate a LDtocL followed
1899     // by the LF[SD].
1900     if (CModel == CodeModel::Large) {
1901       unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
1902       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
1903               TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg);
1904       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1905         .addImm(0).addReg(TmpReg2);
1906     } else 
1907       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1908         .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO)
1909         .addReg(TmpReg)
1910         .addMemOperand(MMO);
1911   }
1912
1913   return DestReg;
1914 }
1915
1916 // Materialize the address of a global value into a register, and return
1917 // the register number (or zero if we failed to handle it).
1918 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) {
1919   assert(VT == MVT::i64 && "Non-address!");
1920   const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass;
1921   unsigned DestReg = createResultReg(RC);
1922
1923   // Global values may be plain old object addresses, TLS object
1924   // addresses, constant pool entries, or jump tables.  How we generate
1925   // code for these may depend on small, medium, or large code model.
1926   CodeModel::Model CModel = TM.getCodeModel();
1927
1928   // FIXME: Jump tables are not yet required because fast-isel doesn't
1929   // handle switches; if that changes, we need them as well.  For now,
1930   // what follows assumes everything's a generic (or TLS) global address.
1931
1932   // FIXME: We don't yet handle the complexity of TLS.
1933   if (GV->isThreadLocal())
1934     return 0;
1935
1936   PPCFuncInfo->setUsesTOCBasePtr();
1937   // For small code model, generate a simple TOC load.
1938   if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault)
1939     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc),
1940             DestReg)
1941         .addGlobalAddress(GV)
1942         .addReg(PPC::X2);
1943   else {
1944     // If the address is an externally defined symbol, a symbol with common
1945     // or externally available linkage, a non-local function address, or a
1946     // jump table address (not yet needed), or if we are generating code
1947     // for large code model, we generate:
1948     //       LDtocL(GV, ADDIStocHA(%X2, GV))
1949     // Otherwise we generate:
1950     //       ADDItocL(ADDIStocHA(%X2, GV), GV)
1951     // Either way, start with the ADDIStocHA:
1952     unsigned HighPartReg = createResultReg(RC);
1953     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA),
1954             HighPartReg).addReg(PPC::X2).addGlobalAddress(GV);
1955
1956     // If/when switches are implemented, jump tables should be handled
1957     // on the "if" path here.
1958     if (CModel == CodeModel::Large ||
1959         (GV->getType()->getElementType()->isFunctionTy() &&
1960          (GV->isDeclaration() || GV->isWeakForLinker())) ||
1961         GV->isDeclaration() || GV->hasCommonLinkage() ||
1962         GV->hasAvailableExternallyLinkage())
1963       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
1964               DestReg).addGlobalAddress(GV).addReg(HighPartReg);
1965     else
1966       // Otherwise generate the ADDItocL.
1967       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL),
1968               DestReg).addReg(HighPartReg).addGlobalAddress(GV);
1969   }
1970
1971   return DestReg;
1972 }
1973
1974 // Materialize a 32-bit integer constant into a register, and return
1975 // the register number (or zero if we failed to handle it).
1976 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm,
1977                                              const TargetRegisterClass *RC) {
1978   unsigned Lo = Imm & 0xFFFF;
1979   unsigned Hi = (Imm >> 16) & 0xFFFF;
1980
1981   unsigned ResultReg = createResultReg(RC);
1982   bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
1983
1984   if (isInt<16>(Imm))
1985     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1986             TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg)
1987       .addImm(Imm);
1988   else if (Lo) {
1989     // Both Lo and Hi have nonzero bits.
1990     unsigned TmpReg = createResultReg(RC);
1991     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1992             TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg)
1993       .addImm(Hi);
1994     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1995             TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg)
1996       .addReg(TmpReg).addImm(Lo);
1997   } else
1998     // Just Hi bits.
1999     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2000             TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg)
2001       .addImm(Hi);
2002   
2003   return ResultReg;
2004 }
2005
2006 // Materialize a 64-bit integer constant into a register, and return
2007 // the register number (or zero if we failed to handle it).
2008 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm,
2009                                              const TargetRegisterClass *RC) {
2010   unsigned Remainder = 0;
2011   unsigned Shift = 0;
2012
2013   // If the value doesn't fit in 32 bits, see if we can shift it
2014   // so that it fits in 32 bits.
2015   if (!isInt<32>(Imm)) {
2016     Shift = countTrailingZeros<uint64_t>(Imm);
2017     int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
2018
2019     if (isInt<32>(ImmSh))
2020       Imm = ImmSh;
2021     else {
2022       Remainder = Imm;
2023       Shift = 32;
2024       Imm >>= 32;
2025     }
2026   }
2027
2028   // Handle the high-order 32 bits (if shifted) or the whole 32 bits
2029   // (if not shifted).
2030   unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC);
2031   if (!Shift)
2032     return TmpReg1;
2033
2034   // If upper 32 bits were not zero, we've built them and need to shift
2035   // them into place.
2036   unsigned TmpReg2;
2037   if (Imm) {
2038     TmpReg2 = createResultReg(RC);
2039     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR),
2040             TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift);
2041   } else
2042     TmpReg2 = TmpReg1;
2043
2044   unsigned TmpReg3, Hi, Lo;
2045   if ((Hi = (Remainder >> 16) & 0xFFFF)) {
2046     TmpReg3 = createResultReg(RC);
2047     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8),
2048             TmpReg3).addReg(TmpReg2).addImm(Hi);
2049   } else
2050     TmpReg3 = TmpReg2;
2051
2052   if ((Lo = Remainder & 0xFFFF)) {
2053     unsigned ResultReg = createResultReg(RC);
2054     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8),
2055             ResultReg).addReg(TmpReg3).addImm(Lo);
2056     return ResultReg;
2057   }
2058
2059   return TmpReg3;
2060 }
2061
2062
2063 // Materialize an integer constant into a register, and return
2064 // the register number (or zero if we failed to handle it).
2065 unsigned PPCFastISel::PPCMaterializeInt(const Constant *C, MVT VT,
2066                                                            bool UseSExt) {
2067   // If we're using CR bit registers for i1 values, handle that as a special
2068   // case first.
2069   if (VT == MVT::i1 && PPCSubTarget->useCRBits()) {
2070     const ConstantInt *CI = cast<ConstantInt>(C);
2071     unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2072     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2073             TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2074     return ImmReg;
2075   }
2076
2077   if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 &&
2078       VT != MVT::i8 && VT != MVT::i1) 
2079     return 0;
2080
2081   const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
2082                                    &PPC::GPRCRegClass);
2083
2084   // If the constant is in range, use a load-immediate.
2085   const ConstantInt *CI = cast<ConstantInt>(C);
2086   if (isInt<16>(CI->getSExtValue())) {
2087     unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI;
2088     unsigned ImmReg = createResultReg(RC);
2089     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg)
2090       .addImm( (UseSExt) ? CI->getSExtValue() : CI->getZExtValue() );
2091     return ImmReg;
2092   }
2093
2094   // Construct the constant piecewise.
2095   int64_t Imm = CI->getZExtValue();
2096
2097   if (VT == MVT::i64)
2098     return PPCMaterialize64BitInt(Imm, RC);
2099   else if (VT == MVT::i32)
2100     return PPCMaterialize32BitInt(Imm, RC);
2101
2102   return 0;
2103 }
2104
2105 // Materialize a constant into a register, and return the register
2106 // number (or zero if we failed to handle it).
2107 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) {
2108   EVT CEVT = TLI.getValueType(C->getType(), true);
2109
2110   // Only handle simple types.
2111   if (!CEVT.isSimple()) return 0;
2112   MVT VT = CEVT.getSimpleVT();
2113
2114   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
2115     return PPCMaterializeFP(CFP, VT);
2116   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
2117     return PPCMaterializeGV(GV, VT);
2118   else if (isa<ConstantInt>(C))
2119     return PPCMaterializeInt(C, VT, VT != MVT::i1);
2120
2121   return 0;
2122 }
2123
2124 // Materialize the address created by an alloca into a register, and
2125 // return the register number (or zero if we failed to handle it).
2126 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
2127   // Don't handle dynamic allocas.
2128   if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
2129
2130   MVT VT;
2131   if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
2132
2133   DenseMap<const AllocaInst*, int>::iterator SI =
2134     FuncInfo.StaticAllocaMap.find(AI);
2135
2136   if (SI != FuncInfo.StaticAllocaMap.end()) {
2137     unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2138     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
2139             ResultReg).addFrameIndex(SI->second).addImm(0);
2140     return ResultReg;
2141   }
2142
2143   return 0;
2144 }
2145
2146 // Fold loads into extends when possible.
2147 // FIXME: We can have multiple redundant extend/trunc instructions
2148 // following a load.  The folding only picks up one.  Extend this
2149 // to check subsequent instructions for the same pattern and remove
2150 // them.  Thus ResultReg should be the def reg for the last redundant
2151 // instruction in a chain, and all intervening instructions can be
2152 // removed from parent.  Change test/CodeGen/PowerPC/fast-isel-fold.ll
2153 // to add ELF64-NOT: rldicl to the appropriate tests when this works.
2154 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2155                                       const LoadInst *LI) {
2156   // Verify we have a legal type before going any further.
2157   MVT VT;
2158   if (!isLoadTypeLegal(LI->getType(), VT))
2159     return false;
2160
2161   // Combine load followed by zero- or sign-extend.
2162   bool IsZExt = false;
2163   switch(MI->getOpcode()) {
2164     default:
2165       return false;
2166
2167     case PPC::RLDICL:
2168     case PPC::RLDICL_32_64: {
2169       IsZExt = true;
2170       unsigned MB = MI->getOperand(3).getImm();
2171       if ((VT == MVT::i8 && MB <= 56) ||
2172           (VT == MVT::i16 && MB <= 48) ||
2173           (VT == MVT::i32 && MB <= 32))
2174         break;
2175       return false;
2176     }
2177
2178     case PPC::RLWINM:
2179     case PPC::RLWINM8: {
2180       IsZExt = true;
2181       unsigned MB = MI->getOperand(3).getImm();
2182       if ((VT == MVT::i8 && MB <= 24) ||
2183           (VT == MVT::i16 && MB <= 16))
2184         break;
2185       return false;
2186     }
2187
2188     case PPC::EXTSB:
2189     case PPC::EXTSB8:
2190     case PPC::EXTSB8_32_64:
2191       /* There is no sign-extending load-byte instruction. */
2192       return false;
2193
2194     case PPC::EXTSH:
2195     case PPC::EXTSH8:
2196     case PPC::EXTSH8_32_64: {
2197       if (VT != MVT::i16 && VT != MVT::i8)
2198         return false;
2199       break;
2200     }
2201
2202     case PPC::EXTSW:
2203     case PPC::EXTSW_32_64: {
2204       if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8)
2205         return false;
2206       break;
2207     }
2208   }
2209
2210   // See if we can handle this address.
2211   Address Addr;
2212   if (!PPCComputeAddress(LI->getOperand(0), Addr))
2213     return false;
2214
2215   unsigned ResultReg = MI->getOperand(0).getReg();
2216
2217   if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt))
2218     return false;
2219
2220   MI->eraseFromParent();
2221   return true;
2222 }
2223
2224 // Attempt to lower call arguments in a faster way than done by
2225 // the selection DAG code.
2226 bool PPCFastISel::fastLowerArguments() {
2227   // Defer to normal argument lowering for now.  It's reasonably
2228   // efficient.  Consider doing something like ARM to handle the
2229   // case where all args fit in registers, no varargs, no float
2230   // or vector args.
2231   return false;
2232 }
2233
2234 // Handle materializing integer constants into a register.  This is not
2235 // automatically generated for PowerPC, so must be explicitly created here.
2236 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) {
2237   
2238   if (Opc != ISD::Constant)
2239     return 0;
2240
2241   // If we're using CR bit registers for i1 values, handle that as a special
2242   // case first.
2243   if (VT == MVT::i1 && PPCSubTarget->useCRBits()) {
2244     unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2245     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2246             TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2247     return ImmReg;
2248   }
2249
2250   if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 &&
2251       VT != MVT::i8 && VT != MVT::i1) 
2252     return 0;
2253
2254   const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
2255                                    &PPC::GPRCRegClass);
2256   if (VT == MVT::i64)
2257     return PPCMaterialize64BitInt(Imm, RC);
2258   else
2259     return PPCMaterialize32BitInt(Imm, RC);
2260 }
2261
2262 // Override for ADDI and ADDI8 to set the correct register class
2263 // on RHS operand 0.  The automatic infrastructure naively assumes
2264 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost
2265 // for these cases.  At the moment, none of the other automatically
2266 // generated RI instructions require special treatment.  However, once
2267 // SelectSelect is implemented, "isel" requires similar handling.
2268 //
2269 // Also be conservative about the output register class.  Avoid
2270 // assigning R0 or X0 to the output register for GPRC and G8RC
2271 // register classes, as any such result could be used in ADDI, etc.,
2272 // where those regs have another meaning.
2273 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2274                                       const TargetRegisterClass *RC,
2275                                       unsigned Op0, bool Op0IsKill,
2276                                       uint64_t Imm) {
2277   if (MachineInstOpcode == PPC::ADDI)
2278     MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass);
2279   else if (MachineInstOpcode == PPC::ADDI8)
2280     MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass);
2281
2282   const TargetRegisterClass *UseRC =
2283     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2284      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2285
2286   return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC,
2287                                    Op0, Op0IsKill, Imm);
2288 }
2289
2290 // Override for instructions with one register operand to avoid use of
2291 // R0/X0.  The automatic infrastructure isn't aware of the context so
2292 // we must be conservative.
2293 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
2294                                      const TargetRegisterClass* RC,
2295                                      unsigned Op0, bool Op0IsKill) {
2296   const TargetRegisterClass *UseRC =
2297     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2298      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2299
2300   return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill);
2301 }
2302
2303 // Override for instructions with two register operands to avoid use
2304 // of R0/X0.  The automatic infrastructure isn't aware of the context
2305 // so we must be conservative.
2306 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2307                                       const TargetRegisterClass* RC,
2308                                       unsigned Op0, bool Op0IsKill,
2309                                       unsigned Op1, bool Op1IsKill) {
2310   const TargetRegisterClass *UseRC =
2311     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2312      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2313
2314   return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill,
2315                                    Op1, Op1IsKill);
2316 }
2317
2318 namespace llvm {
2319   // Create the fast instruction selector for PowerPC64 ELF.
2320   FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo,
2321                                 const TargetLibraryInfo *LibInfo) {
2322     // Only available on 64-bit ELF for now.
2323     const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>();
2324     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI())
2325       return new PPCFastISel(FuncInfo, LibInfo);
2326     return nullptr;
2327   }
2328 }