[NVPTX] do not run DCE after SLSR and SeparateConstOffsetFromGEP
[oota-llvm.git] / lib / Target / NVPTX / NVPTXTargetMachine.cpp
1 //===-- NVPTXTargetMachine.cpp - Define TargetMachine for NVPTX -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Top-level implementation for the NVPTX target.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "NVPTXTargetMachine.h"
15 #include "MCTargetDesc/NVPTXMCAsmInfo.h"
16 #include "NVPTX.h"
17 #include "NVPTXAllocaHoisting.h"
18 #include "NVPTXLowerAggrCopies.h"
19 #include "NVPTXTargetObjectFile.h"
20 #include "NVPTXTargetTransformInfo.h"
21 #include "llvm/Analysis/Passes.h"
22 #include "llvm/CodeGen/AsmPrinter.h"
23 #include "llvm/CodeGen/MachineFunctionAnalysis.h"
24 #include "llvm/CodeGen/MachineModuleInfo.h"
25 #include "llvm/CodeGen/Passes.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/IRPrintingPasses.h"
28 #include "llvm/IR/LegacyPassManager.h"
29 #include "llvm/IR/Verifier.h"
30 #include "llvm/MC/MCAsmInfo.h"
31 #include "llvm/MC/MCInstrInfo.h"
32 #include "llvm/MC/MCStreamer.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/FormattedStream.h"
37 #include "llvm/Support/TargetRegistry.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Target/TargetInstrInfo.h"
40 #include "llvm/Target/TargetLowering.h"
41 #include "llvm/Target/TargetLoweringObjectFile.h"
42 #include "llvm/Target/TargetMachine.h"
43 #include "llvm/Target/TargetOptions.h"
44 #include "llvm/Target/TargetRegisterInfo.h"
45 #include "llvm/Target/TargetSubtargetInfo.h"
46 #include "llvm/Transforms/Scalar.h"
47
48 using namespace llvm;
49
50 namespace llvm {
51 void initializeNVVMReflectPass(PassRegistry&);
52 void initializeGenericToNVVMPass(PassRegistry&);
53 void initializeNVPTXAllocaHoistingPass(PassRegistry &);
54 void initializeNVPTXAssignValidGlobalNamesPass(PassRegistry&);
55 void initializeNVPTXFavorNonGenericAddrSpacesPass(PassRegistry &);
56 void initializeNVPTXLowerStructArgsPass(PassRegistry &);
57 }
58
59 extern "C" void LLVMInitializeNVPTXTarget() {
60   // Register the target.
61   RegisterTargetMachine<NVPTXTargetMachine32> X(TheNVPTXTarget32);
62   RegisterTargetMachine<NVPTXTargetMachine64> Y(TheNVPTXTarget64);
63
64   // FIXME: This pass is really intended to be invoked during IR optimization,
65   // but it's very NVPTX-specific.
66   initializeNVVMReflectPass(*PassRegistry::getPassRegistry());
67   initializeGenericToNVVMPass(*PassRegistry::getPassRegistry());
68   initializeNVPTXAllocaHoistingPass(*PassRegistry::getPassRegistry());
69   initializeNVPTXAssignValidGlobalNamesPass(*PassRegistry::getPassRegistry());
70   initializeNVPTXFavorNonGenericAddrSpacesPass(
71     *PassRegistry::getPassRegistry());
72   initializeNVPTXLowerStructArgsPass(*PassRegistry::getPassRegistry());
73 }
74
75 static std::string computeDataLayout(bool is64Bit) {
76   std::string Ret = "e";
77
78   if (!is64Bit)
79     Ret += "-p:32:32";
80
81   Ret += "-i64:64-v16:16-v32:32-n16:32:64";
82
83   return Ret;
84 }
85
86 NVPTXTargetMachine::NVPTXTargetMachine(const Target &T, StringRef TT,
87                                        StringRef CPU, StringRef FS,
88                                        const TargetOptions &Options,
89                                        Reloc::Model RM, CodeModel::Model CM,
90                                        CodeGenOpt::Level OL, bool is64bit)
91     : LLVMTargetMachine(T, computeDataLayout(is64bit), TT, CPU, FS, Options, RM,
92                         CM, OL),
93       is64bit(is64bit), TLOF(make_unique<NVPTXTargetObjectFile>()),
94       Subtarget(TT, CPU, FS, *this) {
95   if (Triple(TT).getOS() == Triple::NVCL)
96     drvInterface = NVPTX::NVCL;
97   else
98     drvInterface = NVPTX::CUDA;
99   initAsmInfo();
100 }
101
102 NVPTXTargetMachine::~NVPTXTargetMachine() {}
103
104 void NVPTXTargetMachine32::anchor() {}
105
106 NVPTXTargetMachine32::NVPTXTargetMachine32(
107     const Target &T, StringRef TT, StringRef CPU, StringRef FS,
108     const TargetOptions &Options, Reloc::Model RM, CodeModel::Model CM,
109     CodeGenOpt::Level OL)
110     : NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
111
112 void NVPTXTargetMachine64::anchor() {}
113
114 NVPTXTargetMachine64::NVPTXTargetMachine64(
115     const Target &T, StringRef TT, StringRef CPU, StringRef FS,
116     const TargetOptions &Options, Reloc::Model RM, CodeModel::Model CM,
117     CodeGenOpt::Level OL)
118     : NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
119
120 namespace {
121 class NVPTXPassConfig : public TargetPassConfig {
122 public:
123   NVPTXPassConfig(NVPTXTargetMachine *TM, PassManagerBase &PM)
124       : TargetPassConfig(TM, PM) {}
125
126   NVPTXTargetMachine &getNVPTXTargetMachine() const {
127     return getTM<NVPTXTargetMachine>();
128   }
129
130   void addIRPasses() override;
131   bool addInstSelector() override;
132   void addPostRegAlloc() override;
133   void addMachineSSAOptimization() override;
134
135   FunctionPass *createTargetRegisterAllocator(bool) override;
136   void addFastRegAlloc(FunctionPass *RegAllocPass) override;
137   void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override;
138 };
139 } // end anonymous namespace
140
141 TargetPassConfig *NVPTXTargetMachine::createPassConfig(PassManagerBase &PM) {
142   NVPTXPassConfig *PassConfig = new NVPTXPassConfig(this, PM);
143   return PassConfig;
144 }
145
146 TargetIRAnalysis NVPTXTargetMachine::getTargetIRAnalysis() {
147   return TargetIRAnalysis(
148       [this](Function &) { return TargetTransformInfo(NVPTXTTIImpl(this)); });
149 }
150
151 void NVPTXPassConfig::addIRPasses() {
152   // The following passes are known to not play well with virtual regs hanging
153   // around after register allocation (which in our case, is *all* registers).
154   // We explicitly disable them here.  We do, however, need some functionality
155   // of the PrologEpilogCodeInserter pass, so we emulate that behavior in the
156   // NVPTXPrologEpilog pass (see NVPTXPrologEpilogPass.cpp).
157   disablePass(&PrologEpilogCodeInserterID);
158   disablePass(&MachineCopyPropagationID);
159   disablePass(&BranchFolderPassID);
160   disablePass(&TailDuplicateID);
161
162   addPass(createNVPTXImageOptimizerPass());
163   TargetPassConfig::addIRPasses();
164   addPass(createNVPTXAssignValidGlobalNamesPass());
165   addPass(createGenericToNVVMPass());
166   addPass(createNVPTXFavorNonGenericAddrSpacesPass());
167   // FavorNonGenericAddrSpaces shortcuts unnecessary addrspacecasts, and leave
168   // them unused. We could remove dead code in an ad-hoc manner, but that
169   // requires manual work and might be error-prone.
170   addPass(createDeadCodeEliminationPass());
171   addPass(createStraightLineStrengthReducePass());
172   addPass(createSeparateConstOffsetFromGEPPass());
173   // The SeparateConstOffsetFromGEP pass creates variadic bases that can be used
174   // by multiple GEPs. Run GVN or EarlyCSE to really reuse them. GVN generates
175   // significantly better code than EarlyCSE for some of our benchmarks.
176   if (getOptLevel() == CodeGenOpt::Aggressive)
177     addPass(createGVNPass());
178   else
179     addPass(createEarlyCSEPass());
180 }
181
182 bool NVPTXPassConfig::addInstSelector() {
183   const NVPTXSubtarget &ST = *getTM<NVPTXTargetMachine>().getSubtargetImpl();
184
185   addPass(createLowerAggrCopies());
186   addPass(createAllocaHoisting());
187   addPass(createNVPTXISelDag(getNVPTXTargetMachine(), getOptLevel()));
188
189   if (!ST.hasImageHandles())
190     addPass(createNVPTXReplaceImageHandlesPass());
191
192   return false;
193 }
194
195 void NVPTXPassConfig::addPostRegAlloc() {
196   addPass(createNVPTXPrologEpilogPass(), false);
197 }
198
199 FunctionPass *NVPTXPassConfig::createTargetRegisterAllocator(bool) {
200   return nullptr; // No reg alloc
201 }
202
203 void NVPTXPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) {
204   assert(!RegAllocPass && "NVPTX uses no regalloc!");
205   addPass(&PHIEliminationID);
206   addPass(&TwoAddressInstructionPassID);
207 }
208
209 void NVPTXPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) {
210   assert(!RegAllocPass && "NVPTX uses no regalloc!");
211
212   addPass(&ProcessImplicitDefsID);
213   addPass(&LiveVariablesID);
214   addPass(&MachineLoopInfoID);
215   addPass(&PHIEliminationID);
216
217   addPass(&TwoAddressInstructionPassID);
218   addPass(&RegisterCoalescerID);
219
220   // PreRA instruction scheduling.
221   if (addPass(&MachineSchedulerID))
222     printAndVerify("After Machine Scheduling");
223
224
225   addPass(&StackSlotColoringID);
226
227   // FIXME: Needs physical registers
228   //addPass(&PostRAMachineLICMID);
229
230   printAndVerify("After StackSlotColoring");
231 }
232
233 void NVPTXPassConfig::addMachineSSAOptimization() {
234   // Pre-ra tail duplication.
235   if (addPass(&EarlyTailDuplicateID))
236     printAndVerify("After Pre-RegAlloc TailDuplicate");
237
238   // Optimize PHIs before DCE: removing dead PHI cycles may make more
239   // instructions dead.
240   addPass(&OptimizePHIsID);
241
242   // This pass merges large allocas. StackSlotColoring is a different pass
243   // which merges spill slots.
244   addPass(&StackColoringID);
245
246   // If the target requests it, assign local variables to stack slots relative
247   // to one another and simplify frame index references where possible.
248   addPass(&LocalStackSlotAllocationID);
249
250   // With optimization, dead code should already be eliminated. However
251   // there is one known exception: lowered code for arguments that are only
252   // used by tail calls, where the tail calls reuse the incoming stack
253   // arguments directly (see t11 in test/CodeGen/X86/sibcall.ll).
254   addPass(&DeadMachineInstructionElimID);
255   printAndVerify("After codegen DCE pass");
256
257   // Allow targets to insert passes that improve instruction level parallelism,
258   // like if-conversion. Such passes will typically need dominator trees and
259   // loop info, just like LICM and CSE below.
260   if (addILPOpts())
261     printAndVerify("After ILP optimizations");
262
263   addPass(&MachineLICMID);
264   addPass(&MachineCSEID);
265
266   addPass(&MachineSinkingID);
267   printAndVerify("After Machine LICM, CSE and Sinking passes");
268
269   addPass(&PeepholeOptimizerID);
270   printAndVerify("After codegen peephole optimization pass");
271 }