[PowerPC] Enable interleaved-access vectorization
[oota-llvm.git] / lib / Target / NVPTX / NVPTXTargetMachine.cpp
1 //===-- NVPTXTargetMachine.cpp - Define TargetMachine for NVPTX -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Top-level implementation for the NVPTX target.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "NVPTXTargetMachine.h"
15 #include "MCTargetDesc/NVPTXMCAsmInfo.h"
16 #include "NVPTX.h"
17 #include "NVPTXAllocaHoisting.h"
18 #include "NVPTXLowerAggrCopies.h"
19 #include "NVPTXTargetObjectFile.h"
20 #include "NVPTXTargetTransformInfo.h"
21 #include "llvm/Analysis/Passes.h"
22 #include "llvm/CodeGen/AsmPrinter.h"
23 #include "llvm/CodeGen/MachineFunctionAnalysis.h"
24 #include "llvm/CodeGen/MachineModuleInfo.h"
25 #include "llvm/CodeGen/Passes.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/IRPrintingPasses.h"
28 #include "llvm/IR/LegacyPassManager.h"
29 #include "llvm/IR/Verifier.h"
30 #include "llvm/MC/MCAsmInfo.h"
31 #include "llvm/MC/MCInstrInfo.h"
32 #include "llvm/MC/MCStreamer.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/FormattedStream.h"
37 #include "llvm/Support/TargetRegistry.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Target/TargetInstrInfo.h"
40 #include "llvm/Target/TargetLowering.h"
41 #include "llvm/Target/TargetLoweringObjectFile.h"
42 #include "llvm/Target/TargetMachine.h"
43 #include "llvm/Target/TargetOptions.h"
44 #include "llvm/Target/TargetRegisterInfo.h"
45 #include "llvm/Target/TargetSubtargetInfo.h"
46 #include "llvm/Transforms/Scalar.h"
47
48 using namespace llvm;
49
50 namespace llvm {
51 void initializeNVVMReflectPass(PassRegistry&);
52 void initializeGenericToNVVMPass(PassRegistry&);
53 void initializeNVPTXAllocaHoistingPass(PassRegistry &);
54 void initializeNVPTXAssignValidGlobalNamesPass(PassRegistry&);
55 void initializeNVPTXFavorNonGenericAddrSpacesPass(PassRegistry &);
56 void initializeNVPTXLowerAggrCopiesPass(PassRegistry &);
57 void initializeNVPTXLowerKernelArgsPass(PassRegistry &);
58 void initializeNVPTXLowerAllocaPass(PassRegistry &);
59 }
60
61 extern "C" void LLVMInitializeNVPTXTarget() {
62   // Register the target.
63   RegisterTargetMachine<NVPTXTargetMachine32> X(TheNVPTXTarget32);
64   RegisterTargetMachine<NVPTXTargetMachine64> Y(TheNVPTXTarget64);
65
66   // FIXME: This pass is really intended to be invoked during IR optimization,
67   // but it's very NVPTX-specific.
68   PassRegistry &PR = *PassRegistry::getPassRegistry();
69   initializeNVVMReflectPass(PR);
70   initializeGenericToNVVMPass(PR);
71   initializeNVPTXAllocaHoistingPass(PR);
72   initializeNVPTXAssignValidGlobalNamesPass(PR);
73   initializeNVPTXFavorNonGenericAddrSpacesPass(PR);
74   initializeNVPTXLowerKernelArgsPass(PR);
75   initializeNVPTXLowerAllocaPass(PR);
76   initializeNVPTXLowerAggrCopiesPass(PR);
77 }
78
79 static std::string computeDataLayout(bool is64Bit) {
80   std::string Ret = "e";
81
82   if (!is64Bit)
83     Ret += "-p:32:32";
84
85   Ret += "-i64:64-v16:16-v32:32-n16:32:64";
86
87   return Ret;
88 }
89
90 NVPTXTargetMachine::NVPTXTargetMachine(const Target &T, const Triple &TT,
91                                        StringRef CPU, StringRef FS,
92                                        const TargetOptions &Options,
93                                        Reloc::Model RM, CodeModel::Model CM,
94                                        CodeGenOpt::Level OL, bool is64bit)
95     : LLVMTargetMachine(T, computeDataLayout(is64bit), TT, CPU, FS, Options, RM,
96                         CM, OL),
97       is64bit(is64bit), TLOF(make_unique<NVPTXTargetObjectFile>()),
98       Subtarget(TT, CPU, FS, *this) {
99   if (TT.getOS() == Triple::NVCL)
100     drvInterface = NVPTX::NVCL;
101   else
102     drvInterface = NVPTX::CUDA;
103   initAsmInfo();
104 }
105
106 NVPTXTargetMachine::~NVPTXTargetMachine() {}
107
108 void NVPTXTargetMachine32::anchor() {}
109
110 NVPTXTargetMachine32::NVPTXTargetMachine32(const Target &T, const Triple &TT,
111                                            StringRef CPU, StringRef FS,
112                                            const TargetOptions &Options,
113                                            Reloc::Model RM, CodeModel::Model CM,
114                                            CodeGenOpt::Level OL)
115     : NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
116
117 void NVPTXTargetMachine64::anchor() {}
118
119 NVPTXTargetMachine64::NVPTXTargetMachine64(const Target &T, const Triple &TT,
120                                            StringRef CPU, StringRef FS,
121                                            const TargetOptions &Options,
122                                            Reloc::Model RM, CodeModel::Model CM,
123                                            CodeGenOpt::Level OL)
124     : NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
125
126 namespace {
127 class NVPTXPassConfig : public TargetPassConfig {
128 public:
129   NVPTXPassConfig(NVPTXTargetMachine *TM, PassManagerBase &PM)
130       : TargetPassConfig(TM, PM) {}
131
132   NVPTXTargetMachine &getNVPTXTargetMachine() const {
133     return getTM<NVPTXTargetMachine>();
134   }
135
136   void addIRPasses() override;
137   bool addInstSelector() override;
138   void addPostRegAlloc() override;
139   void addMachineSSAOptimization() override;
140
141   FunctionPass *createTargetRegisterAllocator(bool) override;
142   void addFastRegAlloc(FunctionPass *RegAllocPass) override;
143   void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override;
144
145 private:
146   // if the opt level is aggressive, add GVN; otherwise, add EarlyCSE.
147   void addEarlyCSEOrGVNPass();
148 };
149 } // end anonymous namespace
150
151 TargetPassConfig *NVPTXTargetMachine::createPassConfig(PassManagerBase &PM) {
152   NVPTXPassConfig *PassConfig = new NVPTXPassConfig(this, PM);
153   return PassConfig;
154 }
155
156 TargetIRAnalysis NVPTXTargetMachine::getTargetIRAnalysis() {
157   return TargetIRAnalysis([this](Function &F) {
158     return TargetTransformInfo(NVPTXTTIImpl(this, F));
159   });
160 }
161
162 void NVPTXPassConfig::addEarlyCSEOrGVNPass() {
163   if (getOptLevel() == CodeGenOpt::Aggressive)
164     addPass(createGVNPass());
165   else
166     addPass(createEarlyCSEPass());
167 }
168
169 void NVPTXPassConfig::addIRPasses() {
170   // The following passes are known to not play well with virtual regs hanging
171   // around after register allocation (which in our case, is *all* registers).
172   // We explicitly disable them here.  We do, however, need some functionality
173   // of the PrologEpilogCodeInserter pass, so we emulate that behavior in the
174   // NVPTXPrologEpilog pass (see NVPTXPrologEpilogPass.cpp).
175   disablePass(&PrologEpilogCodeInserterID);
176   disablePass(&MachineCopyPropagationID);
177   disablePass(&TailDuplicateID);
178
179   addPass(createNVPTXImageOptimizerPass());
180   addPass(createNVPTXAssignValidGlobalNamesPass());
181   addPass(createGenericToNVVMPass());
182
183   // === Propagate special address spaces ===
184   addPass(createNVPTXLowerKernelArgsPass(&getNVPTXTargetMachine()));
185   // NVPTXLowerKernelArgs emits alloca for byval parameters which can often
186   // be eliminated by SROA.
187   addPass(createSROAPass());
188   addPass(createNVPTXLowerAllocaPass());
189   addPass(createNVPTXFavorNonGenericAddrSpacesPass());
190   // FavorNonGenericAddrSpaces shortcuts unnecessary addrspacecasts, and leave
191   // them unused. We could remove dead code in an ad-hoc manner, but that
192   // requires manual work and might be error-prone.
193   addPass(createDeadCodeEliminationPass());
194
195   // === Straight-line scalar optimizations ===
196   addPass(createSeparateConstOffsetFromGEPPass());
197   addPass(createSpeculativeExecutionPass());
198   // ReassociateGEPs exposes more opportunites for SLSR. See
199   // the example in reassociate-geps-and-slsr.ll.
200   addPass(createStraightLineStrengthReducePass());
201   // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or
202   // EarlyCSE can reuse. GVN generates significantly better code than EarlyCSE
203   // for some of our benchmarks.
204   addEarlyCSEOrGVNPass();
205   // Run NaryReassociate after EarlyCSE/GVN to be more effective.
206   addPass(createNaryReassociatePass());
207   // NaryReassociate on GEPs creates redundant common expressions, so run
208   // EarlyCSE after it.
209   addPass(createEarlyCSEPass());
210
211   // === LSR and other generic IR passes ===
212   TargetPassConfig::addIRPasses();
213   // EarlyCSE is not always strong enough to clean up what LSR produces. For
214   // example, GVN can combine
215   //
216   //   %0 = add %a, %b
217   //   %1 = add %b, %a
218   //
219   // and
220   //
221   //   %0 = shl nsw %a, 2
222   //   %1 = shl %a, 2
223   //
224   // but EarlyCSE can do neither of them.
225   addEarlyCSEOrGVNPass();
226 }
227
228 bool NVPTXPassConfig::addInstSelector() {
229   const NVPTXSubtarget &ST = *getTM<NVPTXTargetMachine>().getSubtargetImpl();
230
231   addPass(createLowerAggrCopies());
232   addPass(createAllocaHoisting());
233   addPass(createNVPTXISelDag(getNVPTXTargetMachine(), getOptLevel()));
234
235   if (!ST.hasImageHandles())
236     addPass(createNVPTXReplaceImageHandlesPass());
237
238   return false;
239 }
240
241 void NVPTXPassConfig::addPostRegAlloc() {
242   addPass(createNVPTXPrologEpilogPass(), false);
243   // NVPTXPrologEpilogPass calculates frame object offset and replace frame
244   // index with VRFrame register. NVPTXPeephole need to be run after that and
245   // will replace VRFrame with VRFrameLocal when possible.
246   addPass(createNVPTXPeephole());
247 }
248
249 FunctionPass *NVPTXPassConfig::createTargetRegisterAllocator(bool) {
250   return nullptr; // No reg alloc
251 }
252
253 void NVPTXPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) {
254   assert(!RegAllocPass && "NVPTX uses no regalloc!");
255   addPass(&PHIEliminationID);
256   addPass(&TwoAddressInstructionPassID);
257 }
258
259 void NVPTXPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) {
260   assert(!RegAllocPass && "NVPTX uses no regalloc!");
261
262   addPass(&ProcessImplicitDefsID);
263   addPass(&LiveVariablesID);
264   addPass(&MachineLoopInfoID);
265   addPass(&PHIEliminationID);
266
267   addPass(&TwoAddressInstructionPassID);
268   addPass(&RegisterCoalescerID);
269
270   // PreRA instruction scheduling.
271   if (addPass(&MachineSchedulerID))
272     printAndVerify("After Machine Scheduling");
273
274
275   addPass(&StackSlotColoringID);
276
277   // FIXME: Needs physical registers
278   //addPass(&PostRAMachineLICMID);
279
280   printAndVerify("After StackSlotColoring");
281 }
282
283 void NVPTXPassConfig::addMachineSSAOptimization() {
284   // Pre-ra tail duplication.
285   if (addPass(&EarlyTailDuplicateID))
286     printAndVerify("After Pre-RegAlloc TailDuplicate");
287
288   // Optimize PHIs before DCE: removing dead PHI cycles may make more
289   // instructions dead.
290   addPass(&OptimizePHIsID);
291
292   // This pass merges large allocas. StackSlotColoring is a different pass
293   // which merges spill slots.
294   addPass(&StackColoringID);
295
296   // If the target requests it, assign local variables to stack slots relative
297   // to one another and simplify frame index references where possible.
298   addPass(&LocalStackSlotAllocationID);
299
300   // With optimization, dead code should already be eliminated. However
301   // there is one known exception: lowered code for arguments that are only
302   // used by tail calls, where the tail calls reuse the incoming stack
303   // arguments directly (see t11 in test/CodeGen/X86/sibcall.ll).
304   addPass(&DeadMachineInstructionElimID);
305   printAndVerify("After codegen DCE pass");
306
307   // Allow targets to insert passes that improve instruction level parallelism,
308   // like if-conversion. Such passes will typically need dominator trees and
309   // loop info, just like LICM and CSE below.
310   if (addILPOpts())
311     printAndVerify("After ILP optimizations");
312
313   addPass(&MachineLICMID);
314   addPass(&MachineCSEID);
315
316   addPass(&MachineSinkingID);
317   printAndVerify("After Machine LICM, CSE and Sinking passes");
318
319   addPass(&PeepholeOptimizerID);
320   printAndVerify("After codegen peephole optimization pass");
321 }