Taints the non-acquire RMW's store address with the load part
[oota-llvm.git] / lib / Target / NVPTX / NVPTXGenericToNVVM.cpp
1 //===-- GenericToNVVM.cpp - Convert generic module to NVVM module - C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Convert generic global variables into either .global or .const access based
11 // on the variable's "constant" qualifier.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "NVPTX.h"
16 #include "MCTargetDesc/NVPTXBaseInfo.h"
17 #include "NVPTXUtilities.h"
18 #include "llvm/CodeGen/MachineFunctionAnalysis.h"
19 #include "llvm/CodeGen/ValueTypes.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/Intrinsics.h"
25 #include "llvm/IR/LegacyPassManager.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/IR/ValueMap.h"
29 #include "llvm/Transforms/Utils/ValueMapper.h"
30
31 using namespace llvm;
32
33 namespace llvm {
34 void initializeGenericToNVVMPass(PassRegistry &);
35 }
36
37 namespace {
38 class GenericToNVVM : public ModulePass {
39 public:
40   static char ID;
41
42   GenericToNVVM() : ModulePass(ID) {}
43
44   bool runOnModule(Module &M) override;
45
46   void getAnalysisUsage(AnalysisUsage &AU) const override {}
47
48 private:
49   Value *getOrInsertCVTA(Module *M, Function *F, GlobalVariable *GV,
50                          IRBuilder<> &Builder);
51   Value *remapConstant(Module *M, Function *F, Constant *C,
52                        IRBuilder<> &Builder);
53   Value *remapConstantVectorOrConstantAggregate(Module *M, Function *F,
54                                                 Constant *C,
55                                                 IRBuilder<> &Builder);
56   Value *remapConstantExpr(Module *M, Function *F, ConstantExpr *C,
57                            IRBuilder<> &Builder);
58   void remapNamedMDNode(ValueToValueMapTy &VM, NamedMDNode *N);
59
60   typedef ValueMap<GlobalVariable *, GlobalVariable *> GVMapTy;
61   typedef ValueMap<Constant *, Value *> ConstantToValueMapTy;
62   GVMapTy GVMap;
63   ConstantToValueMapTy ConstantToValueMap;
64 };
65 } // end namespace
66
67 char GenericToNVVM::ID = 0;
68
69 ModulePass *llvm::createGenericToNVVMPass() { return new GenericToNVVM(); }
70
71 INITIALIZE_PASS(
72     GenericToNVVM, "generic-to-nvvm",
73     "Ensure that the global variables are in the global address space", false,
74     false)
75
76 bool GenericToNVVM::runOnModule(Module &M) {
77   // Create a clone of each global variable that has the default address space.
78   // The clone is created with the global address space  specifier, and the pair
79   // of original global variable and its clone is placed in the GVMap for later
80   // use.
81
82   for (Module::global_iterator I = M.global_begin(), E = M.global_end();
83        I != E;) {
84     GlobalVariable *GV = &*I++;
85     if (GV->getType()->getAddressSpace() == llvm::ADDRESS_SPACE_GENERIC &&
86         !llvm::isTexture(*GV) && !llvm::isSurface(*GV) &&
87         !llvm::isSampler(*GV) && !GV->getName().startswith("llvm.")) {
88       GlobalVariable *NewGV = new GlobalVariable(
89           M, GV->getType()->getElementType(), GV->isConstant(),
90           GV->getLinkage(),
91           GV->hasInitializer() ? GV->getInitializer() : nullptr,
92           "", GV, GV->getThreadLocalMode(), llvm::ADDRESS_SPACE_GLOBAL);
93       NewGV->copyAttributesFrom(GV);
94       GVMap[GV] = NewGV;
95     }
96   }
97
98   // Return immediately, if every global variable has a specific address space
99   // specifier.
100   if (GVMap.empty()) {
101     return false;
102   }
103
104   // Walk through the instructions in function defitinions, and replace any use
105   // of original global variables in GVMap with a use of the corresponding
106   // copies in GVMap.  If necessary, promote constants to instructions.
107   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
108     if (I->isDeclaration()) {
109       continue;
110     }
111     IRBuilder<> Builder(I->getEntryBlock().getFirstNonPHIOrDbg());
112     for (Function::iterator BBI = I->begin(), BBE = I->end(); BBI != BBE;
113          ++BBI) {
114       for (BasicBlock::iterator II = BBI->begin(), IE = BBI->end(); II != IE;
115            ++II) {
116         for (unsigned i = 0, e = II->getNumOperands(); i < e; ++i) {
117           Value *Operand = II->getOperand(i);
118           if (isa<Constant>(Operand)) {
119             II->setOperand(
120                 i, remapConstant(&M, &*I, cast<Constant>(Operand), Builder));
121           }
122         }
123       }
124     }
125     ConstantToValueMap.clear();
126   }
127
128   // Copy GVMap over to a standard value map.
129   ValueToValueMapTy VM;
130   for (auto I = GVMap.begin(), E = GVMap.end(); I != E; ++I)
131     VM[I->first] = I->second;
132
133   // Walk through the metadata section and update the debug information
134   // associated with the global variables in the default address space.
135   for (NamedMDNode &I : M.named_metadata()) {
136     remapNamedMDNode(VM, &I);
137   }
138
139   // Walk through the global variable  initializers, and replace any use of
140   // original global variables in GVMap with a use of the corresponding copies
141   // in GVMap.  The copies need to be bitcast to the original global variable
142   // types, as we cannot use cvta in global variable initializers.
143   for (GVMapTy::iterator I = GVMap.begin(), E = GVMap.end(); I != E;) {
144     GlobalVariable *GV = I->first;
145     GlobalVariable *NewGV = I->second;
146
147     // Remove GV from the map so that it can be RAUWed.  Note that
148     // DenseMap::erase() won't invalidate any iterators but this one.
149     auto Next = std::next(I);
150     GVMap.erase(I);
151     I = Next;
152
153     Constant *BitCastNewGV = ConstantExpr::getPointerCast(NewGV, GV->getType());
154     // At this point, the remaining uses of GV should be found only in global
155     // variable initializers, as other uses have been already been removed
156     // while walking through the instructions in function definitions.
157     GV->replaceAllUsesWith(BitCastNewGV);
158     std::string Name = GV->getName();
159     GV->eraseFromParent();
160     NewGV->setName(Name);
161   }
162   assert(GVMap.empty() && "Expected it to be empty by now");
163
164   return true;
165 }
166
167 Value *GenericToNVVM::getOrInsertCVTA(Module *M, Function *F,
168                                       GlobalVariable *GV,
169                                       IRBuilder<> &Builder) {
170   PointerType *GVType = GV->getType();
171   Value *CVTA = nullptr;
172
173   // See if the address space conversion requires the operand to be bitcast
174   // to i8 addrspace(n)* first.
175   EVT ExtendedGVType = EVT::getEVT(GVType->getElementType(), true);
176   if (!ExtendedGVType.isInteger() && !ExtendedGVType.isFloatingPoint()) {
177     // A bitcast to i8 addrspace(n)* on the operand is needed.
178     LLVMContext &Context = M->getContext();
179     unsigned int AddrSpace = GVType->getAddressSpace();
180     Type *DestTy = PointerType::get(Type::getInt8Ty(Context), AddrSpace);
181     CVTA = Builder.CreateBitCast(GV, DestTy, "cvta");
182     // Insert the address space conversion.
183     Type *ResultType =
184         PointerType::get(Type::getInt8Ty(Context), llvm::ADDRESS_SPACE_GENERIC);
185     SmallVector<Type *, 2> ParamTypes;
186     ParamTypes.push_back(ResultType);
187     ParamTypes.push_back(DestTy);
188     Function *CVTAFunction = Intrinsic::getDeclaration(
189         M, Intrinsic::nvvm_ptr_global_to_gen, ParamTypes);
190     CVTA = Builder.CreateCall(CVTAFunction, CVTA, "cvta");
191     // Another bitcast from i8 * to <the element type of GVType> * is
192     // required.
193     DestTy =
194         PointerType::get(GVType->getElementType(), llvm::ADDRESS_SPACE_GENERIC);
195     CVTA = Builder.CreateBitCast(CVTA, DestTy, "cvta");
196   } else {
197     // A simple CVTA is enough.
198     SmallVector<Type *, 2> ParamTypes;
199     ParamTypes.push_back(PointerType::get(GVType->getElementType(),
200                                           llvm::ADDRESS_SPACE_GENERIC));
201     ParamTypes.push_back(GVType);
202     Function *CVTAFunction = Intrinsic::getDeclaration(
203         M, Intrinsic::nvvm_ptr_global_to_gen, ParamTypes);
204     CVTA = Builder.CreateCall(CVTAFunction, GV, "cvta");
205   }
206
207   return CVTA;
208 }
209
210 Value *GenericToNVVM::remapConstant(Module *M, Function *F, Constant *C,
211                                     IRBuilder<> &Builder) {
212   // If the constant C has been converted already in the given function  F, just
213   // return the converted value.
214   ConstantToValueMapTy::iterator CTII = ConstantToValueMap.find(C);
215   if (CTII != ConstantToValueMap.end()) {
216     return CTII->second;
217   }
218
219   Value *NewValue = C;
220   if (isa<GlobalVariable>(C)) {
221     // If the constant C is a global variable and is found in  GVMap, generate a
222     // set set of instructions that convert the clone of C with the global
223     // address space specifier to a generic pointer.
224     // The constant C cannot be used here, as it will be erased from the
225     // module eventually.  And the clone of C with the global address space
226     // specifier cannot be used here either, as it will affect the types of
227     // other instructions in the function.  Hence, this address space conversion
228     // is required.
229     GVMapTy::iterator I = GVMap.find(cast<GlobalVariable>(C));
230     if (I != GVMap.end()) {
231       NewValue = getOrInsertCVTA(M, F, I->second, Builder);
232     }
233   } else if (isa<ConstantVector>(C) || isa<ConstantArray>(C) ||
234              isa<ConstantStruct>(C)) {
235     // If any element in the constant vector or aggregate C is or uses a global
236     // variable in GVMap, the constant C needs to be reconstructed, using a set
237     // of instructions.
238     NewValue = remapConstantVectorOrConstantAggregate(M, F, C, Builder);
239   } else if (isa<ConstantExpr>(C)) {
240     // If any operand in the constant expression C is or uses a global variable
241     // in GVMap, the constant expression C needs to be reconstructed, using a
242     // set of instructions.
243     NewValue = remapConstantExpr(M, F, cast<ConstantExpr>(C), Builder);
244   }
245
246   ConstantToValueMap[C] = NewValue;
247   return NewValue;
248 }
249
250 Value *GenericToNVVM::remapConstantVectorOrConstantAggregate(
251     Module *M, Function *F, Constant *C, IRBuilder<> &Builder) {
252   bool OperandChanged = false;
253   SmallVector<Value *, 4> NewOperands;
254   unsigned NumOperands = C->getNumOperands();
255
256   // Check if any element is or uses a global variable in  GVMap, and thus
257   // converted to another value.
258   for (unsigned i = 0; i < NumOperands; ++i) {
259     Value *Operand = C->getOperand(i);
260     Value *NewOperand = remapConstant(M, F, cast<Constant>(Operand), Builder);
261     OperandChanged |= Operand != NewOperand;
262     NewOperands.push_back(NewOperand);
263   }
264
265   // If none of the elements has been modified, return C as it is.
266   if (!OperandChanged) {
267     return C;
268   }
269
270   // If any of the elements has been  modified, construct the equivalent
271   // vector or aggregate value with a set instructions and the converted
272   // elements.
273   Value *NewValue = UndefValue::get(C->getType());
274   if (isa<ConstantVector>(C)) {
275     for (unsigned i = 0; i < NumOperands; ++i) {
276       Value *Idx = ConstantInt::get(Type::getInt32Ty(M->getContext()), i);
277       NewValue = Builder.CreateInsertElement(NewValue, NewOperands[i], Idx);
278     }
279   } else {
280     for (unsigned i = 0; i < NumOperands; ++i) {
281       NewValue =
282           Builder.CreateInsertValue(NewValue, NewOperands[i], makeArrayRef(i));
283     }
284   }
285
286   return NewValue;
287 }
288
289 Value *GenericToNVVM::remapConstantExpr(Module *M, Function *F, ConstantExpr *C,
290                                         IRBuilder<> &Builder) {
291   bool OperandChanged = false;
292   SmallVector<Value *, 4> NewOperands;
293   unsigned NumOperands = C->getNumOperands();
294
295   // Check if any operand is or uses a global variable in  GVMap, and thus
296   // converted to another value.
297   for (unsigned i = 0; i < NumOperands; ++i) {
298     Value *Operand = C->getOperand(i);
299     Value *NewOperand = remapConstant(M, F, cast<Constant>(Operand), Builder);
300     OperandChanged |= Operand != NewOperand;
301     NewOperands.push_back(NewOperand);
302   }
303
304   // If none of the operands has been modified, return C as it is.
305   if (!OperandChanged) {
306     return C;
307   }
308
309   // If any of the operands has been modified, construct the instruction with
310   // the converted operands.
311   unsigned Opcode = C->getOpcode();
312   switch (Opcode) {
313   case Instruction::ICmp:
314     // CompareConstantExpr (icmp)
315     return Builder.CreateICmp(CmpInst::Predicate(C->getPredicate()),
316                               NewOperands[0], NewOperands[1]);
317   case Instruction::FCmp:
318     // CompareConstantExpr (fcmp)
319     llvm_unreachable("Address space conversion should have no effect "
320                      "on float point CompareConstantExpr (fcmp)!");
321   case Instruction::ExtractElement:
322     // ExtractElementConstantExpr
323     return Builder.CreateExtractElement(NewOperands[0], NewOperands[1]);
324   case Instruction::InsertElement:
325     // InsertElementConstantExpr
326     return Builder.CreateInsertElement(NewOperands[0], NewOperands[1],
327                                        NewOperands[2]);
328   case Instruction::ShuffleVector:
329     // ShuffleVector
330     return Builder.CreateShuffleVector(NewOperands[0], NewOperands[1],
331                                        NewOperands[2]);
332   case Instruction::ExtractValue:
333     // ExtractValueConstantExpr
334     return Builder.CreateExtractValue(NewOperands[0], C->getIndices());
335   case Instruction::InsertValue:
336     // InsertValueConstantExpr
337     return Builder.CreateInsertValue(NewOperands[0], NewOperands[1],
338                                      C->getIndices());
339   case Instruction::GetElementPtr:
340     // GetElementPtrConstantExpr
341     return cast<GEPOperator>(C)->isInBounds()
342                ? Builder.CreateGEP(
343                      cast<GEPOperator>(C)->getSourceElementType(),
344                      NewOperands[0],
345                      makeArrayRef(&NewOperands[1], NumOperands - 1))
346                : Builder.CreateInBoundsGEP(
347                      cast<GEPOperator>(C)->getSourceElementType(),
348                      NewOperands[0],
349                      makeArrayRef(&NewOperands[1], NumOperands - 1));
350   case Instruction::Select:
351     // SelectConstantExpr
352     return Builder.CreateSelect(NewOperands[0], NewOperands[1], NewOperands[2]);
353   default:
354     // BinaryConstantExpr
355     if (Instruction::isBinaryOp(Opcode)) {
356       return Builder.CreateBinOp(Instruction::BinaryOps(C->getOpcode()),
357                                  NewOperands[0], NewOperands[1]);
358     }
359     // UnaryConstantExpr
360     if (Instruction::isCast(Opcode)) {
361       return Builder.CreateCast(Instruction::CastOps(C->getOpcode()),
362                                 NewOperands[0], C->getType());
363     }
364     llvm_unreachable("GenericToNVVM encountered an unsupported ConstantExpr");
365   }
366 }
367
368 void GenericToNVVM::remapNamedMDNode(ValueToValueMapTy &VM, NamedMDNode *N) {
369
370   bool OperandChanged = false;
371   SmallVector<MDNode *, 16> NewOperands;
372   unsigned NumOperands = N->getNumOperands();
373
374   // Check if any operand is or contains a global variable in  GVMap, and thus
375   // converted to another value.
376   for (unsigned i = 0; i < NumOperands; ++i) {
377     MDNode *Operand = N->getOperand(i);
378     MDNode *NewOperand = MapMetadata(Operand, VM);
379     OperandChanged |= Operand != NewOperand;
380     NewOperands.push_back(NewOperand);
381   }
382
383   // If none of the operands has been modified, return immediately.
384   if (!OperandChanged) {
385     return;
386   }
387
388   // Replace the old operands with the new operands.
389   N->dropAllReferences();
390   for (SmallVectorImpl<MDNode *>::iterator I = NewOperands.begin(),
391                                            E = NewOperands.end();
392        I != E; ++I) {
393     N->addOperand(*I);
394   }
395 }