[mips] Check the register class before replacing materializations of zero with $zero...
[oota-llvm.git] / lib / Target / Mips / MipsSEISelDAGToDAG.cpp
1 //===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Subclass of MipsDAGToDAGISel specialized for mips32/64.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "MipsSEISelDAGToDAG.h"
15 #include "MCTargetDesc/MipsBaseInfo.h"
16 #include "Mips.h"
17 #include "MipsAnalyzeImmediate.h"
18 #include "MipsMachineFunction.h"
19 #include "MipsRegisterInfo.h"
20 #include "llvm/CodeGen/MachineConstantPool.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SelectionDAGNodes.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetMachine.h"
35 using namespace llvm;
36
37 #define DEBUG_TYPE "mips-isel"
38
39 bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
40   Subtarget = &static_cast<const MipsSubtarget &>(MF.getSubtarget());
41   if (Subtarget->inMips16Mode())
42     return false;
43   return MipsDAGToDAGISel::runOnMachineFunction(MF);
44 }
45
46 void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef, MachineInstr &MI,
47                                                MachineFunction &MF) {
48   MachineInstrBuilder MIB(MF, &MI);
49   unsigned Mask = MI.getOperand(1).getImm();
50   unsigned Flag = IsDef ? RegState::ImplicitDefine : RegState::Implicit;
51
52   if (Mask & 1)
53     MIB.addReg(Mips::DSPPos, Flag);
54
55   if (Mask & 2)
56     MIB.addReg(Mips::DSPSCount, Flag);
57
58   if (Mask & 4)
59     MIB.addReg(Mips::DSPCarry, Flag);
60
61   if (Mask & 8)
62     MIB.addReg(Mips::DSPOutFlag, Flag);
63
64   if (Mask & 16)
65     MIB.addReg(Mips::DSPCCond, Flag);
66
67   if (Mask & 32)
68     MIB.addReg(Mips::DSPEFI, Flag);
69 }
70
71 unsigned MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx) const {
72   switch (cast<ConstantSDNode>(RegIdx)->getZExtValue()) {
73   default:
74     llvm_unreachable("Could not map int to register");
75   case 0: return Mips::MSAIR;
76   case 1: return Mips::MSACSR;
77   case 2: return Mips::MSAAccess;
78   case 3: return Mips::MSASave;
79   case 4: return Mips::MSAModify;
80   case 5: return Mips::MSARequest;
81   case 6: return Mips::MSAMap;
82   case 7: return Mips::MSAUnmap;
83   }
84 }
85
86 bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo *MRI,
87                                                 const MachineInstr& MI) {
88   unsigned DstReg = 0, ZeroReg = 0;
89
90   // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0".
91   if ((MI.getOpcode() == Mips::ADDiu) &&
92       (MI.getOperand(1).getReg() == Mips::ZERO) &&
93       (MI.getOperand(2).getImm() == 0)) {
94     DstReg = MI.getOperand(0).getReg();
95     ZeroReg = Mips::ZERO;
96   } else if ((MI.getOpcode() == Mips::DADDiu) &&
97              (MI.getOperand(1).getReg() == Mips::ZERO_64) &&
98              (MI.getOperand(2).getImm() == 0)) {
99     DstReg = MI.getOperand(0).getReg();
100     ZeroReg = Mips::ZERO_64;
101   }
102
103   if (!DstReg)
104     return false;
105
106   // Replace uses with ZeroReg.
107   for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg),
108        E = MRI->use_end(); U != E;) {
109     MachineOperand &MO = *U;
110     unsigned OpNo = U.getOperandNo();
111     MachineInstr *MI = MO.getParent();
112     ++U;
113
114     // Do not replace if it is a phi's operand or is tied to def operand.
115     if (MI->isPHI() || MI->isRegTiedToDefOperand(OpNo) || MI->isPseudo())
116       continue;
117
118     // Also, we have to check that the register class of the operand
119     // contains the zero register.
120     if (!MRI->getRegClass(MO.getReg())->contains(ZeroReg))
121       continue;
122
123     MO.setReg(ZeroReg);
124   }
125
126   return true;
127 }
128
129 void MipsSEDAGToDAGISel::initGlobalBaseReg(MachineFunction &MF) {
130   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
131
132   if (!MipsFI->globalBaseRegSet())
133     return;
134
135   MachineBasicBlock &MBB = MF.front();
136   MachineBasicBlock::iterator I = MBB.begin();
137   MachineRegisterInfo &RegInfo = MF.getRegInfo();
138   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
139   DebugLoc DL;
140   unsigned V0, V1, GlobalBaseReg = MipsFI->getGlobalBaseReg();
141   const TargetRegisterClass *RC;
142   const MipsABIInfo &ABI = static_cast<const MipsTargetMachine &>(TM).getABI();
143   RC = (ABI.IsN64()) ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
144
145   V0 = RegInfo.createVirtualRegister(RC);
146   V1 = RegInfo.createVirtualRegister(RC);
147
148   if (ABI.IsN64()) {
149     MF.getRegInfo().addLiveIn(Mips::T9_64);
150     MBB.addLiveIn(Mips::T9_64);
151
152     // lui $v0, %hi(%neg(%gp_rel(fname)))
153     // daddu $v1, $v0, $t9
154     // daddiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname)))
155     const GlobalValue *FName = MF.getFunction();
156     BuildMI(MBB, I, DL, TII.get(Mips::LUi64), V0)
157       .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI);
158     BuildMI(MBB, I, DL, TII.get(Mips::DADDu), V1).addReg(V0)
159       .addReg(Mips::T9_64);
160     BuildMI(MBB, I, DL, TII.get(Mips::DADDiu), GlobalBaseReg).addReg(V1)
161       .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO);
162     return;
163   }
164
165   if (MF.getTarget().getRelocationModel() == Reloc::Static) {
166     // Set global register to __gnu_local_gp.
167     //
168     // lui   $v0, %hi(__gnu_local_gp)
169     // addiu $globalbasereg, $v0, %lo(__gnu_local_gp)
170     BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0)
171       .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_HI);
172     BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V0)
173       .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_LO);
174     return;
175   }
176
177   MF.getRegInfo().addLiveIn(Mips::T9);
178   MBB.addLiveIn(Mips::T9);
179
180   if (ABI.IsN32()) {
181     // lui $v0, %hi(%neg(%gp_rel(fname)))
182     // addu $v1, $v0, $t9
183     // addiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname)))
184     const GlobalValue *FName = MF.getFunction();
185     BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0)
186       .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI);
187     BuildMI(MBB, I, DL, TII.get(Mips::ADDu), V1).addReg(V0).addReg(Mips::T9);
188     BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V1)
189       .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO);
190     return;
191   }
192
193   assert(ABI.IsO32());
194
195   // For O32 ABI, the following instruction sequence is emitted to initialize
196   // the global base register:
197   //
198   //  0. lui   $2, %hi(_gp_disp)
199   //  1. addiu $2, $2, %lo(_gp_disp)
200   //  2. addu  $globalbasereg, $2, $t9
201   //
202   // We emit only the last instruction here.
203   //
204   // GNU linker requires that the first two instructions appear at the beginning
205   // of a function and no instructions be inserted before or between them.
206   // The two instructions are emitted during lowering to MC layer in order to
207   // avoid any reordering.
208   //
209   // Register $2 (Mips::V0) is added to the list of live-in registers to ensure
210   // the value instruction 1 (addiu) defines is valid when instruction 2 (addu)
211   // reads it.
212   MF.getRegInfo().addLiveIn(Mips::V0);
213   MBB.addLiveIn(Mips::V0);
214   BuildMI(MBB, I, DL, TII.get(Mips::ADDu), GlobalBaseReg)
215     .addReg(Mips::V0).addReg(Mips::T9);
216 }
217
218 void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction &MF) {
219   initGlobalBaseReg(MF);
220
221   MachineRegisterInfo *MRI = &MF.getRegInfo();
222
223   for (MachineFunction::iterator MFI = MF.begin(), MFE = MF.end(); MFI != MFE;
224        ++MFI)
225     for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I) {
226       if (I->getOpcode() == Mips::RDDSP)
227         addDSPCtrlRegOperands(false, *I, MF);
228       else if (I->getOpcode() == Mips::WRDSP)
229         addDSPCtrlRegOperands(true, *I, MF);
230       else
231         replaceUsesWithZeroReg(MRI, *I);
232     }
233 }
234
235 SDNode *MipsSEDAGToDAGISel::selectAddESubE(unsigned MOp, SDValue InFlag,
236                                            SDValue CmpLHS, SDLoc DL,
237                                            SDNode *Node) const {
238   unsigned Opc = InFlag.getOpcode(); (void)Opc;
239
240   assert(((Opc == ISD::ADDC || Opc == ISD::ADDE) ||
241           (Opc == ISD::SUBC || Opc == ISD::SUBE)) &&
242          "(ADD|SUB)E flag operand must come from (ADD|SUB)C/E insn");
243
244   unsigned SLTuOp = Mips::SLTu, ADDuOp = Mips::ADDu;
245   if (Subtarget->isGP64bit()) {
246     SLTuOp = Mips::SLTu64;
247     ADDuOp = Mips::DADDu;
248   }
249
250   SDValue Ops[] = { CmpLHS, InFlag.getOperand(1) };
251   SDValue LHS = Node->getOperand(0), RHS = Node->getOperand(1);
252   EVT VT = LHS.getValueType();
253
254   SDNode *Carry = CurDAG->getMachineNode(SLTuOp, DL, VT, Ops);
255
256   if (Subtarget->isGP64bit()) {
257     // On 64-bit targets, sltu produces an i64 but our backend currently says
258     // that SLTu64 produces an i32. We need to fix this in the long run but for
259     // now, just make the DAG type-correct by asserting the upper bits are zero.
260     Carry = CurDAG->getMachineNode(Mips::SUBREG_TO_REG, DL, VT,
261                                    CurDAG->getTargetConstant(0, DL, VT),
262                                    SDValue(Carry, 0),
263                                    CurDAG->getTargetConstant(Mips::sub_32, DL,
264                                                              VT));
265   }
266
267   // Generate a second addition only if we know that RHS is not a
268   // constant-zero node.
269   SDNode *AddCarry = Carry;
270   ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS);
271   if (!C || C->getZExtValue())
272     AddCarry = CurDAG->getMachineNode(ADDuOp, DL, VT, SDValue(Carry, 0), RHS);
273
274   return CurDAG->SelectNodeTo(Node, MOp, VT, MVT::Glue, LHS,
275                               SDValue(AddCarry, 0));
276 }
277
278 /// Match frameindex
279 bool MipsSEDAGToDAGISel::selectAddrFrameIndex(SDValue Addr, SDValue &Base,
280                                               SDValue &Offset) const {
281   if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
282     EVT ValTy = Addr.getValueType();
283
284     Base   = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
285     Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), ValTy);
286     return true;
287   }
288   return false;
289 }
290
291 /// Match frameindex+offset and frameindex|offset
292 bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset(SDValue Addr, SDValue &Base,
293                                                     SDValue &Offset,
294                                                     unsigned OffsetBits) const {
295   if (CurDAG->isBaseWithConstantOffset(Addr)) {
296     ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1));
297     if (isIntN(OffsetBits, CN->getSExtValue())) {
298       EVT ValTy = Addr.getValueType();
299
300       // If the first operand is a FI, get the TargetFI Node
301       if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>
302                                   (Addr.getOperand(0)))
303         Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
304       else
305         Base = Addr.getOperand(0);
306
307       Offset = CurDAG->getTargetConstant(CN->getZExtValue(), SDLoc(Addr),
308                                          ValTy);
309       return true;
310     }
311   }
312   return false;
313 }
314
315 /// ComplexPattern used on MipsInstrInfo
316 /// Used on Mips Load/Store instructions
317 bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr, SDValue &Base,
318                                           SDValue &Offset) const {
319   // if Address is FI, get the TargetFrameIndex.
320   if (selectAddrFrameIndex(Addr, Base, Offset))
321     return true;
322
323   // on PIC code Load GA
324   if (Addr.getOpcode() == MipsISD::Wrapper) {
325     Base   = Addr.getOperand(0);
326     Offset = Addr.getOperand(1);
327     return true;
328   }
329
330   if (TM.getRelocationModel() != Reloc::PIC_) {
331     if ((Addr.getOpcode() == ISD::TargetExternalSymbol ||
332         Addr.getOpcode() == ISD::TargetGlobalAddress))
333       return false;
334   }
335
336   // Addresses of the form FI+const or FI|const
337   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
338     return true;
339
340   // Operand is a result from an ADD.
341   if (Addr.getOpcode() == ISD::ADD) {
342     // When loading from constant pools, load the lower address part in
343     // the instruction itself. Example, instead of:
344     //  lui $2, %hi($CPI1_0)
345     //  addiu $2, $2, %lo($CPI1_0)
346     //  lwc1 $f0, 0($2)
347     // Generate:
348     //  lui $2, %hi($CPI1_0)
349     //  lwc1 $f0, %lo($CPI1_0)($2)
350     if (Addr.getOperand(1).getOpcode() == MipsISD::Lo ||
351         Addr.getOperand(1).getOpcode() == MipsISD::GPRel) {
352       SDValue Opnd0 = Addr.getOperand(1).getOperand(0);
353       if (isa<ConstantPoolSDNode>(Opnd0) || isa<GlobalAddressSDNode>(Opnd0) ||
354           isa<JumpTableSDNode>(Opnd0)) {
355         Base = Addr.getOperand(0);
356         Offset = Opnd0;
357         return true;
358       }
359     }
360   }
361
362   return false;
363 }
364
365 /// ComplexPattern used on MipsInstrInfo
366 /// Used on Mips Load/Store instructions
367 bool MipsSEDAGToDAGISel::selectAddrRegReg(SDValue Addr, SDValue &Base,
368                                           SDValue &Offset) const {
369   // Operand is a result from an ADD.
370   if (Addr.getOpcode() == ISD::ADD) {
371     Base = Addr.getOperand(0);
372     Offset = Addr.getOperand(1);
373     return true;
374   }
375
376   return false;
377 }
378
379 bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr, SDValue &Base,
380                                            SDValue &Offset) const {
381   Base = Addr;
382   Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), Addr.getValueType());
383   return true;
384 }
385
386 bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr, SDValue &Base,
387                                        SDValue &Offset) const {
388   return selectAddrRegImm(Addr, Base, Offset) ||
389     selectAddrDefault(Addr, Base, Offset);
390 }
391
392 bool MipsSEDAGToDAGISel::selectAddrRegImm9(SDValue Addr, SDValue &Base,
393                                            SDValue &Offset) const {
394   if (selectAddrFrameIndex(Addr, Base, Offset))
395     return true;
396
397   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 9))
398     return true;
399
400   return false;
401 }
402
403 bool MipsSEDAGToDAGISel::selectAddrRegImm10(SDValue Addr, SDValue &Base,
404                                             SDValue &Offset) const {
405   if (selectAddrFrameIndex(Addr, Base, Offset))
406     return true;
407
408   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10))
409     return true;
410
411   return false;
412 }
413
414 /// Used on microMIPS Load/Store unaligned instructions (12-bit offset)
415 bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr, SDValue &Base,
416                                             SDValue &Offset) const {
417   if (selectAddrFrameIndex(Addr, Base, Offset))
418     return true;
419
420   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 12))
421     return true;
422
423   return false;
424 }
425
426 bool MipsSEDAGToDAGISel::selectAddrRegImm16(SDValue Addr, SDValue &Base,
427                                             SDValue &Offset) const {
428   if (selectAddrFrameIndex(Addr, Base, Offset))
429     return true;
430
431   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
432     return true;
433
434   return false;
435 }
436
437 bool MipsSEDAGToDAGISel::selectIntAddrMM(SDValue Addr, SDValue &Base,
438                                          SDValue &Offset) const {
439   return selectAddrRegImm12(Addr, Base, Offset) ||
440     selectAddrDefault(Addr, Base, Offset);
441 }
442
443 bool MipsSEDAGToDAGISel::selectIntAddrLSL2MM(SDValue Addr, SDValue &Base,
444                                              SDValue &Offset) const {
445   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 7)) {
446     if (isa<FrameIndexSDNode>(Base))
447       return false;
448
449     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Offset)) {
450       unsigned CnstOff = CN->getZExtValue();
451       return (CnstOff == (CnstOff & 0x3c));
452     }
453
454     return false;
455   }
456
457   // For all other cases where "lw" would be selected, don't select "lw16"
458   // because it would result in additional instructions to prepare operands.
459   if (selectAddrRegImm(Addr, Base, Offset))
460     return false;
461
462   return selectAddrDefault(Addr, Base, Offset);
463 }
464
465 bool MipsSEDAGToDAGISel::selectIntAddrMSA(SDValue Addr, SDValue &Base,
466                                           SDValue &Offset) const {
467   if (selectAddrRegImm10(Addr, Base, Offset))
468     return true;
469
470   if (selectAddrDefault(Addr, Base, Offset))
471     return true;
472
473   return false;
474 }
475
476 // Select constant vector splats.
477 //
478 // Returns true and sets Imm if:
479 // * MSA is enabled
480 // * N is a ISD::BUILD_VECTOR representing a constant splat
481 bool MipsSEDAGToDAGISel::selectVSplat(SDNode *N, APInt &Imm,
482                                       unsigned MinSizeInBits) const {
483   if (!Subtarget->hasMSA())
484     return false;
485
486   BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N);
487
488   if (!Node)
489     return false;
490
491   APInt SplatValue, SplatUndef;
492   unsigned SplatBitSize;
493   bool HasAnyUndefs;
494
495   if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
496                              MinSizeInBits, !Subtarget->isLittle()))
497     return false;
498
499   Imm = SplatValue;
500
501   return true;
502 }
503
504 // Select constant vector splats.
505 //
506 // In addition to the requirements of selectVSplat(), this function returns
507 // true and sets Imm if:
508 // * The splat value is the same width as the elements of the vector
509 // * The splat value fits in an integer with the specified signed-ness and
510 //   width.
511 //
512 // This function looks through ISD::BITCAST nodes.
513 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
514 //       sometimes a shuffle in big-endian mode.
515 //
516 // It's worth noting that this function is not used as part of the selection
517 // of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd]
518 // instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in
519 // MipsSEDAGToDAGISel::selectNode.
520 bool MipsSEDAGToDAGISel::
521 selectVSplatCommon(SDValue N, SDValue &Imm, bool Signed,
522                    unsigned ImmBitSize) const {
523   APInt ImmValue;
524   EVT EltTy = N->getValueType(0).getVectorElementType();
525
526   if (N->getOpcode() == ISD::BITCAST)
527     N = N->getOperand(0);
528
529   if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
530       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
531
532     if (( Signed && ImmValue.isSignedIntN(ImmBitSize)) ||
533         (!Signed && ImmValue.isIntN(ImmBitSize))) {
534       Imm = CurDAG->getTargetConstant(ImmValue, SDLoc(N), EltTy);
535       return true;
536     }
537   }
538
539   return false;
540 }
541
542 // Select constant vector splats.
543 bool MipsSEDAGToDAGISel::
544 selectVSplatUimm1(SDValue N, SDValue &Imm) const {
545   return selectVSplatCommon(N, Imm, false, 1);
546 }
547
548 bool MipsSEDAGToDAGISel::
549 selectVSplatUimm2(SDValue N, SDValue &Imm) const {
550   return selectVSplatCommon(N, Imm, false, 2);
551 }
552
553 bool MipsSEDAGToDAGISel::
554 selectVSplatUimm3(SDValue N, SDValue &Imm) const {
555   return selectVSplatCommon(N, Imm, false, 3);
556 }
557
558 // Select constant vector splats.
559 bool MipsSEDAGToDAGISel::
560 selectVSplatUimm4(SDValue N, SDValue &Imm) const {
561   return selectVSplatCommon(N, Imm, false, 4);
562 }
563
564 // Select constant vector splats.
565 bool MipsSEDAGToDAGISel::
566 selectVSplatUimm5(SDValue N, SDValue &Imm) const {
567   return selectVSplatCommon(N, Imm, false, 5);
568 }
569
570 // Select constant vector splats.
571 bool MipsSEDAGToDAGISel::
572 selectVSplatUimm6(SDValue N, SDValue &Imm) const {
573   return selectVSplatCommon(N, Imm, false, 6);
574 }
575
576 // Select constant vector splats.
577 bool MipsSEDAGToDAGISel::
578 selectVSplatUimm8(SDValue N, SDValue &Imm) const {
579   return selectVSplatCommon(N, Imm, false, 8);
580 }
581
582 // Select constant vector splats.
583 bool MipsSEDAGToDAGISel::
584 selectVSplatSimm5(SDValue N, SDValue &Imm) const {
585   return selectVSplatCommon(N, Imm, true, 5);
586 }
587
588 // Select constant vector splats whose value is a power of 2.
589 //
590 // In addition to the requirements of selectVSplat(), this function returns
591 // true and sets Imm if:
592 // * The splat value is the same width as the elements of the vector
593 // * The splat value is a power of two.
594 //
595 // This function looks through ISD::BITCAST nodes.
596 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
597 //       sometimes a shuffle in big-endian mode.
598 bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N, SDValue &Imm) const {
599   APInt ImmValue;
600   EVT EltTy = N->getValueType(0).getVectorElementType();
601
602   if (N->getOpcode() == ISD::BITCAST)
603     N = N->getOperand(0);
604
605   if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
606       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
607     int32_t Log2 = ImmValue.exactLogBase2();
608
609     if (Log2 != -1) {
610       Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy);
611       return true;
612     }
613   }
614
615   return false;
616 }
617
618 // Select constant vector splats whose value only has a consecutive sequence
619 // of left-most bits set (e.g. 0b11...1100...00).
620 //
621 // In addition to the requirements of selectVSplat(), this function returns
622 // true and sets Imm if:
623 // * The splat value is the same width as the elements of the vector
624 // * The splat value is a consecutive sequence of left-most bits.
625 //
626 // This function looks through ISD::BITCAST nodes.
627 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
628 //       sometimes a shuffle in big-endian mode.
629 bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N, SDValue &Imm) const {
630   APInt ImmValue;
631   EVT EltTy = N->getValueType(0).getVectorElementType();
632
633   if (N->getOpcode() == ISD::BITCAST)
634     N = N->getOperand(0);
635
636   if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
637       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
638     // Extract the run of set bits starting with bit zero from the bitwise
639     // inverse of ImmValue, and test that the inverse of this is the same
640     // as the original value.
641     if (ImmValue == ~(~ImmValue & ~(~ImmValue + 1))) {
642
643       Imm = CurDAG->getTargetConstant(ImmValue.countPopulation(), SDLoc(N),
644                                       EltTy);
645       return true;
646     }
647   }
648
649   return false;
650 }
651
652 // Select constant vector splats whose value only has a consecutive sequence
653 // of right-most bits set (e.g. 0b00...0011...11).
654 //
655 // In addition to the requirements of selectVSplat(), this function returns
656 // true and sets Imm if:
657 // * The splat value is the same width as the elements of the vector
658 // * The splat value is a consecutive sequence of right-most bits.
659 //
660 // This function looks through ISD::BITCAST nodes.
661 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
662 //       sometimes a shuffle in big-endian mode.
663 bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N, SDValue &Imm) const {
664   APInt ImmValue;
665   EVT EltTy = N->getValueType(0).getVectorElementType();
666
667   if (N->getOpcode() == ISD::BITCAST)
668     N = N->getOperand(0);
669
670   if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
671       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
672     // Extract the run of set bits starting with bit zero, and test that the
673     // result is the same as the original value
674     if (ImmValue == (ImmValue & ~(ImmValue + 1))) {
675       Imm = CurDAG->getTargetConstant(ImmValue.countPopulation(), SDLoc(N),
676                                       EltTy);
677       return true;
678     }
679   }
680
681   return false;
682 }
683
684 bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N,
685                                                  SDValue &Imm) const {
686   APInt ImmValue;
687   EVT EltTy = N->getValueType(0).getVectorElementType();
688
689   if (N->getOpcode() == ISD::BITCAST)
690     N = N->getOperand(0);
691
692   if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
693       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
694     int32_t Log2 = (~ImmValue).exactLogBase2();
695
696     if (Log2 != -1) {
697       Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy);
698       return true;
699     }
700   }
701
702   return false;
703 }
704
705 std::pair<bool, SDNode*> MipsSEDAGToDAGISel::selectNode(SDNode *Node) {
706   unsigned Opcode = Node->getOpcode();
707   SDLoc DL(Node);
708
709   ///
710   // Instruction Selection not handled by the auto-generated
711   // tablegen selection should be handled here.
712   ///
713   SDNode *Result;
714
715   switch(Opcode) {
716   default: break;
717
718   case ISD::SUBE: {
719     SDValue InFlag = Node->getOperand(2);
720     unsigned Opc = Subtarget->isGP64bit() ? Mips::DSUBu : Mips::SUBu;
721     Result = selectAddESubE(Opc, InFlag, InFlag.getOperand(0), DL, Node);
722     return std::make_pair(true, Result);
723   }
724
725   case ISD::ADDE: {
726     if (Subtarget->hasDSP()) // Select DSP instructions, ADDSC and ADDWC.
727       break;
728     SDValue InFlag = Node->getOperand(2);
729     unsigned Opc = Subtarget->isGP64bit() ? Mips::DADDu : Mips::ADDu;
730     Result = selectAddESubE(Opc, InFlag, InFlag.getValue(0), DL, Node);
731     return std::make_pair(true, Result);
732   }
733
734   case ISD::ConstantFP: {
735     ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(Node);
736     if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) {
737       if (Subtarget->isGP64bit()) {
738         SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
739                                               Mips::ZERO_64, MVT::i64);
740         Result = CurDAG->getMachineNode(Mips::DMTC1, DL, MVT::f64, Zero);
741       } else if (Subtarget->isFP64bit()) {
742         SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
743                                               Mips::ZERO, MVT::i32);
744         Result = CurDAG->getMachineNode(Mips::BuildPairF64_64, DL, MVT::f64,
745                                         Zero, Zero);
746       } else {
747         SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
748                                               Mips::ZERO, MVT::i32);
749         Result = CurDAG->getMachineNode(Mips::BuildPairF64, DL, MVT::f64, Zero,
750                                         Zero);
751       }
752
753       return std::make_pair(true, Result);
754     }
755     break;
756   }
757
758   case ISD::Constant: {
759     const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Node);
760     unsigned Size = CN->getValueSizeInBits(0);
761
762     if (Size == 32)
763       break;
764
765     MipsAnalyzeImmediate AnalyzeImm;
766     int64_t Imm = CN->getSExtValue();
767
768     const MipsAnalyzeImmediate::InstSeq &Seq =
769       AnalyzeImm.Analyze(Imm, Size, false);
770
771     MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin();
772     SDLoc DL(CN);
773     SDNode *RegOpnd;
774     SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd),
775                                                 DL, MVT::i64);
776
777     // The first instruction can be a LUi which is different from other
778     // instructions (ADDiu, ORI and SLL) in that it does not have a register
779     // operand.
780     if (Inst->Opc == Mips::LUi64)
781       RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd);
782     else
783       RegOpnd =
784         CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
785                                CurDAG->getRegister(Mips::ZERO_64, MVT::i64),
786                                ImmOpnd);
787
788     // The remaining instructions in the sequence are handled here.
789     for (++Inst; Inst != Seq.end(); ++Inst) {
790       ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), DL,
791                                           MVT::i64);
792       RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
793                                        SDValue(RegOpnd, 0), ImmOpnd);
794     }
795
796     return std::make_pair(true, RegOpnd);
797   }
798
799   case ISD::INTRINSIC_W_CHAIN: {
800     switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
801     default:
802       break;
803
804     case Intrinsic::mips_cfcmsa: {
805       SDValue ChainIn = Node->getOperand(0);
806       SDValue RegIdx = Node->getOperand(2);
807       SDValue Reg = CurDAG->getCopyFromReg(ChainIn, DL,
808                                            getMSACtrlReg(RegIdx), MVT::i32);
809       return std::make_pair(true, Reg.getNode());
810     }
811     }
812     break;
813   }
814
815   case ISD::INTRINSIC_WO_CHAIN: {
816     switch (cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue()) {
817     default:
818       break;
819
820     case Intrinsic::mips_move_v:
821       // Like an assignment but will always produce a move.v even if
822       // unnecessary.
823       return std::make_pair(true,
824                             CurDAG->getMachineNode(Mips::MOVE_V, DL,
825                                                    Node->getValueType(0),
826                                                    Node->getOperand(1)));
827     }
828     break;
829   }
830
831   case ISD::INTRINSIC_VOID: {
832     switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
833     default:
834       break;
835
836     case Intrinsic::mips_ctcmsa: {
837       SDValue ChainIn = Node->getOperand(0);
838       SDValue RegIdx  = Node->getOperand(2);
839       SDValue Value   = Node->getOperand(3);
840       SDValue ChainOut = CurDAG->getCopyToReg(ChainIn, DL,
841                                               getMSACtrlReg(RegIdx), Value);
842       return std::make_pair(true, ChainOut.getNode());
843     }
844     }
845     break;
846   }
847
848   case MipsISD::ThreadPointer: {
849     EVT PtrVT = getTargetLowering()->getPointerTy(CurDAG->getDataLayout());
850     unsigned RdhwrOpc, DestReg;
851
852     if (PtrVT == MVT::i32) {
853       RdhwrOpc = Mips::RDHWR;
854       DestReg = Mips::V1;
855     } else {
856       RdhwrOpc = Mips::RDHWR64;
857       DestReg = Mips::V1_64;
858     }
859
860     SDNode *Rdhwr =
861       CurDAG->getMachineNode(RdhwrOpc, DL,
862                              Node->getValueType(0),
863                              CurDAG->getRegister(Mips::HWR29, MVT::i32));
864     SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, DestReg,
865                                          SDValue(Rdhwr, 0));
866     SDValue ResNode = CurDAG->getCopyFromReg(Chain, DL, DestReg, PtrVT);
867     ReplaceUses(SDValue(Node, 0), ResNode);
868     return std::make_pair(true, ResNode.getNode());
869   }
870
871   case ISD::BUILD_VECTOR: {
872     // Select appropriate ldi.[bhwd] instructions for constant splats of
873     // 128-bit when MSA is enabled. Fixup any register class mismatches that
874     // occur as a result.
875     //
876     // This allows the compiler to use a wider range of immediates than would
877     // otherwise be allowed. If, for example, v4i32 could only use ldi.h then
878     // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101,
879     // 0x01010101 } without using a constant pool. This would be sub-optimal
880     // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the
881     // same set/ of registers. Similarly, ldi.h isn't capable of producing {
882     // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can.
883
884     BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Node);
885     APInt SplatValue, SplatUndef;
886     unsigned SplatBitSize;
887     bool HasAnyUndefs;
888     unsigned LdiOp;
889     EVT ResVecTy = BVN->getValueType(0);
890     EVT ViaVecTy;
891
892     if (!Subtarget->hasMSA() || !BVN->getValueType(0).is128BitVector())
893       return std::make_pair(false, nullptr);
894
895     if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
896                               HasAnyUndefs, 8,
897                               !Subtarget->isLittle()))
898       return std::make_pair(false, nullptr);
899
900     switch (SplatBitSize) {
901     default:
902       return std::make_pair(false, nullptr);
903     case 8:
904       LdiOp = Mips::LDI_B;
905       ViaVecTy = MVT::v16i8;
906       break;
907     case 16:
908       LdiOp = Mips::LDI_H;
909       ViaVecTy = MVT::v8i16;
910       break;
911     case 32:
912       LdiOp = Mips::LDI_W;
913       ViaVecTy = MVT::v4i32;
914       break;
915     case 64:
916       LdiOp = Mips::LDI_D;
917       ViaVecTy = MVT::v2i64;
918       break;
919     }
920
921     if (!SplatValue.isSignedIntN(10))
922       return std::make_pair(false, nullptr);
923
924     SDValue Imm = CurDAG->getTargetConstant(SplatValue, DL,
925                                             ViaVecTy.getVectorElementType());
926
927     SDNode *Res = CurDAG->getMachineNode(LdiOp, DL, ViaVecTy, Imm);
928
929     if (ResVecTy != ViaVecTy) {
930       // If LdiOp is writing to a different register class to ResVecTy, then
931       // fix it up here. This COPY_TO_REGCLASS should never cause a move.v
932       // since the source and destination register sets contain the same
933       // registers.
934       const TargetLowering *TLI = getTargetLowering();
935       MVT ResVecTySimple = ResVecTy.getSimpleVT();
936       const TargetRegisterClass *RC = TLI->getRegClassFor(ResVecTySimple);
937       Res = CurDAG->getMachineNode(Mips::COPY_TO_REGCLASS, DL,
938                                    ResVecTy, SDValue(Res, 0),
939                                    CurDAG->getTargetConstant(RC->getID(), DL,
940                                                              MVT::i32));
941     }
942
943     return std::make_pair(true, Res);
944   }
945
946   }
947
948   return std::make_pair(false, nullptr);
949 }
950
951 bool MipsSEDAGToDAGISel::
952 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
953                              std::vector<SDValue> &OutOps) {
954   SDValue Base, Offset;
955
956   switch(ConstraintID) {
957   default:
958     llvm_unreachable("Unexpected asm memory constraint");
959   // All memory constraints can at least accept raw pointers.
960   case InlineAsm::Constraint_i:
961     OutOps.push_back(Op);
962     OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
963     return false;
964   case InlineAsm::Constraint_m:
965     if (selectAddrRegImm16(Op, Base, Offset)) {
966       OutOps.push_back(Base);
967       OutOps.push_back(Offset);
968       return false;
969     }
970     OutOps.push_back(Op);
971     OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
972     return false;
973   case InlineAsm::Constraint_R:
974     // The 'R' constraint is supposed to be much more complicated than this.
975     // However, it's becoming less useful due to architectural changes and
976     // ought to be replaced by other constraints such as 'ZC'.
977     // For now, support 9-bit signed offsets which is supportable by all
978     // subtargets for all instructions.
979     if (selectAddrRegImm9(Op, Base, Offset)) {
980       OutOps.push_back(Base);
981       OutOps.push_back(Offset);
982       return false;
983     }
984     OutOps.push_back(Op);
985     OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
986     return false;
987   case InlineAsm::Constraint_ZC:
988     // ZC matches whatever the pref, ll, and sc instructions can handle for the
989     // given subtarget.
990     if (Subtarget->inMicroMipsMode()) {
991       // On microMIPS, they can handle 12-bit offsets.
992       if (selectAddrRegImm12(Op, Base, Offset)) {
993         OutOps.push_back(Base);
994         OutOps.push_back(Offset);
995         return false;
996       }
997     } else if (Subtarget->hasMips32r6()) {
998       // On MIPS32r6/MIPS64r6, they can only handle 9-bit offsets.
999       if (selectAddrRegImm9(Op, Base, Offset)) {
1000         OutOps.push_back(Base);
1001         OutOps.push_back(Offset);
1002         return false;
1003       }
1004     } else if (selectAddrRegImm16(Op, Base, Offset)) {
1005       // Prior to MIPS32r6/MIPS64r6, they can handle 16-bit offsets.
1006       OutOps.push_back(Base);
1007       OutOps.push_back(Offset);
1008       return false;
1009     }
1010     // In all cases, 0-bit offsets are acceptable.
1011     OutOps.push_back(Op);
1012     OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1013     return false;
1014   }
1015   return true;
1016 }
1017
1018 FunctionPass *llvm::createMipsSEISelDag(MipsTargetMachine &TM) {
1019   return new MipsSEDAGToDAGISel(TM);
1020 }