[mips] Define two subclasses of MipsTargetLowering. Mips16TargetLowering is for
[oota-llvm.git] / lib / Target / Mips / MipsISelLowering.cpp
1 //===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that Mips uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "mips-lower"
15 #include "MipsISelLowering.h"
16 #include "InstPrinter/MipsInstPrinter.h"
17 #include "MCTargetDesc/MipsBaseInfo.h"
18 #include "MipsMachineFunction.h"
19 #include "MipsSubtarget.h"
20 #include "MipsTargetMachine.h"
21 #include "MipsTargetObjectFile.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/SelectionDAGISel.h"
29 #include "llvm/CodeGen/ValueTypes.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38
39 using namespace llvm;
40
41 STATISTIC(NumTailCalls, "Number of tail calls");
42
43 static cl::opt<bool>
44 LargeGOT("mxgot", cl::Hidden,
45          cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
46
47 static const uint16_t O32IntRegs[4] = {
48   Mips::A0, Mips::A1, Mips::A2, Mips::A3
49 };
50
51 static const uint16_t Mips64IntRegs[8] = {
52   Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
53   Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64
54 };
55
56 static const uint16_t Mips64DPRegs[8] = {
57   Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
58   Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
59 };
60
61 // If I is a shifted mask, set the size (Size) and the first bit of the
62 // mask (Pos), and return true.
63 // For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
64 static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
65   if (!isShiftedMask_64(I))
66      return false;
67
68   Size = CountPopulation_64(I);
69   Pos = CountTrailingZeros_64(I);
70   return true;
71 }
72
73 SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
74   MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
75   return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
76 }
77
78 static SDValue getTargetNode(SDValue Op, SelectionDAG &DAG, unsigned Flag) {
79   EVT Ty = Op.getValueType();
80
81   if (GlobalAddressSDNode *N = dyn_cast<GlobalAddressSDNode>(Op))
82     return DAG.getTargetGlobalAddress(N->getGlobal(), Op.getDebugLoc(), Ty, 0,
83                                       Flag);
84   if (ExternalSymbolSDNode *N = dyn_cast<ExternalSymbolSDNode>(Op))
85     return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
86   if (BlockAddressSDNode *N = dyn_cast<BlockAddressSDNode>(Op))
87     return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
88   if (JumpTableSDNode *N = dyn_cast<JumpTableSDNode>(Op))
89     return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
90   if (ConstantPoolSDNode *N = dyn_cast<ConstantPoolSDNode>(Op))
91     return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
92                                      N->getOffset(), Flag);
93
94   llvm_unreachable("Unexpected node type.");
95   return SDValue();
96 }
97
98 static SDValue getAddrNonPIC(SDValue Op, SelectionDAG &DAG) {
99   DebugLoc DL = Op.getDebugLoc();
100   EVT Ty = Op.getValueType();
101   SDValue Hi = getTargetNode(Op, DAG, MipsII::MO_ABS_HI);
102   SDValue Lo = getTargetNode(Op, DAG, MipsII::MO_ABS_LO);
103   return DAG.getNode(ISD::ADD, DL, Ty,
104                      DAG.getNode(MipsISD::Hi, DL, Ty, Hi),
105                      DAG.getNode(MipsISD::Lo, DL, Ty, Lo));
106 }
107
108 SDValue MipsTargetLowering::getAddrLocal(SDValue Op, SelectionDAG &DAG,
109                                          bool HasMips64) const {
110   DebugLoc DL = Op.getDebugLoc();
111   EVT Ty = Op.getValueType();
112   unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
113   SDValue GOT = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
114                             getTargetNode(Op, DAG, GOTFlag));
115   SDValue Load = DAG.getLoad(Ty, DL, DAG.getEntryNode(), GOT,
116                              MachinePointerInfo::getGOT(), false, false, false,
117                              0);
118   unsigned LoFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
119   SDValue Lo = DAG.getNode(MipsISD::Lo, DL, Ty, getTargetNode(Op, DAG, LoFlag));
120   return DAG.getNode(ISD::ADD, DL, Ty, Load, Lo);
121 }
122
123 SDValue MipsTargetLowering::getAddrGlobal(SDValue Op, SelectionDAG &DAG,
124                                           unsigned Flag) const {
125   DebugLoc DL = Op.getDebugLoc();
126   EVT Ty = Op.getValueType();
127   SDValue Tgt = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
128                             getTargetNode(Op, DAG, Flag));
129   return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Tgt,
130                      MachinePointerInfo::getGOT(), false, false, false, 0);
131 }
132
133 SDValue MipsTargetLowering::getAddrGlobalLargeGOT(SDValue Op, SelectionDAG &DAG,
134                                                   unsigned HiFlag,
135                                                   unsigned LoFlag) const {
136   DebugLoc DL = Op.getDebugLoc();
137   EVT Ty = Op.getValueType();
138   SDValue Hi = DAG.getNode(MipsISD::Hi, DL, Ty, getTargetNode(Op, DAG, HiFlag));
139   Hi = DAG.getNode(ISD::ADD, DL, Ty, Hi, getGlobalReg(DAG, Ty));
140   SDValue Wrapper = DAG.getNode(MipsISD::Wrapper, DL, Ty, Hi,
141                                 getTargetNode(Op, DAG, LoFlag));
142   return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Wrapper,
143                      MachinePointerInfo::getGOT(), false, false, false, 0);
144 }
145
146 const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
147   switch (Opcode) {
148   case MipsISD::JmpLink:           return "MipsISD::JmpLink";
149   case MipsISD::TailCall:          return "MipsISD::TailCall";
150   case MipsISD::Hi:                return "MipsISD::Hi";
151   case MipsISD::Lo:                return "MipsISD::Lo";
152   case MipsISD::GPRel:             return "MipsISD::GPRel";
153   case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
154   case MipsISD::Ret:               return "MipsISD::Ret";
155   case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
156   case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
157   case MipsISD::FPCmp:             return "MipsISD::FPCmp";
158   case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
159   case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
160   case MipsISD::FPRound:           return "MipsISD::FPRound";
161   case MipsISD::MAdd:              return "MipsISD::MAdd";
162   case MipsISD::MAddu:             return "MipsISD::MAddu";
163   case MipsISD::MSub:              return "MipsISD::MSub";
164   case MipsISD::MSubu:             return "MipsISD::MSubu";
165   case MipsISD::DivRem:            return "MipsISD::DivRem";
166   case MipsISD::DivRemU:           return "MipsISD::DivRemU";
167   case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
168   case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
169   case MipsISD::Wrapper:           return "MipsISD::Wrapper";
170   case MipsISD::Sync:              return "MipsISD::Sync";
171   case MipsISD::Ext:               return "MipsISD::Ext";
172   case MipsISD::Ins:               return "MipsISD::Ins";
173   case MipsISD::LWL:               return "MipsISD::LWL";
174   case MipsISD::LWR:               return "MipsISD::LWR";
175   case MipsISD::SWL:               return "MipsISD::SWL";
176   case MipsISD::SWR:               return "MipsISD::SWR";
177   case MipsISD::LDL:               return "MipsISD::LDL";
178   case MipsISD::LDR:               return "MipsISD::LDR";
179   case MipsISD::SDL:               return "MipsISD::SDL";
180   case MipsISD::SDR:               return "MipsISD::SDR";
181   case MipsISD::EXTP:              return "MipsISD::EXTP";
182   case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
183   case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
184   case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
185   case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
186   case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
187   case MipsISD::SHILO:             return "MipsISD::SHILO";
188   case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
189   case MipsISD::MULT:              return "MipsISD::MULT";
190   case MipsISD::MULTU:             return "MipsISD::MULTU";
191   case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSP";
192   case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
193   case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
194   case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
195   default:                         return NULL;
196   }
197 }
198
199 MipsTargetLowering::
200 MipsTargetLowering(MipsTargetMachine &TM)
201   : TargetLowering(TM, new MipsTargetObjectFile()),
202     Subtarget(&TM.getSubtarget<MipsSubtarget>()),
203     HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
204     IsO32(Subtarget->isABI_O32()) {
205   // Mips does not have i1 type, so use i32 for
206   // setcc operations results (slt, sgt, ...).
207   setBooleanContents(ZeroOrOneBooleanContent);
208   setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
209
210   // Load extented operations for i1 types must be promoted
211   setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
212   setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
213   setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
214
215   // MIPS doesn't have extending float->double load/store
216   setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
217   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
218
219   // Used by legalize types to correctly generate the setcc result.
220   // Without this, every float setcc comes with a AND/OR with the result,
221   // we don't want this, since the fpcmp result goes to a flag register,
222   // which is used implicitly by brcond and select operations.
223   AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
224
225   // Mips Custom Operations
226   setOperationAction(ISD::BR_JT,              MVT::Other, Custom);
227   setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
228   setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
229   setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
230   setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
231   setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
232   setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
233   setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
234   setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
235   setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
236   setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
237   setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
238   setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
239   setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
240   setOperationAction(ISD::VASTART,            MVT::Other, Custom);
241   setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
242   setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
243
244   if (!TM.Options.NoNaNsFPMath) {
245     setOperationAction(ISD::FABS,             MVT::f32,   Custom);
246     setOperationAction(ISD::FABS,             MVT::f64,   Custom);
247   }
248
249   if (HasMips64) {
250     setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
251     setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
252     setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
253     setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
254     setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
255     setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
256     setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
257     setOperationAction(ISD::STORE,              MVT::i64,   Custom);
258   }
259
260   if (!HasMips64) {
261     setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
262     setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
263     setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
264   }
265
266   setOperationAction(ISD::ADD,                MVT::i32,   Custom);
267   if (HasMips64)
268     setOperationAction(ISD::ADD,                MVT::i64,   Custom);
269
270   setOperationAction(ISD::SDIV, MVT::i32, Expand);
271   setOperationAction(ISD::SREM, MVT::i32, Expand);
272   setOperationAction(ISD::UDIV, MVT::i32, Expand);
273   setOperationAction(ISD::UREM, MVT::i32, Expand);
274   setOperationAction(ISD::SDIV, MVT::i64, Expand);
275   setOperationAction(ISD::SREM, MVT::i64, Expand);
276   setOperationAction(ISD::UDIV, MVT::i64, Expand);
277   setOperationAction(ISD::UREM, MVT::i64, Expand);
278
279   // Operations not directly supported by Mips.
280   setOperationAction(ISD::BR_CC,             MVT::f32,   Expand);
281   setOperationAction(ISD::BR_CC,             MVT::f64,   Expand);
282   setOperationAction(ISD::BR_CC,             MVT::i32,   Expand);
283   setOperationAction(ISD::BR_CC,             MVT::i64,   Expand);
284   setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
285   setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
286   setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
287   setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
288   setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
289   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
290   setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
291   setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
292   setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
293   setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
294   setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
295   setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
296   setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
297   setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
298   setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
299   setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
300   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
301   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
302
303   if (!Subtarget->hasMips32r2())
304     setOperationAction(ISD::ROTR, MVT::i32,   Expand);
305
306   if (!Subtarget->hasMips64r2())
307     setOperationAction(ISD::ROTR, MVT::i64,   Expand);
308
309   setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
310   setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
311   setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
312   setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
313   setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
314   setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
315   setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
316   setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
317   setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
318   setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
319   setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
320   setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
321   setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
322   setOperationAction(ISD::FMA,               MVT::f32,   Expand);
323   setOperationAction(ISD::FMA,               MVT::f64,   Expand);
324   setOperationAction(ISD::FREM,              MVT::f32,   Expand);
325   setOperationAction(ISD::FREM,              MVT::f64,   Expand);
326
327   if (!TM.Options.NoNaNsFPMath) {
328     setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
329     setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
330   }
331
332   setOperationAction(ISD::EXCEPTIONADDR,     MVT::i32, Expand);
333   setOperationAction(ISD::EXCEPTIONADDR,     MVT::i64, Expand);
334   setOperationAction(ISD::EHSELECTION,       MVT::i32, Expand);
335   setOperationAction(ISD::EHSELECTION,       MVT::i64, Expand);
336
337   setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
338
339   setOperationAction(ISD::VAARG,             MVT::Other, Expand);
340   setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
341   setOperationAction(ISD::VAEND,             MVT::Other, Expand);
342
343   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
344   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
345
346   // Use the default for now
347   setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
348   setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
349
350   setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
351   setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
352   setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
353   setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
354
355   setInsertFencesForAtomic(true);
356
357   if (!Subtarget->hasSEInReg()) {
358     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
359     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
360   }
361
362   if (!Subtarget->hasBitCount()) {
363     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
364     setOperationAction(ISD::CTLZ, MVT::i64, Expand);
365   }
366
367   if (!Subtarget->hasSwap()) {
368     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
369     setOperationAction(ISD::BSWAP, MVT::i64, Expand);
370   }
371
372   if (HasMips64) {
373     setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
374     setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
375     setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
376     setTruncStoreAction(MVT::i64, MVT::i32, Custom);
377   }
378
379   setTargetDAGCombine(ISD::ADDE);
380   setTargetDAGCombine(ISD::SUBE);
381   setTargetDAGCombine(ISD::SDIVREM);
382   setTargetDAGCombine(ISD::UDIVREM);
383   setTargetDAGCombine(ISD::SELECT);
384   setTargetDAGCombine(ISD::AND);
385   setTargetDAGCombine(ISD::OR);
386   setTargetDAGCombine(ISD::ADD);
387
388   setMinFunctionAlignment(HasMips64 ? 3 : 2);
389
390   setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
391
392   setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
393   setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
394
395   MaxStoresPerMemcpy = 16;
396 }
397
398 const MipsTargetLowering *MipsTargetLowering::create(MipsTargetMachine &TM) {
399   if (TM.getSubtargetImpl()->inMips16Mode())
400     return llvm::createMips16TargetLowering(TM);
401
402   return llvm::createMipsSETargetLowering(TM);
403 }
404
405 EVT MipsTargetLowering::getSetCCResultType(EVT VT) const {
406   if (!VT.isVector())
407     return MVT::i32;
408   return VT.changeVectorElementTypeToInteger();
409 }
410
411 // selectMADD -
412 // Transforms a subgraph in CurDAG if the following pattern is found:
413 //  (addc multLo, Lo0), (adde multHi, Hi0),
414 // where,
415 //  multHi/Lo: product of multiplication
416 //  Lo0: initial value of Lo register
417 //  Hi0: initial value of Hi register
418 // Return true if pattern matching was successful.
419 static bool selectMADD(SDNode *ADDENode, SelectionDAG *CurDAG) {
420   // ADDENode's second operand must be a flag output of an ADDC node in order
421   // for the matching to be successful.
422   SDNode *ADDCNode = ADDENode->getOperand(2).getNode();
423
424   if (ADDCNode->getOpcode() != ISD::ADDC)
425     return false;
426
427   SDValue MultHi = ADDENode->getOperand(0);
428   SDValue MultLo = ADDCNode->getOperand(0);
429   SDNode *MultNode = MultHi.getNode();
430   unsigned MultOpc = MultHi.getOpcode();
431
432   // MultHi and MultLo must be generated by the same node,
433   if (MultLo.getNode() != MultNode)
434     return false;
435
436   // and it must be a multiplication.
437   if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
438     return false;
439
440   // MultLo amd MultHi must be the first and second output of MultNode
441   // respectively.
442   if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
443     return false;
444
445   // Transform this to a MADD only if ADDENode and ADDCNode are the only users
446   // of the values of MultNode, in which case MultNode will be removed in later
447   // phases.
448   // If there exist users other than ADDENode or ADDCNode, this function returns
449   // here, which will result in MultNode being mapped to a single MULT
450   // instruction node rather than a pair of MULT and MADD instructions being
451   // produced.
452   if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
453     return false;
454
455   SDValue Chain = CurDAG->getEntryNode();
456   DebugLoc DL = ADDENode->getDebugLoc();
457
458   // create MipsMAdd(u) node
459   MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
460
461   SDValue MAdd = CurDAG->getNode(MultOpc, DL, MVT::Glue,
462                                  MultNode->getOperand(0),// Factor 0
463                                  MultNode->getOperand(1),// Factor 1
464                                  ADDCNode->getOperand(1),// Lo0
465                                  ADDENode->getOperand(1));// Hi0
466
467   // create CopyFromReg nodes
468   SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, DL, Mips::LO, MVT::i32,
469                                               MAdd);
470   SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), DL,
471                                               Mips::HI, MVT::i32,
472                                               CopyFromLo.getValue(2));
473
474   // replace uses of adde and addc here
475   if (!SDValue(ADDCNode, 0).use_empty())
476     CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), CopyFromLo);
477
478   if (!SDValue(ADDENode, 0).use_empty())
479     CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), CopyFromHi);
480
481   return true;
482 }
483
484 // selectMSUB -
485 // Transforms a subgraph in CurDAG if the following pattern is found:
486 //  (addc Lo0, multLo), (sube Hi0, multHi),
487 // where,
488 //  multHi/Lo: product of multiplication
489 //  Lo0: initial value of Lo register
490 //  Hi0: initial value of Hi register
491 // Return true if pattern matching was successful.
492 static bool selectMSUB(SDNode *SUBENode, SelectionDAG *CurDAG) {
493   // SUBENode's second operand must be a flag output of an SUBC node in order
494   // for the matching to be successful.
495   SDNode *SUBCNode = SUBENode->getOperand(2).getNode();
496
497   if (SUBCNode->getOpcode() != ISD::SUBC)
498     return false;
499
500   SDValue MultHi = SUBENode->getOperand(1);
501   SDValue MultLo = SUBCNode->getOperand(1);
502   SDNode *MultNode = MultHi.getNode();
503   unsigned MultOpc = MultHi.getOpcode();
504
505   // MultHi and MultLo must be generated by the same node,
506   if (MultLo.getNode() != MultNode)
507     return false;
508
509   // and it must be a multiplication.
510   if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
511     return false;
512
513   // MultLo amd MultHi must be the first and second output of MultNode
514   // respectively.
515   if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
516     return false;
517
518   // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
519   // of the values of MultNode, in which case MultNode will be removed in later
520   // phases.
521   // If there exist users other than SUBENode or SUBCNode, this function returns
522   // here, which will result in MultNode being mapped to a single MULT
523   // instruction node rather than a pair of MULT and MSUB instructions being
524   // produced.
525   if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
526     return false;
527
528   SDValue Chain = CurDAG->getEntryNode();
529   DebugLoc DL = SUBENode->getDebugLoc();
530
531   // create MipsSub(u) node
532   MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
533
534   SDValue MSub = CurDAG->getNode(MultOpc, DL, MVT::Glue,
535                                  MultNode->getOperand(0),// Factor 0
536                                  MultNode->getOperand(1),// Factor 1
537                                  SUBCNode->getOperand(0),// Lo0
538                                  SUBENode->getOperand(0));// Hi0
539
540   // create CopyFromReg nodes
541   SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, DL, Mips::LO, MVT::i32,
542                                               MSub);
543   SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), DL,
544                                               Mips::HI, MVT::i32,
545                                               CopyFromLo.getValue(2));
546
547   // replace uses of sube and subc here
548   if (!SDValue(SUBCNode, 0).use_empty())
549     CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), CopyFromLo);
550
551   if (!SDValue(SUBENode, 0).use_empty())
552     CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), CopyFromHi);
553
554   return true;
555 }
556
557 static SDValue performADDECombine(SDNode *N, SelectionDAG &DAG,
558                                   TargetLowering::DAGCombinerInfo &DCI,
559                                   const MipsSubtarget *Subtarget) {
560   if (DCI.isBeforeLegalize())
561     return SDValue();
562
563   if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
564       selectMADD(N, &DAG))
565     return SDValue(N, 0);
566
567   return SDValue();
568 }
569
570 static SDValue performSUBECombine(SDNode *N, SelectionDAG &DAG,
571                                   TargetLowering::DAGCombinerInfo &DCI,
572                                   const MipsSubtarget *Subtarget) {
573   if (DCI.isBeforeLegalize())
574     return SDValue();
575
576   if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
577       selectMSUB(N, &DAG))
578     return SDValue(N, 0);
579
580   return SDValue();
581 }
582
583 static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
584                                     TargetLowering::DAGCombinerInfo &DCI,
585                                     const MipsSubtarget *Subtarget) {
586   if (DCI.isBeforeLegalizeOps())
587     return SDValue();
588
589   EVT Ty = N->getValueType(0);
590   unsigned LO = (Ty == MVT::i32) ? Mips::LO : Mips::LO64;
591   unsigned HI = (Ty == MVT::i32) ? Mips::HI : Mips::HI64;
592   unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem :
593                                                   MipsISD::DivRemU;
594   DebugLoc DL = N->getDebugLoc();
595
596   SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
597                                N->getOperand(0), N->getOperand(1));
598   SDValue InChain = DAG.getEntryNode();
599   SDValue InGlue = DivRem;
600
601   // insert MFLO
602   if (N->hasAnyUseOfValue(0)) {
603     SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
604                                             InGlue);
605     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
606     InChain = CopyFromLo.getValue(1);
607     InGlue = CopyFromLo.getValue(2);
608   }
609
610   // insert MFHI
611   if (N->hasAnyUseOfValue(1)) {
612     SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
613                                             HI, Ty, InGlue);
614     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
615   }
616
617   return SDValue();
618 }
619
620 static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) {
621   switch (CC) {
622   default: llvm_unreachable("Unknown fp condition code!");
623   case ISD::SETEQ:
624   case ISD::SETOEQ: return Mips::FCOND_OEQ;
625   case ISD::SETUNE: return Mips::FCOND_UNE;
626   case ISD::SETLT:
627   case ISD::SETOLT: return Mips::FCOND_OLT;
628   case ISD::SETGT:
629   case ISD::SETOGT: return Mips::FCOND_OGT;
630   case ISD::SETLE:
631   case ISD::SETOLE: return Mips::FCOND_OLE;
632   case ISD::SETGE:
633   case ISD::SETOGE: return Mips::FCOND_OGE;
634   case ISD::SETULT: return Mips::FCOND_ULT;
635   case ISD::SETULE: return Mips::FCOND_ULE;
636   case ISD::SETUGT: return Mips::FCOND_UGT;
637   case ISD::SETUGE: return Mips::FCOND_UGE;
638   case ISD::SETUO:  return Mips::FCOND_UN;
639   case ISD::SETO:   return Mips::FCOND_OR;
640   case ISD::SETNE:
641   case ISD::SETONE: return Mips::FCOND_ONE;
642   case ISD::SETUEQ: return Mips::FCOND_UEQ;
643   }
644 }
645
646
647 // Returns true if condition code has to be inverted.
648 static bool invertFPCondCode(Mips::CondCode CC) {
649   if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
650     return false;
651
652   assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
653          "Illegal Condition Code");
654
655   return true;
656 }
657
658 // Creates and returns an FPCmp node from a setcc node.
659 // Returns Op if setcc is not a floating point comparison.
660 static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
661   // must be a SETCC node
662   if (Op.getOpcode() != ISD::SETCC)
663     return Op;
664
665   SDValue LHS = Op.getOperand(0);
666
667   if (!LHS.getValueType().isFloatingPoint())
668     return Op;
669
670   SDValue RHS = Op.getOperand(1);
671   DebugLoc DL = Op.getDebugLoc();
672
673   // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
674   // node if necessary.
675   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
676
677   return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
678                      DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32));
679 }
680
681 // Creates and returns a CMovFPT/F node.
682 static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
683                             SDValue False, DebugLoc DL) {
684   bool invert = invertFPCondCode((Mips::CondCode)
685                                  cast<ConstantSDNode>(Cond.getOperand(2))
686                                  ->getSExtValue());
687
688   return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
689                      True.getValueType(), True, False, Cond);
690 }
691
692 static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
693                                     TargetLowering::DAGCombinerInfo &DCI,
694                                     const MipsSubtarget *Subtarget) {
695   if (DCI.isBeforeLegalizeOps())
696     return SDValue();
697
698   SDValue SetCC = N->getOperand(0);
699
700   if ((SetCC.getOpcode() != ISD::SETCC) ||
701       !SetCC.getOperand(0).getValueType().isInteger())
702     return SDValue();
703
704   SDValue False = N->getOperand(2);
705   EVT FalseTy = False.getValueType();
706
707   if (!FalseTy.isInteger())
708     return SDValue();
709
710   ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
711
712   if (!CN || CN->getZExtValue())
713     return SDValue();
714
715   const DebugLoc DL = N->getDebugLoc();
716   ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
717   SDValue True = N->getOperand(1);
718
719   SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
720                        SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
721
722   return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
723 }
724
725 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
726                                  TargetLowering::DAGCombinerInfo &DCI,
727                                  const MipsSubtarget *Subtarget) {
728   // Pattern match EXT.
729   //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
730   //  => ext $dst, $src, size, pos
731   if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
732     return SDValue();
733
734   SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
735   unsigned ShiftRightOpc = ShiftRight.getOpcode();
736
737   // Op's first operand must be a shift right.
738   if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
739     return SDValue();
740
741   // The second operand of the shift must be an immediate.
742   ConstantSDNode *CN;
743   if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
744     return SDValue();
745
746   uint64_t Pos = CN->getZExtValue();
747   uint64_t SMPos, SMSize;
748
749   // Op's second operand must be a shifted mask.
750   if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
751       !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
752     return SDValue();
753
754   // Return if the shifted mask does not start at bit 0 or the sum of its size
755   // and Pos exceeds the word's size.
756   EVT ValTy = N->getValueType(0);
757   if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
758     return SDValue();
759
760   return DAG.getNode(MipsISD::Ext, N->getDebugLoc(), ValTy,
761                      ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
762                      DAG.getConstant(SMSize, MVT::i32));
763 }
764
765 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
766                                 TargetLowering::DAGCombinerInfo &DCI,
767                                 const MipsSubtarget *Subtarget) {
768   // Pattern match INS.
769   //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
770   //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
771   //  => ins $dst, $src, size, pos, $src1
772   if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
773     return SDValue();
774
775   SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
776   uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
777   ConstantSDNode *CN;
778
779   // See if Op's first operand matches (and $src1 , mask0).
780   if (And0.getOpcode() != ISD::AND)
781     return SDValue();
782
783   if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
784       !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
785     return SDValue();
786
787   // See if Op's second operand matches (and (shl $src, pos), mask1).
788   if (And1.getOpcode() != ISD::AND)
789     return SDValue();
790
791   if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
792       !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
793     return SDValue();
794
795   // The shift masks must have the same position and size.
796   if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
797     return SDValue();
798
799   SDValue Shl = And1.getOperand(0);
800   if (Shl.getOpcode() != ISD::SHL)
801     return SDValue();
802
803   if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
804     return SDValue();
805
806   unsigned Shamt = CN->getZExtValue();
807
808   // Return if the shift amount and the first bit position of mask are not the
809   // same.
810   EVT ValTy = N->getValueType(0);
811   if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
812     return SDValue();
813
814   return DAG.getNode(MipsISD::Ins, N->getDebugLoc(), ValTy, Shl.getOperand(0),
815                      DAG.getConstant(SMPos0, MVT::i32),
816                      DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
817 }
818
819 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
820                                  TargetLowering::DAGCombinerInfo &DCI,
821                                  const MipsSubtarget *Subtarget) {
822   // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
823
824   if (DCI.isBeforeLegalizeOps())
825     return SDValue();
826
827   SDValue Add = N->getOperand(1);
828
829   if (Add.getOpcode() != ISD::ADD)
830     return SDValue();
831
832   SDValue Lo = Add.getOperand(1);
833
834   if ((Lo.getOpcode() != MipsISD::Lo) ||
835       (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
836     return SDValue();
837
838   EVT ValTy = N->getValueType(0);
839   DebugLoc DL = N->getDebugLoc();
840
841   SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
842                              Add.getOperand(0));
843   return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
844 }
845
846 SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
847   const {
848   SelectionDAG &DAG = DCI.DAG;
849   unsigned Opc = N->getOpcode();
850
851   switch (Opc) {
852   default: break;
853   case ISD::ADDE:
854     return performADDECombine(N, DAG, DCI, Subtarget);
855   case ISD::SUBE:
856     return performSUBECombine(N, DAG, DCI, Subtarget);
857   case ISD::SDIVREM:
858   case ISD::UDIVREM:
859     return performDivRemCombine(N, DAG, DCI, Subtarget);
860   case ISD::SELECT:
861     return performSELECTCombine(N, DAG, DCI, Subtarget);
862   case ISD::AND:
863     return performANDCombine(N, DAG, DCI, Subtarget);
864   case ISD::OR:
865     return performORCombine(N, DAG, DCI, Subtarget);
866   case ISD::ADD:
867     return performADDCombine(N, DAG, DCI, Subtarget);
868   }
869
870   return SDValue();
871 }
872
873 void
874 MipsTargetLowering::LowerOperationWrapper(SDNode *N,
875                                           SmallVectorImpl<SDValue> &Results,
876                                           SelectionDAG &DAG) const {
877   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
878
879   for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
880     Results.push_back(Res.getValue(I));
881 }
882
883 void
884 MipsTargetLowering::ReplaceNodeResults(SDNode *N,
885                                        SmallVectorImpl<SDValue> &Results,
886                                        SelectionDAG &DAG) const {
887   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
888
889   for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
890     Results.push_back(Res.getValue(I));
891 }
892
893 SDValue MipsTargetLowering::
894 LowerOperation(SDValue Op, SelectionDAG &DAG) const
895 {
896   switch (Op.getOpcode())
897   {
898     case ISD::BR_JT:              return lowerBR_JT(Op, DAG);
899     case ISD::BRCOND:             return lowerBRCOND(Op, DAG);
900     case ISD::ConstantPool:       return lowerConstantPool(Op, DAG);
901     case ISD::GlobalAddress:      return lowerGlobalAddress(Op, DAG);
902     case ISD::BlockAddress:       return lowerBlockAddress(Op, DAG);
903     case ISD::GlobalTLSAddress:   return lowerGlobalTLSAddress(Op, DAG);
904     case ISD::JumpTable:          return lowerJumpTable(Op, DAG);
905     case ISD::SELECT:             return lowerSELECT(Op, DAG);
906     case ISD::SELECT_CC:          return lowerSELECT_CC(Op, DAG);
907     case ISD::SETCC:              return lowerSETCC(Op, DAG);
908     case ISD::VASTART:            return lowerVASTART(Op, DAG);
909     case ISD::FCOPYSIGN:          return lowerFCOPYSIGN(Op, DAG);
910     case ISD::FABS:               return lowerFABS(Op, DAG);
911     case ISD::FRAMEADDR:          return lowerFRAMEADDR(Op, DAG);
912     case ISD::RETURNADDR:         return lowerRETURNADDR(Op, DAG);
913     case ISD::EH_RETURN:          return lowerEH_RETURN(Op, DAG);
914     case ISD::MEMBARRIER:         return lowerMEMBARRIER(Op, DAG);
915     case ISD::ATOMIC_FENCE:       return lowerATOMIC_FENCE(Op, DAG);
916     case ISD::SHL_PARTS:          return lowerShiftLeftParts(Op, DAG);
917     case ISD::SRA_PARTS:          return lowerShiftRightParts(Op, DAG, true);
918     case ISD::SRL_PARTS:          return lowerShiftRightParts(Op, DAG, false);
919     case ISD::LOAD:               return lowerLOAD(Op, DAG);
920     case ISD::STORE:              return lowerSTORE(Op, DAG);
921     case ISD::INTRINSIC_WO_CHAIN: return lowerINTRINSIC_WO_CHAIN(Op, DAG);
922     case ISD::INTRINSIC_W_CHAIN:  return lowerINTRINSIC_W_CHAIN(Op, DAG);
923     case ISD::ADD:                return lowerADD(Op, DAG);
924   }
925   return SDValue();
926 }
927
928 //===----------------------------------------------------------------------===//
929 //  Lower helper functions
930 //===----------------------------------------------------------------------===//
931
932 // addLiveIn - This helper function adds the specified physical register to the
933 // MachineFunction as a live in value.  It also creates a corresponding
934 // virtual register for it.
935 static unsigned
936 addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
937 {
938   unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
939   MF.getRegInfo().addLiveIn(PReg, VReg);
940   return VReg;
941 }
942
943 // Get fp branch code (not opcode) from condition code.
944 static Mips::FPBranchCode getFPBranchCodeFromCond(Mips::CondCode CC) {
945   if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
946     return Mips::BRANCH_T;
947
948   assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
949          "Invalid CondCode.");
950
951   return Mips::BRANCH_F;
952 }
953
954 MachineBasicBlock *
955 MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
956                                                 MachineBasicBlock *BB) const {
957   switch (MI->getOpcode()) {
958   default:
959     llvm_unreachable("Unexpected instr type to insert");
960   case Mips::ATOMIC_LOAD_ADD_I8:
961   case Mips::ATOMIC_LOAD_ADD_I8_P8:
962     return emitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
963   case Mips::ATOMIC_LOAD_ADD_I16:
964   case Mips::ATOMIC_LOAD_ADD_I16_P8:
965     return emitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
966   case Mips::ATOMIC_LOAD_ADD_I32:
967   case Mips::ATOMIC_LOAD_ADD_I32_P8:
968     return emitAtomicBinary(MI, BB, 4, Mips::ADDu);
969   case Mips::ATOMIC_LOAD_ADD_I64:
970   case Mips::ATOMIC_LOAD_ADD_I64_P8:
971     return emitAtomicBinary(MI, BB, 8, Mips::DADDu);
972
973   case Mips::ATOMIC_LOAD_AND_I8:
974   case Mips::ATOMIC_LOAD_AND_I8_P8:
975     return emitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
976   case Mips::ATOMIC_LOAD_AND_I16:
977   case Mips::ATOMIC_LOAD_AND_I16_P8:
978     return emitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
979   case Mips::ATOMIC_LOAD_AND_I32:
980   case Mips::ATOMIC_LOAD_AND_I32_P8:
981     return emitAtomicBinary(MI, BB, 4, Mips::AND);
982   case Mips::ATOMIC_LOAD_AND_I64:
983   case Mips::ATOMIC_LOAD_AND_I64_P8:
984     return emitAtomicBinary(MI, BB, 8, Mips::AND64);
985
986   case Mips::ATOMIC_LOAD_OR_I8:
987   case Mips::ATOMIC_LOAD_OR_I8_P8:
988     return emitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
989   case Mips::ATOMIC_LOAD_OR_I16:
990   case Mips::ATOMIC_LOAD_OR_I16_P8:
991     return emitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
992   case Mips::ATOMIC_LOAD_OR_I32:
993   case Mips::ATOMIC_LOAD_OR_I32_P8:
994     return emitAtomicBinary(MI, BB, 4, Mips::OR);
995   case Mips::ATOMIC_LOAD_OR_I64:
996   case Mips::ATOMIC_LOAD_OR_I64_P8:
997     return emitAtomicBinary(MI, BB, 8, Mips::OR64);
998
999   case Mips::ATOMIC_LOAD_XOR_I8:
1000   case Mips::ATOMIC_LOAD_XOR_I8_P8:
1001     return emitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
1002   case Mips::ATOMIC_LOAD_XOR_I16:
1003   case Mips::ATOMIC_LOAD_XOR_I16_P8:
1004     return emitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
1005   case Mips::ATOMIC_LOAD_XOR_I32:
1006   case Mips::ATOMIC_LOAD_XOR_I32_P8:
1007     return emitAtomicBinary(MI, BB, 4, Mips::XOR);
1008   case Mips::ATOMIC_LOAD_XOR_I64:
1009   case Mips::ATOMIC_LOAD_XOR_I64_P8:
1010     return emitAtomicBinary(MI, BB, 8, Mips::XOR64);
1011
1012   case Mips::ATOMIC_LOAD_NAND_I8:
1013   case Mips::ATOMIC_LOAD_NAND_I8_P8:
1014     return emitAtomicBinaryPartword(MI, BB, 1, 0, true);
1015   case Mips::ATOMIC_LOAD_NAND_I16:
1016   case Mips::ATOMIC_LOAD_NAND_I16_P8:
1017     return emitAtomicBinaryPartword(MI, BB, 2, 0, true);
1018   case Mips::ATOMIC_LOAD_NAND_I32:
1019   case Mips::ATOMIC_LOAD_NAND_I32_P8:
1020     return emitAtomicBinary(MI, BB, 4, 0, true);
1021   case Mips::ATOMIC_LOAD_NAND_I64:
1022   case Mips::ATOMIC_LOAD_NAND_I64_P8:
1023     return emitAtomicBinary(MI, BB, 8, 0, true);
1024
1025   case Mips::ATOMIC_LOAD_SUB_I8:
1026   case Mips::ATOMIC_LOAD_SUB_I8_P8:
1027     return emitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
1028   case Mips::ATOMIC_LOAD_SUB_I16:
1029   case Mips::ATOMIC_LOAD_SUB_I16_P8:
1030     return emitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
1031   case Mips::ATOMIC_LOAD_SUB_I32:
1032   case Mips::ATOMIC_LOAD_SUB_I32_P8:
1033     return emitAtomicBinary(MI, BB, 4, Mips::SUBu);
1034   case Mips::ATOMIC_LOAD_SUB_I64:
1035   case Mips::ATOMIC_LOAD_SUB_I64_P8:
1036     return emitAtomicBinary(MI, BB, 8, Mips::DSUBu);
1037
1038   case Mips::ATOMIC_SWAP_I8:
1039   case Mips::ATOMIC_SWAP_I8_P8:
1040     return emitAtomicBinaryPartword(MI, BB, 1, 0);
1041   case Mips::ATOMIC_SWAP_I16:
1042   case Mips::ATOMIC_SWAP_I16_P8:
1043     return emitAtomicBinaryPartword(MI, BB, 2, 0);
1044   case Mips::ATOMIC_SWAP_I32:
1045   case Mips::ATOMIC_SWAP_I32_P8:
1046     return emitAtomicBinary(MI, BB, 4, 0);
1047   case Mips::ATOMIC_SWAP_I64:
1048   case Mips::ATOMIC_SWAP_I64_P8:
1049     return emitAtomicBinary(MI, BB, 8, 0);
1050
1051   case Mips::ATOMIC_CMP_SWAP_I8:
1052   case Mips::ATOMIC_CMP_SWAP_I8_P8:
1053     return emitAtomicCmpSwapPartword(MI, BB, 1);
1054   case Mips::ATOMIC_CMP_SWAP_I16:
1055   case Mips::ATOMIC_CMP_SWAP_I16_P8:
1056     return emitAtomicCmpSwapPartword(MI, BB, 2);
1057   case Mips::ATOMIC_CMP_SWAP_I32:
1058   case Mips::ATOMIC_CMP_SWAP_I32_P8:
1059     return emitAtomicCmpSwap(MI, BB, 4);
1060   case Mips::ATOMIC_CMP_SWAP_I64:
1061   case Mips::ATOMIC_CMP_SWAP_I64_P8:
1062     return emitAtomicCmpSwap(MI, BB, 8);
1063   }
1064 }
1065
1066 // This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1067 // Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1068 MachineBasicBlock *
1069 MipsTargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
1070                                      unsigned Size, unsigned BinOpcode,
1071                                      bool Nand) const {
1072   assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
1073
1074   MachineFunction *MF = BB->getParent();
1075   MachineRegisterInfo &RegInfo = MF->getRegInfo();
1076   const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1077   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1078   DebugLoc DL = MI->getDebugLoc();
1079   unsigned LL, SC, AND, NOR, ZERO, BEQ;
1080
1081   if (Size == 4) {
1082     LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1083     SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1084     AND = Mips::AND;
1085     NOR = Mips::NOR;
1086     ZERO = Mips::ZERO;
1087     BEQ = Mips::BEQ;
1088   }
1089   else {
1090     LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1091     SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1092     AND = Mips::AND64;
1093     NOR = Mips::NOR64;
1094     ZERO = Mips::ZERO_64;
1095     BEQ = Mips::BEQ64;
1096   }
1097
1098   unsigned OldVal = MI->getOperand(0).getReg();
1099   unsigned Ptr = MI->getOperand(1).getReg();
1100   unsigned Incr = MI->getOperand(2).getReg();
1101
1102   unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1103   unsigned AndRes = RegInfo.createVirtualRegister(RC);
1104   unsigned Success = RegInfo.createVirtualRegister(RC);
1105
1106   // insert new blocks after the current block
1107   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1108   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1109   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1110   MachineFunction::iterator It = BB;
1111   ++It;
1112   MF->insert(It, loopMBB);
1113   MF->insert(It, exitMBB);
1114
1115   // Transfer the remainder of BB and its successor edges to exitMBB.
1116   exitMBB->splice(exitMBB->begin(), BB,
1117                   llvm::next(MachineBasicBlock::iterator(MI)),
1118                   BB->end());
1119   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1120
1121   //  thisMBB:
1122   //    ...
1123   //    fallthrough --> loopMBB
1124   BB->addSuccessor(loopMBB);
1125   loopMBB->addSuccessor(loopMBB);
1126   loopMBB->addSuccessor(exitMBB);
1127
1128   //  loopMBB:
1129   //    ll oldval, 0(ptr)
1130   //    <binop> storeval, oldval, incr
1131   //    sc success, storeval, 0(ptr)
1132   //    beq success, $0, loopMBB
1133   BB = loopMBB;
1134   BuildMI(BB, DL, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
1135   if (Nand) {
1136     //  and andres, oldval, incr
1137     //  nor storeval, $0, andres
1138     BuildMI(BB, DL, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
1139     BuildMI(BB, DL, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
1140   } else if (BinOpcode) {
1141     //  <binop> storeval, oldval, incr
1142     BuildMI(BB, DL, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
1143   } else {
1144     StoreVal = Incr;
1145   }
1146   BuildMI(BB, DL, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
1147   BuildMI(BB, DL, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
1148
1149   MI->eraseFromParent();   // The instruction is gone now.
1150
1151   return exitMBB;
1152 }
1153
1154 MachineBasicBlock *
1155 MipsTargetLowering::emitAtomicBinaryPartword(MachineInstr *MI,
1156                                              MachineBasicBlock *BB,
1157                                              unsigned Size, unsigned BinOpcode,
1158                                              bool Nand) const {
1159   assert((Size == 1 || Size == 2) &&
1160       "Unsupported size for EmitAtomicBinaryPartial.");
1161
1162   MachineFunction *MF = BB->getParent();
1163   MachineRegisterInfo &RegInfo = MF->getRegInfo();
1164   const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1165   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1166   DebugLoc DL = MI->getDebugLoc();
1167   unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1168   unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1169
1170   unsigned Dest = MI->getOperand(0).getReg();
1171   unsigned Ptr = MI->getOperand(1).getReg();
1172   unsigned Incr = MI->getOperand(2).getReg();
1173
1174   unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1175   unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1176   unsigned Mask = RegInfo.createVirtualRegister(RC);
1177   unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1178   unsigned NewVal = RegInfo.createVirtualRegister(RC);
1179   unsigned OldVal = RegInfo.createVirtualRegister(RC);
1180   unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1181   unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1182   unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1183   unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1184   unsigned AndRes = RegInfo.createVirtualRegister(RC);
1185   unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1186   unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1187   unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1188   unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1189   unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1190   unsigned SllRes = RegInfo.createVirtualRegister(RC);
1191   unsigned Success = RegInfo.createVirtualRegister(RC);
1192
1193   // insert new blocks after the current block
1194   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1195   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1196   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1197   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1198   MachineFunction::iterator It = BB;
1199   ++It;
1200   MF->insert(It, loopMBB);
1201   MF->insert(It, sinkMBB);
1202   MF->insert(It, exitMBB);
1203
1204   // Transfer the remainder of BB and its successor edges to exitMBB.
1205   exitMBB->splice(exitMBB->begin(), BB,
1206                   llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1207   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1208
1209   BB->addSuccessor(loopMBB);
1210   loopMBB->addSuccessor(loopMBB);
1211   loopMBB->addSuccessor(sinkMBB);
1212   sinkMBB->addSuccessor(exitMBB);
1213
1214   //  thisMBB:
1215   //    addiu   masklsb2,$0,-4                # 0xfffffffc
1216   //    and     alignedaddr,ptr,masklsb2
1217   //    andi    ptrlsb2,ptr,3
1218   //    sll     shiftamt,ptrlsb2,3
1219   //    ori     maskupper,$0,255               # 0xff
1220   //    sll     mask,maskupper,shiftamt
1221   //    nor     mask2,$0,mask
1222   //    sll     incr2,incr,shiftamt
1223
1224   int64_t MaskImm = (Size == 1) ? 255 : 65535;
1225   BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1226     .addReg(Mips::ZERO).addImm(-4);
1227   BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1228     .addReg(Ptr).addReg(MaskLSB2);
1229   BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1230   BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1231   BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1232     .addReg(Mips::ZERO).addImm(MaskImm);
1233   BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1234     .addReg(ShiftAmt).addReg(MaskUpper);
1235   BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1236   BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(ShiftAmt).addReg(Incr);
1237
1238   // atomic.load.binop
1239   // loopMBB:
1240   //   ll      oldval,0(alignedaddr)
1241   //   binop   binopres,oldval,incr2
1242   //   and     newval,binopres,mask
1243   //   and     maskedoldval0,oldval,mask2
1244   //   or      storeval,maskedoldval0,newval
1245   //   sc      success,storeval,0(alignedaddr)
1246   //   beq     success,$0,loopMBB
1247
1248   // atomic.swap
1249   // loopMBB:
1250   //   ll      oldval,0(alignedaddr)
1251   //   and     newval,incr2,mask
1252   //   and     maskedoldval0,oldval,mask2
1253   //   or      storeval,maskedoldval0,newval
1254   //   sc      success,storeval,0(alignedaddr)
1255   //   beq     success,$0,loopMBB
1256
1257   BB = loopMBB;
1258   BuildMI(BB, DL, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1259   if (Nand) {
1260     //  and andres, oldval, incr2
1261     //  nor binopres, $0, andres
1262     //  and newval, binopres, mask
1263     BuildMI(BB, DL, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1264     BuildMI(BB, DL, TII->get(Mips::NOR), BinOpRes)
1265       .addReg(Mips::ZERO).addReg(AndRes);
1266     BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1267   } else if (BinOpcode) {
1268     //  <binop> binopres, oldval, incr2
1269     //  and newval, binopres, mask
1270     BuildMI(BB, DL, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1271     BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1272   } else {// atomic.swap
1273     //  and newval, incr2, mask
1274     BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1275   }
1276
1277   BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1278     .addReg(OldVal).addReg(Mask2);
1279   BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1280     .addReg(MaskedOldVal0).addReg(NewVal);
1281   BuildMI(BB, DL, TII->get(SC), Success)
1282     .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1283   BuildMI(BB, DL, TII->get(Mips::BEQ))
1284     .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1285
1286   //  sinkMBB:
1287   //    and     maskedoldval1,oldval,mask
1288   //    srl     srlres,maskedoldval1,shiftamt
1289   //    sll     sllres,srlres,24
1290   //    sra     dest,sllres,24
1291   BB = sinkMBB;
1292   int64_t ShiftImm = (Size == 1) ? 24 : 16;
1293
1294   BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1295     .addReg(OldVal).addReg(Mask);
1296   BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1297       .addReg(ShiftAmt).addReg(MaskedOldVal1);
1298   BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1299       .addReg(SrlRes).addImm(ShiftImm);
1300   BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1301       .addReg(SllRes).addImm(ShiftImm);
1302
1303   MI->eraseFromParent();   // The instruction is gone now.
1304
1305   return exitMBB;
1306 }
1307
1308 MachineBasicBlock *
1309 MipsTargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
1310                                       MachineBasicBlock *BB,
1311                                       unsigned Size) const {
1312   assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1313
1314   MachineFunction *MF = BB->getParent();
1315   MachineRegisterInfo &RegInfo = MF->getRegInfo();
1316   const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1317   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1318   DebugLoc DL = MI->getDebugLoc();
1319   unsigned LL, SC, ZERO, BNE, BEQ;
1320
1321   if (Size == 4) {
1322     LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1323     SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1324     ZERO = Mips::ZERO;
1325     BNE = Mips::BNE;
1326     BEQ = Mips::BEQ;
1327   }
1328   else {
1329     LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1330     SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1331     ZERO = Mips::ZERO_64;
1332     BNE = Mips::BNE64;
1333     BEQ = Mips::BEQ64;
1334   }
1335
1336   unsigned Dest    = MI->getOperand(0).getReg();
1337   unsigned Ptr     = MI->getOperand(1).getReg();
1338   unsigned OldVal  = MI->getOperand(2).getReg();
1339   unsigned NewVal  = MI->getOperand(3).getReg();
1340
1341   unsigned Success = RegInfo.createVirtualRegister(RC);
1342
1343   // insert new blocks after the current block
1344   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1345   MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1346   MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1347   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1348   MachineFunction::iterator It = BB;
1349   ++It;
1350   MF->insert(It, loop1MBB);
1351   MF->insert(It, loop2MBB);
1352   MF->insert(It, exitMBB);
1353
1354   // Transfer the remainder of BB and its successor edges to exitMBB.
1355   exitMBB->splice(exitMBB->begin(), BB,
1356                   llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1357   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1358
1359   //  thisMBB:
1360   //    ...
1361   //    fallthrough --> loop1MBB
1362   BB->addSuccessor(loop1MBB);
1363   loop1MBB->addSuccessor(exitMBB);
1364   loop1MBB->addSuccessor(loop2MBB);
1365   loop2MBB->addSuccessor(loop1MBB);
1366   loop2MBB->addSuccessor(exitMBB);
1367
1368   // loop1MBB:
1369   //   ll dest, 0(ptr)
1370   //   bne dest, oldval, exitMBB
1371   BB = loop1MBB;
1372   BuildMI(BB, DL, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1373   BuildMI(BB, DL, TII->get(BNE))
1374     .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1375
1376   // loop2MBB:
1377   //   sc success, newval, 0(ptr)
1378   //   beq success, $0, loop1MBB
1379   BB = loop2MBB;
1380   BuildMI(BB, DL, TII->get(SC), Success)
1381     .addReg(NewVal).addReg(Ptr).addImm(0);
1382   BuildMI(BB, DL, TII->get(BEQ))
1383     .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1384
1385   MI->eraseFromParent();   // The instruction is gone now.
1386
1387   return exitMBB;
1388 }
1389
1390 MachineBasicBlock *
1391 MipsTargetLowering::emitAtomicCmpSwapPartword(MachineInstr *MI,
1392                                               MachineBasicBlock *BB,
1393                                               unsigned Size) const {
1394   assert((Size == 1 || Size == 2) &&
1395       "Unsupported size for EmitAtomicCmpSwapPartial.");
1396
1397   MachineFunction *MF = BB->getParent();
1398   MachineRegisterInfo &RegInfo = MF->getRegInfo();
1399   const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1400   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1401   DebugLoc DL = MI->getDebugLoc();
1402   unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1403   unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1404
1405   unsigned Dest    = MI->getOperand(0).getReg();
1406   unsigned Ptr     = MI->getOperand(1).getReg();
1407   unsigned CmpVal  = MI->getOperand(2).getReg();
1408   unsigned NewVal  = MI->getOperand(3).getReg();
1409
1410   unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1411   unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1412   unsigned Mask = RegInfo.createVirtualRegister(RC);
1413   unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1414   unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1415   unsigned OldVal = RegInfo.createVirtualRegister(RC);
1416   unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1417   unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1418   unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1419   unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1420   unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1421   unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1422   unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1423   unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1424   unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1425   unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1426   unsigned SllRes = RegInfo.createVirtualRegister(RC);
1427   unsigned Success = RegInfo.createVirtualRegister(RC);
1428
1429   // insert new blocks after the current block
1430   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1431   MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1432   MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1433   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1434   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1435   MachineFunction::iterator It = BB;
1436   ++It;
1437   MF->insert(It, loop1MBB);
1438   MF->insert(It, loop2MBB);
1439   MF->insert(It, sinkMBB);
1440   MF->insert(It, exitMBB);
1441
1442   // Transfer the remainder of BB and its successor edges to exitMBB.
1443   exitMBB->splice(exitMBB->begin(), BB,
1444                   llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1445   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1446
1447   BB->addSuccessor(loop1MBB);
1448   loop1MBB->addSuccessor(sinkMBB);
1449   loop1MBB->addSuccessor(loop2MBB);
1450   loop2MBB->addSuccessor(loop1MBB);
1451   loop2MBB->addSuccessor(sinkMBB);
1452   sinkMBB->addSuccessor(exitMBB);
1453
1454   // FIXME: computation of newval2 can be moved to loop2MBB.
1455   //  thisMBB:
1456   //    addiu   masklsb2,$0,-4                # 0xfffffffc
1457   //    and     alignedaddr,ptr,masklsb2
1458   //    andi    ptrlsb2,ptr,3
1459   //    sll     shiftamt,ptrlsb2,3
1460   //    ori     maskupper,$0,255               # 0xff
1461   //    sll     mask,maskupper,shiftamt
1462   //    nor     mask2,$0,mask
1463   //    andi    maskedcmpval,cmpval,255
1464   //    sll     shiftedcmpval,maskedcmpval,shiftamt
1465   //    andi    maskednewval,newval,255
1466   //    sll     shiftednewval,maskednewval,shiftamt
1467   int64_t MaskImm = (Size == 1) ? 255 : 65535;
1468   BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1469     .addReg(Mips::ZERO).addImm(-4);
1470   BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1471     .addReg(Ptr).addReg(MaskLSB2);
1472   BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1473   BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1474   BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1475     .addReg(Mips::ZERO).addImm(MaskImm);
1476   BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1477     .addReg(ShiftAmt).addReg(MaskUpper);
1478   BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1479   BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
1480     .addReg(CmpVal).addImm(MaskImm);
1481   BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
1482     .addReg(ShiftAmt).addReg(MaskedCmpVal);
1483   BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
1484     .addReg(NewVal).addImm(MaskImm);
1485   BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
1486     .addReg(ShiftAmt).addReg(MaskedNewVal);
1487
1488   //  loop1MBB:
1489   //    ll      oldval,0(alginedaddr)
1490   //    and     maskedoldval0,oldval,mask
1491   //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1492   BB = loop1MBB;
1493   BuildMI(BB, DL, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1494   BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1495     .addReg(OldVal).addReg(Mask);
1496   BuildMI(BB, DL, TII->get(Mips::BNE))
1497     .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1498
1499   //  loop2MBB:
1500   //    and     maskedoldval1,oldval,mask2
1501   //    or      storeval,maskedoldval1,shiftednewval
1502   //    sc      success,storeval,0(alignedaddr)
1503   //    beq     success,$0,loop1MBB
1504   BB = loop2MBB;
1505   BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1506     .addReg(OldVal).addReg(Mask2);
1507   BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1508     .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1509   BuildMI(BB, DL, TII->get(SC), Success)
1510       .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1511   BuildMI(BB, DL, TII->get(Mips::BEQ))
1512       .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1513
1514   //  sinkMBB:
1515   //    srl     srlres,maskedoldval0,shiftamt
1516   //    sll     sllres,srlres,24
1517   //    sra     dest,sllres,24
1518   BB = sinkMBB;
1519   int64_t ShiftImm = (Size == 1) ? 24 : 16;
1520
1521   BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1522       .addReg(ShiftAmt).addReg(MaskedOldVal0);
1523   BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1524       .addReg(SrlRes).addImm(ShiftImm);
1525   BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1526       .addReg(SllRes).addImm(ShiftImm);
1527
1528   MI->eraseFromParent();   // The instruction is gone now.
1529
1530   return exitMBB;
1531 }
1532
1533 //===----------------------------------------------------------------------===//
1534 //  Misc Lower Operation implementation
1535 //===----------------------------------------------------------------------===//
1536 SDValue MipsTargetLowering::lowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
1537   SDValue Chain = Op.getOperand(0);
1538   SDValue Table = Op.getOperand(1);
1539   SDValue Index = Op.getOperand(2);
1540   DebugLoc DL = Op.getDebugLoc();
1541   EVT PTy = getPointerTy();
1542   unsigned EntrySize =
1543     DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(*getDataLayout());
1544
1545   Index = DAG.getNode(ISD::MUL, DL, PTy, Index,
1546                       DAG.getConstant(EntrySize, PTy));
1547   SDValue Addr = DAG.getNode(ISD::ADD, DL, PTy, Index, Table);
1548
1549   EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
1550   Addr = DAG.getExtLoad(ISD::SEXTLOAD, DL, PTy, Chain, Addr,
1551                         MachinePointerInfo::getJumpTable(), MemVT, false, false,
1552                         0);
1553   Chain = Addr.getValue(1);
1554
1555   if ((getTargetMachine().getRelocationModel() == Reloc::PIC_) || IsN64) {
1556     // For PIC, the sequence is:
1557     // BRIND(load(Jumptable + index) + RelocBase)
1558     // RelocBase can be JumpTable, GOT or some sort of global base.
1559     Addr = DAG.getNode(ISD::ADD, DL, PTy, Addr,
1560                        getPICJumpTableRelocBase(Table, DAG));
1561   }
1562
1563   return DAG.getNode(ISD::BRIND, DL, MVT::Other, Chain, Addr);
1564 }
1565
1566 SDValue MipsTargetLowering::
1567 lowerBRCOND(SDValue Op, SelectionDAG &DAG) const
1568 {
1569   // The first operand is the chain, the second is the condition, the third is
1570   // the block to branch to if the condition is true.
1571   SDValue Chain = Op.getOperand(0);
1572   SDValue Dest = Op.getOperand(2);
1573   DebugLoc DL = Op.getDebugLoc();
1574
1575   SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
1576
1577   // Return if flag is not set by a floating point comparison.
1578   if (CondRes.getOpcode() != MipsISD::FPCmp)
1579     return Op;
1580
1581   SDValue CCNode  = CondRes.getOperand(2);
1582   Mips::CondCode CC =
1583     (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1584   SDValue BrCode = DAG.getConstant(getFPBranchCodeFromCond(CC), MVT::i32);
1585
1586   return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
1587                      Dest, CondRes);
1588 }
1589
1590 SDValue MipsTargetLowering::
1591 lowerSELECT(SDValue Op, SelectionDAG &DAG) const
1592 {
1593   SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
1594
1595   // Return if flag is not set by a floating point comparison.
1596   if (Cond.getOpcode() != MipsISD::FPCmp)
1597     return Op;
1598
1599   return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1600                       Op.getDebugLoc());
1601 }
1602
1603 SDValue MipsTargetLowering::
1604 lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
1605 {
1606   DebugLoc DL = Op.getDebugLoc();
1607   EVT Ty = Op.getOperand(0).getValueType();
1608   SDValue Cond = DAG.getNode(ISD::SETCC, DL, getSetCCResultType(Ty),
1609                              Op.getOperand(0), Op.getOperand(1),
1610                              Op.getOperand(4));
1611
1612   return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
1613                      Op.getOperand(3));
1614 }
1615
1616 SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1617   SDValue Cond = createFPCmp(DAG, Op);
1618
1619   assert(Cond.getOpcode() == MipsISD::FPCmp &&
1620          "Floating point operand expected.");
1621
1622   SDValue True  = DAG.getConstant(1, MVT::i32);
1623   SDValue False = DAG.getConstant(0, MVT::i32);
1624
1625   return createCMovFP(DAG, Cond, True, False, Op.getDebugLoc());
1626 }
1627
1628 SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
1629                                                SelectionDAG &DAG) const {
1630   // FIXME there isn't actually debug info here
1631   DebugLoc DL = Op.getDebugLoc();
1632   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1633
1634   if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1635     const MipsTargetObjectFile &TLOF =
1636       (const MipsTargetObjectFile&)getObjFileLowering();
1637
1638     // %gp_rel relocation
1639     if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1640       SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
1641                                               MipsII::MO_GPREL);
1642       SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, DL,
1643                                       DAG.getVTList(MVT::i32), &GA, 1);
1644       SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
1645       return DAG.getNode(ISD::ADD, DL, MVT::i32, GPReg, GPRelNode);
1646     }
1647
1648     // %hi/%lo relocation
1649     return getAddrNonPIC(Op, DAG);
1650   }
1651
1652   if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
1653     return getAddrLocal(Op, DAG, HasMips64);
1654
1655   if (LargeGOT)
1656     return getAddrGlobalLargeGOT(Op, DAG, MipsII::MO_GOT_HI16,
1657                                  MipsII::MO_GOT_LO16);
1658
1659   return getAddrGlobal(Op, DAG,
1660                        HasMips64 ? MipsII::MO_GOT_DISP : MipsII::MO_GOT16);
1661 }
1662
1663 SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
1664                                               SelectionDAG &DAG) const {
1665   if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1666     return getAddrNonPIC(Op, DAG);
1667
1668   return getAddrLocal(Op, DAG, HasMips64);
1669 }
1670
1671 SDValue MipsTargetLowering::
1672 lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1673 {
1674   // If the relocation model is PIC, use the General Dynamic TLS Model or
1675   // Local Dynamic TLS model, otherwise use the Initial Exec or
1676   // Local Exec TLS Model.
1677
1678   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1679   DebugLoc DL = GA->getDebugLoc();
1680   const GlobalValue *GV = GA->getGlobal();
1681   EVT PtrVT = getPointerTy();
1682
1683   TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1684
1685   if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1686     // General Dynamic and Local Dynamic TLS Model.
1687     unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1688                                                       : MipsII::MO_TLSGD;
1689
1690     SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
1691     SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
1692                                    getGlobalReg(DAG, PtrVT), TGA);
1693     unsigned PtrSize = PtrVT.getSizeInBits();
1694     IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1695
1696     SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1697
1698     ArgListTy Args;
1699     ArgListEntry Entry;
1700     Entry.Node = Argument;
1701     Entry.Ty = PtrTy;
1702     Args.push_back(Entry);
1703
1704     TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
1705                   false, false, false, false, 0, CallingConv::C,
1706                   /*IsTailCall=*/false, /*doesNotRet=*/false,
1707                   /*isReturnValueUsed=*/true,
1708                   TlsGetAddr, Args, DAG, DL);
1709     std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1710
1711     SDValue Ret = CallResult.first;
1712
1713     if (model != TLSModel::LocalDynamic)
1714       return Ret;
1715
1716     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1717                                                MipsII::MO_DTPREL_HI);
1718     SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1719     SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1720                                                MipsII::MO_DTPREL_LO);
1721     SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1722     SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
1723     return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
1724   }
1725
1726   SDValue Offset;
1727   if (model == TLSModel::InitialExec) {
1728     // Initial Exec TLS Model
1729     SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1730                                              MipsII::MO_GOTTPREL);
1731     TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
1732                       TGA);
1733     Offset = DAG.getLoad(PtrVT, DL,
1734                          DAG.getEntryNode(), TGA, MachinePointerInfo(),
1735                          false, false, false, 0);
1736   } else {
1737     // Local Exec TLS Model
1738     assert(model == TLSModel::LocalExec);
1739     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1740                                                MipsII::MO_TPREL_HI);
1741     SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1742                                                MipsII::MO_TPREL_LO);
1743     SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1744     SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1745     Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1746   }
1747
1748   SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
1749   return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
1750 }
1751
1752 SDValue MipsTargetLowering::
1753 lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1754 {
1755   if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1756     return getAddrNonPIC(Op, DAG);
1757
1758   return getAddrLocal(Op, DAG, HasMips64);
1759 }
1760
1761 SDValue MipsTargetLowering::
1762 lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1763 {
1764   // gp_rel relocation
1765   // FIXME: we should reference the constant pool using small data sections,
1766   // but the asm printer currently doesn't support this feature without
1767   // hacking it. This feature should come soon so we can uncomment the
1768   // stuff below.
1769   //if (IsInSmallSection(C->getType())) {
1770   //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
1771   //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1772   //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
1773
1774   if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1775     return getAddrNonPIC(Op, DAG);
1776
1777   return getAddrLocal(Op, DAG, HasMips64);
1778 }
1779
1780 SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1781   MachineFunction &MF = DAG.getMachineFunction();
1782   MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1783
1784   DebugLoc DL = Op.getDebugLoc();
1785   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1786                                  getPointerTy());
1787
1788   // vastart just stores the address of the VarArgsFrameIndex slot into the
1789   // memory location argument.
1790   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1791   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1792                       MachinePointerInfo(SV), false, false, 0);
1793 }
1794
1795 static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1796   EVT TyX = Op.getOperand(0).getValueType();
1797   EVT TyY = Op.getOperand(1).getValueType();
1798   SDValue Const1 = DAG.getConstant(1, MVT::i32);
1799   SDValue Const31 = DAG.getConstant(31, MVT::i32);
1800   DebugLoc DL = Op.getDebugLoc();
1801   SDValue Res;
1802
1803   // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1804   // to i32.
1805   SDValue X = (TyX == MVT::f32) ?
1806     DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1807     DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1808                 Const1);
1809   SDValue Y = (TyY == MVT::f32) ?
1810     DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
1811     DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
1812                 Const1);
1813
1814   if (HasR2) {
1815     // ext  E, Y, 31, 1  ; extract bit31 of Y
1816     // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
1817     SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
1818     Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
1819   } else {
1820     // sll SllX, X, 1
1821     // srl SrlX, SllX, 1
1822     // srl SrlY, Y, 31
1823     // sll SllY, SrlX, 31
1824     // or  Or, SrlX, SllY
1825     SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1826     SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1827     SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
1828     SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
1829     Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
1830   }
1831
1832   if (TyX == MVT::f32)
1833     return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
1834
1835   SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1836                              Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1837   return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1838 }
1839
1840 static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1841   unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
1842   unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
1843   EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
1844   SDValue Const1 = DAG.getConstant(1, MVT::i32);
1845   DebugLoc DL = Op.getDebugLoc();
1846
1847   // Bitcast to integer nodes.
1848   SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
1849   SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
1850
1851   if (HasR2) {
1852     // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
1853     // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
1854     SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
1855                             DAG.getConstant(WidthY - 1, MVT::i32), Const1);
1856
1857     if (WidthX > WidthY)
1858       E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
1859     else if (WidthY > WidthX)
1860       E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
1861
1862     SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
1863                             DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
1864     return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
1865   }
1866
1867   // (d)sll SllX, X, 1
1868   // (d)srl SrlX, SllX, 1
1869   // (d)srl SrlY, Y, width(Y)-1
1870   // (d)sll SllY, SrlX, width(Y)-1
1871   // or     Or, SrlX, SllY
1872   SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
1873   SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
1874   SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
1875                              DAG.getConstant(WidthY - 1, MVT::i32));
1876
1877   if (WidthX > WidthY)
1878     SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
1879   else if (WidthY > WidthX)
1880     SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
1881
1882   SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
1883                              DAG.getConstant(WidthX - 1, MVT::i32));
1884   SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
1885   return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
1886 }
1887
1888 SDValue
1889 MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
1890   if (Subtarget->hasMips64())
1891     return lowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2());
1892
1893   return lowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2());
1894 }
1895
1896 static SDValue lowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1897   SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1898   DebugLoc DL = Op.getDebugLoc();
1899
1900   // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1901   // to i32.
1902   SDValue X = (Op.getValueType() == MVT::f32) ?
1903     DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1904     DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1905                 Const1);
1906
1907   // Clear MSB.
1908   if (HasR2)
1909     Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
1910                       DAG.getRegister(Mips::ZERO, MVT::i32),
1911                       DAG.getConstant(31, MVT::i32), Const1, X);
1912   else {
1913     SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1914     Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1915   }
1916
1917   if (Op.getValueType() == MVT::f32)
1918     return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
1919
1920   SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1921                              Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1922   return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1923 }
1924
1925 static SDValue lowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1926   SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1927   DebugLoc DL = Op.getDebugLoc();
1928
1929   // Bitcast to integer node.
1930   SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
1931
1932   // Clear MSB.
1933   if (HasR2)
1934     Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
1935                       DAG.getRegister(Mips::ZERO_64, MVT::i64),
1936                       DAG.getConstant(63, MVT::i32), Const1, X);
1937   else {
1938     SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
1939     Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
1940   }
1941
1942   return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
1943 }
1944
1945 SDValue
1946 MipsTargetLowering::lowerFABS(SDValue Op, SelectionDAG &DAG) const {
1947   if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
1948     return lowerFABS64(Op, DAG, Subtarget->hasMips32r2());
1949
1950   return lowerFABS32(Op, DAG, Subtarget->hasMips32r2());
1951 }
1952
1953 SDValue MipsTargetLowering::
1954 lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1955   // check the depth
1956   assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1957          "Frame address can only be determined for current frame.");
1958
1959   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1960   MFI->setFrameAddressIsTaken(true);
1961   EVT VT = Op.getValueType();
1962   DebugLoc DL = Op.getDebugLoc();
1963   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1964                                          IsN64 ? Mips::FP_64 : Mips::FP, VT);
1965   return FrameAddr;
1966 }
1967
1968 SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
1969                                             SelectionDAG &DAG) const {
1970   // check the depth
1971   assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1972          "Return address can be determined only for current frame.");
1973
1974   MachineFunction &MF = DAG.getMachineFunction();
1975   MachineFrameInfo *MFI = MF.getFrameInfo();
1976   MVT VT = Op.getSimpleValueType();
1977   unsigned RA = IsN64 ? Mips::RA_64 : Mips::RA;
1978   MFI->setReturnAddressIsTaken(true);
1979
1980   // Return RA, which contains the return address. Mark it an implicit live-in.
1981   unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
1982   return DAG.getCopyFromReg(DAG.getEntryNode(), Op.getDebugLoc(), Reg, VT);
1983 }
1984
1985 // An EH_RETURN is the result of lowering llvm.eh.return which in turn is
1986 // generated from __builtin_eh_return (offset, handler)
1987 // The effect of this is to adjust the stack pointer by "offset"
1988 // and then branch to "handler".
1989 SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
1990                                                                      const {
1991   MachineFunction &MF = DAG.getMachineFunction();
1992   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
1993
1994   MipsFI->setCallsEhReturn();
1995   SDValue Chain     = Op.getOperand(0);
1996   SDValue Offset    = Op.getOperand(1);
1997   SDValue Handler   = Op.getOperand(2);
1998   DebugLoc DL       = Op.getDebugLoc();
1999   EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
2000
2001   // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
2002   // EH_RETURN nodes, so that instructions are emitted back-to-back.
2003   unsigned OffsetReg = IsN64 ? Mips::V1_64 : Mips::V1;
2004   unsigned AddrReg = IsN64 ? Mips::V0_64 : Mips::V0;
2005   Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
2006   Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
2007   return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
2008                      DAG.getRegister(OffsetReg, Ty),
2009                      DAG.getRegister(AddrReg, getPointerTy()),
2010                      Chain.getValue(1));
2011 }
2012
2013 // TODO: set SType according to the desired memory barrier behavior.
2014 SDValue
2015 MipsTargetLowering::lowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const {
2016   unsigned SType = 0;
2017   DebugLoc DL = Op.getDebugLoc();
2018   return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
2019                      DAG.getConstant(SType, MVT::i32));
2020 }
2021
2022 SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
2023                                               SelectionDAG &DAG) const {
2024   // FIXME: Need pseudo-fence for 'singlethread' fences
2025   // FIXME: Set SType for weaker fences where supported/appropriate.
2026   unsigned SType = 0;
2027   DebugLoc DL = Op.getDebugLoc();
2028   return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
2029                      DAG.getConstant(SType, MVT::i32));
2030 }
2031
2032 SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
2033                                                 SelectionDAG &DAG) const {
2034   DebugLoc DL = Op.getDebugLoc();
2035   SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2036   SDValue Shamt = Op.getOperand(2);
2037
2038   // if shamt < 32:
2039   //  lo = (shl lo, shamt)
2040   //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2041   // else:
2042   //  lo = 0
2043   //  hi = (shl lo, shamt[4:0])
2044   SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2045                             DAG.getConstant(-1, MVT::i32));
2046   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
2047                                       DAG.getConstant(1, MVT::i32));
2048   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
2049                                      Not);
2050   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
2051   SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
2052   SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
2053   SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2054                              DAG.getConstant(0x20, MVT::i32));
2055   Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
2056                    DAG.getConstant(0, MVT::i32), ShiftLeftLo);
2057   Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
2058
2059   SDValue Ops[2] = {Lo, Hi};
2060   return DAG.getMergeValues(Ops, 2, DL);
2061 }
2062
2063 SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2064                                                  bool IsSRA) const {
2065   DebugLoc DL = Op.getDebugLoc();
2066   SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2067   SDValue Shamt = Op.getOperand(2);
2068
2069   // if shamt < 32:
2070   //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2071   //  if isSRA:
2072   //    hi = (sra hi, shamt)
2073   //  else:
2074   //    hi = (srl hi, shamt)
2075   // else:
2076   //  if isSRA:
2077   //   lo = (sra hi, shamt[4:0])
2078   //   hi = (sra hi, 31)
2079   //  else:
2080   //   lo = (srl hi, shamt[4:0])
2081   //   hi = 0
2082   SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2083                             DAG.getConstant(-1, MVT::i32));
2084   SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
2085                                      DAG.getConstant(1, MVT::i32));
2086   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
2087   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
2088   SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
2089   SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
2090                                      Hi, Shamt);
2091   SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2092                              DAG.getConstant(0x20, MVT::i32));
2093   SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
2094                                 DAG.getConstant(31, MVT::i32));
2095   Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
2096   Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
2097                    IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
2098                    ShiftRightHi);
2099
2100   SDValue Ops[2] = {Lo, Hi};
2101   return DAG.getMergeValues(Ops, 2, DL);
2102 }
2103
2104 static SDValue CreateLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
2105                             SDValue Chain, SDValue Src, unsigned Offset) {
2106   SDValue Ptr = LD->getBasePtr();
2107   EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
2108   EVT BasePtrVT = Ptr.getValueType();
2109   DebugLoc DL = LD->getDebugLoc();
2110   SDVTList VTList = DAG.getVTList(VT, MVT::Other);
2111
2112   if (Offset)
2113     Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2114                       DAG.getConstant(Offset, BasePtrVT));
2115
2116   SDValue Ops[] = { Chain, Ptr, Src };
2117   return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2118                                  LD->getMemOperand());
2119 }
2120
2121 // Expand an unaligned 32 or 64-bit integer load node.
2122 SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2123   LoadSDNode *LD = cast<LoadSDNode>(Op);
2124   EVT MemVT = LD->getMemoryVT();
2125
2126   // Return if load is aligned or if MemVT is neither i32 nor i64.
2127   if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2128       ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2129     return SDValue();
2130
2131   bool IsLittle = Subtarget->isLittle();
2132   EVT VT = Op.getValueType();
2133   ISD::LoadExtType ExtType = LD->getExtensionType();
2134   SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
2135
2136   assert((VT == MVT::i32) || (VT == MVT::i64));
2137
2138   // Expand
2139   //  (set dst, (i64 (load baseptr)))
2140   // to
2141   //  (set tmp, (ldl (add baseptr, 7), undef))
2142   //  (set dst, (ldr baseptr, tmp))
2143   if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
2144     SDValue LDL = CreateLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
2145                                IsLittle ? 7 : 0);
2146     return CreateLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
2147                         IsLittle ? 0 : 7);
2148   }
2149
2150   SDValue LWL = CreateLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
2151                              IsLittle ? 3 : 0);
2152   SDValue LWR = CreateLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
2153                              IsLittle ? 0 : 3);
2154
2155   // Expand
2156   //  (set dst, (i32 (load baseptr))) or
2157   //  (set dst, (i64 (sextload baseptr))) or
2158   //  (set dst, (i64 (extload baseptr)))
2159   // to
2160   //  (set tmp, (lwl (add baseptr, 3), undef))
2161   //  (set dst, (lwr baseptr, tmp))
2162   if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
2163       (ExtType == ISD::EXTLOAD))
2164     return LWR;
2165
2166   assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2167
2168   // Expand
2169   //  (set dst, (i64 (zextload baseptr)))
2170   // to
2171   //  (set tmp0, (lwl (add baseptr, 3), undef))
2172   //  (set tmp1, (lwr baseptr, tmp0))
2173   //  (set tmp2, (shl tmp1, 32))
2174   //  (set dst, (srl tmp2, 32))
2175   DebugLoc DL = LD->getDebugLoc();
2176   SDValue Const32 = DAG.getConstant(32, MVT::i32);
2177   SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2178   SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2179   SDValue Ops[] = { SRL, LWR.getValue(1) };
2180   return DAG.getMergeValues(Ops, 2, DL);
2181 }
2182
2183 static SDValue CreateStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2184                              SDValue Chain, unsigned Offset) {
2185   SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2186   EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2187   DebugLoc DL = SD->getDebugLoc();
2188   SDVTList VTList = DAG.getVTList(MVT::Other);
2189
2190   if (Offset)
2191     Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2192                       DAG.getConstant(Offset, BasePtrVT));
2193
2194   SDValue Ops[] = { Chain, Value, Ptr };
2195   return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2196                                  SD->getMemOperand());
2197 }
2198
2199 // Expand an unaligned 32 or 64-bit integer store node.
2200 SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2201   StoreSDNode *SD = cast<StoreSDNode>(Op);
2202   EVT MemVT = SD->getMemoryVT();
2203
2204   // Return if store is aligned or if MemVT is neither i32 nor i64.
2205   if ((SD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2206       ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2207     return SDValue();
2208
2209   bool IsLittle = Subtarget->isLittle();
2210   SDValue Value = SD->getValue(), Chain = SD->getChain();
2211   EVT VT = Value.getValueType();
2212
2213   // Expand
2214   //  (store val, baseptr) or
2215   //  (truncstore val, baseptr)
2216   // to
2217   //  (swl val, (add baseptr, 3))
2218   //  (swr val, baseptr)
2219   if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2220     SDValue SWL = CreateStoreLR(MipsISD::SWL, DAG, SD, Chain,
2221                                 IsLittle ? 3 : 0);
2222     return CreateStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2223   }
2224
2225   assert(VT == MVT::i64);
2226
2227   // Expand
2228   //  (store val, baseptr)
2229   // to
2230   //  (sdl val, (add baseptr, 7))
2231   //  (sdr val, baseptr)
2232   SDValue SDL = CreateStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2233   return CreateStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2234 }
2235
2236 // This function expands mips intrinsic nodes which have 64-bit input operands
2237 // or output values.
2238 //
2239 // out64 = intrinsic-node in64
2240 // =>
2241 // lo = copy (extract-element (in64, 0))
2242 // hi = copy (extract-element (in64, 1))
2243 // mips-specific-node
2244 // v0 = copy lo
2245 // v1 = copy hi
2246 // out64 = merge-values (v0, v1)
2247 //
2248 static SDValue lowerDSPIntr(SDValue Op, SelectionDAG &DAG,
2249                             unsigned Opc, bool HasI64In, bool HasI64Out) {
2250   DebugLoc DL = Op.getDebugLoc();
2251   bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
2252   SDValue Chain = HasChainIn ? Op->getOperand(0) : DAG.getEntryNode();
2253   SmallVector<SDValue, 3> Ops;
2254
2255   if (HasI64In) {
2256     SDValue InLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32,
2257                                Op->getOperand(1 + HasChainIn),
2258                                DAG.getConstant(0, MVT::i32));
2259     SDValue InHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32,
2260                                Op->getOperand(1 + HasChainIn),
2261                                DAG.getConstant(1, MVT::i32));
2262
2263     Chain = DAG.getCopyToReg(Chain, DL, Mips::LO, InLo, SDValue());
2264     Chain = DAG.getCopyToReg(Chain, DL, Mips::HI, InHi, Chain.getValue(1));
2265
2266     Ops.push_back(Chain);
2267     Ops.append(Op->op_begin() + HasChainIn + 2, Op->op_end());
2268     Ops.push_back(Chain.getValue(1));
2269   } else {
2270     Ops.push_back(Chain);
2271     Ops.append(Op->op_begin() + HasChainIn + 1, Op->op_end());
2272   }
2273
2274   if (!HasI64Out)
2275     return DAG.getNode(Opc, DL, Op->value_begin(), Op->getNumValues(),
2276                        Ops.begin(), Ops.size());
2277
2278   SDValue Intr = DAG.getNode(Opc, DL, DAG.getVTList(MVT::Other, MVT::Glue),
2279                              Ops.begin(), Ops.size());
2280   SDValue OutLo = DAG.getCopyFromReg(Intr.getValue(0), DL, Mips::LO, MVT::i32,
2281                                      Intr.getValue(1));
2282   SDValue OutHi = DAG.getCopyFromReg(OutLo.getValue(1), DL, Mips::HI, MVT::i32,
2283                                      OutLo.getValue(2));
2284   SDValue Out = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, OutLo, OutHi);
2285
2286   if (!HasChainIn)
2287     return Out;
2288
2289   SDValue Vals[] = { Out, OutHi.getValue(1) };
2290   return DAG.getMergeValues(Vals, 2, DL);
2291 }
2292
2293 SDValue MipsTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
2294                                                     SelectionDAG &DAG) const {
2295   switch (cast<ConstantSDNode>(Op->getOperand(0))->getZExtValue()) {
2296   default:
2297     return SDValue();
2298   case Intrinsic::mips_shilo:
2299     return lowerDSPIntr(Op, DAG, MipsISD::SHILO, true, true);
2300   case Intrinsic::mips_dpau_h_qbl:
2301     return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL, true, true);
2302   case Intrinsic::mips_dpau_h_qbr:
2303     return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR, true, true);
2304   case Intrinsic::mips_dpsu_h_qbl:
2305     return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL, true, true);
2306   case Intrinsic::mips_dpsu_h_qbr:
2307     return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR, true, true);
2308   case Intrinsic::mips_dpa_w_ph:
2309     return lowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH, true, true);
2310   case Intrinsic::mips_dps_w_ph:
2311     return lowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH, true, true);
2312   case Intrinsic::mips_dpax_w_ph:
2313     return lowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH, true, true);
2314   case Intrinsic::mips_dpsx_w_ph:
2315     return lowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH, true, true);
2316   case Intrinsic::mips_mulsa_w_ph:
2317     return lowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH, true, true);
2318   case Intrinsic::mips_mult:
2319     return lowerDSPIntr(Op, DAG, MipsISD::MULT, false, true);
2320   case Intrinsic::mips_multu:
2321     return lowerDSPIntr(Op, DAG, MipsISD::MULTU, false, true);
2322   case Intrinsic::mips_madd:
2323     return lowerDSPIntr(Op, DAG, MipsISD::MADD_DSP, true, true);
2324   case Intrinsic::mips_maddu:
2325     return lowerDSPIntr(Op, DAG, MipsISD::MADDU_DSP, true, true);
2326   case Intrinsic::mips_msub:
2327     return lowerDSPIntr(Op, DAG, MipsISD::MSUB_DSP, true, true);
2328   case Intrinsic::mips_msubu:
2329     return lowerDSPIntr(Op, DAG, MipsISD::MSUBU_DSP, true, true);
2330   }
2331 }
2332
2333 SDValue MipsTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
2334                                                    SelectionDAG &DAG) const {
2335   switch (cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue()) {
2336   default:
2337     return SDValue();
2338   case Intrinsic::mips_extp:
2339     return lowerDSPIntr(Op, DAG, MipsISD::EXTP, true, false);
2340   case Intrinsic::mips_extpdp:
2341     return lowerDSPIntr(Op, DAG, MipsISD::EXTPDP, true, false);
2342   case Intrinsic::mips_extr_w:
2343     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_W, true, false);
2344   case Intrinsic::mips_extr_r_w:
2345     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W, true, false);
2346   case Intrinsic::mips_extr_rs_w:
2347     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W, true, false);
2348   case Intrinsic::mips_extr_s_h:
2349     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H, true, false);
2350   case Intrinsic::mips_mthlip:
2351     return lowerDSPIntr(Op, DAG, MipsISD::MTHLIP, true, true);
2352   case Intrinsic::mips_mulsaq_s_w_ph:
2353     return lowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH, true, true);
2354   case Intrinsic::mips_maq_s_w_phl:
2355     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL, true, true);
2356   case Intrinsic::mips_maq_s_w_phr:
2357     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR, true, true);
2358   case Intrinsic::mips_maq_sa_w_phl:
2359     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL, true, true);
2360   case Intrinsic::mips_maq_sa_w_phr:
2361     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR, true, true);
2362   case Intrinsic::mips_dpaq_s_w_ph:
2363     return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH, true, true);
2364   case Intrinsic::mips_dpsq_s_w_ph:
2365     return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH, true, true);
2366   case Intrinsic::mips_dpaq_sa_l_w:
2367     return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W, true, true);
2368   case Intrinsic::mips_dpsq_sa_l_w:
2369     return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W, true, true);
2370   case Intrinsic::mips_dpaqx_s_w_ph:
2371     return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH, true, true);
2372   case Intrinsic::mips_dpaqx_sa_w_ph:
2373     return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH, true, true);
2374   case Intrinsic::mips_dpsqx_s_w_ph:
2375     return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH, true, true);
2376   case Intrinsic::mips_dpsqx_sa_w_ph:
2377     return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH, true, true);
2378   }
2379 }
2380
2381 SDValue MipsTargetLowering::lowerADD(SDValue Op, SelectionDAG &DAG) const {
2382   if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
2383       || cast<ConstantSDNode>
2384         (Op->getOperand(0).getOperand(0))->getZExtValue() != 0
2385       || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
2386     return SDValue();
2387
2388   // The pattern
2389   //   (add (frameaddr 0), (frame_to_args_offset))
2390   // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
2391   //   (add FrameObject, 0)
2392   // where FrameObject is a fixed StackObject with offset 0 which points to
2393   // the old stack pointer.
2394   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2395   EVT ValTy = Op->getValueType(0);
2396   int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2397   SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
2398   return DAG.getNode(ISD::ADD, Op->getDebugLoc(), ValTy, InArgsAddr,
2399                      DAG.getConstant(0, ValTy));
2400 }
2401
2402 //===----------------------------------------------------------------------===//
2403 //                      Calling Convention Implementation
2404 //===----------------------------------------------------------------------===//
2405
2406 //===----------------------------------------------------------------------===//
2407 // TODO: Implement a generic logic using tblgen that can support this.
2408 // Mips O32 ABI rules:
2409 // ---
2410 // i32 - Passed in A0, A1, A2, A3 and stack
2411 // f32 - Only passed in f32 registers if no int reg has been used yet to hold
2412 //       an argument. Otherwise, passed in A1, A2, A3 and stack.
2413 // f64 - Only passed in two aliased f32 registers if no int reg has been used
2414 //       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2415 //       not used, it must be shadowed. If only A3 is avaiable, shadow it and
2416 //       go to stack.
2417 //
2418 //  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2419 //===----------------------------------------------------------------------===//
2420
2421 static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
2422                        MVT LocVT, CCValAssign::LocInfo LocInfo,
2423                        ISD::ArgFlagsTy ArgFlags, CCState &State) {
2424
2425   static const unsigned IntRegsSize=4, FloatRegsSize=2;
2426
2427   static const uint16_t IntRegs[] = {
2428       Mips::A0, Mips::A1, Mips::A2, Mips::A3
2429   };
2430   static const uint16_t F32Regs[] = {
2431       Mips::F12, Mips::F14
2432   };
2433   static const uint16_t F64Regs[] = {
2434       Mips::D6, Mips::D7
2435   };
2436
2437   // Do not process byval args here.
2438   if (ArgFlags.isByVal())
2439     return true;
2440
2441   // Promote i8 and i16
2442   if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2443     LocVT = MVT::i32;
2444     if (ArgFlags.isSExt())
2445       LocInfo = CCValAssign::SExt;
2446     else if (ArgFlags.isZExt())
2447       LocInfo = CCValAssign::ZExt;
2448     else
2449       LocInfo = CCValAssign::AExt;
2450   }
2451
2452   unsigned Reg;
2453
2454   // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2455   // is true: function is vararg, argument is 3rd or higher, there is previous
2456   // argument which is not f32 or f64.
2457   bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2458       || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2459   unsigned OrigAlign = ArgFlags.getOrigAlign();
2460   bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2461
2462   if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2463     Reg = State.AllocateReg(IntRegs, IntRegsSize);
2464     // If this is the first part of an i64 arg,
2465     // the allocated register must be either A0 or A2.
2466     if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2467       Reg = State.AllocateReg(IntRegs, IntRegsSize);
2468     LocVT = MVT::i32;
2469   } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2470     // Allocate int register and shadow next int register. If first
2471     // available register is Mips::A1 or Mips::A3, shadow it too.
2472     Reg = State.AllocateReg(IntRegs, IntRegsSize);
2473     if (Reg == Mips::A1 || Reg == Mips::A3)
2474       Reg = State.AllocateReg(IntRegs, IntRegsSize);
2475     State.AllocateReg(IntRegs, IntRegsSize);
2476     LocVT = MVT::i32;
2477   } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2478     // we are guaranteed to find an available float register
2479     if (ValVT == MVT::f32) {
2480       Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2481       // Shadow int register
2482       State.AllocateReg(IntRegs, IntRegsSize);
2483     } else {
2484       Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2485       // Shadow int registers
2486       unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2487       if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2488         State.AllocateReg(IntRegs, IntRegsSize);
2489       State.AllocateReg(IntRegs, IntRegsSize);
2490     }
2491   } else
2492     llvm_unreachable("Cannot handle this ValVT.");
2493
2494   if (!Reg) {
2495     unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
2496                                           OrigAlign);
2497     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2498   } else
2499     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2500
2501   return false;
2502 }
2503
2504 #include "MipsGenCallingConv.inc"
2505
2506 //===----------------------------------------------------------------------===//
2507 //                  Call Calling Convention Implementation
2508 //===----------------------------------------------------------------------===//
2509
2510 static const unsigned O32IntRegsSize = 4;
2511
2512 // Return next O32 integer argument register.
2513 static unsigned getNextIntArgReg(unsigned Reg) {
2514   assert((Reg == Mips::A0) || (Reg == Mips::A2));
2515   return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2516 }
2517
2518 SDValue
2519 MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
2520                                    SDValue Chain, SDValue Arg, DebugLoc DL,
2521                                    bool IsTailCall, SelectionDAG &DAG) const {
2522   if (!IsTailCall) {
2523     SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
2524                                  DAG.getIntPtrConstant(Offset));
2525     return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
2526                         false, 0);
2527   }
2528
2529   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2530   int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
2531   SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2532   return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
2533                       /*isVolatile=*/ true, false, 0);
2534 }
2535
2536 void MipsTargetLowering::
2537 getOpndList(SmallVectorImpl<SDValue> &Ops,
2538             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
2539             bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
2540             CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
2541   // Insert node "GP copy globalreg" before call to function.
2542   //
2543   // R_MIPS_CALL* operators (emitted when non-internal functions are called
2544   // in PIC mode) allow symbols to be resolved via lazy binding.
2545   // The lazy binding stub requires GP to point to the GOT.
2546   if (IsPICCall && !InternalLinkage) {
2547     unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
2548     EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
2549     RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
2550   }
2551
2552   // Build a sequence of copy-to-reg nodes chained together with token
2553   // chain and flag operands which copy the outgoing args into registers.
2554   // The InFlag in necessary since all emitted instructions must be
2555   // stuck together.
2556   SDValue InFlag;
2557
2558   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2559     Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
2560                                  RegsToPass[i].second, InFlag);
2561     InFlag = Chain.getValue(1);
2562   }
2563
2564   // Add argument registers to the end of the list so that they are
2565   // known live into the call.
2566   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2567     Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
2568                                       RegsToPass[i].second.getValueType()));
2569
2570   // Add a register mask operand representing the call-preserved registers.
2571   const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2572   const uint32_t *Mask = TRI->getCallPreservedMask(CLI.CallConv);
2573   assert(Mask && "Missing call preserved mask for calling convention");
2574   Ops.push_back(CLI.DAG.getRegisterMask(Mask));
2575
2576   if (InFlag.getNode())
2577     Ops.push_back(InFlag);
2578 }
2579
2580 /// LowerCall - functions arguments are copied from virtual regs to
2581 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2582 SDValue
2583 MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2584                               SmallVectorImpl<SDValue> &InVals) const {
2585   SelectionDAG &DAG                     = CLI.DAG;
2586   DebugLoc &DL                          = CLI.DL;
2587   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2588   SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2589   SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2590   SDValue Chain                         = CLI.Chain;
2591   SDValue Callee                        = CLI.Callee;
2592   bool &IsTailCall                      = CLI.IsTailCall;
2593   CallingConv::ID CallConv              = CLI.CallConv;
2594   bool IsVarArg                         = CLI.IsVarArg;
2595
2596   MachineFunction &MF = DAG.getMachineFunction();
2597   MachineFrameInfo *MFI = MF.getFrameInfo();
2598   const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
2599   bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2600
2601   // Analyze operands of the call, assigning locations to each operand.
2602   SmallVector<CCValAssign, 16> ArgLocs;
2603   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2604                  getTargetMachine(), ArgLocs, *DAG.getContext());
2605   MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
2606
2607   MipsCCInfo.analyzeCallOperands(Outs, IsVarArg,
2608                                  getTargetMachine().Options.UseSoftFloat,
2609                                  Callee.getNode(), CLI.Args);
2610
2611   // Get a count of how many bytes are to be pushed on the stack.
2612   unsigned NextStackOffset = CCInfo.getNextStackOffset();
2613
2614   // Check if it's really possible to do a tail call.
2615   if (IsTailCall)
2616     IsTailCall =
2617       isEligibleForTailCallOptimization(MipsCCInfo, NextStackOffset,
2618                                         *MF.getInfo<MipsFunctionInfo>());
2619
2620   if (IsTailCall)
2621     ++NumTailCalls;
2622
2623   // Chain is the output chain of the last Load/Store or CopyToReg node.
2624   // ByValChain is the output chain of the last Memcpy node created for copying
2625   // byval arguments to the stack.
2626   unsigned StackAlignment = TFL->getStackAlignment();
2627   NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
2628   SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
2629
2630   if (!IsTailCall)
2631     Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal);
2632
2633   SDValue StackPtr = DAG.getCopyFromReg(Chain, DL,
2634                                         IsN64 ? Mips::SP_64 : Mips::SP,
2635                                         getPointerTy());
2636
2637   // With EABI is it possible to have 16 args on registers.
2638   std::deque< std::pair<unsigned, SDValue> > RegsToPass;
2639   SmallVector<SDValue, 8> MemOpChains;
2640   MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2641
2642   // Walk the register/memloc assignments, inserting copies/loads.
2643   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2644     SDValue Arg = OutVals[i];
2645     CCValAssign &VA = ArgLocs[i];
2646     MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2647     ISD::ArgFlagsTy Flags = Outs[i].Flags;
2648
2649     // ByVal Arg.
2650     if (Flags.isByVal()) {
2651       assert(Flags.getByValSize() &&
2652              "ByVal args of size 0 should have been ignored by front-end.");
2653       assert(ByValArg != MipsCCInfo.byval_end());
2654       assert(!IsTailCall &&
2655              "Do not tail-call optimize if there is a byval argument.");
2656       passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
2657                    MipsCCInfo, *ByValArg, Flags, Subtarget->isLittle());
2658       ++ByValArg;
2659       continue;
2660     }
2661
2662     // Promote the value if needed.
2663     switch (VA.getLocInfo()) {
2664     default: llvm_unreachable("Unknown loc info!");
2665     case CCValAssign::Full:
2666       if (VA.isRegLoc()) {
2667         if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2668             (ValVT == MVT::f64 && LocVT == MVT::i64) ||
2669             (ValVT == MVT::i64 && LocVT == MVT::f64))
2670           Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
2671         else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2672           SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2673                                    Arg, DAG.getConstant(0, MVT::i32));
2674           SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2675                                    Arg, DAG.getConstant(1, MVT::i32));
2676           if (!Subtarget->isLittle())
2677             std::swap(Lo, Hi);
2678           unsigned LocRegLo = VA.getLocReg();
2679           unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2680           RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2681           RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2682           continue;
2683         }
2684       }
2685       break;
2686     case CCValAssign::SExt:
2687       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
2688       break;
2689     case CCValAssign::ZExt:
2690       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
2691       break;
2692     case CCValAssign::AExt:
2693       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
2694       break;
2695     }
2696
2697     // Arguments that can be passed on register must be kept at
2698     // RegsToPass vector
2699     if (VA.isRegLoc()) {
2700       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2701       continue;
2702     }
2703
2704     // Register can't get to this point...
2705     assert(VA.isMemLoc());
2706
2707     // emit ISD::STORE whichs stores the
2708     // parameter value to a stack Location
2709     MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
2710                                          Chain, Arg, DL, IsTailCall, DAG));
2711   }
2712
2713   // Transform all store nodes into one single node because all store
2714   // nodes are independent of each other.
2715   if (!MemOpChains.empty())
2716     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2717                         &MemOpChains[0], MemOpChains.size());
2718
2719   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2720   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2721   // node so that legalize doesn't hack it.
2722   bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
2723   bool GlobalOrExternal = false, InternalLinkage = false;
2724   SDValue CalleeLo;
2725
2726   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2727     if (IsPICCall) {
2728       InternalLinkage = G->getGlobal()->hasInternalLinkage();
2729
2730       if (InternalLinkage)
2731         Callee = getAddrLocal(Callee, DAG, HasMips64);
2732       else if (LargeGOT)
2733         Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
2734                                        MipsII::MO_CALL_LO16);
2735       else
2736         Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
2737     } else
2738       Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, getPointerTy(), 0,
2739                                           MipsII::MO_NO_FLAG);
2740     GlobalOrExternal = true;
2741   }
2742   else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2743     if (!IsN64 && !IsPIC) // !N64 && static
2744       Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2745                                             MipsII::MO_NO_FLAG);
2746     else if (LargeGOT)
2747       Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
2748                                      MipsII::MO_CALL_LO16);
2749     else // N64 || PIC
2750       Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
2751
2752     GlobalOrExternal = true;
2753   }
2754
2755   SmallVector<SDValue, 8> Ops(1, Chain);
2756   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2757
2758   getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage,
2759               CLI, Callee, Chain);
2760
2761   if (IsTailCall)
2762     return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, &Ops[0], Ops.size());
2763
2764   Chain  = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, &Ops[0], Ops.size());
2765   SDValue InFlag = Chain.getValue(1);
2766
2767   // Create the CALLSEQ_END node.
2768   Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
2769                              DAG.getIntPtrConstant(0, true), InFlag);
2770   InFlag = Chain.getValue(1);
2771
2772   // Handle result values, copying them out of physregs into vregs that we
2773   // return.
2774   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg,
2775                          Ins, DL, DAG, InVals, CLI.Callee.getNode(), CLI.RetTy);
2776 }
2777
2778 /// LowerCallResult - Lower the result values of a call into the
2779 /// appropriate copies out of appropriate physical registers.
2780 SDValue
2781 MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2782                                     CallingConv::ID CallConv, bool IsVarArg,
2783                                     const SmallVectorImpl<ISD::InputArg> &Ins,
2784                                     DebugLoc DL, SelectionDAG &DAG,
2785                                     SmallVectorImpl<SDValue> &InVals,
2786                                     const SDNode *CallNode,
2787                                     const Type *RetTy) const {
2788   // Assign locations to each value returned by this call.
2789   SmallVector<CCValAssign, 16> RVLocs;
2790   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2791                  getTargetMachine(), RVLocs, *DAG.getContext());
2792   MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
2793
2794   MipsCCInfo.analyzeCallResult(Ins, getTargetMachine().Options.UseSoftFloat,
2795                                CallNode, RetTy);
2796
2797   // Copy all of the result registers out of their specified physreg.
2798   for (unsigned i = 0; i != RVLocs.size(); ++i) {
2799     SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
2800                                      RVLocs[i].getLocVT(), InFlag);
2801     Chain = Val.getValue(1);
2802     InFlag = Val.getValue(2);
2803
2804     if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2805       Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getValVT(), Val);
2806
2807     InVals.push_back(Val);
2808   }
2809
2810   return Chain;
2811 }
2812
2813 //===----------------------------------------------------------------------===//
2814 //             Formal Arguments Calling Convention Implementation
2815 //===----------------------------------------------------------------------===//
2816 /// LowerFormalArguments - transform physical registers into virtual registers
2817 /// and generate load operations for arguments places on the stack.
2818 SDValue
2819 MipsTargetLowering::LowerFormalArguments(SDValue Chain,
2820                                          CallingConv::ID CallConv,
2821                                          bool IsVarArg,
2822                                       const SmallVectorImpl<ISD::InputArg> &Ins,
2823                                          DebugLoc DL, SelectionDAG &DAG,
2824                                          SmallVectorImpl<SDValue> &InVals)
2825                                           const {
2826   MachineFunction &MF = DAG.getMachineFunction();
2827   MachineFrameInfo *MFI = MF.getFrameInfo();
2828   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2829
2830   MipsFI->setVarArgsFrameIndex(0);
2831
2832   // Used with vargs to acumulate store chains.
2833   std::vector<SDValue> OutChains;
2834
2835   // Assign locations to all of the incoming arguments.
2836   SmallVector<CCValAssign, 16> ArgLocs;
2837   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2838                  getTargetMachine(), ArgLocs, *DAG.getContext());
2839   MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
2840   Function::const_arg_iterator FuncArg =
2841     DAG.getMachineFunction().getFunction()->arg_begin();
2842   bool UseSoftFloat = getTargetMachine().Options.UseSoftFloat;
2843
2844   MipsCCInfo.analyzeFormalArguments(Ins, UseSoftFloat, FuncArg);
2845   MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
2846                            MipsCCInfo.hasByValArg());
2847
2848   unsigned CurArgIdx = 0;
2849   MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2850
2851   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2852     CCValAssign &VA = ArgLocs[i];
2853     std::advance(FuncArg, Ins[i].OrigArgIndex - CurArgIdx);
2854     CurArgIdx = Ins[i].OrigArgIndex;
2855     EVT ValVT = VA.getValVT();
2856     ISD::ArgFlagsTy Flags = Ins[i].Flags;
2857     bool IsRegLoc = VA.isRegLoc();
2858
2859     if (Flags.isByVal()) {
2860       assert(Flags.getByValSize() &&
2861              "ByVal args of size 0 should have been ignored by front-end.");
2862       assert(ByValArg != MipsCCInfo.byval_end());
2863       copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
2864                     MipsCCInfo, *ByValArg);
2865       ++ByValArg;
2866       continue;
2867     }
2868
2869     // Arguments stored on registers
2870     if (IsRegLoc) {
2871       EVT RegVT = VA.getLocVT();
2872       unsigned ArgReg = VA.getLocReg();
2873       const TargetRegisterClass *RC;
2874
2875       if (RegVT == MVT::i32)
2876         RC = Subtarget->inMips16Mode()? &Mips::CPU16RegsRegClass :
2877                                         &Mips::CPURegsRegClass;
2878       else if (RegVT == MVT::i64)
2879         RC = &Mips::CPU64RegsRegClass;
2880       else if (RegVT == MVT::f32)
2881         RC = &Mips::FGR32RegClass;
2882       else if (RegVT == MVT::f64)
2883         RC = HasMips64 ? &Mips::FGR64RegClass : &Mips::AFGR64RegClass;
2884       else
2885         llvm_unreachable("RegVT not supported by FormalArguments Lowering");
2886
2887       // Transform the arguments stored on
2888       // physical registers into virtual ones
2889       unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
2890       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2891
2892       // If this is an 8 or 16-bit value, it has been passed promoted
2893       // to 32 bits.  Insert an assert[sz]ext to capture this, then
2894       // truncate to the right size.
2895       if (VA.getLocInfo() != CCValAssign::Full) {
2896         unsigned Opcode = 0;
2897         if (VA.getLocInfo() == CCValAssign::SExt)
2898           Opcode = ISD::AssertSext;
2899         else if (VA.getLocInfo() == CCValAssign::ZExt)
2900           Opcode = ISD::AssertZext;
2901         if (Opcode)
2902           ArgValue = DAG.getNode(Opcode, DL, RegVT, ArgValue,
2903                                  DAG.getValueType(ValVT));
2904         ArgValue = DAG.getNode(ISD::TRUNCATE, DL, ValVT, ArgValue);
2905       }
2906
2907       // Handle floating point arguments passed in integer registers and
2908       // long double arguments passed in floating point registers.
2909       if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
2910           (RegVT == MVT::i64 && ValVT == MVT::f64) ||
2911           (RegVT == MVT::f64 && ValVT == MVT::i64))
2912         ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
2913       else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
2914         unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
2915                                   getNextIntArgReg(ArgReg), RC);
2916         SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
2917         if (!Subtarget->isLittle())
2918           std::swap(ArgValue, ArgValue2);
2919         ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
2920                                ArgValue, ArgValue2);
2921       }
2922
2923       InVals.push_back(ArgValue);
2924     } else { // VA.isRegLoc()
2925
2926       // sanity check
2927       assert(VA.isMemLoc());
2928
2929       // The stack pointer offset is relative to the caller stack frame.
2930       int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2931                                       VA.getLocMemOffset(), true);
2932
2933       // Create load nodes to retrieve arguments from the stack
2934       SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2935       InVals.push_back(DAG.getLoad(ValVT, DL, Chain, FIN,
2936                                    MachinePointerInfo::getFixedStack(FI),
2937                                    false, false, false, 0));
2938     }
2939   }
2940
2941   // The mips ABIs for returning structs by value requires that we copy
2942   // the sret argument into $v0 for the return. Save the argument into
2943   // a virtual register so that we can access it from the return points.
2944   if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
2945     unsigned Reg = MipsFI->getSRetReturnReg();
2946     if (!Reg) {
2947       Reg = MF.getRegInfo().
2948         createVirtualRegister(getRegClassFor(IsN64 ? MVT::i64 : MVT::i32));
2949       MipsFI->setSRetReturnReg(Reg);
2950     }
2951     SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]);
2952     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
2953   }
2954
2955   if (IsVarArg)
2956     writeVarArgRegs(OutChains, MipsCCInfo, Chain, DL, DAG);
2957
2958   // All stores are grouped in one node to allow the matching between
2959   // the size of Ins and InVals. This only happens when on varg functions
2960   if (!OutChains.empty()) {
2961     OutChains.push_back(Chain);
2962     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2963                         &OutChains[0], OutChains.size());
2964   }
2965
2966   return Chain;
2967 }
2968
2969 //===----------------------------------------------------------------------===//
2970 //               Return Value Calling Convention Implementation
2971 //===----------------------------------------------------------------------===//
2972
2973 bool
2974 MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2975                                    MachineFunction &MF, bool IsVarArg,
2976                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2977                                    LLVMContext &Context) const {
2978   SmallVector<CCValAssign, 16> RVLocs;
2979   CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(),
2980                  RVLocs, Context);
2981   return CCInfo.CheckReturn(Outs, RetCC_Mips);
2982 }
2983
2984 SDValue
2985 MipsTargetLowering::LowerReturn(SDValue Chain,
2986                                 CallingConv::ID CallConv, bool IsVarArg,
2987                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
2988                                 const SmallVectorImpl<SDValue> &OutVals,
2989                                 DebugLoc DL, SelectionDAG &DAG) const {
2990   // CCValAssign - represent the assignment of
2991   // the return value to a location
2992   SmallVector<CCValAssign, 16> RVLocs;
2993   MachineFunction &MF = DAG.getMachineFunction();
2994
2995   // CCState - Info about the registers and stack slot.
2996   CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(), RVLocs,
2997                  *DAG.getContext());
2998   MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
2999
3000   // Analyze return values.
3001   MipsCCInfo.analyzeReturn(Outs, getTargetMachine().Options.UseSoftFloat,
3002                            MF.getFunction()->getReturnType());
3003
3004   SDValue Flag;
3005   SmallVector<SDValue, 4> RetOps(1, Chain);
3006
3007   // Copy the result values into the output registers.
3008   for (unsigned i = 0; i != RVLocs.size(); ++i) {
3009     SDValue Val = OutVals[i];
3010     CCValAssign &VA = RVLocs[i];
3011     assert(VA.isRegLoc() && "Can only return in registers!");
3012
3013     if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
3014       Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getLocVT(), Val);
3015
3016     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
3017
3018     // Guarantee that all emitted copies are stuck together with flags.
3019     Flag = Chain.getValue(1);
3020     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3021   }
3022
3023   // The mips ABIs for returning structs by value requires that we copy
3024   // the sret argument into $v0 for the return. We saved the argument into
3025   // a virtual register in the entry block, so now we copy the value out
3026   // and into $v0.
3027   if (MF.getFunction()->hasStructRetAttr()) {
3028     MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3029     unsigned Reg = MipsFI->getSRetReturnReg();
3030
3031     if (!Reg)
3032       llvm_unreachable("sret virtual register not created in the entry block");
3033     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
3034     unsigned V0 = IsN64 ? Mips::V0_64 : Mips::V0;
3035
3036     Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
3037     Flag = Chain.getValue(1);
3038     RetOps.push_back(DAG.getRegister(V0, getPointerTy()));
3039   }
3040
3041   RetOps[0] = Chain;  // Update chain.
3042
3043   // Add the flag if we have it.
3044   if (Flag.getNode())
3045     RetOps.push_back(Flag);
3046
3047   // Return on Mips is always a "jr $ra"
3048   return DAG.getNode(MipsISD::Ret, DL, MVT::Other, &RetOps[0], RetOps.size());
3049 }
3050
3051 //===----------------------------------------------------------------------===//
3052 //                           Mips Inline Assembly Support
3053 //===----------------------------------------------------------------------===//
3054
3055 /// getConstraintType - Given a constraint letter, return the type of
3056 /// constraint it is for this target.
3057 MipsTargetLowering::ConstraintType MipsTargetLowering::
3058 getConstraintType(const std::string &Constraint) const
3059 {
3060   // Mips specific constrainy
3061   // GCC config/mips/constraints.md
3062   //
3063   // 'd' : An address register. Equivalent to r
3064   //       unless generating MIPS16 code.
3065   // 'y' : Equivalent to r; retained for
3066   //       backwards compatibility.
3067   // 'c' : A register suitable for use in an indirect
3068   //       jump. This will always be $25 for -mabicalls.
3069   // 'l' : The lo register. 1 word storage.
3070   // 'x' : The hilo register pair. Double word storage.
3071   if (Constraint.size() == 1) {
3072     switch (Constraint[0]) {
3073       default : break;
3074       case 'd':
3075       case 'y':
3076       case 'f':
3077       case 'c':
3078       case 'l':
3079       case 'x':
3080         return C_RegisterClass;
3081       case 'R':
3082         return C_Memory;
3083     }
3084   }
3085   return TargetLowering::getConstraintType(Constraint);
3086 }
3087
3088 /// Examine constraint type and operand type and determine a weight value.
3089 /// This object must already have been set up with the operand type
3090 /// and the current alternative constraint selected.
3091 TargetLowering::ConstraintWeight
3092 MipsTargetLowering::getSingleConstraintMatchWeight(
3093     AsmOperandInfo &info, const char *constraint) const {
3094   ConstraintWeight weight = CW_Invalid;
3095   Value *CallOperandVal = info.CallOperandVal;
3096     // If we don't have a value, we can't do a match,
3097     // but allow it at the lowest weight.
3098   if (CallOperandVal == NULL)
3099     return CW_Default;
3100   Type *type = CallOperandVal->getType();
3101   // Look at the constraint type.
3102   switch (*constraint) {
3103   default:
3104     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3105     break;
3106   case 'd':
3107   case 'y':
3108     if (type->isIntegerTy())
3109       weight = CW_Register;
3110     break;
3111   case 'f':
3112     if (type->isFloatTy())
3113       weight = CW_Register;
3114     break;
3115   case 'c': // $25 for indirect jumps
3116   case 'l': // lo register
3117   case 'x': // hilo register pair
3118       if (type->isIntegerTy())
3119       weight = CW_SpecificReg;
3120       break;
3121   case 'I': // signed 16 bit immediate
3122   case 'J': // integer zero
3123   case 'K': // unsigned 16 bit immediate
3124   case 'L': // signed 32 bit immediate where lower 16 bits are 0
3125   case 'N': // immediate in the range of -65535 to -1 (inclusive)
3126   case 'O': // signed 15 bit immediate (+- 16383)
3127   case 'P': // immediate in the range of 65535 to 1 (inclusive)
3128     if (isa<ConstantInt>(CallOperandVal))
3129       weight = CW_Constant;
3130     break;
3131   case 'R':
3132     weight = CW_Memory;
3133     break;
3134   }
3135   return weight;
3136 }
3137
3138 /// Given a register class constraint, like 'r', if this corresponds directly
3139 /// to an LLVM register class, return a register of 0 and the register class
3140 /// pointer.
3141 std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
3142 getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const
3143 {
3144   if (Constraint.size() == 1) {
3145     switch (Constraint[0]) {
3146     case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
3147     case 'y': // Same as 'r'. Exists for compatibility.
3148     case 'r':
3149       if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
3150         if (Subtarget->inMips16Mode())
3151           return std::make_pair(0U, &Mips::CPU16RegsRegClass);
3152         return std::make_pair(0U, &Mips::CPURegsRegClass);
3153       }
3154       if (VT == MVT::i64 && !HasMips64)
3155         return std::make_pair(0U, &Mips::CPURegsRegClass);
3156       if (VT == MVT::i64 && HasMips64)
3157         return std::make_pair(0U, &Mips::CPU64RegsRegClass);
3158       // This will generate an error message
3159       return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
3160     case 'f':
3161       if (VT == MVT::f32)
3162         return std::make_pair(0U, &Mips::FGR32RegClass);
3163       if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
3164         if (Subtarget->isFP64bit())
3165           return std::make_pair(0U, &Mips::FGR64RegClass);
3166         return std::make_pair(0U, &Mips::AFGR64RegClass);
3167       }
3168       break;
3169     case 'c': // register suitable for indirect jump
3170       if (VT == MVT::i32)
3171         return std::make_pair((unsigned)Mips::T9, &Mips::CPURegsRegClass);
3172       assert(VT == MVT::i64 && "Unexpected type.");
3173       return std::make_pair((unsigned)Mips::T9_64, &Mips::CPU64RegsRegClass);
3174     case 'l': // register suitable for indirect jump
3175       if (VT == MVT::i32)
3176         return std::make_pair((unsigned)Mips::LO, &Mips::HILORegClass);
3177       return std::make_pair((unsigned)Mips::LO64, &Mips::HILO64RegClass);
3178     case 'x': // register suitable for indirect jump
3179       // Fixme: Not triggering the use of both hi and low
3180       // This will generate an error message
3181       return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
3182     }
3183   }
3184   return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3185 }
3186
3187 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3188 /// vector.  If it is invalid, don't add anything to Ops.
3189 void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3190                                                      std::string &Constraint,
3191                                                      std::vector<SDValue>&Ops,
3192                                                      SelectionDAG &DAG) const {
3193   SDValue Result(0, 0);
3194
3195   // Only support length 1 constraints for now.
3196   if (Constraint.length() > 1) return;
3197
3198   char ConstraintLetter = Constraint[0];
3199   switch (ConstraintLetter) {
3200   default: break; // This will fall through to the generic implementation
3201   case 'I': // Signed 16 bit constant
3202     // If this fails, the parent routine will give an error
3203     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3204       EVT Type = Op.getValueType();
3205       int64_t Val = C->getSExtValue();
3206       if (isInt<16>(Val)) {
3207         Result = DAG.getTargetConstant(Val, Type);
3208         break;
3209       }
3210     }
3211     return;
3212   case 'J': // integer zero
3213     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3214       EVT Type = Op.getValueType();
3215       int64_t Val = C->getZExtValue();
3216       if (Val == 0) {
3217         Result = DAG.getTargetConstant(0, Type);
3218         break;
3219       }
3220     }
3221     return;
3222   case 'K': // unsigned 16 bit immediate
3223     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3224       EVT Type = Op.getValueType();
3225       uint64_t Val = (uint64_t)C->getZExtValue();
3226       if (isUInt<16>(Val)) {
3227         Result = DAG.getTargetConstant(Val, Type);
3228         break;
3229       }
3230     }
3231     return;
3232   case 'L': // signed 32 bit immediate where lower 16 bits are 0
3233     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3234       EVT Type = Op.getValueType();
3235       int64_t Val = C->getSExtValue();
3236       if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
3237         Result = DAG.getTargetConstant(Val, Type);
3238         break;
3239       }
3240     }
3241     return;
3242   case 'N': // immediate in the range of -65535 to -1 (inclusive)
3243     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3244       EVT Type = Op.getValueType();
3245       int64_t Val = C->getSExtValue();
3246       if ((Val >= -65535) && (Val <= -1)) {
3247         Result = DAG.getTargetConstant(Val, Type);
3248         break;
3249       }
3250     }
3251     return;
3252   case 'O': // signed 15 bit immediate
3253     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3254       EVT Type = Op.getValueType();
3255       int64_t Val = C->getSExtValue();
3256       if ((isInt<15>(Val))) {
3257         Result = DAG.getTargetConstant(Val, Type);
3258         break;
3259       }
3260     }
3261     return;
3262   case 'P': // immediate in the range of 1 to 65535 (inclusive)
3263     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3264       EVT Type = Op.getValueType();
3265       int64_t Val = C->getSExtValue();
3266       if ((Val <= 65535) && (Val >= 1)) {
3267         Result = DAG.getTargetConstant(Val, Type);
3268         break;
3269       }
3270     }
3271     return;
3272   }
3273
3274   if (Result.getNode()) {
3275     Ops.push_back(Result);
3276     return;
3277   }
3278
3279   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3280 }
3281
3282 bool
3283 MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM, Type *Ty) const {
3284   // No global is ever allowed as a base.
3285   if (AM.BaseGV)
3286     return false;
3287
3288   switch (AM.Scale) {
3289   case 0: // "r+i" or just "i", depending on HasBaseReg.
3290     break;
3291   case 1:
3292     if (!AM.HasBaseReg) // allow "r+i".
3293       break;
3294     return false; // disallow "r+r" or "r+r+i".
3295   default:
3296     return false;
3297   }
3298
3299   return true;
3300 }
3301
3302 bool
3303 MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3304   // The Mips target isn't yet aware of offsets.
3305   return false;
3306 }
3307
3308 EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3309                                             unsigned SrcAlign,
3310                                             bool IsMemset, bool ZeroMemset,
3311                                             bool MemcpyStrSrc,
3312                                             MachineFunction &MF) const {
3313   if (Subtarget->hasMips64())
3314     return MVT::i64;
3315
3316   return MVT::i32;
3317 }
3318
3319 bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3320   if (VT != MVT::f32 && VT != MVT::f64)
3321     return false;
3322   if (Imm.isNegZero())
3323     return false;
3324   return Imm.isZero();
3325 }
3326
3327 unsigned MipsTargetLowering::getJumpTableEncoding() const {
3328   if (IsN64)
3329     return MachineJumpTableInfo::EK_GPRel64BlockAddress;
3330
3331   return TargetLowering::getJumpTableEncoding();
3332 }
3333
3334 /// This function returns true if CallSym is a long double emulation routine.
3335 static bool isF128SoftLibCall(const char *CallSym) {
3336   const char *const LibCalls[] =
3337     {"__addtf3", "__divtf3", "__eqtf2", "__extenddftf2", "__extendsftf2",
3338      "__fixtfdi", "__fixtfsi", "__fixtfti", "__fixunstfdi", "__fixunstfsi",
3339      "__fixunstfti", "__floatditf", "__floatsitf", "__floattitf",
3340      "__floatunditf", "__floatunsitf", "__floatuntitf", "__getf2", "__gttf2",
3341      "__letf2", "__lttf2", "__multf3", "__netf2", "__powitf2", "__subtf3",
3342      "__trunctfdf2", "__trunctfsf2", "__unordtf2",
3343      "ceill", "copysignl", "cosl", "exp2l", "expl", "floorl", "fmal", "fmodl",
3344      "log10l", "log2l", "logl", "nearbyintl", "powl", "rintl", "sinl", "sqrtl",
3345      "truncl"};
3346
3347   const char * const *End = LibCalls + array_lengthof(LibCalls);
3348
3349   // Check that LibCalls is sorted alphabetically.
3350   MipsTargetLowering::LTStr Comp;
3351
3352 #ifndef NDEBUG
3353   for (const char * const *I = LibCalls; I < End - 1; ++I)
3354     assert(Comp(*I, *(I + 1)));
3355 #endif
3356
3357   return std::binary_search(LibCalls, End, CallSym, Comp);
3358 }
3359
3360 /// This function returns true if Ty is fp128 or i128 which was originally a
3361 /// fp128.
3362 static bool originalTypeIsF128(const Type *Ty, const SDNode *CallNode) {
3363   if (Ty->isFP128Ty())
3364     return true;
3365
3366   const ExternalSymbolSDNode *ES =
3367     dyn_cast_or_null<const ExternalSymbolSDNode>(CallNode);
3368
3369   // If the Ty is i128 and the function being called is a long double emulation
3370   // routine, then the original type is f128.
3371   return (ES && Ty->isIntegerTy(128) && isF128SoftLibCall(ES->getSymbol()));
3372 }
3373
3374 MipsTargetLowering::MipsCC::MipsCC(CallingConv::ID CC, bool IsO32_,
3375                                    CCState &Info)
3376   : CCInfo(Info), CallConv(CC), IsO32(IsO32_) {
3377   // Pre-allocate reserved argument area.
3378   CCInfo.AllocateStack(reservedArgArea(), 1);
3379 }
3380
3381 void MipsTargetLowering::MipsCC::
3382 analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Args,
3383                     bool IsVarArg, bool IsSoftFloat, const SDNode *CallNode,
3384                     std::vector<ArgListEntry> &FuncArgs) {
3385   assert((CallConv != CallingConv::Fast || !IsVarArg) &&
3386          "CallingConv::Fast shouldn't be used for vararg functions.");
3387
3388   unsigned NumOpnds = Args.size();
3389   llvm::CCAssignFn *FixedFn = fixedArgFn(), *VarFn = varArgFn();
3390
3391   for (unsigned I = 0; I != NumOpnds; ++I) {
3392     MVT ArgVT = Args[I].VT;
3393     ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3394     bool R;
3395
3396     if (ArgFlags.isByVal()) {
3397       handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3398       continue;
3399     }
3400
3401     if (IsVarArg && !Args[I].IsFixed)
3402       R = VarFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3403     else {
3404       MVT RegVT = getRegVT(ArgVT, FuncArgs[Args[I].OrigArgIndex].Ty, CallNode,
3405                            IsSoftFloat);
3406       R = FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo);
3407     }
3408
3409     if (R) {
3410 #ifndef NDEBUG
3411       dbgs() << "Call operand #" << I << " has unhandled type "
3412              << EVT(ArgVT).getEVTString();
3413 #endif
3414       llvm_unreachable(0);
3415     }
3416   }
3417 }
3418
3419 void MipsTargetLowering::MipsCC::
3420 analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Args,
3421                        bool IsSoftFloat, Function::const_arg_iterator FuncArg) {
3422   unsigned NumArgs = Args.size();
3423   llvm::CCAssignFn *FixedFn = fixedArgFn();
3424   unsigned CurArgIdx = 0;
3425
3426   for (unsigned I = 0; I != NumArgs; ++I) {
3427     MVT ArgVT = Args[I].VT;
3428     ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3429     std::advance(FuncArg, Args[I].OrigArgIndex - CurArgIdx);
3430     CurArgIdx = Args[I].OrigArgIndex;
3431
3432     if (ArgFlags.isByVal()) {
3433       handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3434       continue;
3435     }
3436
3437     MVT RegVT = getRegVT(ArgVT, FuncArg->getType(), 0, IsSoftFloat);
3438
3439     if (!FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo))
3440       continue;
3441
3442 #ifndef NDEBUG
3443     dbgs() << "Formal Arg #" << I << " has unhandled type "
3444            << EVT(ArgVT).getEVTString();
3445 #endif
3446     llvm_unreachable(0);
3447   }
3448 }
3449
3450 template<typename Ty>
3451 void MipsTargetLowering::MipsCC::
3452 analyzeReturn(const SmallVectorImpl<Ty> &RetVals, bool IsSoftFloat,
3453               const SDNode *CallNode, const Type *RetTy) const {
3454   CCAssignFn *Fn;
3455
3456   if (IsSoftFloat && originalTypeIsF128(RetTy, CallNode))
3457     Fn = RetCC_F128Soft;
3458   else
3459     Fn = RetCC_Mips;
3460
3461   for (unsigned I = 0, E = RetVals.size(); I < E; ++I) {
3462     MVT VT = RetVals[I].VT;
3463     ISD::ArgFlagsTy Flags = RetVals[I].Flags;
3464     MVT RegVT = this->getRegVT(VT, RetTy, CallNode, IsSoftFloat);
3465
3466     if (Fn(I, VT, RegVT, CCValAssign::Full, Flags, this->CCInfo)) {
3467 #ifndef NDEBUG
3468       dbgs() << "Call result #" << I << " has unhandled type "
3469              << EVT(VT).getEVTString() << '\n';
3470 #endif
3471       llvm_unreachable(0);
3472     }
3473   }
3474 }
3475
3476 void MipsTargetLowering::MipsCC::
3477 analyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins, bool IsSoftFloat,
3478                   const SDNode *CallNode, const Type *RetTy) const {
3479   analyzeReturn(Ins, IsSoftFloat, CallNode, RetTy);
3480 }
3481
3482 void MipsTargetLowering::MipsCC::
3483 analyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsSoftFloat,
3484               const Type *RetTy) const {
3485   analyzeReturn(Outs, IsSoftFloat, 0, RetTy);
3486 }
3487
3488 void
3489 MipsTargetLowering::MipsCC::handleByValArg(unsigned ValNo, MVT ValVT,
3490                                            MVT LocVT,
3491                                            CCValAssign::LocInfo LocInfo,
3492                                            ISD::ArgFlagsTy ArgFlags) {
3493   assert(ArgFlags.getByValSize() && "Byval argument's size shouldn't be 0.");
3494
3495   struct ByValArgInfo ByVal;
3496   unsigned RegSize = regSize();
3497   unsigned ByValSize = RoundUpToAlignment(ArgFlags.getByValSize(), RegSize);
3498   unsigned Align = std::min(std::max(ArgFlags.getByValAlign(), RegSize),
3499                             RegSize * 2);
3500
3501   if (useRegsForByval())
3502     allocateRegs(ByVal, ByValSize, Align);
3503
3504   // Allocate space on caller's stack.
3505   ByVal.Address = CCInfo.AllocateStack(ByValSize - RegSize * ByVal.NumRegs,
3506                                        Align);
3507   CCInfo.addLoc(CCValAssign::getMem(ValNo, ValVT, ByVal.Address, LocVT,
3508                                     LocInfo));
3509   ByValArgs.push_back(ByVal);
3510 }
3511
3512 unsigned MipsTargetLowering::MipsCC::numIntArgRegs() const {
3513   return IsO32 ? array_lengthof(O32IntRegs) : array_lengthof(Mips64IntRegs);
3514 }
3515
3516 unsigned MipsTargetLowering::MipsCC::reservedArgArea() const {
3517   return (IsO32 && (CallConv != CallingConv::Fast)) ? 16 : 0;
3518 }
3519
3520 const uint16_t *MipsTargetLowering::MipsCC::intArgRegs() const {
3521   return IsO32 ? O32IntRegs : Mips64IntRegs;
3522 }
3523
3524 llvm::CCAssignFn *MipsTargetLowering::MipsCC::fixedArgFn() const {
3525   if (CallConv == CallingConv::Fast)
3526     return CC_Mips_FastCC;
3527
3528   return IsO32 ? CC_MipsO32 : CC_MipsN;
3529 }
3530
3531 llvm::CCAssignFn *MipsTargetLowering::MipsCC::varArgFn() const {
3532   return IsO32 ? CC_MipsO32 : CC_MipsN_VarArg;
3533 }
3534
3535 const uint16_t *MipsTargetLowering::MipsCC::shadowRegs() const {
3536   return IsO32 ? O32IntRegs : Mips64DPRegs;
3537 }
3538
3539 void MipsTargetLowering::MipsCC::allocateRegs(ByValArgInfo &ByVal,
3540                                               unsigned ByValSize,
3541                                               unsigned Align) {
3542   unsigned RegSize = regSize(), NumIntArgRegs = numIntArgRegs();
3543   const uint16_t *IntArgRegs = intArgRegs(), *ShadowRegs = shadowRegs();
3544   assert(!(ByValSize % RegSize) && !(Align % RegSize) &&
3545          "Byval argument's size and alignment should be a multiple of"
3546          "RegSize.");
3547
3548   ByVal.FirstIdx = CCInfo.getFirstUnallocated(IntArgRegs, NumIntArgRegs);
3549
3550   // If Align > RegSize, the first arg register must be even.
3551   if ((Align > RegSize) && (ByVal.FirstIdx % 2)) {
3552     CCInfo.AllocateReg(IntArgRegs[ByVal.FirstIdx], ShadowRegs[ByVal.FirstIdx]);
3553     ++ByVal.FirstIdx;
3554   }
3555
3556   // Mark the registers allocated.
3557   for (unsigned I = ByVal.FirstIdx; ByValSize && (I < NumIntArgRegs);
3558        ByValSize -= RegSize, ++I, ++ByVal.NumRegs)
3559     CCInfo.AllocateReg(IntArgRegs[I], ShadowRegs[I]);
3560 }
3561
3562 MVT MipsTargetLowering::MipsCC::getRegVT(MVT VT, const Type *OrigTy,
3563                                          const SDNode *CallNode,
3564                                          bool IsSoftFloat) const {
3565   if (IsSoftFloat || IsO32)
3566     return VT;
3567
3568   // Check if the original type was fp128.
3569   if (originalTypeIsF128(OrigTy, CallNode)) {
3570     assert(VT == MVT::i64);
3571     return MVT::f64;
3572   }
3573
3574   return VT;
3575 }
3576
3577 void MipsTargetLowering::
3578 copyByValRegs(SDValue Chain, DebugLoc DL, std::vector<SDValue> &OutChains,
3579               SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
3580               SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
3581               const MipsCC &CC, const ByValArgInfo &ByVal) const {
3582   MachineFunction &MF = DAG.getMachineFunction();
3583   MachineFrameInfo *MFI = MF.getFrameInfo();
3584   unsigned RegAreaSize = ByVal.NumRegs * CC.regSize();
3585   unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
3586   int FrameObjOffset;
3587
3588   if (RegAreaSize)
3589     FrameObjOffset = (int)CC.reservedArgArea() -
3590       (int)((CC.numIntArgRegs() - ByVal.FirstIdx) * CC.regSize());
3591   else
3592     FrameObjOffset = ByVal.Address;
3593
3594   // Create frame object.
3595   EVT PtrTy = getPointerTy();
3596   int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
3597   SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
3598   InVals.push_back(FIN);
3599
3600   if (!ByVal.NumRegs)
3601     return;
3602
3603   // Copy arg registers.
3604   MVT RegTy = MVT::getIntegerVT(CC.regSize() * 8);
3605   const TargetRegisterClass *RC = getRegClassFor(RegTy);
3606
3607   for (unsigned I = 0; I < ByVal.NumRegs; ++I) {
3608     unsigned ArgReg = CC.intArgRegs()[ByVal.FirstIdx + I];
3609     unsigned VReg = addLiveIn(MF, ArgReg, RC);
3610     unsigned Offset = I * CC.regSize();
3611     SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
3612                                    DAG.getConstant(Offset, PtrTy));
3613     SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
3614                                  StorePtr, MachinePointerInfo(FuncArg, Offset),
3615                                  false, false, 0);
3616     OutChains.push_back(Store);
3617   }
3618 }
3619
3620 // Copy byVal arg to registers and stack.
3621 void MipsTargetLowering::
3622 passByValArg(SDValue Chain, DebugLoc DL,
3623              std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
3624              SmallVector<SDValue, 8> &MemOpChains, SDValue StackPtr,
3625              MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
3626              const MipsCC &CC, const ByValArgInfo &ByVal,
3627              const ISD::ArgFlagsTy &Flags, bool isLittle) const {
3628   unsigned ByValSize = Flags.getByValSize();
3629   unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
3630   unsigned RegSize = CC.regSize();
3631   unsigned Alignment = std::min(Flags.getByValAlign(), RegSize);
3632   EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSize * 8);
3633
3634   if (ByVal.NumRegs) {
3635     const uint16_t *ArgRegs = CC.intArgRegs();
3636     bool LeftoverBytes = (ByVal.NumRegs * RegSize > ByValSize);
3637     unsigned I = 0;
3638
3639     // Copy words to registers.
3640     for (; I < ByVal.NumRegs - LeftoverBytes; ++I, Offset += RegSize) {
3641       SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3642                                     DAG.getConstant(Offset, PtrTy));
3643       SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
3644                                     MachinePointerInfo(), false, false, false,
3645                                     Alignment);
3646       MemOpChains.push_back(LoadVal.getValue(1));
3647       unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3648       RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
3649     }
3650
3651     // Return if the struct has been fully copied.
3652     if (ByValSize == Offset)
3653       return;
3654
3655     // Copy the remainder of the byval argument with sub-word loads and shifts.
3656     if (LeftoverBytes) {
3657       assert((ByValSize > Offset) && (ByValSize < Offset + RegSize) &&
3658              "Size of the remainder should be smaller than RegSize.");
3659       SDValue Val;
3660
3661       for (unsigned LoadSize = RegSize / 2, TotalSizeLoaded = 0;
3662            Offset < ByValSize; LoadSize /= 2) {
3663         unsigned RemSize = ByValSize - Offset;
3664
3665         if (RemSize < LoadSize)
3666           continue;
3667
3668         // Load subword.
3669         SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3670                                       DAG.getConstant(Offset, PtrTy));
3671         SDValue LoadVal =
3672           DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr,
3673                          MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
3674                          false, false, Alignment);
3675         MemOpChains.push_back(LoadVal.getValue(1));
3676
3677         // Shift the loaded value.
3678         unsigned Shamt;
3679
3680         if (isLittle)
3681           Shamt = TotalSizeLoaded;
3682         else
3683           Shamt = (RegSize - (TotalSizeLoaded + LoadSize)) * 8;
3684
3685         SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
3686                                     DAG.getConstant(Shamt, MVT::i32));
3687
3688         if (Val.getNode())
3689           Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
3690         else
3691           Val = Shift;
3692
3693         Offset += LoadSize;
3694         TotalSizeLoaded += LoadSize;
3695         Alignment = std::min(Alignment, LoadSize);
3696       }
3697
3698       unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3699       RegsToPass.push_back(std::make_pair(ArgReg, Val));
3700       return;
3701     }
3702   }
3703
3704   // Copy remainder of byval arg to it with memcpy.
3705   unsigned MemCpySize = ByValSize - Offset;
3706   SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3707                             DAG.getConstant(Offset, PtrTy));
3708   SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
3709                             DAG.getIntPtrConstant(ByVal.Address));
3710   Chain = DAG.getMemcpy(Chain, DL, Dst, Src,
3711                         DAG.getConstant(MemCpySize, PtrTy), Alignment,
3712                         /*isVolatile=*/false, /*AlwaysInline=*/false,
3713                         MachinePointerInfo(0), MachinePointerInfo(0));
3714   MemOpChains.push_back(Chain);
3715 }
3716
3717 void
3718 MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
3719                                     const MipsCC &CC, SDValue Chain,
3720                                     DebugLoc DL, SelectionDAG &DAG) const {
3721   unsigned NumRegs = CC.numIntArgRegs();
3722   const uint16_t *ArgRegs = CC.intArgRegs();
3723   const CCState &CCInfo = CC.getCCInfo();
3724   unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumRegs);
3725   unsigned RegSize = CC.regSize();
3726   MVT RegTy = MVT::getIntegerVT(RegSize * 8);
3727   const TargetRegisterClass *RC = getRegClassFor(RegTy);
3728   MachineFunction &MF = DAG.getMachineFunction();
3729   MachineFrameInfo *MFI = MF.getFrameInfo();
3730   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3731
3732   // Offset of the first variable argument from stack pointer.
3733   int VaArgOffset;
3734
3735   if (NumRegs == Idx)
3736     VaArgOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), RegSize);
3737   else
3738     VaArgOffset =
3739       (int)CC.reservedArgArea() - (int)(RegSize * (NumRegs - Idx));
3740
3741   // Record the frame index of the first variable argument
3742   // which is a value necessary to VASTART.
3743   int FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3744   MipsFI->setVarArgsFrameIndex(FI);
3745
3746   // Copy the integer registers that have not been used for argument passing
3747   // to the argument register save area. For O32, the save area is allocated
3748   // in the caller's stack frame, while for N32/64, it is allocated in the
3749   // callee's stack frame.
3750   for (unsigned I = Idx; I < NumRegs; ++I, VaArgOffset += RegSize) {
3751     unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
3752     SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
3753     FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3754     SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
3755     SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
3756                                  MachinePointerInfo(), false, false, 0);
3757     cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(0);
3758     OutChains.push_back(Store);
3759   }
3760 }