Revert "[DebugInfo] Add debug locations to constant SD nodes"
[oota-llvm.git] / lib / Target / Mips / MipsISelLowering.cpp
1 //===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that Mips uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14 #include "MipsISelLowering.h"
15 #include "InstPrinter/MipsInstPrinter.h"
16 #include "MCTargetDesc/MipsBaseInfo.h"
17 #include "MipsCCState.h"
18 #include "MipsMachineFunction.h"
19 #include "MipsSubtarget.h"
20 #include "MipsTargetMachine.h"
21 #include "MipsTargetObjectFile.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringSwitch.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineJumpTableInfo.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/SelectionDAGISel.h"
31 #include "llvm/CodeGen/ValueTypes.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/GlobalVariable.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <cctype>
40
41 using namespace llvm;
42
43 #define DEBUG_TYPE "mips-lower"
44
45 STATISTIC(NumTailCalls, "Number of tail calls");
46
47 static cl::opt<bool>
48 LargeGOT("mxgot", cl::Hidden,
49          cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
50
51 static cl::opt<bool>
52 NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
53                cl::desc("MIPS: Don't trap on integer division by zero."),
54                cl::init(false));
55
56 cl::opt<bool>
57 EnableMipsFastISel("mips-fast-isel", cl::Hidden,
58   cl::desc("Allow mips-fast-isel to be used"),
59   cl::init(false));
60
61 static const MCPhysReg Mips64DPRegs[8] = {
62   Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
63   Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
64 };
65
66 // If I is a shifted mask, set the size (Size) and the first bit of the
67 // mask (Pos), and return true.
68 // For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
69 static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
70   if (!isShiftedMask_64(I))
71     return false;
72
73   Size = countPopulation(I);
74   Pos = countTrailingZeros(I);
75   return true;
76 }
77
78 SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
79   MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
80   return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
81 }
82
83 SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
84                                           SelectionDAG &DAG,
85                                           unsigned Flag) const {
86   return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag);
87 }
88
89 SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty,
90                                           SelectionDAG &DAG,
91                                           unsigned Flag) const {
92   return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
93 }
94
95 SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty,
96                                           SelectionDAG &DAG,
97                                           unsigned Flag) const {
98   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
99 }
100
101 SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
102                                           SelectionDAG &DAG,
103                                           unsigned Flag) const {
104   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
105 }
106
107 SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
108                                           SelectionDAG &DAG,
109                                           unsigned Flag) const {
110   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
111                                    N->getOffset(), Flag);
112 }
113
114 const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
115   switch (Opcode) {
116   case MipsISD::JmpLink:           return "MipsISD::JmpLink";
117   case MipsISD::TailCall:          return "MipsISD::TailCall";
118   case MipsISD::Hi:                return "MipsISD::Hi";
119   case MipsISD::Lo:                return "MipsISD::Lo";
120   case MipsISD::GPRel:             return "MipsISD::GPRel";
121   case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
122   case MipsISD::Ret:               return "MipsISD::Ret";
123   case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
124   case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
125   case MipsISD::FPCmp:             return "MipsISD::FPCmp";
126   case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
127   case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
128   case MipsISD::TruncIntFP:        return "MipsISD::TruncIntFP";
129   case MipsISD::MFHI:              return "MipsISD::MFHI";
130   case MipsISD::MFLO:              return "MipsISD::MFLO";
131   case MipsISD::MTLOHI:            return "MipsISD::MTLOHI";
132   case MipsISD::Mult:              return "MipsISD::Mult";
133   case MipsISD::Multu:             return "MipsISD::Multu";
134   case MipsISD::MAdd:              return "MipsISD::MAdd";
135   case MipsISD::MAddu:             return "MipsISD::MAddu";
136   case MipsISD::MSub:              return "MipsISD::MSub";
137   case MipsISD::MSubu:             return "MipsISD::MSubu";
138   case MipsISD::DivRem:            return "MipsISD::DivRem";
139   case MipsISD::DivRemU:           return "MipsISD::DivRemU";
140   case MipsISD::DivRem16:          return "MipsISD::DivRem16";
141   case MipsISD::DivRemU16:         return "MipsISD::DivRemU16";
142   case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
143   case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
144   case MipsISD::Wrapper:           return "MipsISD::Wrapper";
145   case MipsISD::Sync:              return "MipsISD::Sync";
146   case MipsISD::Ext:               return "MipsISD::Ext";
147   case MipsISD::Ins:               return "MipsISD::Ins";
148   case MipsISD::LWL:               return "MipsISD::LWL";
149   case MipsISD::LWR:               return "MipsISD::LWR";
150   case MipsISD::SWL:               return "MipsISD::SWL";
151   case MipsISD::SWR:               return "MipsISD::SWR";
152   case MipsISD::LDL:               return "MipsISD::LDL";
153   case MipsISD::LDR:               return "MipsISD::LDR";
154   case MipsISD::SDL:               return "MipsISD::SDL";
155   case MipsISD::SDR:               return "MipsISD::SDR";
156   case MipsISD::EXTP:              return "MipsISD::EXTP";
157   case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
158   case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
159   case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
160   case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
161   case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
162   case MipsISD::SHILO:             return "MipsISD::SHILO";
163   case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
164   case MipsISD::MULT:              return "MipsISD::MULT";
165   case MipsISD::MULTU:             return "MipsISD::MULTU";
166   case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSP";
167   case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
168   case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
169   case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
170   case MipsISD::SHLL_DSP:          return "MipsISD::SHLL_DSP";
171   case MipsISD::SHRA_DSP:          return "MipsISD::SHRA_DSP";
172   case MipsISD::SHRL_DSP:          return "MipsISD::SHRL_DSP";
173   case MipsISD::SETCC_DSP:         return "MipsISD::SETCC_DSP";
174   case MipsISD::SELECT_CC_DSP:     return "MipsISD::SELECT_CC_DSP";
175   case MipsISD::VALL_ZERO:         return "MipsISD::VALL_ZERO";
176   case MipsISD::VANY_ZERO:         return "MipsISD::VANY_ZERO";
177   case MipsISD::VALL_NONZERO:      return "MipsISD::VALL_NONZERO";
178   case MipsISD::VANY_NONZERO:      return "MipsISD::VANY_NONZERO";
179   case MipsISD::VCEQ:              return "MipsISD::VCEQ";
180   case MipsISD::VCLE_S:            return "MipsISD::VCLE_S";
181   case MipsISD::VCLE_U:            return "MipsISD::VCLE_U";
182   case MipsISD::VCLT_S:            return "MipsISD::VCLT_S";
183   case MipsISD::VCLT_U:            return "MipsISD::VCLT_U";
184   case MipsISD::VSMAX:             return "MipsISD::VSMAX";
185   case MipsISD::VSMIN:             return "MipsISD::VSMIN";
186   case MipsISD::VUMAX:             return "MipsISD::VUMAX";
187   case MipsISD::VUMIN:             return "MipsISD::VUMIN";
188   case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT";
189   case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT";
190   case MipsISD::VNOR:              return "MipsISD::VNOR";
191   case MipsISD::VSHF:              return "MipsISD::VSHF";
192   case MipsISD::SHF:               return "MipsISD::SHF";
193   case MipsISD::ILVEV:             return "MipsISD::ILVEV";
194   case MipsISD::ILVOD:             return "MipsISD::ILVOD";
195   case MipsISD::ILVL:              return "MipsISD::ILVL";
196   case MipsISD::ILVR:              return "MipsISD::ILVR";
197   case MipsISD::PCKEV:             return "MipsISD::PCKEV";
198   case MipsISD::PCKOD:             return "MipsISD::PCKOD";
199   case MipsISD::INSVE:             return "MipsISD::INSVE";
200   default:                         return nullptr;
201   }
202 }
203
204 MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine &TM,
205                                        const MipsSubtarget &STI)
206     : TargetLowering(TM), Subtarget(STI), ABI(TM.getABI()) {
207   // Mips does not have i1 type, so use i32 for
208   // setcc operations results (slt, sgt, ...).
209   setBooleanContents(ZeroOrOneBooleanContent);
210   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
211   // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA
212   // does. Integer booleans still use 0 and 1.
213   if (Subtarget.hasMips32r6())
214     setBooleanContents(ZeroOrOneBooleanContent,
215                        ZeroOrNegativeOneBooleanContent);
216
217   // Load extented operations for i1 types must be promoted
218   for (MVT VT : MVT::integer_valuetypes()) {
219     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1,  Promote);
220     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1,  Promote);
221     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1,  Promote);
222   }
223
224   // MIPS doesn't have extending float->double load/store.  Set LoadExtAction
225   // for f32, f16
226   for (MVT VT : MVT::fp_valuetypes()) {
227     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
228     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
229   }
230
231   // Set LoadExtAction for f16 vectors to Expand
232   for (MVT VT : MVT::fp_vector_valuetypes()) {
233     MVT F16VT = MVT::getVectorVT(MVT::f16, VT.getVectorNumElements());
234     if (F16VT.isValid())
235       setLoadExtAction(ISD::EXTLOAD, VT, F16VT, Expand);
236   }
237
238   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
239   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
240
241   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
242
243   // Used by legalize types to correctly generate the setcc result.
244   // Without this, every float setcc comes with a AND/OR with the result,
245   // we don't want this, since the fpcmp result goes to a flag register,
246   // which is used implicitly by brcond and select operations.
247   AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
248
249   // Mips Custom Operations
250   setOperationAction(ISD::BR_JT,              MVT::Other, Custom);
251   setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
252   setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
253   setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
254   setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
255   setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
256   setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
257   setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
258   setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
259   setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
260   setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
261   setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
262   setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
263   setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
264   setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
265   setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
266   setOperationAction(ISD::FP_TO_SINT,         MVT::i32,   Custom);
267
268   if (Subtarget.isGP64bit()) {
269     setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
270     setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
271     setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
272     setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
273     setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
274     setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
275     setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
276     setOperationAction(ISD::STORE,              MVT::i64,   Custom);
277     setOperationAction(ISD::FP_TO_SINT,         MVT::i64,   Custom);
278     setOperationAction(ISD::SHL_PARTS,          MVT::i64,   Custom);
279     setOperationAction(ISD::SRA_PARTS,          MVT::i64,   Custom);
280     setOperationAction(ISD::SRL_PARTS,          MVT::i64,   Custom);
281   }
282
283   if (!Subtarget.isGP64bit()) {
284     setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
285     setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
286     setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
287   }
288
289   setOperationAction(ISD::ADD,                MVT::i32,   Custom);
290   if (Subtarget.isGP64bit())
291     setOperationAction(ISD::ADD,                MVT::i64,   Custom);
292
293   setOperationAction(ISD::SDIV, MVT::i32, Expand);
294   setOperationAction(ISD::SREM, MVT::i32, Expand);
295   setOperationAction(ISD::UDIV, MVT::i32, Expand);
296   setOperationAction(ISD::UREM, MVT::i32, Expand);
297   setOperationAction(ISD::SDIV, MVT::i64, Expand);
298   setOperationAction(ISD::SREM, MVT::i64, Expand);
299   setOperationAction(ISD::UDIV, MVT::i64, Expand);
300   setOperationAction(ISD::UREM, MVT::i64, Expand);
301
302   // Operations not directly supported by Mips.
303   setOperationAction(ISD::BR_CC,             MVT::f32,   Expand);
304   setOperationAction(ISD::BR_CC,             MVT::f64,   Expand);
305   setOperationAction(ISD::BR_CC,             MVT::i32,   Expand);
306   setOperationAction(ISD::BR_CC,             MVT::i64,   Expand);
307   setOperationAction(ISD::SELECT_CC,         MVT::i32,   Expand);
308   setOperationAction(ISD::SELECT_CC,         MVT::i64,   Expand);
309   setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
310   setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
311   setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
312   setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
313   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
314   if (Subtarget.hasCnMips()) {
315     setOperationAction(ISD::CTPOP,           MVT::i32,   Legal);
316     setOperationAction(ISD::CTPOP,           MVT::i64,   Legal);
317   } else {
318     setOperationAction(ISD::CTPOP,           MVT::i32,   Expand);
319     setOperationAction(ISD::CTPOP,           MVT::i64,   Expand);
320   }
321   setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
322   setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
323   setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
324   setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
325   setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
326   setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
327   setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
328   setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
329   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
330   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
331
332   if (!Subtarget.hasMips32r2())
333     setOperationAction(ISD::ROTR, MVT::i32,   Expand);
334
335   if (!Subtarget.hasMips64r2())
336     setOperationAction(ISD::ROTR, MVT::i64,   Expand);
337
338   setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
339   setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
340   setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
341   setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
342   setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
343   setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
344   setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
345   setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
346   setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
347   setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
348   setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
349   setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
350   setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
351   setOperationAction(ISD::FMA,               MVT::f32,   Expand);
352   setOperationAction(ISD::FMA,               MVT::f64,   Expand);
353   setOperationAction(ISD::FREM,              MVT::f32,   Expand);
354   setOperationAction(ISD::FREM,              MVT::f64,   Expand);
355
356   // Lower f16 conversion operations into library calls
357   setOperationAction(ISD::FP16_TO_FP,        MVT::f32,   Expand);
358   setOperationAction(ISD::FP_TO_FP16,        MVT::f32,   Expand);
359   setOperationAction(ISD::FP16_TO_FP,        MVT::f64,   Expand);
360   setOperationAction(ISD::FP_TO_FP16,        MVT::f64,   Expand);
361
362   setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
363
364   setOperationAction(ISD::VASTART,           MVT::Other, Custom);
365   setOperationAction(ISD::VAARG,             MVT::Other, Custom);
366   setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
367   setOperationAction(ISD::VAEND,             MVT::Other, Expand);
368
369   // Use the default for now
370   setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
371   setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
372
373   setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
374   setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
375   setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
376   setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
377
378   setInsertFencesForAtomic(true);
379
380   if (!Subtarget.hasMips32r2()) {
381     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
382     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
383   }
384
385   // MIPS16 lacks MIPS32's clz and clo instructions.
386   if (!Subtarget.hasMips32() || Subtarget.inMips16Mode())
387     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
388   if (!Subtarget.hasMips64())
389     setOperationAction(ISD::CTLZ, MVT::i64, Expand);
390
391   if (!Subtarget.hasMips32r2())
392     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
393   if (!Subtarget.hasMips64r2())
394     setOperationAction(ISD::BSWAP, MVT::i64, Expand);
395
396   if (Subtarget.isGP64bit()) {
397     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, MVT::i32, Custom);
398     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, MVT::i32, Custom);
399     setLoadExtAction(ISD::EXTLOAD, MVT::i64, MVT::i32, Custom);
400     setTruncStoreAction(MVT::i64, MVT::i32, Custom);
401   }
402
403   setOperationAction(ISD::TRAP, MVT::Other, Legal);
404
405   setTargetDAGCombine(ISD::SDIVREM);
406   setTargetDAGCombine(ISD::UDIVREM);
407   setTargetDAGCombine(ISD::SELECT);
408   setTargetDAGCombine(ISD::AND);
409   setTargetDAGCombine(ISD::OR);
410   setTargetDAGCombine(ISD::ADD);
411
412   setMinFunctionAlignment(Subtarget.isGP64bit() ? 3 : 2);
413
414   // The arguments on the stack are defined in terms of 4-byte slots on O32
415   // and 8-byte slots on N32/N64.
416   setMinStackArgumentAlignment((ABI.IsN32() || ABI.IsN64()) ? 8 : 4);
417
418   setStackPointerRegisterToSaveRestore(ABI.IsN64() ? Mips::SP_64 : Mips::SP);
419
420   setExceptionPointerRegister(ABI.IsN64() ? Mips::A0_64 : Mips::A0);
421   setExceptionSelectorRegister(ABI.IsN64() ? Mips::A1_64 : Mips::A1);
422
423   MaxStoresPerMemcpy = 16;
424
425   isMicroMips = Subtarget.inMicroMipsMode();
426 }
427
428 const MipsTargetLowering *MipsTargetLowering::create(const MipsTargetMachine &TM,
429                                                      const MipsSubtarget &STI) {
430   if (STI.inMips16Mode())
431     return llvm::createMips16TargetLowering(TM, STI);
432
433   return llvm::createMipsSETargetLowering(TM, STI);
434 }
435
436 // Create a fast isel object.
437 FastISel *
438 MipsTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
439                                   const TargetLibraryInfo *libInfo) const {
440   if (!EnableMipsFastISel)
441     return TargetLowering::createFastISel(funcInfo, libInfo);
442   return Mips::createFastISel(funcInfo, libInfo);
443 }
444
445 EVT MipsTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
446   if (!VT.isVector())
447     return MVT::i32;
448   return VT.changeVectorElementTypeToInteger();
449 }
450
451 static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
452                                     TargetLowering::DAGCombinerInfo &DCI,
453                                     const MipsSubtarget &Subtarget) {
454   if (DCI.isBeforeLegalizeOps())
455     return SDValue();
456
457   EVT Ty = N->getValueType(0);
458   unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64;
459   unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64;
460   unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
461                                                   MipsISD::DivRemU16;
462   SDLoc DL(N);
463
464   SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
465                                N->getOperand(0), N->getOperand(1));
466   SDValue InChain = DAG.getEntryNode();
467   SDValue InGlue = DivRem;
468
469   // insert MFLO
470   if (N->hasAnyUseOfValue(0)) {
471     SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
472                                             InGlue);
473     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
474     InChain = CopyFromLo.getValue(1);
475     InGlue = CopyFromLo.getValue(2);
476   }
477
478   // insert MFHI
479   if (N->hasAnyUseOfValue(1)) {
480     SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
481                                             HI, Ty, InGlue);
482     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
483   }
484
485   return SDValue();
486 }
487
488 static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
489   switch (CC) {
490   default: llvm_unreachable("Unknown fp condition code!");
491   case ISD::SETEQ:
492   case ISD::SETOEQ: return Mips::FCOND_OEQ;
493   case ISD::SETUNE: return Mips::FCOND_UNE;
494   case ISD::SETLT:
495   case ISD::SETOLT: return Mips::FCOND_OLT;
496   case ISD::SETGT:
497   case ISD::SETOGT: return Mips::FCOND_OGT;
498   case ISD::SETLE:
499   case ISD::SETOLE: return Mips::FCOND_OLE;
500   case ISD::SETGE:
501   case ISD::SETOGE: return Mips::FCOND_OGE;
502   case ISD::SETULT: return Mips::FCOND_ULT;
503   case ISD::SETULE: return Mips::FCOND_ULE;
504   case ISD::SETUGT: return Mips::FCOND_UGT;
505   case ISD::SETUGE: return Mips::FCOND_UGE;
506   case ISD::SETUO:  return Mips::FCOND_UN;
507   case ISD::SETO:   return Mips::FCOND_OR;
508   case ISD::SETNE:
509   case ISD::SETONE: return Mips::FCOND_ONE;
510   case ISD::SETUEQ: return Mips::FCOND_UEQ;
511   }
512 }
513
514
515 /// This function returns true if the floating point conditional branches and
516 /// conditional moves which use condition code CC should be inverted.
517 static bool invertFPCondCodeUser(Mips::CondCode CC) {
518   if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
519     return false;
520
521   assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
522          "Illegal Condition Code");
523
524   return true;
525 }
526
527 // Creates and returns an FPCmp node from a setcc node.
528 // Returns Op if setcc is not a floating point comparison.
529 static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
530   // must be a SETCC node
531   if (Op.getOpcode() != ISD::SETCC)
532     return Op;
533
534   SDValue LHS = Op.getOperand(0);
535
536   if (!LHS.getValueType().isFloatingPoint())
537     return Op;
538
539   SDValue RHS = Op.getOperand(1);
540   SDLoc DL(Op);
541
542   // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
543   // node if necessary.
544   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
545
546   return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
547                      DAG.getConstant(condCodeToFCC(CC), MVT::i32));
548 }
549
550 // Creates and returns a CMovFPT/F node.
551 static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
552                             SDValue False, SDLoc DL) {
553   ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
554   bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
555   SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
556
557   return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
558                      True.getValueType(), True, FCC0, False, Cond);
559 }
560
561 static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
562                                     TargetLowering::DAGCombinerInfo &DCI,
563                                     const MipsSubtarget &Subtarget) {
564   if (DCI.isBeforeLegalizeOps())
565     return SDValue();
566
567   SDValue SetCC = N->getOperand(0);
568
569   if ((SetCC.getOpcode() != ISD::SETCC) ||
570       !SetCC.getOperand(0).getValueType().isInteger())
571     return SDValue();
572
573   SDValue False = N->getOperand(2);
574   EVT FalseTy = False.getValueType();
575
576   if (!FalseTy.isInteger())
577     return SDValue();
578
579   ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(False);
580
581   // If the RHS (False) is 0, we swap the order of the operands
582   // of ISD::SELECT (obviously also inverting the condition) so that we can
583   // take advantage of conditional moves using the $0 register.
584   // Example:
585   //   return (a != 0) ? x : 0;
586   //     load $reg, x
587   //     movz $reg, $0, a
588   if (!FalseC)
589     return SDValue();
590
591   const SDLoc DL(N);
592
593   if (!FalseC->getZExtValue()) {
594     ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
595     SDValue True = N->getOperand(1);
596
597     SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
598                          SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
599
600     return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
601   }
602
603   // If both operands are integer constants there's a possibility that we
604   // can do some interesting optimizations.
605   SDValue True = N->getOperand(1);
606   ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(True);
607
608   if (!TrueC || !True.getValueType().isInteger())
609     return SDValue();
610
611   // We'll also ignore MVT::i64 operands as this optimizations proves
612   // to be ineffective because of the required sign extensions as the result
613   // of a SETCC operator is always MVT::i32 for non-vector types.
614   if (True.getValueType() == MVT::i64)
615     return SDValue();
616
617   int64_t Diff = TrueC->getSExtValue() - FalseC->getSExtValue();
618
619   // 1)  (a < x) ? y : y-1
620   //  slti $reg1, a, x
621   //  addiu $reg2, $reg1, y-1
622   if (Diff == 1)
623     return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, False);
624
625   // 2)  (a < x) ? y-1 : y
626   //  slti $reg1, a, x
627   //  xor $reg1, $reg1, 1
628   //  addiu $reg2, $reg1, y-1
629   if (Diff == -1) {
630     ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
631     SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
632                          SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
633     return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, True);
634   }
635
636   // Couldn't optimize.
637   return SDValue();
638 }
639
640 static SDValue performCMovFPCombine(SDNode *N, SelectionDAG &DAG,
641                                     TargetLowering::DAGCombinerInfo &DCI,
642                                     const MipsSubtarget &Subtarget) {
643   if (DCI.isBeforeLegalizeOps())
644     return SDValue();
645
646   SDValue ValueIfTrue = N->getOperand(0), ValueIfFalse = N->getOperand(2);
647
648   ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(ValueIfFalse);
649   if (!FalseC || FalseC->getZExtValue())
650     return SDValue();
651
652   // Since RHS (False) is 0, we swap the order of the True/False operands
653   // (obviously also inverting the condition) so that we can
654   // take advantage of conditional moves using the $0 register.
655   // Example:
656   //   return (a != 0) ? x : 0;
657   //     load $reg, x
658   //     movz $reg, $0, a
659   unsigned Opc = (N->getOpcode() == MipsISD::CMovFP_T) ? MipsISD::CMovFP_F :
660                                                          MipsISD::CMovFP_T;
661
662   SDValue FCC = N->getOperand(1), Glue = N->getOperand(3);
663   return DAG.getNode(Opc, SDLoc(N), ValueIfFalse.getValueType(),
664                      ValueIfFalse, FCC, ValueIfTrue, Glue);
665 }
666
667 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
668                                  TargetLowering::DAGCombinerInfo &DCI,
669                                  const MipsSubtarget &Subtarget) {
670   // Pattern match EXT.
671   //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
672   //  => ext $dst, $src, size, pos
673   if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
674     return SDValue();
675
676   SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
677   unsigned ShiftRightOpc = ShiftRight.getOpcode();
678
679   // Op's first operand must be a shift right.
680   if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
681     return SDValue();
682
683   // The second operand of the shift must be an immediate.
684   ConstantSDNode *CN;
685   if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
686     return SDValue();
687
688   uint64_t Pos = CN->getZExtValue();
689   uint64_t SMPos, SMSize;
690
691   // Op's second operand must be a shifted mask.
692   if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
693       !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
694     return SDValue();
695
696   // Return if the shifted mask does not start at bit 0 or the sum of its size
697   // and Pos exceeds the word's size.
698   EVT ValTy = N->getValueType(0);
699   if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
700     return SDValue();
701
702   return DAG.getNode(MipsISD::Ext, SDLoc(N), ValTy,
703                      ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
704                      DAG.getConstant(SMSize, MVT::i32));
705 }
706
707 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
708                                 TargetLowering::DAGCombinerInfo &DCI,
709                                 const MipsSubtarget &Subtarget) {
710   // Pattern match INS.
711   //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
712   //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
713   //  => ins $dst, $src, size, pos, $src1
714   if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
715     return SDValue();
716
717   SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
718   uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
719   ConstantSDNode *CN;
720
721   // See if Op's first operand matches (and $src1 , mask0).
722   if (And0.getOpcode() != ISD::AND)
723     return SDValue();
724
725   if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
726       !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
727     return SDValue();
728
729   // See if Op's second operand matches (and (shl $src, pos), mask1).
730   if (And1.getOpcode() != ISD::AND)
731     return SDValue();
732
733   if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
734       !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
735     return SDValue();
736
737   // The shift masks must have the same position and size.
738   if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
739     return SDValue();
740
741   SDValue Shl = And1.getOperand(0);
742   if (Shl.getOpcode() != ISD::SHL)
743     return SDValue();
744
745   if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
746     return SDValue();
747
748   unsigned Shamt = CN->getZExtValue();
749
750   // Return if the shift amount and the first bit position of mask are not the
751   // same.
752   EVT ValTy = N->getValueType(0);
753   if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
754     return SDValue();
755
756   return DAG.getNode(MipsISD::Ins, SDLoc(N), ValTy, Shl.getOperand(0),
757                      DAG.getConstant(SMPos0, MVT::i32),
758                      DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
759 }
760
761 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
762                                  TargetLowering::DAGCombinerInfo &DCI,
763                                  const MipsSubtarget &Subtarget) {
764   // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
765
766   if (DCI.isBeforeLegalizeOps())
767     return SDValue();
768
769   SDValue Add = N->getOperand(1);
770
771   if (Add.getOpcode() != ISD::ADD)
772     return SDValue();
773
774   SDValue Lo = Add.getOperand(1);
775
776   if ((Lo.getOpcode() != MipsISD::Lo) ||
777       (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
778     return SDValue();
779
780   EVT ValTy = N->getValueType(0);
781   SDLoc DL(N);
782
783   SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
784                              Add.getOperand(0));
785   return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
786 }
787
788 SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
789   const {
790   SelectionDAG &DAG = DCI.DAG;
791   unsigned Opc = N->getOpcode();
792
793   switch (Opc) {
794   default: break;
795   case ISD::SDIVREM:
796   case ISD::UDIVREM:
797     return performDivRemCombine(N, DAG, DCI, Subtarget);
798   case ISD::SELECT:
799     return performSELECTCombine(N, DAG, DCI, Subtarget);
800   case MipsISD::CMovFP_F:
801   case MipsISD::CMovFP_T:
802     return performCMovFPCombine(N, DAG, DCI, Subtarget);
803   case ISD::AND:
804     return performANDCombine(N, DAG, DCI, Subtarget);
805   case ISD::OR:
806     return performORCombine(N, DAG, DCI, Subtarget);
807   case ISD::ADD:
808     return performADDCombine(N, DAG, DCI, Subtarget);
809   }
810
811   return SDValue();
812 }
813
814 void
815 MipsTargetLowering::LowerOperationWrapper(SDNode *N,
816                                           SmallVectorImpl<SDValue> &Results,
817                                           SelectionDAG &DAG) const {
818   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
819
820   for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
821     Results.push_back(Res.getValue(I));
822 }
823
824 void
825 MipsTargetLowering::ReplaceNodeResults(SDNode *N,
826                                        SmallVectorImpl<SDValue> &Results,
827                                        SelectionDAG &DAG) const {
828   return LowerOperationWrapper(N, Results, DAG);
829 }
830
831 SDValue MipsTargetLowering::
832 LowerOperation(SDValue Op, SelectionDAG &DAG) const
833 {
834   switch (Op.getOpcode())
835   {
836   case ISD::BR_JT:              return lowerBR_JT(Op, DAG);
837   case ISD::BRCOND:             return lowerBRCOND(Op, DAG);
838   case ISD::ConstantPool:       return lowerConstantPool(Op, DAG);
839   case ISD::GlobalAddress:      return lowerGlobalAddress(Op, DAG);
840   case ISD::BlockAddress:       return lowerBlockAddress(Op, DAG);
841   case ISD::GlobalTLSAddress:   return lowerGlobalTLSAddress(Op, DAG);
842   case ISD::JumpTable:          return lowerJumpTable(Op, DAG);
843   case ISD::SELECT:             return lowerSELECT(Op, DAG);
844   case ISD::SELECT_CC:          return lowerSELECT_CC(Op, DAG);
845   case ISD::SETCC:              return lowerSETCC(Op, DAG);
846   case ISD::VASTART:            return lowerVASTART(Op, DAG);
847   case ISD::VAARG:              return lowerVAARG(Op, DAG);
848   case ISD::FCOPYSIGN:          return lowerFCOPYSIGN(Op, DAG);
849   case ISD::FRAMEADDR:          return lowerFRAMEADDR(Op, DAG);
850   case ISD::RETURNADDR:         return lowerRETURNADDR(Op, DAG);
851   case ISD::EH_RETURN:          return lowerEH_RETURN(Op, DAG);
852   case ISD::ATOMIC_FENCE:       return lowerATOMIC_FENCE(Op, DAG);
853   case ISD::SHL_PARTS:          return lowerShiftLeftParts(Op, DAG);
854   case ISD::SRA_PARTS:          return lowerShiftRightParts(Op, DAG, true);
855   case ISD::SRL_PARTS:          return lowerShiftRightParts(Op, DAG, false);
856   case ISD::LOAD:               return lowerLOAD(Op, DAG);
857   case ISD::STORE:              return lowerSTORE(Op, DAG);
858   case ISD::ADD:                return lowerADD(Op, DAG);
859   case ISD::FP_TO_SINT:         return lowerFP_TO_SINT(Op, DAG);
860   }
861   return SDValue();
862 }
863
864 //===----------------------------------------------------------------------===//
865 //  Lower helper functions
866 //===----------------------------------------------------------------------===//
867
868 // addLiveIn - This helper function adds the specified physical register to the
869 // MachineFunction as a live in value.  It also creates a corresponding
870 // virtual register for it.
871 static unsigned
872 addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
873 {
874   unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
875   MF.getRegInfo().addLiveIn(PReg, VReg);
876   return VReg;
877 }
878
879 static MachineBasicBlock *insertDivByZeroTrap(MachineInstr *MI,
880                                               MachineBasicBlock &MBB,
881                                               const TargetInstrInfo &TII,
882                                               bool Is64Bit) {
883   if (NoZeroDivCheck)
884     return &MBB;
885
886   // Insert instruction "teq $divisor_reg, $zero, 7".
887   MachineBasicBlock::iterator I(MI);
888   MachineInstrBuilder MIB;
889   MachineOperand &Divisor = MI->getOperand(2);
890   MIB = BuildMI(MBB, std::next(I), MI->getDebugLoc(), TII.get(Mips::TEQ))
891     .addReg(Divisor.getReg(), getKillRegState(Divisor.isKill()))
892     .addReg(Mips::ZERO).addImm(7);
893
894   // Use the 32-bit sub-register if this is a 64-bit division.
895   if (Is64Bit)
896     MIB->getOperand(0).setSubReg(Mips::sub_32);
897
898   // Clear Divisor's kill flag.
899   Divisor.setIsKill(false);
900
901   // We would normally delete the original instruction here but in this case
902   // we only needed to inject an additional instruction rather than replace it.
903
904   return &MBB;
905 }
906
907 MachineBasicBlock *
908 MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
909                                                 MachineBasicBlock *BB) const {
910   switch (MI->getOpcode()) {
911   default:
912     llvm_unreachable("Unexpected instr type to insert");
913   case Mips::ATOMIC_LOAD_ADD_I8:
914     return emitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
915   case Mips::ATOMIC_LOAD_ADD_I16:
916     return emitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
917   case Mips::ATOMIC_LOAD_ADD_I32:
918     return emitAtomicBinary(MI, BB, 4, Mips::ADDu);
919   case Mips::ATOMIC_LOAD_ADD_I64:
920     return emitAtomicBinary(MI, BB, 8, Mips::DADDu);
921
922   case Mips::ATOMIC_LOAD_AND_I8:
923     return emitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
924   case Mips::ATOMIC_LOAD_AND_I16:
925     return emitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
926   case Mips::ATOMIC_LOAD_AND_I32:
927     return emitAtomicBinary(MI, BB, 4, Mips::AND);
928   case Mips::ATOMIC_LOAD_AND_I64:
929     return emitAtomicBinary(MI, BB, 8, Mips::AND64);
930
931   case Mips::ATOMIC_LOAD_OR_I8:
932     return emitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
933   case Mips::ATOMIC_LOAD_OR_I16:
934     return emitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
935   case Mips::ATOMIC_LOAD_OR_I32:
936     return emitAtomicBinary(MI, BB, 4, Mips::OR);
937   case Mips::ATOMIC_LOAD_OR_I64:
938     return emitAtomicBinary(MI, BB, 8, Mips::OR64);
939
940   case Mips::ATOMIC_LOAD_XOR_I8:
941     return emitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
942   case Mips::ATOMIC_LOAD_XOR_I16:
943     return emitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
944   case Mips::ATOMIC_LOAD_XOR_I32:
945     return emitAtomicBinary(MI, BB, 4, Mips::XOR);
946   case Mips::ATOMIC_LOAD_XOR_I64:
947     return emitAtomicBinary(MI, BB, 8, Mips::XOR64);
948
949   case Mips::ATOMIC_LOAD_NAND_I8:
950     return emitAtomicBinaryPartword(MI, BB, 1, 0, true);
951   case Mips::ATOMIC_LOAD_NAND_I16:
952     return emitAtomicBinaryPartword(MI, BB, 2, 0, true);
953   case Mips::ATOMIC_LOAD_NAND_I32:
954     return emitAtomicBinary(MI, BB, 4, 0, true);
955   case Mips::ATOMIC_LOAD_NAND_I64:
956     return emitAtomicBinary(MI, BB, 8, 0, true);
957
958   case Mips::ATOMIC_LOAD_SUB_I8:
959     return emitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
960   case Mips::ATOMIC_LOAD_SUB_I16:
961     return emitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
962   case Mips::ATOMIC_LOAD_SUB_I32:
963     return emitAtomicBinary(MI, BB, 4, Mips::SUBu);
964   case Mips::ATOMIC_LOAD_SUB_I64:
965     return emitAtomicBinary(MI, BB, 8, Mips::DSUBu);
966
967   case Mips::ATOMIC_SWAP_I8:
968     return emitAtomicBinaryPartword(MI, BB, 1, 0);
969   case Mips::ATOMIC_SWAP_I16:
970     return emitAtomicBinaryPartword(MI, BB, 2, 0);
971   case Mips::ATOMIC_SWAP_I32:
972     return emitAtomicBinary(MI, BB, 4, 0);
973   case Mips::ATOMIC_SWAP_I64:
974     return emitAtomicBinary(MI, BB, 8, 0);
975
976   case Mips::ATOMIC_CMP_SWAP_I8:
977     return emitAtomicCmpSwapPartword(MI, BB, 1);
978   case Mips::ATOMIC_CMP_SWAP_I16:
979     return emitAtomicCmpSwapPartword(MI, BB, 2);
980   case Mips::ATOMIC_CMP_SWAP_I32:
981     return emitAtomicCmpSwap(MI, BB, 4);
982   case Mips::ATOMIC_CMP_SWAP_I64:
983     return emitAtomicCmpSwap(MI, BB, 8);
984   case Mips::PseudoSDIV:
985   case Mips::PseudoUDIV:
986   case Mips::DIV:
987   case Mips::DIVU:
988   case Mips::MOD:
989   case Mips::MODU:
990     return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false);
991   case Mips::PseudoDSDIV:
992   case Mips::PseudoDUDIV:
993   case Mips::DDIV:
994   case Mips::DDIVU:
995   case Mips::DMOD:
996   case Mips::DMODU:
997     return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), true);
998   case Mips::SEL_D:
999     return emitSEL_D(MI, BB);
1000
1001   case Mips::PseudoSELECT_I:
1002   case Mips::PseudoSELECT_I64:
1003   case Mips::PseudoSELECT_S:
1004   case Mips::PseudoSELECT_D32:
1005   case Mips::PseudoSELECT_D64:
1006     return emitPseudoSELECT(MI, BB, false, Mips::BNE);
1007   case Mips::PseudoSELECTFP_F_I:
1008   case Mips::PseudoSELECTFP_F_I64:
1009   case Mips::PseudoSELECTFP_F_S:
1010   case Mips::PseudoSELECTFP_F_D32:
1011   case Mips::PseudoSELECTFP_F_D64:
1012     return emitPseudoSELECT(MI, BB, true, Mips::BC1F);
1013   case Mips::PseudoSELECTFP_T_I:
1014   case Mips::PseudoSELECTFP_T_I64:
1015   case Mips::PseudoSELECTFP_T_S:
1016   case Mips::PseudoSELECTFP_T_D32:
1017   case Mips::PseudoSELECTFP_T_D64:
1018     return emitPseudoSELECT(MI, BB, true, Mips::BC1T);
1019   }
1020 }
1021
1022 // This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1023 // Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1024 MachineBasicBlock *
1025 MipsTargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
1026                                      unsigned Size, unsigned BinOpcode,
1027                                      bool Nand) const {
1028   assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
1029
1030   MachineFunction *MF = BB->getParent();
1031   MachineRegisterInfo &RegInfo = MF->getRegInfo();
1032   const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1033   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1034   DebugLoc DL = MI->getDebugLoc();
1035   unsigned LL, SC, AND, NOR, ZERO, BEQ;
1036
1037   if (Size == 4) {
1038     if (isMicroMips) {
1039       LL = Mips::LL_MM;
1040       SC = Mips::SC_MM;
1041     } else {
1042       LL = Subtarget.hasMips32r6() ? Mips::LL_R6 : Mips::LL;
1043       SC = Subtarget.hasMips32r6() ? Mips::SC_R6 : Mips::SC;
1044     }
1045     AND = Mips::AND;
1046     NOR = Mips::NOR;
1047     ZERO = Mips::ZERO;
1048     BEQ = Mips::BEQ;
1049   } else {
1050     LL = Subtarget.hasMips64r6() ? Mips::LLD_R6 : Mips::LLD;
1051     SC = Subtarget.hasMips64r6() ? Mips::SCD_R6 : Mips::SCD;
1052     AND = Mips::AND64;
1053     NOR = Mips::NOR64;
1054     ZERO = Mips::ZERO_64;
1055     BEQ = Mips::BEQ64;
1056   }
1057
1058   unsigned OldVal = MI->getOperand(0).getReg();
1059   unsigned Ptr = MI->getOperand(1).getReg();
1060   unsigned Incr = MI->getOperand(2).getReg();
1061
1062   unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1063   unsigned AndRes = RegInfo.createVirtualRegister(RC);
1064   unsigned Success = RegInfo.createVirtualRegister(RC);
1065
1066   // insert new blocks after the current block
1067   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1068   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1069   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1070   MachineFunction::iterator It = BB;
1071   ++It;
1072   MF->insert(It, loopMBB);
1073   MF->insert(It, exitMBB);
1074
1075   // Transfer the remainder of BB and its successor edges to exitMBB.
1076   exitMBB->splice(exitMBB->begin(), BB,
1077                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
1078   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1079
1080   //  thisMBB:
1081   //    ...
1082   //    fallthrough --> loopMBB
1083   BB->addSuccessor(loopMBB);
1084   loopMBB->addSuccessor(loopMBB);
1085   loopMBB->addSuccessor(exitMBB);
1086
1087   //  loopMBB:
1088   //    ll oldval, 0(ptr)
1089   //    <binop> storeval, oldval, incr
1090   //    sc success, storeval, 0(ptr)
1091   //    beq success, $0, loopMBB
1092   BB = loopMBB;
1093   BuildMI(BB, DL, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
1094   if (Nand) {
1095     //  and andres, oldval, incr
1096     //  nor storeval, $0, andres
1097     BuildMI(BB, DL, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
1098     BuildMI(BB, DL, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
1099   } else if (BinOpcode) {
1100     //  <binop> storeval, oldval, incr
1101     BuildMI(BB, DL, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
1102   } else {
1103     StoreVal = Incr;
1104   }
1105   BuildMI(BB, DL, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
1106   BuildMI(BB, DL, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
1107
1108   MI->eraseFromParent(); // The instruction is gone now.
1109
1110   return exitMBB;
1111 }
1112
1113 MachineBasicBlock *MipsTargetLowering::emitSignExtendToI32InReg(
1114     MachineInstr *MI, MachineBasicBlock *BB, unsigned Size, unsigned DstReg,
1115     unsigned SrcReg) const {
1116   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1117   DebugLoc DL = MI->getDebugLoc();
1118
1119   if (Subtarget.hasMips32r2() && Size == 1) {
1120     BuildMI(BB, DL, TII->get(Mips::SEB), DstReg).addReg(SrcReg);
1121     return BB;
1122   }
1123
1124   if (Subtarget.hasMips32r2() && Size == 2) {
1125     BuildMI(BB, DL, TII->get(Mips::SEH), DstReg).addReg(SrcReg);
1126     return BB;
1127   }
1128
1129   MachineFunction *MF = BB->getParent();
1130   MachineRegisterInfo &RegInfo = MF->getRegInfo();
1131   const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1132   unsigned ScrReg = RegInfo.createVirtualRegister(RC);
1133
1134   assert(Size < 32);
1135   int64_t ShiftImm = 32 - (Size * 8);
1136
1137   BuildMI(BB, DL, TII->get(Mips::SLL), ScrReg).addReg(SrcReg).addImm(ShiftImm);
1138   BuildMI(BB, DL, TII->get(Mips::SRA), DstReg).addReg(ScrReg).addImm(ShiftImm);
1139
1140   return BB;
1141 }
1142
1143 MachineBasicBlock *MipsTargetLowering::emitAtomicBinaryPartword(
1144     MachineInstr *MI, MachineBasicBlock *BB, unsigned Size, unsigned BinOpcode,
1145     bool Nand) const {
1146   assert((Size == 1 || Size == 2) &&
1147          "Unsupported size for EmitAtomicBinaryPartial.");
1148
1149   MachineFunction *MF = BB->getParent();
1150   MachineRegisterInfo &RegInfo = MF->getRegInfo();
1151   const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1152   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1153   DebugLoc DL = MI->getDebugLoc();
1154
1155   unsigned Dest = MI->getOperand(0).getReg();
1156   unsigned Ptr = MI->getOperand(1).getReg();
1157   unsigned Incr = MI->getOperand(2).getReg();
1158
1159   unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1160   unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1161   unsigned Mask = RegInfo.createVirtualRegister(RC);
1162   unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1163   unsigned NewVal = RegInfo.createVirtualRegister(RC);
1164   unsigned OldVal = RegInfo.createVirtualRegister(RC);
1165   unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1166   unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1167   unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1168   unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1169   unsigned AndRes = RegInfo.createVirtualRegister(RC);
1170   unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1171   unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1172   unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1173   unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1174   unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1175   unsigned Success = RegInfo.createVirtualRegister(RC);
1176
1177   // insert new blocks after the current block
1178   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1179   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1180   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1181   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1182   MachineFunction::iterator It = BB;
1183   ++It;
1184   MF->insert(It, loopMBB);
1185   MF->insert(It, sinkMBB);
1186   MF->insert(It, exitMBB);
1187
1188   // Transfer the remainder of BB and its successor edges to exitMBB.
1189   exitMBB->splice(exitMBB->begin(), BB,
1190                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
1191   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1192
1193   BB->addSuccessor(loopMBB);
1194   loopMBB->addSuccessor(loopMBB);
1195   loopMBB->addSuccessor(sinkMBB);
1196   sinkMBB->addSuccessor(exitMBB);
1197
1198   //  thisMBB:
1199   //    addiu   masklsb2,$0,-4                # 0xfffffffc
1200   //    and     alignedaddr,ptr,masklsb2
1201   //    andi    ptrlsb2,ptr,3
1202   //    sll     shiftamt,ptrlsb2,3
1203   //    ori     maskupper,$0,255               # 0xff
1204   //    sll     mask,maskupper,shiftamt
1205   //    nor     mask2,$0,mask
1206   //    sll     incr2,incr,shiftamt
1207
1208   int64_t MaskImm = (Size == 1) ? 255 : 65535;
1209   BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1210     .addReg(Mips::ZERO).addImm(-4);
1211   BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1212     .addReg(Ptr).addReg(MaskLSB2);
1213   BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1214   if (Subtarget.isLittle()) {
1215     BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1216   } else {
1217     unsigned Off = RegInfo.createVirtualRegister(RC);
1218     BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1219       .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1220     BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1221   }
1222   BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1223     .addReg(Mips::ZERO).addImm(MaskImm);
1224   BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1225     .addReg(MaskUpper).addReg(ShiftAmt);
1226   BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1227   BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
1228
1229   // atomic.load.binop
1230   // loopMBB:
1231   //   ll      oldval,0(alignedaddr)
1232   //   binop   binopres,oldval,incr2
1233   //   and     newval,binopres,mask
1234   //   and     maskedoldval0,oldval,mask2
1235   //   or      storeval,maskedoldval0,newval
1236   //   sc      success,storeval,0(alignedaddr)
1237   //   beq     success,$0,loopMBB
1238
1239   // atomic.swap
1240   // loopMBB:
1241   //   ll      oldval,0(alignedaddr)
1242   //   and     newval,incr2,mask
1243   //   and     maskedoldval0,oldval,mask2
1244   //   or      storeval,maskedoldval0,newval
1245   //   sc      success,storeval,0(alignedaddr)
1246   //   beq     success,$0,loopMBB
1247
1248   BB = loopMBB;
1249   unsigned LL = isMicroMips ? Mips::LL_MM : Mips::LL;
1250   BuildMI(BB, DL, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1251   if (Nand) {
1252     //  and andres, oldval, incr2
1253     //  nor binopres, $0, andres
1254     //  and newval, binopres, mask
1255     BuildMI(BB, DL, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1256     BuildMI(BB, DL, TII->get(Mips::NOR), BinOpRes)
1257       .addReg(Mips::ZERO).addReg(AndRes);
1258     BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1259   } else if (BinOpcode) {
1260     //  <binop> binopres, oldval, incr2
1261     //  and newval, binopres, mask
1262     BuildMI(BB, DL, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1263     BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1264   } else { // atomic.swap
1265     //  and newval, incr2, mask
1266     BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1267   }
1268
1269   BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1270     .addReg(OldVal).addReg(Mask2);
1271   BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1272     .addReg(MaskedOldVal0).addReg(NewVal);
1273   unsigned SC = isMicroMips ? Mips::SC_MM : Mips::SC;
1274   BuildMI(BB, DL, TII->get(SC), Success)
1275     .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1276   BuildMI(BB, DL, TII->get(Mips::BEQ))
1277     .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1278
1279   //  sinkMBB:
1280   //    and     maskedoldval1,oldval,mask
1281   //    srl     srlres,maskedoldval1,shiftamt
1282   //    sign_extend dest,srlres
1283   BB = sinkMBB;
1284
1285   BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1286     .addReg(OldVal).addReg(Mask);
1287   BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1288       .addReg(MaskedOldVal1).addReg(ShiftAmt);
1289   BB = emitSignExtendToI32InReg(MI, BB, Size, Dest, SrlRes);
1290
1291   MI->eraseFromParent(); // The instruction is gone now.
1292
1293   return exitMBB;
1294 }
1295
1296 MachineBasicBlock * MipsTargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
1297                                                           MachineBasicBlock *BB,
1298                                                           unsigned Size) const {
1299   assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1300
1301   MachineFunction *MF = BB->getParent();
1302   MachineRegisterInfo &RegInfo = MF->getRegInfo();
1303   const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1304   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1305   DebugLoc DL = MI->getDebugLoc();
1306   unsigned LL, SC, ZERO, BNE, BEQ;
1307
1308   if (Size == 4) {
1309     LL = isMicroMips ? Mips::LL_MM : Mips::LL;
1310     SC = isMicroMips ? Mips::SC_MM : Mips::SC;
1311     ZERO = Mips::ZERO;
1312     BNE = Mips::BNE;
1313     BEQ = Mips::BEQ;
1314   } else {
1315     LL = Mips::LLD;
1316     SC = Mips::SCD;
1317     ZERO = Mips::ZERO_64;
1318     BNE = Mips::BNE64;
1319     BEQ = Mips::BEQ64;
1320   }
1321
1322   unsigned Dest    = MI->getOperand(0).getReg();
1323   unsigned Ptr     = MI->getOperand(1).getReg();
1324   unsigned OldVal  = MI->getOperand(2).getReg();
1325   unsigned NewVal  = MI->getOperand(3).getReg();
1326
1327   unsigned Success = RegInfo.createVirtualRegister(RC);
1328
1329   // insert new blocks after the current block
1330   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1331   MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1332   MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1333   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1334   MachineFunction::iterator It = BB;
1335   ++It;
1336   MF->insert(It, loop1MBB);
1337   MF->insert(It, loop2MBB);
1338   MF->insert(It, exitMBB);
1339
1340   // Transfer the remainder of BB and its successor edges to exitMBB.
1341   exitMBB->splice(exitMBB->begin(), BB,
1342                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
1343   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1344
1345   //  thisMBB:
1346   //    ...
1347   //    fallthrough --> loop1MBB
1348   BB->addSuccessor(loop1MBB);
1349   loop1MBB->addSuccessor(exitMBB);
1350   loop1MBB->addSuccessor(loop2MBB);
1351   loop2MBB->addSuccessor(loop1MBB);
1352   loop2MBB->addSuccessor(exitMBB);
1353
1354   // loop1MBB:
1355   //   ll dest, 0(ptr)
1356   //   bne dest, oldval, exitMBB
1357   BB = loop1MBB;
1358   BuildMI(BB, DL, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1359   BuildMI(BB, DL, TII->get(BNE))
1360     .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1361
1362   // loop2MBB:
1363   //   sc success, newval, 0(ptr)
1364   //   beq success, $0, loop1MBB
1365   BB = loop2MBB;
1366   BuildMI(BB, DL, TII->get(SC), Success)
1367     .addReg(NewVal).addReg(Ptr).addImm(0);
1368   BuildMI(BB, DL, TII->get(BEQ))
1369     .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1370
1371   MI->eraseFromParent(); // The instruction is gone now.
1372
1373   return exitMBB;
1374 }
1375
1376 MachineBasicBlock *
1377 MipsTargetLowering::emitAtomicCmpSwapPartword(MachineInstr *MI,
1378                                               MachineBasicBlock *BB,
1379                                               unsigned Size) const {
1380   assert((Size == 1 || Size == 2) &&
1381       "Unsupported size for EmitAtomicCmpSwapPartial.");
1382
1383   MachineFunction *MF = BB->getParent();
1384   MachineRegisterInfo &RegInfo = MF->getRegInfo();
1385   const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1386   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1387   DebugLoc DL = MI->getDebugLoc();
1388
1389   unsigned Dest    = MI->getOperand(0).getReg();
1390   unsigned Ptr     = MI->getOperand(1).getReg();
1391   unsigned CmpVal  = MI->getOperand(2).getReg();
1392   unsigned NewVal  = MI->getOperand(3).getReg();
1393
1394   unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1395   unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1396   unsigned Mask = RegInfo.createVirtualRegister(RC);
1397   unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1398   unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1399   unsigned OldVal = RegInfo.createVirtualRegister(RC);
1400   unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1401   unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1402   unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1403   unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1404   unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1405   unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1406   unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1407   unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1408   unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1409   unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1410   unsigned Success = RegInfo.createVirtualRegister(RC);
1411
1412   // insert new blocks after the current block
1413   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1414   MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1415   MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1416   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1417   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1418   MachineFunction::iterator It = BB;
1419   ++It;
1420   MF->insert(It, loop1MBB);
1421   MF->insert(It, loop2MBB);
1422   MF->insert(It, sinkMBB);
1423   MF->insert(It, exitMBB);
1424
1425   // Transfer the remainder of BB and its successor edges to exitMBB.
1426   exitMBB->splice(exitMBB->begin(), BB,
1427                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
1428   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1429
1430   BB->addSuccessor(loop1MBB);
1431   loop1MBB->addSuccessor(sinkMBB);
1432   loop1MBB->addSuccessor(loop2MBB);
1433   loop2MBB->addSuccessor(loop1MBB);
1434   loop2MBB->addSuccessor(sinkMBB);
1435   sinkMBB->addSuccessor(exitMBB);
1436
1437   // FIXME: computation of newval2 can be moved to loop2MBB.
1438   //  thisMBB:
1439   //    addiu   masklsb2,$0,-4                # 0xfffffffc
1440   //    and     alignedaddr,ptr,masklsb2
1441   //    andi    ptrlsb2,ptr,3
1442   //    sll     shiftamt,ptrlsb2,3
1443   //    ori     maskupper,$0,255               # 0xff
1444   //    sll     mask,maskupper,shiftamt
1445   //    nor     mask2,$0,mask
1446   //    andi    maskedcmpval,cmpval,255
1447   //    sll     shiftedcmpval,maskedcmpval,shiftamt
1448   //    andi    maskednewval,newval,255
1449   //    sll     shiftednewval,maskednewval,shiftamt
1450   int64_t MaskImm = (Size == 1) ? 255 : 65535;
1451   BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1452     .addReg(Mips::ZERO).addImm(-4);
1453   BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1454     .addReg(Ptr).addReg(MaskLSB2);
1455   BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1456   if (Subtarget.isLittle()) {
1457     BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1458   } else {
1459     unsigned Off = RegInfo.createVirtualRegister(RC);
1460     BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1461       .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1462     BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1463   }
1464   BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1465     .addReg(Mips::ZERO).addImm(MaskImm);
1466   BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1467     .addReg(MaskUpper).addReg(ShiftAmt);
1468   BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1469   BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
1470     .addReg(CmpVal).addImm(MaskImm);
1471   BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
1472     .addReg(MaskedCmpVal).addReg(ShiftAmt);
1473   BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
1474     .addReg(NewVal).addImm(MaskImm);
1475   BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
1476     .addReg(MaskedNewVal).addReg(ShiftAmt);
1477
1478   //  loop1MBB:
1479   //    ll      oldval,0(alginedaddr)
1480   //    and     maskedoldval0,oldval,mask
1481   //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1482   BB = loop1MBB;
1483   unsigned LL = isMicroMips ? Mips::LL_MM : Mips::LL;
1484   BuildMI(BB, DL, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1485   BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1486     .addReg(OldVal).addReg(Mask);
1487   BuildMI(BB, DL, TII->get(Mips::BNE))
1488     .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1489
1490   //  loop2MBB:
1491   //    and     maskedoldval1,oldval,mask2
1492   //    or      storeval,maskedoldval1,shiftednewval
1493   //    sc      success,storeval,0(alignedaddr)
1494   //    beq     success,$0,loop1MBB
1495   BB = loop2MBB;
1496   BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1497     .addReg(OldVal).addReg(Mask2);
1498   BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1499     .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1500   unsigned SC = isMicroMips ? Mips::SC_MM : Mips::SC;
1501   BuildMI(BB, DL, TII->get(SC), Success)
1502       .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1503   BuildMI(BB, DL, TII->get(Mips::BEQ))
1504       .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1505
1506   //  sinkMBB:
1507   //    srl     srlres,maskedoldval0,shiftamt
1508   //    sign_extend dest,srlres
1509   BB = sinkMBB;
1510
1511   BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1512       .addReg(MaskedOldVal0).addReg(ShiftAmt);
1513   BB = emitSignExtendToI32InReg(MI, BB, Size, Dest, SrlRes);
1514
1515   MI->eraseFromParent();   // The instruction is gone now.
1516
1517   return exitMBB;
1518 }
1519
1520 MachineBasicBlock *MipsTargetLowering::emitSEL_D(MachineInstr *MI,
1521                                                  MachineBasicBlock *BB) const {
1522   MachineFunction *MF = BB->getParent();
1523   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1524   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1525   MachineRegisterInfo &RegInfo = MF->getRegInfo();
1526   DebugLoc DL = MI->getDebugLoc();
1527   MachineBasicBlock::iterator II(MI);
1528
1529   unsigned Fc = MI->getOperand(1).getReg();
1530   const auto &FGR64RegClass = TRI->getRegClass(Mips::FGR64RegClassID);
1531
1532   unsigned Fc2 = RegInfo.createVirtualRegister(FGR64RegClass);
1533
1534   BuildMI(*BB, II, DL, TII->get(Mips::SUBREG_TO_REG), Fc2)
1535       .addImm(0)
1536       .addReg(Fc)
1537       .addImm(Mips::sub_lo);
1538
1539   // We don't erase the original instruction, we just replace the condition
1540   // register with the 64-bit super-register.
1541   MI->getOperand(1).setReg(Fc2);
1542
1543   return BB;
1544 }
1545
1546 //===----------------------------------------------------------------------===//
1547 //  Misc Lower Operation implementation
1548 //===----------------------------------------------------------------------===//
1549 SDValue MipsTargetLowering::lowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
1550   SDValue Chain = Op.getOperand(0);
1551   SDValue Table = Op.getOperand(1);
1552   SDValue Index = Op.getOperand(2);
1553   SDLoc DL(Op);
1554   EVT PTy = getPointerTy();
1555   unsigned EntrySize =
1556     DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(*getDataLayout());
1557
1558   Index = DAG.getNode(ISD::MUL, DL, PTy, Index,
1559                       DAG.getConstant(EntrySize, PTy));
1560   SDValue Addr = DAG.getNode(ISD::ADD, DL, PTy, Index, Table);
1561
1562   EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
1563   Addr = DAG.getExtLoad(ISD::SEXTLOAD, DL, PTy, Chain, Addr,
1564                         MachinePointerInfo::getJumpTable(), MemVT, false, false,
1565                         false, 0);
1566   Chain = Addr.getValue(1);
1567
1568   if ((getTargetMachine().getRelocationModel() == Reloc::PIC_) || ABI.IsN64()) {
1569     // For PIC, the sequence is:
1570     // BRIND(load(Jumptable + index) + RelocBase)
1571     // RelocBase can be JumpTable, GOT or some sort of global base.
1572     Addr = DAG.getNode(ISD::ADD, DL, PTy, Addr,
1573                        getPICJumpTableRelocBase(Table, DAG));
1574   }
1575
1576   return DAG.getNode(ISD::BRIND, DL, MVT::Other, Chain, Addr);
1577 }
1578
1579 SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1580   // The first operand is the chain, the second is the condition, the third is
1581   // the block to branch to if the condition is true.
1582   SDValue Chain = Op.getOperand(0);
1583   SDValue Dest = Op.getOperand(2);
1584   SDLoc DL(Op);
1585
1586   assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
1587   SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
1588
1589   // Return if flag is not set by a floating point comparison.
1590   if (CondRes.getOpcode() != MipsISD::FPCmp)
1591     return Op;
1592
1593   SDValue CCNode  = CondRes.getOperand(2);
1594   Mips::CondCode CC =
1595     (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1596   unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
1597   SDValue BrCode = DAG.getConstant(Opc, MVT::i32);
1598   SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
1599   return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
1600                      FCC0, Dest, CondRes);
1601 }
1602
1603 SDValue MipsTargetLowering::
1604 lowerSELECT(SDValue Op, SelectionDAG &DAG) const
1605 {
1606   assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
1607   SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
1608
1609   // Return if flag is not set by a floating point comparison.
1610   if (Cond.getOpcode() != MipsISD::FPCmp)
1611     return Op;
1612
1613   return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1614                       SDLoc(Op));
1615 }
1616
1617 SDValue MipsTargetLowering::
1618 lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
1619 {
1620   SDLoc DL(Op);
1621   EVT Ty = Op.getOperand(0).getValueType();
1622   SDValue Cond = DAG.getNode(ISD::SETCC, DL,
1623                              getSetCCResultType(*DAG.getContext(), Ty),
1624                              Op.getOperand(0), Op.getOperand(1),
1625                              Op.getOperand(4));
1626
1627   return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
1628                      Op.getOperand(3));
1629 }
1630
1631 SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1632   assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
1633   SDValue Cond = createFPCmp(DAG, Op);
1634
1635   assert(Cond.getOpcode() == MipsISD::FPCmp &&
1636          "Floating point operand expected.");
1637
1638   SDValue True  = DAG.getConstant(1, MVT::i32);
1639   SDValue False = DAG.getConstant(0, MVT::i32);
1640
1641   return createCMovFP(DAG, Cond, True, False, SDLoc(Op));
1642 }
1643
1644 SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
1645                                                SelectionDAG &DAG) const {
1646   EVT Ty = Op.getValueType();
1647   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
1648   const GlobalValue *GV = N->getGlobal();
1649
1650   if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !ABI.IsN64()) {
1651     const MipsTargetObjectFile *TLOF =
1652         static_cast<const MipsTargetObjectFile *>(
1653             getTargetMachine().getObjFileLowering());
1654     if (TLOF->IsGlobalInSmallSection(GV, getTargetMachine()))
1655       // %gp_rel relocation
1656       return getAddrGPRel(N, SDLoc(N), Ty, DAG);
1657
1658     // %hi/%lo relocation
1659     return getAddrNonPIC(N, SDLoc(N), Ty, DAG);
1660   }
1661
1662   if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
1663     return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
1664
1665   if (LargeGOT)
1666     return getAddrGlobalLargeGOT(N, SDLoc(N), Ty, DAG, MipsII::MO_GOT_HI16,
1667                                  MipsII::MO_GOT_LO16, DAG.getEntryNode(),
1668                                  MachinePointerInfo::getGOT());
1669
1670   return getAddrGlobal(N, SDLoc(N), Ty, DAG,
1671                        (ABI.IsN32() || ABI.IsN64()) ? MipsII::MO_GOT_DISP
1672                                                     : MipsII::MO_GOT16,
1673                        DAG.getEntryNode(), MachinePointerInfo::getGOT());
1674 }
1675
1676 SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
1677                                               SelectionDAG &DAG) const {
1678   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
1679   EVT Ty = Op.getValueType();
1680
1681   if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !ABI.IsN64())
1682     return getAddrNonPIC(N, SDLoc(N), Ty, DAG);
1683
1684   return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
1685 }
1686
1687 SDValue MipsTargetLowering::
1688 lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1689 {
1690   // If the relocation model is PIC, use the General Dynamic TLS Model or
1691   // Local Dynamic TLS model, otherwise use the Initial Exec or
1692   // Local Exec TLS Model.
1693
1694   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1695   SDLoc DL(GA);
1696   const GlobalValue *GV = GA->getGlobal();
1697   EVT PtrVT = getPointerTy();
1698
1699   TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1700
1701   if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1702     // General Dynamic and Local Dynamic TLS Model.
1703     unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1704                                                       : MipsII::MO_TLSGD;
1705
1706     SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
1707     SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
1708                                    getGlobalReg(DAG, PtrVT), TGA);
1709     unsigned PtrSize = PtrVT.getSizeInBits();
1710     IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1711
1712     SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1713
1714     ArgListTy Args;
1715     ArgListEntry Entry;
1716     Entry.Node = Argument;
1717     Entry.Ty = PtrTy;
1718     Args.push_back(Entry);
1719
1720     TargetLowering::CallLoweringInfo CLI(DAG);
1721     CLI.setDebugLoc(DL).setChain(DAG.getEntryNode())
1722       .setCallee(CallingConv::C, PtrTy, TlsGetAddr, std::move(Args), 0);
1723     std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1724
1725     SDValue Ret = CallResult.first;
1726
1727     if (model != TLSModel::LocalDynamic)
1728       return Ret;
1729
1730     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1731                                                MipsII::MO_DTPREL_HI);
1732     SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1733     SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1734                                                MipsII::MO_DTPREL_LO);
1735     SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1736     SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
1737     return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
1738   }
1739
1740   SDValue Offset;
1741   if (model == TLSModel::InitialExec) {
1742     // Initial Exec TLS Model
1743     SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1744                                              MipsII::MO_GOTTPREL);
1745     TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
1746                       TGA);
1747     Offset = DAG.getLoad(PtrVT, DL,
1748                          DAG.getEntryNode(), TGA, MachinePointerInfo(),
1749                          false, false, false, 0);
1750   } else {
1751     // Local Exec TLS Model
1752     assert(model == TLSModel::LocalExec);
1753     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1754                                                MipsII::MO_TPREL_HI);
1755     SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1756                                                MipsII::MO_TPREL_LO);
1757     SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1758     SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1759     Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1760   }
1761
1762   SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
1763   return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
1764 }
1765
1766 SDValue MipsTargetLowering::
1767 lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1768 {
1769   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
1770   EVT Ty = Op.getValueType();
1771
1772   if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !ABI.IsN64())
1773     return getAddrNonPIC(N, SDLoc(N), Ty, DAG);
1774
1775   return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
1776 }
1777
1778 SDValue MipsTargetLowering::
1779 lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1780 {
1781   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
1782   EVT Ty = Op.getValueType();
1783
1784   if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !ABI.IsN64()) {
1785     const MipsTargetObjectFile *TLOF =
1786         static_cast<const MipsTargetObjectFile *>(
1787             getTargetMachine().getObjFileLowering());
1788
1789     if (TLOF->IsConstantInSmallSection(N->getConstVal(), getTargetMachine()))
1790       // %gp_rel relocation
1791       return getAddrGPRel(N, SDLoc(N), Ty, DAG);
1792
1793     return getAddrNonPIC(N, SDLoc(N), Ty, DAG);
1794   }
1795
1796   return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
1797 }
1798
1799 SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1800   MachineFunction &MF = DAG.getMachineFunction();
1801   MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1802
1803   SDLoc DL(Op);
1804   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1805                                  getPointerTy());
1806
1807   // vastart just stores the address of the VarArgsFrameIndex slot into the
1808   // memory location argument.
1809   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1810   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1811                       MachinePointerInfo(SV), false, false, 0);
1812 }
1813
1814 SDValue MipsTargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const {
1815   SDNode *Node = Op.getNode();
1816   EVT VT = Node->getValueType(0);
1817   SDValue Chain = Node->getOperand(0);
1818   SDValue VAListPtr = Node->getOperand(1);
1819   unsigned Align = Node->getConstantOperandVal(3);
1820   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1821   SDLoc DL(Node);
1822   unsigned ArgSlotSizeInBytes = (ABI.IsN32() || ABI.IsN64()) ? 8 : 4;
1823
1824   SDValue VAListLoad = DAG.getLoad(getPointerTy(), DL, Chain, VAListPtr,
1825                                    MachinePointerInfo(SV), false, false, false,
1826                                    0);
1827   SDValue VAList = VAListLoad;
1828
1829   // Re-align the pointer if necessary.
1830   // It should only ever be necessary for 64-bit types on O32 since the minimum
1831   // argument alignment is the same as the maximum type alignment for N32/N64.
1832   //
1833   // FIXME: We currently align too often. The code generator doesn't notice
1834   //        when the pointer is still aligned from the last va_arg (or pair of
1835   //        va_args for the i64 on O32 case).
1836   if (Align > getMinStackArgumentAlignment()) {
1837     assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
1838
1839     VAList = DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
1840                          DAG.getConstant(Align - 1,
1841                                          VAList.getValueType()));
1842
1843     VAList = DAG.getNode(ISD::AND, DL, VAList.getValueType(), VAList,
1844                          DAG.getConstant(-(int64_t)Align,
1845                                          VAList.getValueType()));
1846   }
1847
1848   // Increment the pointer, VAList, to the next vaarg.
1849   unsigned ArgSizeInBytes = getDataLayout()->getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext()));
1850   SDValue Tmp3 = DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
1851                              DAG.getConstant(RoundUpToAlignment(ArgSizeInBytes, ArgSlotSizeInBytes),
1852                                              VAList.getValueType()));
1853   // Store the incremented VAList to the legalized pointer
1854   Chain = DAG.getStore(VAListLoad.getValue(1), DL, Tmp3, VAListPtr,
1855                       MachinePointerInfo(SV), false, false, 0);
1856
1857   // In big-endian mode we must adjust the pointer when the load size is smaller
1858   // than the argument slot size. We must also reduce the known alignment to
1859   // match. For example in the N64 ABI, we must add 4 bytes to the offset to get
1860   // the correct half of the slot, and reduce the alignment from 8 (slot
1861   // alignment) down to 4 (type alignment).
1862   if (!Subtarget.isLittle() && ArgSizeInBytes < ArgSlotSizeInBytes) {
1863     unsigned Adjustment = ArgSlotSizeInBytes - ArgSizeInBytes;
1864     VAList = DAG.getNode(ISD::ADD, DL, VAListPtr.getValueType(), VAList,
1865                          DAG.getIntPtrConstant(Adjustment));
1866   }
1867   // Load the actual argument out of the pointer VAList
1868   return DAG.getLoad(VT, DL, Chain, VAList, MachinePointerInfo(), false, false,
1869                      false, 0);
1870 }
1871
1872 static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG,
1873                                 bool HasExtractInsert) {
1874   EVT TyX = Op.getOperand(0).getValueType();
1875   EVT TyY = Op.getOperand(1).getValueType();
1876   SDValue Const1 = DAG.getConstant(1, MVT::i32);
1877   SDValue Const31 = DAG.getConstant(31, MVT::i32);
1878   SDLoc DL(Op);
1879   SDValue Res;
1880
1881   // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1882   // to i32.
1883   SDValue X = (TyX == MVT::f32) ?
1884     DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1885     DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1886                 Const1);
1887   SDValue Y = (TyY == MVT::f32) ?
1888     DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
1889     DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
1890                 Const1);
1891
1892   if (HasExtractInsert) {
1893     // ext  E, Y, 31, 1  ; extract bit31 of Y
1894     // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
1895     SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
1896     Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
1897   } else {
1898     // sll SllX, X, 1
1899     // srl SrlX, SllX, 1
1900     // srl SrlY, Y, 31
1901     // sll SllY, SrlX, 31
1902     // or  Or, SrlX, SllY
1903     SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1904     SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1905     SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
1906     SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
1907     Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
1908   }
1909
1910   if (TyX == MVT::f32)
1911     return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
1912
1913   SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1914                              Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1915   return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1916 }
1917
1918 static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG,
1919                                 bool HasExtractInsert) {
1920   unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
1921   unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
1922   EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
1923   SDValue Const1 = DAG.getConstant(1, MVT::i32);
1924   SDLoc DL(Op);
1925
1926   // Bitcast to integer nodes.
1927   SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
1928   SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
1929
1930   if (HasExtractInsert) {
1931     // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
1932     // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
1933     SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
1934                             DAG.getConstant(WidthY - 1, MVT::i32), Const1);
1935
1936     if (WidthX > WidthY)
1937       E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
1938     else if (WidthY > WidthX)
1939       E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
1940
1941     SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
1942                             DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
1943     return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
1944   }
1945
1946   // (d)sll SllX, X, 1
1947   // (d)srl SrlX, SllX, 1
1948   // (d)srl SrlY, Y, width(Y)-1
1949   // (d)sll SllY, SrlX, width(Y)-1
1950   // or     Or, SrlX, SllY
1951   SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
1952   SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
1953   SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
1954                              DAG.getConstant(WidthY - 1, MVT::i32));
1955
1956   if (WidthX > WidthY)
1957     SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
1958   else if (WidthY > WidthX)
1959     SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
1960
1961   SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
1962                              DAG.getConstant(WidthX - 1, MVT::i32));
1963   SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
1964   return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
1965 }
1966
1967 SDValue
1968 MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
1969   if (Subtarget.isGP64bit())
1970     return lowerFCOPYSIGN64(Op, DAG, Subtarget.hasExtractInsert());
1971
1972   return lowerFCOPYSIGN32(Op, DAG, Subtarget.hasExtractInsert());
1973 }
1974
1975 SDValue MipsTargetLowering::
1976 lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1977   // check the depth
1978   assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1979          "Frame address can only be determined for current frame.");
1980
1981   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1982   MFI->setFrameAddressIsTaken(true);
1983   EVT VT = Op.getValueType();
1984   SDLoc DL(Op);
1985   SDValue FrameAddr = DAG.getCopyFromReg(
1986       DAG.getEntryNode(), DL, ABI.IsN64() ? Mips::FP_64 : Mips::FP, VT);
1987   return FrameAddr;
1988 }
1989
1990 SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
1991                                             SelectionDAG &DAG) const {
1992   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1993     return SDValue();
1994
1995   // check the depth
1996   assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1997          "Return address can be determined only for current frame.");
1998
1999   MachineFunction &MF = DAG.getMachineFunction();
2000   MachineFrameInfo *MFI = MF.getFrameInfo();
2001   MVT VT = Op.getSimpleValueType();
2002   unsigned RA = ABI.IsN64() ? Mips::RA_64 : Mips::RA;
2003   MFI->setReturnAddressIsTaken(true);
2004
2005   // Return RA, which contains the return address. Mark it an implicit live-in.
2006   unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
2007   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
2008 }
2009
2010 // An EH_RETURN is the result of lowering llvm.eh.return which in turn is
2011 // generated from __builtin_eh_return (offset, handler)
2012 // The effect of this is to adjust the stack pointer by "offset"
2013 // and then branch to "handler".
2014 SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
2015                                                                      const {
2016   MachineFunction &MF = DAG.getMachineFunction();
2017   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2018
2019   MipsFI->setCallsEhReturn();
2020   SDValue Chain     = Op.getOperand(0);
2021   SDValue Offset    = Op.getOperand(1);
2022   SDValue Handler   = Op.getOperand(2);
2023   SDLoc DL(Op);
2024   EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;
2025
2026   // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
2027   // EH_RETURN nodes, so that instructions are emitted back-to-back.
2028   unsigned OffsetReg = ABI.IsN64() ? Mips::V1_64 : Mips::V1;
2029   unsigned AddrReg = ABI.IsN64() ? Mips::V0_64 : Mips::V0;
2030   Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
2031   Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
2032   return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
2033                      DAG.getRegister(OffsetReg, Ty),
2034                      DAG.getRegister(AddrReg, getPointerTy()),
2035                      Chain.getValue(1));
2036 }
2037
2038 SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
2039                                               SelectionDAG &DAG) const {
2040   // FIXME: Need pseudo-fence for 'singlethread' fences
2041   // FIXME: Set SType for weaker fences where supported/appropriate.
2042   unsigned SType = 0;
2043   SDLoc DL(Op);
2044   return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
2045                      DAG.getConstant(SType, MVT::i32));
2046 }
2047
2048 SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
2049                                                 SelectionDAG &DAG) const {
2050   SDLoc DL(Op);
2051   MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;
2052
2053   SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2054   SDValue Shamt = Op.getOperand(2);
2055   // if shamt < (VT.bits):
2056   //  lo = (shl lo, shamt)
2057   //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2058   // else:
2059   //  lo = 0
2060   //  hi = (shl lo, shamt[4:0])
2061   SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2062                             DAG.getConstant(-1, MVT::i32));
2063   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo,
2064                                       DAG.getConstant(1, VT));
2065   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, Not);
2066   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
2067   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
2068   SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
2069   SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2070                              DAG.getConstant(0x20, MVT::i32));
2071   Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2072                    DAG.getConstant(0, VT), ShiftLeftLo);
2073   Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftLeftLo, Or);
2074
2075   SDValue Ops[2] = {Lo, Hi};
2076   return DAG.getMergeValues(Ops, DL);
2077 }
2078
2079 SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2080                                                  bool IsSRA) const {
2081   SDLoc DL(Op);
2082   SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2083   SDValue Shamt = Op.getOperand(2);
2084   MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;
2085
2086   // if shamt < (VT.bits):
2087   //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2088   //  if isSRA:
2089   //    hi = (sra hi, shamt)
2090   //  else:
2091   //    hi = (srl hi, shamt)
2092   // else:
2093   //  if isSRA:
2094   //   lo = (sra hi, shamt[4:0])
2095   //   hi = (sra hi, 31)
2096   //  else:
2097   //   lo = (srl hi, shamt[4:0])
2098   //   hi = 0
2099   SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2100                             DAG.getConstant(-1, MVT::i32));
2101   SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, VT, Hi,
2102                                      DAG.getConstant(1, VT));
2103   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, ShiftLeft1Hi, Not);
2104   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
2105   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
2106   SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL,
2107                                      DL, VT, Hi, Shamt);
2108   SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2109                              DAG.getConstant(0x20, MVT::i32));
2110   SDValue Shift31 = DAG.getNode(ISD::SRA, DL, VT, Hi, DAG.getConstant(31, VT));
2111   Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftRightHi, Or);
2112   Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2113                    IsSRA ? Shift31 : DAG.getConstant(0, VT), ShiftRightHi);
2114
2115   SDValue Ops[2] = {Lo, Hi};
2116   return DAG.getMergeValues(Ops, DL);
2117 }
2118
2119 static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
2120                             SDValue Chain, SDValue Src, unsigned Offset) {
2121   SDValue Ptr = LD->getBasePtr();
2122   EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
2123   EVT BasePtrVT = Ptr.getValueType();
2124   SDLoc DL(LD);
2125   SDVTList VTList = DAG.getVTList(VT, MVT::Other);
2126
2127   if (Offset)
2128     Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2129                       DAG.getConstant(Offset, BasePtrVT));
2130
2131   SDValue Ops[] = { Chain, Ptr, Src };
2132   return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
2133                                  LD->getMemOperand());
2134 }
2135
2136 // Expand an unaligned 32 or 64-bit integer load node.
2137 SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2138   LoadSDNode *LD = cast<LoadSDNode>(Op);
2139   EVT MemVT = LD->getMemoryVT();
2140
2141   if (Subtarget.systemSupportsUnalignedAccess())
2142     return Op;
2143
2144   // Return if load is aligned or if MemVT is neither i32 nor i64.
2145   if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2146       ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2147     return SDValue();
2148
2149   bool IsLittle = Subtarget.isLittle();
2150   EVT VT = Op.getValueType();
2151   ISD::LoadExtType ExtType = LD->getExtensionType();
2152   SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
2153
2154   assert((VT == MVT::i32) || (VT == MVT::i64));
2155
2156   // Expand
2157   //  (set dst, (i64 (load baseptr)))
2158   // to
2159   //  (set tmp, (ldl (add baseptr, 7), undef))
2160   //  (set dst, (ldr baseptr, tmp))
2161   if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
2162     SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
2163                                IsLittle ? 7 : 0);
2164     return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
2165                         IsLittle ? 0 : 7);
2166   }
2167
2168   SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
2169                              IsLittle ? 3 : 0);
2170   SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
2171                              IsLittle ? 0 : 3);
2172
2173   // Expand
2174   //  (set dst, (i32 (load baseptr))) or
2175   //  (set dst, (i64 (sextload baseptr))) or
2176   //  (set dst, (i64 (extload baseptr)))
2177   // to
2178   //  (set tmp, (lwl (add baseptr, 3), undef))
2179   //  (set dst, (lwr baseptr, tmp))
2180   if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
2181       (ExtType == ISD::EXTLOAD))
2182     return LWR;
2183
2184   assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2185
2186   // Expand
2187   //  (set dst, (i64 (zextload baseptr)))
2188   // to
2189   //  (set tmp0, (lwl (add baseptr, 3), undef))
2190   //  (set tmp1, (lwr baseptr, tmp0))
2191   //  (set tmp2, (shl tmp1, 32))
2192   //  (set dst, (srl tmp2, 32))
2193   SDLoc DL(LD);
2194   SDValue Const32 = DAG.getConstant(32, MVT::i32);
2195   SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2196   SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2197   SDValue Ops[] = { SRL, LWR.getValue(1) };
2198   return DAG.getMergeValues(Ops, DL);
2199 }
2200
2201 static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2202                              SDValue Chain, unsigned Offset) {
2203   SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2204   EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2205   SDLoc DL(SD);
2206   SDVTList VTList = DAG.getVTList(MVT::Other);
2207
2208   if (Offset)
2209     Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2210                       DAG.getConstant(Offset, BasePtrVT));
2211
2212   SDValue Ops[] = { Chain, Value, Ptr };
2213   return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
2214                                  SD->getMemOperand());
2215 }
2216
2217 // Expand an unaligned 32 or 64-bit integer store node.
2218 static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
2219                                       bool IsLittle) {
2220   SDValue Value = SD->getValue(), Chain = SD->getChain();
2221   EVT VT = Value.getValueType();
2222
2223   // Expand
2224   //  (store val, baseptr) or
2225   //  (truncstore val, baseptr)
2226   // to
2227   //  (swl val, (add baseptr, 3))
2228   //  (swr val, baseptr)
2229   if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2230     SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
2231                                 IsLittle ? 3 : 0);
2232     return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2233   }
2234
2235   assert(VT == MVT::i64);
2236
2237   // Expand
2238   //  (store val, baseptr)
2239   // to
2240   //  (sdl val, (add baseptr, 7))
2241   //  (sdr val, baseptr)
2242   SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2243   return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2244 }
2245
2246 // Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2247 static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG) {
2248   SDValue Val = SD->getValue();
2249
2250   if (Val.getOpcode() != ISD::FP_TO_SINT)
2251     return SDValue();
2252
2253   EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
2254   SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
2255                            Val.getOperand(0));
2256
2257   return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
2258                       SD->getPointerInfo(), SD->isVolatile(),
2259                       SD->isNonTemporal(), SD->getAlignment());
2260 }
2261
2262 SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2263   StoreSDNode *SD = cast<StoreSDNode>(Op);
2264   EVT MemVT = SD->getMemoryVT();
2265
2266   // Lower unaligned integer stores.
2267   if (!Subtarget.systemSupportsUnalignedAccess() &&
2268       (SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
2269       ((MemVT == MVT::i32) || (MemVT == MVT::i64)))
2270     return lowerUnalignedIntStore(SD, DAG, Subtarget.isLittle());
2271
2272   return lowerFP_TO_SINT_STORE(SD, DAG);
2273 }
2274
2275 SDValue MipsTargetLowering::lowerADD(SDValue Op, SelectionDAG &DAG) const {
2276   if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
2277       || cast<ConstantSDNode>
2278         (Op->getOperand(0).getOperand(0))->getZExtValue() != 0
2279       || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
2280     return SDValue();
2281
2282   // The pattern
2283   //   (add (frameaddr 0), (frame_to_args_offset))
2284   // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
2285   //   (add FrameObject, 0)
2286   // where FrameObject is a fixed StackObject with offset 0 which points to
2287   // the old stack pointer.
2288   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2289   EVT ValTy = Op->getValueType(0);
2290   int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2291   SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
2292   return DAG.getNode(ISD::ADD, SDLoc(Op), ValTy, InArgsAddr,
2293                      DAG.getConstant(0, ValTy));
2294 }
2295
2296 SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
2297                                             SelectionDAG &DAG) const {
2298   EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
2299   SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
2300                               Op.getOperand(0));
2301   return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
2302 }
2303
2304 //===----------------------------------------------------------------------===//
2305 //                      Calling Convention Implementation
2306 //===----------------------------------------------------------------------===//
2307
2308 //===----------------------------------------------------------------------===//
2309 // TODO: Implement a generic logic using tblgen that can support this.
2310 // Mips O32 ABI rules:
2311 // ---
2312 // i32 - Passed in A0, A1, A2, A3 and stack
2313 // f32 - Only passed in f32 registers if no int reg has been used yet to hold
2314 //       an argument. Otherwise, passed in A1, A2, A3 and stack.
2315 // f64 - Only passed in two aliased f32 registers if no int reg has been used
2316 //       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2317 //       not used, it must be shadowed. If only A3 is available, shadow it and
2318 //       go to stack.
2319 //
2320 //  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2321 //===----------------------------------------------------------------------===//
2322
2323 static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
2324                        CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
2325                        CCState &State, ArrayRef<MCPhysReg> F64Regs) {
2326   const MipsSubtarget &Subtarget = static_cast<const MipsSubtarget &>(
2327       State.getMachineFunction().getSubtarget());
2328
2329   static const MCPhysReg IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 };
2330   static const MCPhysReg F32Regs[] = { Mips::F12, Mips::F14 };
2331
2332   // Do not process byval args here.
2333   if (ArgFlags.isByVal())
2334     return true;
2335
2336   // Promote i8 and i16
2337   if (ArgFlags.isInReg() && !Subtarget.isLittle()) {
2338     if (LocVT == MVT::i8 || LocVT == MVT::i16 || LocVT == MVT::i32) {
2339       LocVT = MVT::i32;
2340       if (ArgFlags.isSExt())
2341         LocInfo = CCValAssign::SExtUpper;
2342       else if (ArgFlags.isZExt())
2343         LocInfo = CCValAssign::ZExtUpper;
2344       else
2345         LocInfo = CCValAssign::AExtUpper;
2346     }
2347   }
2348
2349   // Promote i8 and i16
2350   if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2351     LocVT = MVT::i32;
2352     if (ArgFlags.isSExt())
2353       LocInfo = CCValAssign::SExt;
2354     else if (ArgFlags.isZExt())
2355       LocInfo = CCValAssign::ZExt;
2356     else
2357       LocInfo = CCValAssign::AExt;
2358   }
2359
2360   unsigned Reg;
2361
2362   // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2363   // is true: function is vararg, argument is 3rd or higher, there is previous
2364   // argument which is not f32 or f64.
2365   bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1 ||
2366                                 State.getFirstUnallocated(F32Regs) != ValNo;
2367   unsigned OrigAlign = ArgFlags.getOrigAlign();
2368   bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2369
2370   if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2371     Reg = State.AllocateReg(IntRegs);
2372     // If this is the first part of an i64 arg,
2373     // the allocated register must be either A0 or A2.
2374     if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2375       Reg = State.AllocateReg(IntRegs);
2376     LocVT = MVT::i32;
2377   } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2378     // Allocate int register and shadow next int register. If first
2379     // available register is Mips::A1 or Mips::A3, shadow it too.
2380     Reg = State.AllocateReg(IntRegs);
2381     if (Reg == Mips::A1 || Reg == Mips::A3)
2382       Reg = State.AllocateReg(IntRegs);
2383     State.AllocateReg(IntRegs);
2384     LocVT = MVT::i32;
2385   } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2386     // we are guaranteed to find an available float register
2387     if (ValVT == MVT::f32) {
2388       Reg = State.AllocateReg(F32Regs);
2389       // Shadow int register
2390       State.AllocateReg(IntRegs);
2391     } else {
2392       Reg = State.AllocateReg(F64Regs);
2393       // Shadow int registers
2394       unsigned Reg2 = State.AllocateReg(IntRegs);
2395       if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2396         State.AllocateReg(IntRegs);
2397       State.AllocateReg(IntRegs);
2398     }
2399   } else
2400     llvm_unreachable("Cannot handle this ValVT.");
2401
2402   if (!Reg) {
2403     unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
2404                                           OrigAlign);
2405     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2406   } else
2407     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2408
2409   return false;
2410 }
2411
2412 static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT,
2413                             MVT LocVT, CCValAssign::LocInfo LocInfo,
2414                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
2415   static const MCPhysReg F64Regs[] = { Mips::D6, Mips::D7 };
2416
2417   return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2418 }
2419
2420 static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
2421                             MVT LocVT, CCValAssign::LocInfo LocInfo,
2422                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
2423   static const MCPhysReg F64Regs[] = { Mips::D12_64, Mips::D14_64 };
2424
2425   return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2426 }
2427
2428 static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
2429                        CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
2430                        CCState &State) LLVM_ATTRIBUTE_UNUSED;
2431
2432 #include "MipsGenCallingConv.inc"
2433
2434 //===----------------------------------------------------------------------===//
2435 //                  Call Calling Convention Implementation
2436 //===----------------------------------------------------------------------===//
2437
2438 // Return next O32 integer argument register.
2439 static unsigned getNextIntArgReg(unsigned Reg) {
2440   assert((Reg == Mips::A0) || (Reg == Mips::A2));
2441   return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2442 }
2443
2444 SDValue
2445 MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
2446                                    SDValue Chain, SDValue Arg, SDLoc DL,
2447                                    bool IsTailCall, SelectionDAG &DAG) const {
2448   if (!IsTailCall) {
2449     SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
2450                                  DAG.getIntPtrConstant(Offset));
2451     return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
2452                         false, 0);
2453   }
2454
2455   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2456   int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
2457   SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2458   return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
2459                       /*isVolatile=*/ true, false, 0);
2460 }
2461
2462 void MipsTargetLowering::
2463 getOpndList(SmallVectorImpl<SDValue> &Ops,
2464             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
2465             bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
2466             bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
2467             SDValue Chain) const {
2468   // Insert node "GP copy globalreg" before call to function.
2469   //
2470   // R_MIPS_CALL* operators (emitted when non-internal functions are called
2471   // in PIC mode) allow symbols to be resolved via lazy binding.
2472   // The lazy binding stub requires GP to point to the GOT.
2473   // Note that we don't need GP to point to the GOT for indirect calls
2474   // (when R_MIPS_CALL* is not used for the call) because Mips linker generates
2475   // lazy binding stub for a function only when R_MIPS_CALL* are the only relocs
2476   // used for the function (that is, Mips linker doesn't generate lazy binding
2477   // stub for a function whose address is taken in the program).
2478   if (IsPICCall && !InternalLinkage && IsCallReloc) {
2479     unsigned GPReg = ABI.IsN64() ? Mips::GP_64 : Mips::GP;
2480     EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;
2481     RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
2482   }
2483
2484   // Build a sequence of copy-to-reg nodes chained together with token
2485   // chain and flag operands which copy the outgoing args into registers.
2486   // The InFlag in necessary since all emitted instructions must be
2487   // stuck together.
2488   SDValue InFlag;
2489
2490   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2491     Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
2492                                  RegsToPass[i].second, InFlag);
2493     InFlag = Chain.getValue(1);
2494   }
2495
2496   // Add argument registers to the end of the list so that they are
2497   // known live into the call.
2498   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2499     Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
2500                                       RegsToPass[i].second.getValueType()));
2501
2502   // Add a register mask operand representing the call-preserved registers.
2503   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2504   const uint32_t *Mask =
2505       TRI->getCallPreservedMask(CLI.DAG.getMachineFunction(), CLI.CallConv);
2506   assert(Mask && "Missing call preserved mask for calling convention");
2507   if (Subtarget.inMips16HardFloat()) {
2508     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
2509       llvm::StringRef Sym = G->getGlobal()->getName();
2510       Function *F = G->getGlobal()->getParent()->getFunction(Sym);
2511       if (F && F->hasFnAttribute("__Mips16RetHelper")) {
2512         Mask = MipsRegisterInfo::getMips16RetHelperMask();
2513       }
2514     }
2515   }
2516   Ops.push_back(CLI.DAG.getRegisterMask(Mask));
2517
2518   if (InFlag.getNode())
2519     Ops.push_back(InFlag);
2520 }
2521
2522 /// LowerCall - functions arguments are copied from virtual regs to
2523 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2524 SDValue
2525 MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2526                               SmallVectorImpl<SDValue> &InVals) const {
2527   SelectionDAG &DAG                     = CLI.DAG;
2528   SDLoc DL                              = CLI.DL;
2529   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2530   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
2531   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
2532   SDValue Chain                         = CLI.Chain;
2533   SDValue Callee                        = CLI.Callee;
2534   bool &IsTailCall                      = CLI.IsTailCall;
2535   CallingConv::ID CallConv              = CLI.CallConv;
2536   bool IsVarArg                         = CLI.IsVarArg;
2537
2538   MachineFunction &MF = DAG.getMachineFunction();
2539   MachineFrameInfo *MFI = MF.getFrameInfo();
2540   const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
2541   MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
2542   bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2543
2544   // Analyze operands of the call, assigning locations to each operand.
2545   SmallVector<CCValAssign, 16> ArgLocs;
2546   MipsCCState CCInfo(
2547       CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext(),
2548       MipsCCState::getSpecialCallingConvForCallee(Callee.getNode(), Subtarget));
2549
2550   // Allocate the reserved argument area. It seems strange to do this from the
2551   // caller side but removing it breaks the frame size calculation.
2552   CCInfo.AllocateStack(ABI.GetCalleeAllocdArgSizeInBytes(CallConv), 1);
2553
2554   CCInfo.AnalyzeCallOperands(Outs, CC_Mips, CLI.getArgs(), Callee.getNode());
2555
2556   // Get a count of how many bytes are to be pushed on the stack.
2557   unsigned NextStackOffset = CCInfo.getNextStackOffset();
2558
2559   // Check if it's really possible to do a tail call.
2560   if (IsTailCall)
2561     IsTailCall = isEligibleForTailCallOptimization(
2562         CCInfo, NextStackOffset, *MF.getInfo<MipsFunctionInfo>());
2563
2564   if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
2565     report_fatal_error("failed to perform tail call elimination on a call "
2566                        "site marked musttail");
2567
2568   if (IsTailCall)
2569     ++NumTailCalls;
2570
2571   // Chain is the output chain of the last Load/Store or CopyToReg node.
2572   // ByValChain is the output chain of the last Memcpy node created for copying
2573   // byval arguments to the stack.
2574   unsigned StackAlignment = TFL->getStackAlignment();
2575   NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
2576   SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
2577
2578   if (!IsTailCall)
2579     Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal, DL);
2580
2581   SDValue StackPtr = DAG.getCopyFromReg(
2582       Chain, DL, ABI.IsN64() ? Mips::SP_64 : Mips::SP, getPointerTy());
2583
2584   // With EABI is it possible to have 16 args on registers.
2585   std::deque< std::pair<unsigned, SDValue> > RegsToPass;
2586   SmallVector<SDValue, 8> MemOpChains;
2587
2588   CCInfo.rewindByValRegsInfo();
2589
2590   // Walk the register/memloc assignments, inserting copies/loads.
2591   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2592     SDValue Arg = OutVals[i];
2593     CCValAssign &VA = ArgLocs[i];
2594     MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2595     ISD::ArgFlagsTy Flags = Outs[i].Flags;
2596     bool UseUpperBits = false;
2597
2598     // ByVal Arg.
2599     if (Flags.isByVal()) {
2600       unsigned FirstByValReg, LastByValReg;
2601       unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
2602       CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);
2603
2604       assert(Flags.getByValSize() &&
2605              "ByVal args of size 0 should have been ignored by front-end.");
2606       assert(ByValIdx < CCInfo.getInRegsParamsCount());
2607       assert(!IsTailCall &&
2608              "Do not tail-call optimize if there is a byval argument.");
2609       passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
2610                    FirstByValReg, LastByValReg, Flags, Subtarget.isLittle(),
2611                    VA);
2612       CCInfo.nextInRegsParam();
2613       continue;
2614     }
2615
2616     // Promote the value if needed.
2617     switch (VA.getLocInfo()) {
2618     default:
2619       llvm_unreachable("Unknown loc info!");
2620     case CCValAssign::Full:
2621       if (VA.isRegLoc()) {
2622         if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2623             (ValVT == MVT::f64 && LocVT == MVT::i64) ||
2624             (ValVT == MVT::i64 && LocVT == MVT::f64))
2625           Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
2626         else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2627           SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2628                                    Arg, DAG.getConstant(0, MVT::i32));
2629           SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2630                                    Arg, DAG.getConstant(1, MVT::i32));
2631           if (!Subtarget.isLittle())
2632             std::swap(Lo, Hi);
2633           unsigned LocRegLo = VA.getLocReg();
2634           unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2635           RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2636           RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2637           continue;
2638         }
2639       }
2640       break;
2641     case CCValAssign::BCvt:
2642       Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
2643       break;
2644     case CCValAssign::SExtUpper:
2645       UseUpperBits = true;
2646       // Fallthrough
2647     case CCValAssign::SExt:
2648       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
2649       break;
2650     case CCValAssign::ZExtUpper:
2651       UseUpperBits = true;
2652       // Fallthrough
2653     case CCValAssign::ZExt:
2654       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
2655       break;
2656     case CCValAssign::AExtUpper:
2657       UseUpperBits = true;
2658       // Fallthrough
2659     case CCValAssign::AExt:
2660       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
2661       break;
2662     }
2663
2664     if (UseUpperBits) {
2665       unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits();
2666       unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
2667       Arg = DAG.getNode(
2668           ISD::SHL, DL, VA.getLocVT(), Arg,
2669           DAG.getConstant(LocSizeInBits - ValSizeInBits, VA.getLocVT()));
2670     }
2671
2672     // Arguments that can be passed on register must be kept at
2673     // RegsToPass vector
2674     if (VA.isRegLoc()) {
2675       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2676       continue;
2677     }
2678
2679     // Register can't get to this point...
2680     assert(VA.isMemLoc());
2681
2682     // emit ISD::STORE whichs stores the
2683     // parameter value to a stack Location
2684     MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
2685                                          Chain, Arg, DL, IsTailCall, DAG));
2686   }
2687
2688   // Transform all store nodes into one single node because all store
2689   // nodes are independent of each other.
2690   if (!MemOpChains.empty())
2691     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2692
2693   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2694   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2695   // node so that legalize doesn't hack it.
2696   bool IsPICCall = (ABI.IsN64() || IsPIC); // true if calls are translated to
2697                                            // jalr $25
2698   bool GlobalOrExternal = false, InternalLinkage = false, IsCallReloc = false;
2699   SDValue CalleeLo;
2700   EVT Ty = Callee.getValueType();
2701
2702   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2703     if (IsPICCall) {
2704       const GlobalValue *Val = G->getGlobal();
2705       InternalLinkage = Val->hasInternalLinkage();
2706
2707       if (InternalLinkage)
2708         Callee = getAddrLocal(G, DL, Ty, DAG, ABI.IsN32() || ABI.IsN64());
2709       else if (LargeGOT) {
2710         Callee = getAddrGlobalLargeGOT(G, DL, Ty, DAG, MipsII::MO_CALL_HI16,
2711                                        MipsII::MO_CALL_LO16, Chain,
2712                                        FuncInfo->callPtrInfo(Val));
2713         IsCallReloc = true;
2714       } else {
2715         Callee = getAddrGlobal(G, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
2716                                FuncInfo->callPtrInfo(Val));
2717         IsCallReloc = true;
2718       }
2719     } else
2720       Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, getPointerTy(), 0,
2721                                           MipsII::MO_NO_FLAG);
2722     GlobalOrExternal = true;
2723   }
2724   else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2725     const char *Sym = S->getSymbol();
2726
2727     if (!ABI.IsN64() && !IsPIC) // !N64 && static
2728       Callee =
2729           DAG.getTargetExternalSymbol(Sym, getPointerTy(), MipsII::MO_NO_FLAG);
2730     else if (LargeGOT) {
2731       Callee = getAddrGlobalLargeGOT(S, DL, Ty, DAG, MipsII::MO_CALL_HI16,
2732                                      MipsII::MO_CALL_LO16, Chain,
2733                                      FuncInfo->callPtrInfo(Sym));
2734       IsCallReloc = true;
2735     } else { // N64 || PIC
2736       Callee = getAddrGlobal(S, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
2737                              FuncInfo->callPtrInfo(Sym));
2738       IsCallReloc = true;
2739     }
2740
2741     GlobalOrExternal = true;
2742   }
2743
2744   SmallVector<SDValue, 8> Ops(1, Chain);
2745   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2746
2747   getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage,
2748               IsCallReloc, CLI, Callee, Chain);
2749
2750   if (IsTailCall)
2751     return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, Ops);
2752
2753   Chain = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, Ops);
2754   SDValue InFlag = Chain.getValue(1);
2755
2756   // Create the CALLSEQ_END node.
2757   Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
2758                              DAG.getIntPtrConstant(0, true), InFlag, DL);
2759   InFlag = Chain.getValue(1);
2760
2761   // Handle result values, copying them out of physregs into vregs that we
2762   // return.
2763   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
2764                          InVals, CLI);
2765 }
2766
2767 /// LowerCallResult - Lower the result values of a call into the
2768 /// appropriate copies out of appropriate physical registers.
2769 SDValue MipsTargetLowering::LowerCallResult(
2770     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
2771     const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
2772     SmallVectorImpl<SDValue> &InVals,
2773     TargetLowering::CallLoweringInfo &CLI) const {
2774   // Assign locations to each value returned by this call.
2775   SmallVector<CCValAssign, 16> RVLocs;
2776   MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2777                      *DAG.getContext());
2778   CCInfo.AnalyzeCallResult(Ins, RetCC_Mips, CLI);
2779
2780   // Copy all of the result registers out of their specified physreg.
2781   for (unsigned i = 0; i != RVLocs.size(); ++i) {
2782     CCValAssign &VA = RVLocs[i];
2783     assert(VA.isRegLoc() && "Can only return in registers!");
2784
2785     SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
2786                                      RVLocs[i].getLocVT(), InFlag);
2787     Chain = Val.getValue(1);
2788     InFlag = Val.getValue(2);
2789
2790     if (VA.isUpperBitsInLoc()) {
2791       unsigned ValSizeInBits = Ins[i].ArgVT.getSizeInBits();
2792       unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
2793       unsigned Shift =
2794           VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
2795       Val = DAG.getNode(
2796           Shift, DL, VA.getLocVT(), Val,
2797           DAG.getConstant(LocSizeInBits - ValSizeInBits, VA.getLocVT()));
2798     }
2799
2800     switch (VA.getLocInfo()) {
2801     default:
2802       llvm_unreachable("Unknown loc info!");
2803     case CCValAssign::Full:
2804       break;
2805     case CCValAssign::BCvt:
2806       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2807       break;
2808     case CCValAssign::AExt:
2809     case CCValAssign::AExtUpper:
2810       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2811       break;
2812     case CCValAssign::ZExt:
2813     case CCValAssign::ZExtUpper:
2814       Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
2815                         DAG.getValueType(VA.getValVT()));
2816       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2817       break;
2818     case CCValAssign::SExt:
2819     case CCValAssign::SExtUpper:
2820       Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
2821                         DAG.getValueType(VA.getValVT()));
2822       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2823       break;
2824     }
2825
2826     InVals.push_back(Val);
2827   }
2828
2829   return Chain;
2830 }
2831
2832 static SDValue UnpackFromArgumentSlot(SDValue Val, const CCValAssign &VA,
2833                                       EVT ArgVT, SDLoc DL, SelectionDAG &DAG) {
2834   MVT LocVT = VA.getLocVT();
2835   EVT ValVT = VA.getValVT();
2836
2837   // Shift into the upper bits if necessary.
2838   switch (VA.getLocInfo()) {
2839   default:
2840     break;
2841   case CCValAssign::AExtUpper:
2842   case CCValAssign::SExtUpper:
2843   case CCValAssign::ZExtUpper: {
2844     unsigned ValSizeInBits = ArgVT.getSizeInBits();
2845     unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
2846     unsigned Opcode =
2847         VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
2848     Val = DAG.getNode(
2849         Opcode, DL, VA.getLocVT(), Val,
2850         DAG.getConstant(LocSizeInBits - ValSizeInBits, VA.getLocVT()));
2851     break;
2852   }
2853   }
2854
2855   // If this is an value smaller than the argument slot size (32-bit for O32,
2856   // 64-bit for N32/N64), it has been promoted in some way to the argument slot
2857   // size. Extract the value and insert any appropriate assertions regarding
2858   // sign/zero extension.
2859   switch (VA.getLocInfo()) {
2860   default:
2861     llvm_unreachable("Unknown loc info!");
2862   case CCValAssign::Full:
2863     break;
2864   case CCValAssign::AExtUpper:
2865   case CCValAssign::AExt:
2866     Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2867     break;
2868   case CCValAssign::SExtUpper:
2869   case CCValAssign::SExt:
2870     Val = DAG.getNode(ISD::AssertSext, DL, LocVT, Val, DAG.getValueType(ValVT));
2871     Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2872     break;
2873   case CCValAssign::ZExtUpper:
2874   case CCValAssign::ZExt:
2875     Val = DAG.getNode(ISD::AssertZext, DL, LocVT, Val, DAG.getValueType(ValVT));
2876     Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2877     break;
2878   case CCValAssign::BCvt:
2879     Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
2880     break;
2881   }
2882
2883   return Val;
2884 }
2885
2886 //===----------------------------------------------------------------------===//
2887 //             Formal Arguments Calling Convention Implementation
2888 //===----------------------------------------------------------------------===//
2889 /// LowerFormalArguments - transform physical registers into virtual registers
2890 /// and generate load operations for arguments places on the stack.
2891 SDValue
2892 MipsTargetLowering::LowerFormalArguments(SDValue Chain,
2893                                          CallingConv::ID CallConv,
2894                                          bool IsVarArg,
2895                                       const SmallVectorImpl<ISD::InputArg> &Ins,
2896                                          SDLoc DL, SelectionDAG &DAG,
2897                                          SmallVectorImpl<SDValue> &InVals)
2898                                           const {
2899   MachineFunction &MF = DAG.getMachineFunction();
2900   MachineFrameInfo *MFI = MF.getFrameInfo();
2901   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2902
2903   MipsFI->setVarArgsFrameIndex(0);
2904
2905   // Used with vargs to acumulate store chains.
2906   std::vector<SDValue> OutChains;
2907
2908   // Assign locations to all of the incoming arguments.
2909   SmallVector<CCValAssign, 16> ArgLocs;
2910   MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
2911                      *DAG.getContext());
2912   CCInfo.AllocateStack(ABI.GetCalleeAllocdArgSizeInBytes(CallConv), 1);
2913   Function::const_arg_iterator FuncArg =
2914     DAG.getMachineFunction().getFunction()->arg_begin();
2915
2916   CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FixedArg);
2917   MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
2918                            CCInfo.getInRegsParamsCount() > 0);
2919
2920   unsigned CurArgIdx = 0;
2921   CCInfo.rewindByValRegsInfo();
2922
2923   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2924     CCValAssign &VA = ArgLocs[i];
2925     if (Ins[i].isOrigArg()) {
2926       std::advance(FuncArg, Ins[i].getOrigArgIndex() - CurArgIdx);
2927       CurArgIdx = Ins[i].getOrigArgIndex();
2928     }
2929     EVT ValVT = VA.getValVT();
2930     ISD::ArgFlagsTy Flags = Ins[i].Flags;
2931     bool IsRegLoc = VA.isRegLoc();
2932
2933     if (Flags.isByVal()) {
2934       assert(Ins[i].isOrigArg() && "Byval arguments cannot be implicit");
2935       unsigned FirstByValReg, LastByValReg;
2936       unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
2937       CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);
2938
2939       assert(Flags.getByValSize() &&
2940              "ByVal args of size 0 should have been ignored by front-end.");
2941       assert(ByValIdx < CCInfo.getInRegsParamsCount());
2942       copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
2943                     FirstByValReg, LastByValReg, VA, CCInfo);
2944       CCInfo.nextInRegsParam();
2945       continue;
2946     }
2947
2948     // Arguments stored on registers
2949     if (IsRegLoc) {
2950       MVT RegVT = VA.getLocVT();
2951       unsigned ArgReg = VA.getLocReg();
2952       const TargetRegisterClass *RC = getRegClassFor(RegVT);
2953
2954       // Transform the arguments stored on
2955       // physical registers into virtual ones
2956       unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
2957       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2958
2959       ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG);
2960
2961       // Handle floating point arguments passed in integer registers and
2962       // long double arguments passed in floating point registers.
2963       if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
2964           (RegVT == MVT::i64 && ValVT == MVT::f64) ||
2965           (RegVT == MVT::f64 && ValVT == MVT::i64))
2966         ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
2967       else if (ABI.IsO32() && RegVT == MVT::i32 &&
2968                ValVT == MVT::f64) {
2969         unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
2970                                   getNextIntArgReg(ArgReg), RC);
2971         SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
2972         if (!Subtarget.isLittle())
2973           std::swap(ArgValue, ArgValue2);
2974         ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
2975                                ArgValue, ArgValue2);
2976       }
2977
2978       InVals.push_back(ArgValue);
2979     } else { // VA.isRegLoc()
2980       MVT LocVT = VA.getLocVT();
2981
2982       if (ABI.IsO32()) {
2983         // We ought to be able to use LocVT directly but O32 sets it to i32
2984         // when allocating floating point values to integer registers.
2985         // This shouldn't influence how we load the value into registers unless
2986         // we are targetting softfloat.
2987         if (VA.getValVT().isFloatingPoint() && !Subtarget.abiUsesSoftFloat())
2988           LocVT = VA.getValVT();
2989       }
2990
2991       // sanity check
2992       assert(VA.isMemLoc());
2993
2994       // The stack pointer offset is relative to the caller stack frame.
2995       int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
2996                                       VA.getLocMemOffset(), true);
2997
2998       // Create load nodes to retrieve arguments from the stack
2999       SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
3000       SDValue ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
3001                                      MachinePointerInfo::getFixedStack(FI),
3002                                      false, false, false, 0);
3003       OutChains.push_back(ArgValue.getValue(1));
3004
3005       ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG);
3006
3007       InVals.push_back(ArgValue);
3008     }
3009   }
3010
3011   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3012     // The mips ABIs for returning structs by value requires that we copy
3013     // the sret argument into $v0 for the return. Save the argument into
3014     // a virtual register so that we can access it from the return points.
3015     if (Ins[i].Flags.isSRet()) {
3016       unsigned Reg = MipsFI->getSRetReturnReg();
3017       if (!Reg) {
3018         Reg = MF.getRegInfo().createVirtualRegister(
3019             getRegClassFor(ABI.IsN64() ? MVT::i64 : MVT::i32));
3020         MipsFI->setSRetReturnReg(Reg);
3021       }
3022       SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]);
3023       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
3024       break;
3025     }
3026   }
3027
3028   if (IsVarArg)
3029     writeVarArgRegs(OutChains, Chain, DL, DAG, CCInfo);
3030
3031   // All stores are grouped in one node to allow the matching between
3032   // the size of Ins and InVals. This only happens when on varg functions
3033   if (!OutChains.empty()) {
3034     OutChains.push_back(Chain);
3035     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
3036   }
3037
3038   return Chain;
3039 }
3040
3041 //===----------------------------------------------------------------------===//
3042 //               Return Value Calling Convention Implementation
3043 //===----------------------------------------------------------------------===//
3044
3045 bool
3046 MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
3047                                    MachineFunction &MF, bool IsVarArg,
3048                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3049                                    LLVMContext &Context) const {
3050   SmallVector<CCValAssign, 16> RVLocs;
3051   MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
3052   return CCInfo.CheckReturn(Outs, RetCC_Mips);
3053 }
3054
3055 bool
3056 MipsTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
3057   if (Subtarget.hasMips3() && Subtarget.abiUsesSoftFloat()) {
3058     if (Type == MVT::i32)
3059       return true;
3060   }
3061   return IsSigned;
3062 }
3063
3064 SDValue
3065 MipsTargetLowering::LowerReturn(SDValue Chain,
3066                                 CallingConv::ID CallConv, bool IsVarArg,
3067                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
3068                                 const SmallVectorImpl<SDValue> &OutVals,
3069                                 SDLoc DL, SelectionDAG &DAG) const {
3070   // CCValAssign - represent the assignment of
3071   // the return value to a location
3072   SmallVector<CCValAssign, 16> RVLocs;
3073   MachineFunction &MF = DAG.getMachineFunction();
3074
3075   // CCState - Info about the registers and stack slot.
3076   MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
3077
3078   // Analyze return values.
3079   CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
3080
3081   SDValue Flag;
3082   SmallVector<SDValue, 4> RetOps(1, Chain);
3083
3084   // Copy the result values into the output registers.
3085   for (unsigned i = 0; i != RVLocs.size(); ++i) {
3086     SDValue Val = OutVals[i];
3087     CCValAssign &VA = RVLocs[i];
3088     assert(VA.isRegLoc() && "Can only return in registers!");
3089     bool UseUpperBits = false;
3090
3091     switch (VA.getLocInfo()) {
3092     default:
3093       llvm_unreachable("Unknown loc info!");
3094     case CCValAssign::Full:
3095       break;
3096     case CCValAssign::BCvt:
3097       Val = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Val);
3098       break;
3099     case CCValAssign::AExtUpper:
3100       UseUpperBits = true;
3101       // Fallthrough
3102     case CCValAssign::AExt:
3103       Val = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Val);
3104       break;
3105     case CCValAssign::ZExtUpper:
3106       UseUpperBits = true;
3107       // Fallthrough
3108     case CCValAssign::ZExt:
3109       Val = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Val);
3110       break;
3111     case CCValAssign::SExtUpper:
3112       UseUpperBits = true;
3113       // Fallthrough
3114     case CCValAssign::SExt:
3115       Val = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Val);
3116       break;
3117     }
3118
3119     if (UseUpperBits) {
3120       unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits();
3121       unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3122       Val = DAG.getNode(
3123           ISD::SHL, DL, VA.getLocVT(), Val,
3124           DAG.getConstant(LocSizeInBits - ValSizeInBits, VA.getLocVT()));
3125     }
3126
3127     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
3128
3129     // Guarantee that all emitted copies are stuck together with flags.
3130     Flag = Chain.getValue(1);
3131     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3132   }
3133
3134   // The mips ABIs for returning structs by value requires that we copy
3135   // the sret argument into $v0 for the return. We saved the argument into
3136   // a virtual register in the entry block, so now we copy the value out
3137   // and into $v0.
3138   if (MF.getFunction()->hasStructRetAttr()) {
3139     MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3140     unsigned Reg = MipsFI->getSRetReturnReg();
3141
3142     if (!Reg)
3143       llvm_unreachable("sret virtual register not created in the entry block");
3144     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
3145     unsigned V0 = ABI.IsN64() ? Mips::V0_64 : Mips::V0;
3146
3147     Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
3148     Flag = Chain.getValue(1);
3149     RetOps.push_back(DAG.getRegister(V0, getPointerTy()));
3150   }
3151
3152   RetOps[0] = Chain;  // Update chain.
3153
3154   // Add the flag if we have it.
3155   if (Flag.getNode())
3156     RetOps.push_back(Flag);
3157
3158   // Return on Mips is always a "jr $ra"
3159   return DAG.getNode(MipsISD::Ret, DL, MVT::Other, RetOps);
3160 }
3161
3162 //===----------------------------------------------------------------------===//
3163 //                           Mips Inline Assembly Support
3164 //===----------------------------------------------------------------------===//
3165
3166 /// getConstraintType - Given a constraint letter, return the type of
3167 /// constraint it is for this target.
3168 MipsTargetLowering::ConstraintType MipsTargetLowering::
3169 getConstraintType(const std::string &Constraint) const
3170 {
3171   // Mips specific constraints
3172   // GCC config/mips/constraints.md
3173   //
3174   // 'd' : An address register. Equivalent to r
3175   //       unless generating MIPS16 code.
3176   // 'y' : Equivalent to r; retained for
3177   //       backwards compatibility.
3178   // 'c' : A register suitable for use in an indirect
3179   //       jump. This will always be $25 for -mabicalls.
3180   // 'l' : The lo register. 1 word storage.
3181   // 'x' : The hilo register pair. Double word storage.
3182   if (Constraint.size() == 1) {
3183     switch (Constraint[0]) {
3184       default : break;
3185       case 'd':
3186       case 'y':
3187       case 'f':
3188       case 'c':
3189       case 'l':
3190       case 'x':
3191         return C_RegisterClass;
3192       case 'R':
3193         return C_Memory;
3194     }
3195   }
3196
3197   if (Constraint == "ZC")
3198     return C_Memory;
3199
3200   return TargetLowering::getConstraintType(Constraint);
3201 }
3202
3203 /// Examine constraint type and operand type and determine a weight value.
3204 /// This object must already have been set up with the operand type
3205 /// and the current alternative constraint selected.
3206 TargetLowering::ConstraintWeight
3207 MipsTargetLowering::getSingleConstraintMatchWeight(
3208     AsmOperandInfo &info, const char *constraint) const {
3209   ConstraintWeight weight = CW_Invalid;
3210   Value *CallOperandVal = info.CallOperandVal;
3211     // If we don't have a value, we can't do a match,
3212     // but allow it at the lowest weight.
3213   if (!CallOperandVal)
3214     return CW_Default;
3215   Type *type = CallOperandVal->getType();
3216   // Look at the constraint type.
3217   switch (*constraint) {
3218   default:
3219     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3220     break;
3221   case 'd':
3222   case 'y':
3223     if (type->isIntegerTy())
3224       weight = CW_Register;
3225     break;
3226   case 'f': // FPU or MSA register
3227     if (Subtarget.hasMSA() && type->isVectorTy() &&
3228         cast<VectorType>(type)->getBitWidth() == 128)
3229       weight = CW_Register;
3230     else if (type->isFloatTy())
3231       weight = CW_Register;
3232     break;
3233   case 'c': // $25 for indirect jumps
3234   case 'l': // lo register
3235   case 'x': // hilo register pair
3236     if (type->isIntegerTy())
3237       weight = CW_SpecificReg;
3238     break;
3239   case 'I': // signed 16 bit immediate
3240   case 'J': // integer zero
3241   case 'K': // unsigned 16 bit immediate
3242   case 'L': // signed 32 bit immediate where lower 16 bits are 0
3243   case 'N': // immediate in the range of -65535 to -1 (inclusive)
3244   case 'O': // signed 15 bit immediate (+- 16383)
3245   case 'P': // immediate in the range of 65535 to 1 (inclusive)
3246     if (isa<ConstantInt>(CallOperandVal))
3247       weight = CW_Constant;
3248     break;
3249   case 'R':
3250     weight = CW_Memory;
3251     break;
3252   }
3253   return weight;
3254 }
3255
3256 /// This is a helper function to parse a physical register string and split it
3257 /// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
3258 /// that is returned indicates whether parsing was successful. The second flag
3259 /// is true if the numeric part exists.
3260 static std::pair<bool, bool>
3261 parsePhysicalReg(StringRef C, std::string &Prefix,
3262                  unsigned long long &Reg) {
3263   if (C.front() != '{' || C.back() != '}')
3264     return std::make_pair(false, false);
3265
3266   // Search for the first numeric character.
3267   StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1;
3268   I = std::find_if(B, E, std::ptr_fun(isdigit));
3269
3270   Prefix.assign(B, I - B);
3271
3272   // The second flag is set to false if no numeric characters were found.
3273   if (I == E)
3274     return std::make_pair(true, false);
3275
3276   // Parse the numeric characters.
3277   return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg),
3278                         true);
3279 }
3280
3281 std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
3282 parseRegForInlineAsmConstraint(StringRef C, MVT VT) const {
3283   const TargetRegisterInfo *TRI =
3284       Subtarget.getRegisterInfo();
3285   const TargetRegisterClass *RC;
3286   std::string Prefix;
3287   unsigned long long Reg;
3288
3289   std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg);
3290
3291   if (!R.first)
3292     return std::make_pair(0U, nullptr);
3293
3294   if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo.
3295     // No numeric characters follow "hi" or "lo".
3296     if (R.second)
3297       return std::make_pair(0U, nullptr);
3298
3299     RC = TRI->getRegClass(Prefix == "hi" ?
3300                           Mips::HI32RegClassID : Mips::LO32RegClassID);
3301     return std::make_pair(*(RC->begin()), RC);
3302   } else if (Prefix.compare(0, 4, "$msa") == 0) {
3303     // Parse $msa(ir|csr|access|save|modify|request|map|unmap)
3304
3305     // No numeric characters follow the name.
3306     if (R.second)
3307       return std::make_pair(0U, nullptr);
3308
3309     Reg = StringSwitch<unsigned long long>(Prefix)
3310               .Case("$msair", Mips::MSAIR)
3311               .Case("$msacsr", Mips::MSACSR)
3312               .Case("$msaaccess", Mips::MSAAccess)
3313               .Case("$msasave", Mips::MSASave)
3314               .Case("$msamodify", Mips::MSAModify)
3315               .Case("$msarequest", Mips::MSARequest)
3316               .Case("$msamap", Mips::MSAMap)
3317               .Case("$msaunmap", Mips::MSAUnmap)
3318               .Default(0);
3319
3320     if (!Reg)
3321       return std::make_pair(0U, nullptr);
3322
3323     RC = TRI->getRegClass(Mips::MSACtrlRegClassID);
3324     return std::make_pair(Reg, RC);
3325   }
3326
3327   if (!R.second)
3328     return std::make_pair(0U, nullptr);
3329
3330   if (Prefix == "$f") { // Parse $f0-$f31.
3331     // If the size of FP registers is 64-bit or Reg is an even number, select
3332     // the 64-bit register class. Otherwise, select the 32-bit register class.
3333     if (VT == MVT::Other)
3334       VT = (Subtarget.isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32;
3335
3336     RC = getRegClassFor(VT);
3337
3338     if (RC == &Mips::AFGR64RegClass) {
3339       assert(Reg % 2 == 0);
3340       Reg >>= 1;
3341     }
3342   } else if (Prefix == "$fcc") // Parse $fcc0-$fcc7.
3343     RC = TRI->getRegClass(Mips::FCCRegClassID);
3344   else if (Prefix == "$w") { // Parse $w0-$w31.
3345     RC = getRegClassFor((VT == MVT::Other) ? MVT::v16i8 : VT);
3346   } else { // Parse $0-$31.
3347     assert(Prefix == "$");
3348     RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT);
3349   }
3350
3351   assert(Reg < RC->getNumRegs());
3352   return std::make_pair(*(RC->begin() + Reg), RC);
3353 }
3354
3355 /// Given a register class constraint, like 'r', if this corresponds directly
3356 /// to an LLVM register class, return a register of 0 and the register class
3357 /// pointer.
3358 std::pair<unsigned, const TargetRegisterClass *>
3359 MipsTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
3360                                                  const std::string &Constraint,
3361                                                  MVT VT) const {
3362   if (Constraint.size() == 1) {
3363     switch (Constraint[0]) {
3364     case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
3365     case 'y': // Same as 'r'. Exists for compatibility.
3366     case 'r':
3367       if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
3368         if (Subtarget.inMips16Mode())
3369           return std::make_pair(0U, &Mips::CPU16RegsRegClass);
3370         return std::make_pair(0U, &Mips::GPR32RegClass);
3371       }
3372       if (VT == MVT::i64 && !Subtarget.isGP64bit())
3373         return std::make_pair(0U, &Mips::GPR32RegClass);
3374       if (VT == MVT::i64 && Subtarget.isGP64bit())
3375         return std::make_pair(0U, &Mips::GPR64RegClass);
3376       // This will generate an error message
3377       return std::make_pair(0U, nullptr);
3378     case 'f': // FPU or MSA register
3379       if (VT == MVT::v16i8)
3380         return std::make_pair(0U, &Mips::MSA128BRegClass);
3381       else if (VT == MVT::v8i16 || VT == MVT::v8f16)
3382         return std::make_pair(0U, &Mips::MSA128HRegClass);
3383       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
3384         return std::make_pair(0U, &Mips::MSA128WRegClass);
3385       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
3386         return std::make_pair(0U, &Mips::MSA128DRegClass);
3387       else if (VT == MVT::f32)
3388         return std::make_pair(0U, &Mips::FGR32RegClass);
3389       else if ((VT == MVT::f64) && (!Subtarget.isSingleFloat())) {
3390         if (Subtarget.isFP64bit())
3391           return std::make_pair(0U, &Mips::FGR64RegClass);
3392         return std::make_pair(0U, &Mips::AFGR64RegClass);
3393       }
3394       break;
3395     case 'c': // register suitable for indirect jump
3396       if (VT == MVT::i32)
3397         return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
3398       assert(VT == MVT::i64 && "Unexpected type.");
3399       return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
3400     case 'l': // register suitable for indirect jump
3401       if (VT == MVT::i32)
3402         return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass);
3403       return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass);
3404     case 'x': // register suitable for indirect jump
3405       // Fixme: Not triggering the use of both hi and low
3406       // This will generate an error message
3407       return std::make_pair(0U, nullptr);
3408     }
3409   }
3410
3411   std::pair<unsigned, const TargetRegisterClass *> R;
3412   R = parseRegForInlineAsmConstraint(Constraint, VT);
3413
3414   if (R.second)
3415     return R;
3416
3417   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
3418 }
3419
3420 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3421 /// vector.  If it is invalid, don't add anything to Ops.
3422 void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3423                                                      std::string &Constraint,
3424                                                      std::vector<SDValue>&Ops,
3425                                                      SelectionDAG &DAG) const {
3426   SDValue Result;
3427
3428   // Only support length 1 constraints for now.
3429   if (Constraint.length() > 1) return;
3430
3431   char ConstraintLetter = Constraint[0];
3432   switch (ConstraintLetter) {
3433   default: break; // This will fall through to the generic implementation
3434   case 'I': // Signed 16 bit constant
3435     // If this fails, the parent routine will give an error
3436     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3437       EVT Type = Op.getValueType();
3438       int64_t Val = C->getSExtValue();
3439       if (isInt<16>(Val)) {
3440         Result = DAG.getTargetConstant(Val, Type);
3441         break;
3442       }
3443     }
3444     return;
3445   case 'J': // integer zero
3446     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3447       EVT Type = Op.getValueType();
3448       int64_t Val = C->getZExtValue();
3449       if (Val == 0) {
3450         Result = DAG.getTargetConstant(0, Type);
3451         break;
3452       }
3453     }
3454     return;
3455   case 'K': // unsigned 16 bit immediate
3456     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3457       EVT Type = Op.getValueType();
3458       uint64_t Val = (uint64_t)C->getZExtValue();
3459       if (isUInt<16>(Val)) {
3460         Result = DAG.getTargetConstant(Val, Type);
3461         break;
3462       }
3463     }
3464     return;
3465   case 'L': // signed 32 bit immediate where lower 16 bits are 0
3466     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3467       EVT Type = Op.getValueType();
3468       int64_t Val = C->getSExtValue();
3469       if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
3470         Result = DAG.getTargetConstant(Val, Type);
3471         break;
3472       }
3473     }
3474     return;
3475   case 'N': // immediate in the range of -65535 to -1 (inclusive)
3476     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3477       EVT Type = Op.getValueType();
3478       int64_t Val = C->getSExtValue();
3479       if ((Val >= -65535) && (Val <= -1)) {
3480         Result = DAG.getTargetConstant(Val, Type);
3481         break;
3482       }
3483     }
3484     return;
3485   case 'O': // signed 15 bit immediate
3486     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3487       EVT Type = Op.getValueType();
3488       int64_t Val = C->getSExtValue();
3489       if ((isInt<15>(Val))) {
3490         Result = DAG.getTargetConstant(Val, Type);
3491         break;
3492       }
3493     }
3494     return;
3495   case 'P': // immediate in the range of 1 to 65535 (inclusive)
3496     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3497       EVT Type = Op.getValueType();
3498       int64_t Val = C->getSExtValue();
3499       if ((Val <= 65535) && (Val >= 1)) {
3500         Result = DAG.getTargetConstant(Val, Type);
3501         break;
3502       }
3503     }
3504     return;
3505   }
3506
3507   if (Result.getNode()) {
3508     Ops.push_back(Result);
3509     return;
3510   }
3511
3512   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3513 }
3514
3515 bool MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3516                                                Type *Ty) const {
3517   // No global is ever allowed as a base.
3518   if (AM.BaseGV)
3519     return false;
3520
3521   switch (AM.Scale) {
3522   case 0: // "r+i" or just "i", depending on HasBaseReg.
3523     break;
3524   case 1:
3525     if (!AM.HasBaseReg) // allow "r+i".
3526       break;
3527     return false; // disallow "r+r" or "r+r+i".
3528   default:
3529     return false;
3530   }
3531
3532   return true;
3533 }
3534
3535 bool
3536 MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3537   // The Mips target isn't yet aware of offsets.
3538   return false;
3539 }
3540
3541 EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3542                                             unsigned SrcAlign,
3543                                             bool IsMemset, bool ZeroMemset,
3544                                             bool MemcpyStrSrc,
3545                                             MachineFunction &MF) const {
3546   if (Subtarget.hasMips64())
3547     return MVT::i64;
3548
3549   return MVT::i32;
3550 }
3551
3552 bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3553   if (VT != MVT::f32 && VT != MVT::f64)
3554     return false;
3555   if (Imm.isNegZero())
3556     return false;
3557   return Imm.isZero();
3558 }
3559
3560 unsigned MipsTargetLowering::getJumpTableEncoding() const {
3561   if (ABI.IsN64())
3562     return MachineJumpTableInfo::EK_GPRel64BlockAddress;
3563
3564   return TargetLowering::getJumpTableEncoding();
3565 }
3566
3567 void MipsTargetLowering::copyByValRegs(
3568     SDValue Chain, SDLoc DL, std::vector<SDValue> &OutChains, SelectionDAG &DAG,
3569     const ISD::ArgFlagsTy &Flags, SmallVectorImpl<SDValue> &InVals,
3570     const Argument *FuncArg, unsigned FirstReg, unsigned LastReg,
3571     const CCValAssign &VA, MipsCCState &State) const {
3572   MachineFunction &MF = DAG.getMachineFunction();
3573   MachineFrameInfo *MFI = MF.getFrameInfo();
3574   unsigned GPRSizeInBytes = Subtarget.getGPRSizeInBytes();
3575   unsigned NumRegs = LastReg - FirstReg;
3576   unsigned RegAreaSize = NumRegs * GPRSizeInBytes;
3577   unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
3578   int FrameObjOffset;
3579   ArrayRef<MCPhysReg> ByValArgRegs = ABI.GetByValArgRegs();
3580
3581   if (RegAreaSize)
3582     FrameObjOffset =
3583         (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
3584         (int)((ByValArgRegs.size() - FirstReg) * GPRSizeInBytes);
3585   else
3586     FrameObjOffset = VA.getLocMemOffset();
3587
3588   // Create frame object.
3589   EVT PtrTy = getPointerTy();
3590   int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
3591   SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
3592   InVals.push_back(FIN);
3593
3594   if (!NumRegs)
3595     return;
3596
3597   // Copy arg registers.
3598   MVT RegTy = MVT::getIntegerVT(GPRSizeInBytes * 8);
3599   const TargetRegisterClass *RC = getRegClassFor(RegTy);
3600
3601   for (unsigned I = 0; I < NumRegs; ++I) {
3602     unsigned ArgReg = ByValArgRegs[FirstReg + I];
3603     unsigned VReg = addLiveIn(MF, ArgReg, RC);
3604     unsigned Offset = I * GPRSizeInBytes;
3605     SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
3606                                    DAG.getConstant(Offset, PtrTy));
3607     SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
3608                                  StorePtr, MachinePointerInfo(FuncArg, Offset),
3609                                  false, false, 0);
3610     OutChains.push_back(Store);
3611   }
3612 }
3613
3614 // Copy byVal arg to registers and stack.
3615 void MipsTargetLowering::passByValArg(
3616     SDValue Chain, SDLoc DL,
3617     std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
3618     SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
3619     MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg, unsigned FirstReg,
3620     unsigned LastReg, const ISD::ArgFlagsTy &Flags, bool isLittle,
3621     const CCValAssign &VA) const {
3622   unsigned ByValSizeInBytes = Flags.getByValSize();
3623   unsigned OffsetInBytes = 0; // From beginning of struct
3624   unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
3625   unsigned Alignment = std::min(Flags.getByValAlign(), RegSizeInBytes);
3626   EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
3627   unsigned NumRegs = LastReg - FirstReg;
3628
3629   if (NumRegs) {
3630     const ArrayRef<MCPhysReg> ArgRegs = ABI.GetByValArgRegs();
3631     bool LeftoverBytes = (NumRegs * RegSizeInBytes > ByValSizeInBytes);
3632     unsigned I = 0;
3633
3634     // Copy words to registers.
3635     for (; I < NumRegs - LeftoverBytes; ++I, OffsetInBytes += RegSizeInBytes) {
3636       SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3637                                     DAG.getConstant(OffsetInBytes, PtrTy));
3638       SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
3639                                     MachinePointerInfo(), false, false, false,
3640                                     Alignment);
3641       MemOpChains.push_back(LoadVal.getValue(1));
3642       unsigned ArgReg = ArgRegs[FirstReg + I];
3643       RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
3644     }
3645
3646     // Return if the struct has been fully copied.
3647     if (ByValSizeInBytes == OffsetInBytes)
3648       return;
3649
3650     // Copy the remainder of the byval argument with sub-word loads and shifts.
3651     if (LeftoverBytes) {
3652       SDValue Val;
3653
3654       for (unsigned LoadSizeInBytes = RegSizeInBytes / 2, TotalBytesLoaded = 0;
3655            OffsetInBytes < ByValSizeInBytes; LoadSizeInBytes /= 2) {
3656         unsigned RemainingSizeInBytes = ByValSizeInBytes - OffsetInBytes;
3657
3658         if (RemainingSizeInBytes < LoadSizeInBytes)
3659           continue;
3660
3661         // Load subword.
3662         SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3663                                       DAG.getConstant(OffsetInBytes, PtrTy));
3664         SDValue LoadVal = DAG.getExtLoad(
3665             ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr, MachinePointerInfo(),
3666             MVT::getIntegerVT(LoadSizeInBytes * 8), false, false, false,
3667             Alignment);
3668         MemOpChains.push_back(LoadVal.getValue(1));
3669
3670         // Shift the loaded value.
3671         unsigned Shamt;
3672
3673         if (isLittle)
3674           Shamt = TotalBytesLoaded * 8;
3675         else
3676           Shamt = (RegSizeInBytes - (TotalBytesLoaded + LoadSizeInBytes)) * 8;
3677
3678         SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
3679                                     DAG.getConstant(Shamt, MVT::i32));
3680
3681         if (Val.getNode())
3682           Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
3683         else
3684           Val = Shift;
3685
3686         OffsetInBytes += LoadSizeInBytes;
3687         TotalBytesLoaded += LoadSizeInBytes;
3688         Alignment = std::min(Alignment, LoadSizeInBytes);
3689       }
3690
3691       unsigned ArgReg = ArgRegs[FirstReg + I];
3692       RegsToPass.push_back(std::make_pair(ArgReg, Val));
3693       return;
3694     }
3695   }
3696
3697   // Copy remainder of byval arg to it with memcpy.
3698   unsigned MemCpySize = ByValSizeInBytes - OffsetInBytes;
3699   SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3700                             DAG.getConstant(OffsetInBytes, PtrTy));
3701   SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
3702                             DAG.getIntPtrConstant(VA.getLocMemOffset()));
3703   Chain = DAG.getMemcpy(Chain, DL, Dst, Src, DAG.getConstant(MemCpySize, PtrTy),
3704                         Alignment, /*isVolatile=*/false, /*AlwaysInline=*/false,
3705                         /*isTailCall=*/false,
3706                         MachinePointerInfo(), MachinePointerInfo());
3707   MemOpChains.push_back(Chain);
3708 }
3709
3710 void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
3711                                          SDValue Chain, SDLoc DL,
3712                                          SelectionDAG &DAG,
3713                                          CCState &State) const {
3714   const ArrayRef<MCPhysReg> ArgRegs = ABI.GetVarArgRegs();
3715   unsigned Idx = State.getFirstUnallocated(ArgRegs);
3716   unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
3717   MVT RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
3718   const TargetRegisterClass *RC = getRegClassFor(RegTy);
3719   MachineFunction &MF = DAG.getMachineFunction();
3720   MachineFrameInfo *MFI = MF.getFrameInfo();
3721   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3722
3723   // Offset of the first variable argument from stack pointer.
3724   int VaArgOffset;
3725
3726   if (ArgRegs.size() == Idx)
3727     VaArgOffset =
3728         RoundUpToAlignment(State.getNextStackOffset(), RegSizeInBytes);
3729   else {
3730     VaArgOffset =
3731         (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
3732         (int)(RegSizeInBytes * (ArgRegs.size() - Idx));
3733   }
3734
3735   // Record the frame index of the first variable argument
3736   // which is a value necessary to VASTART.
3737   int FI = MFI->CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
3738   MipsFI->setVarArgsFrameIndex(FI);
3739
3740   // Copy the integer registers that have not been used for argument passing
3741   // to the argument register save area. For O32, the save area is allocated
3742   // in the caller's stack frame, while for N32/64, it is allocated in the
3743   // callee's stack frame.
3744   for (unsigned I = Idx; I < ArgRegs.size();
3745        ++I, VaArgOffset += RegSizeInBytes) {
3746     unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
3747     SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
3748     FI = MFI->CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
3749     SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
3750     SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
3751                                  MachinePointerInfo(), false, false, 0);
3752     cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(
3753         (Value *)nullptr);
3754     OutChains.push_back(Store);
3755   }
3756 }
3757
3758 void MipsTargetLowering::HandleByVal(CCState *State, unsigned &Size,
3759                                      unsigned Align) const {
3760   const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
3761
3762   assert(Size && "Byval argument's size shouldn't be 0.");
3763
3764   Align = std::min(Align, TFL->getStackAlignment());
3765
3766   unsigned FirstReg = 0;
3767   unsigned NumRegs = 0;
3768
3769   if (State->getCallingConv() != CallingConv::Fast) {
3770     unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
3771     const ArrayRef<MCPhysReg> IntArgRegs = ABI.GetByValArgRegs();
3772     // FIXME: The O32 case actually describes no shadow registers.
3773     const MCPhysReg *ShadowRegs =
3774         ABI.IsO32() ? IntArgRegs.data() : Mips64DPRegs;
3775
3776     // We used to check the size as well but we can't do that anymore since
3777     // CCState::HandleByVal() rounds up the size after calling this function.
3778     assert(!(Align % RegSizeInBytes) &&
3779            "Byval argument's alignment should be a multiple of"
3780            "RegSizeInBytes.");
3781
3782     FirstReg = State->getFirstUnallocated(IntArgRegs);
3783
3784     // If Align > RegSizeInBytes, the first arg register must be even.
3785     // FIXME: This condition happens to do the right thing but it's not the
3786     //        right way to test it. We want to check that the stack frame offset
3787     //        of the register is aligned.
3788     if ((Align > RegSizeInBytes) && (FirstReg % 2)) {
3789       State->AllocateReg(IntArgRegs[FirstReg], ShadowRegs[FirstReg]);
3790       ++FirstReg;
3791     }
3792
3793     // Mark the registers allocated.
3794     Size = RoundUpToAlignment(Size, RegSizeInBytes);
3795     for (unsigned I = FirstReg; Size > 0 && (I < IntArgRegs.size());
3796          Size -= RegSizeInBytes, ++I, ++NumRegs)
3797       State->AllocateReg(IntArgRegs[I], ShadowRegs[I]);
3798   }
3799
3800   State->addInRegsParamInfo(FirstReg, FirstReg + NumRegs);
3801 }
3802
3803 MachineBasicBlock *
3804 MipsTargetLowering::emitPseudoSELECT(MachineInstr *MI, MachineBasicBlock *BB,
3805                                      bool isFPCmp, unsigned Opc) const {
3806   assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) &&
3807          "Subtarget already supports SELECT nodes with the use of"
3808          "conditional-move instructions.");
3809
3810   const TargetInstrInfo *TII =
3811       Subtarget.getInstrInfo();
3812   DebugLoc DL = MI->getDebugLoc();
3813
3814   // To "insert" a SELECT instruction, we actually have to insert the
3815   // diamond control-flow pattern.  The incoming instruction knows the
3816   // destination vreg to set, the condition code register to branch on, the
3817   // true/false values to select between, and a branch opcode to use.
3818   const BasicBlock *LLVM_BB = BB->getBasicBlock();
3819   MachineFunction::iterator It = BB;
3820   ++It;
3821
3822   //  thisMBB:
3823   //  ...
3824   //   TrueVal = ...
3825   //   setcc r1, r2, r3
3826   //   bNE   r1, r0, copy1MBB
3827   //   fallthrough --> copy0MBB
3828   MachineBasicBlock *thisMBB  = BB;
3829   MachineFunction *F = BB->getParent();
3830   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
3831   MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
3832   F->insert(It, copy0MBB);
3833   F->insert(It, sinkMBB);
3834
3835   // Transfer the remainder of BB and its successor edges to sinkMBB.
3836   sinkMBB->splice(sinkMBB->begin(), BB,
3837                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
3838   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
3839
3840   // Next, add the true and fallthrough blocks as its successors.
3841   BB->addSuccessor(copy0MBB);
3842   BB->addSuccessor(sinkMBB);
3843
3844   if (isFPCmp) {
3845     // bc1[tf] cc, sinkMBB
3846     BuildMI(BB, DL, TII->get(Opc))
3847       .addReg(MI->getOperand(1).getReg())
3848       .addMBB(sinkMBB);
3849   } else {
3850     // bne rs, $0, sinkMBB
3851     BuildMI(BB, DL, TII->get(Opc))
3852       .addReg(MI->getOperand(1).getReg())
3853       .addReg(Mips::ZERO)
3854       .addMBB(sinkMBB);
3855   }
3856
3857   //  copy0MBB:
3858   //   %FalseValue = ...
3859   //   # fallthrough to sinkMBB
3860   BB = copy0MBB;
3861
3862   // Update machine-CFG edges
3863   BB->addSuccessor(sinkMBB);
3864
3865   //  sinkMBB:
3866   //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
3867   //  ...
3868   BB = sinkMBB;
3869
3870   BuildMI(*BB, BB->begin(), DL,
3871           TII->get(Mips::PHI), MI->getOperand(0).getReg())
3872     .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB)
3873     .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB);
3874
3875   MI->eraseFromParent();   // The pseudo instruction is gone now.
3876
3877   return BB;
3878 }
3879
3880 // FIXME? Maybe this could be a TableGen attribute on some registers and
3881 // this table could be generated automatically from RegInfo.
3882 unsigned MipsTargetLowering::getRegisterByName(const char* RegName,
3883                                                EVT VT) const {
3884   // Named registers is expected to be fairly rare. For now, just support $28
3885   // since the linux kernel uses it.
3886   if (Subtarget.isGP64bit()) {
3887     unsigned Reg = StringSwitch<unsigned>(RegName)
3888                          .Case("$28", Mips::GP_64)
3889                          .Default(0);
3890     if (Reg)
3891       return Reg;
3892   } else {
3893     unsigned Reg = StringSwitch<unsigned>(RegName)
3894                          .Case("$28", Mips::GP)
3895                          .Default(0);
3896     if (Reg)
3897       return Reg;
3898   }
3899   report_fatal_error("Invalid register name global variable");
3900 }