[mips] Rename register classes CPURegs and CPU64Regs.
[oota-llvm.git] / lib / Target / Mips / MipsISelLowering.cpp
1 //===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that Mips uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "mips-lower"
15 #include "MipsISelLowering.h"
16 #include "InstPrinter/MipsInstPrinter.h"
17 #include "MCTargetDesc/MipsBaseInfo.h"
18 #include "MipsMachineFunction.h"
19 #include "MipsSubtarget.h"
20 #include "MipsTargetMachine.h"
21 #include "MipsTargetObjectFile.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/SelectionDAGISel.h"
29 #include "llvm/CodeGen/ValueTypes.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/raw_ostream.h"
37
38 using namespace llvm;
39
40 STATISTIC(NumTailCalls, "Number of tail calls");
41
42 static cl::opt<bool>
43 LargeGOT("mxgot", cl::Hidden,
44          cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
45
46 static cl::opt<bool>
47 NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
48                cl::desc("MIPS: Don't trap on integer division by zero."),
49                cl::init(false));
50
51 static const uint16_t O32IntRegs[4] = {
52   Mips::A0, Mips::A1, Mips::A2, Mips::A3
53 };
54
55 static const uint16_t Mips64IntRegs[8] = {
56   Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
57   Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64
58 };
59
60 static const uint16_t Mips64DPRegs[8] = {
61   Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
62   Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
63 };
64
65 // If I is a shifted mask, set the size (Size) and the first bit of the
66 // mask (Pos), and return true.
67 // For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
68 static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
69   if (!isShiftedMask_64(I))
70      return false;
71
72   Size = CountPopulation_64(I);
73   Pos = countTrailingZeros(I);
74   return true;
75 }
76
77 SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
78   MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
79   return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
80 }
81
82 static SDValue getTargetNode(SDValue Op, SelectionDAG &DAG, unsigned Flag) {
83   EVT Ty = Op.getValueType();
84
85   if (GlobalAddressSDNode *N = dyn_cast<GlobalAddressSDNode>(Op))
86     return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(Op), Ty, 0,
87                                       Flag);
88   if (ExternalSymbolSDNode *N = dyn_cast<ExternalSymbolSDNode>(Op))
89     return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
90   if (BlockAddressSDNode *N = dyn_cast<BlockAddressSDNode>(Op))
91     return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
92   if (JumpTableSDNode *N = dyn_cast<JumpTableSDNode>(Op))
93     return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
94   if (ConstantPoolSDNode *N = dyn_cast<ConstantPoolSDNode>(Op))
95     return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
96                                      N->getOffset(), Flag);
97
98   llvm_unreachable("Unexpected node type.");
99   return SDValue();
100 }
101
102 static SDValue getAddrNonPIC(SDValue Op, SelectionDAG &DAG) {
103   SDLoc DL(Op);
104   EVT Ty = Op.getValueType();
105   SDValue Hi = getTargetNode(Op, DAG, MipsII::MO_ABS_HI);
106   SDValue Lo = getTargetNode(Op, DAG, MipsII::MO_ABS_LO);
107   return DAG.getNode(ISD::ADD, DL, Ty,
108                      DAG.getNode(MipsISD::Hi, DL, Ty, Hi),
109                      DAG.getNode(MipsISD::Lo, DL, Ty, Lo));
110 }
111
112 SDValue MipsTargetLowering::getAddrLocal(SDValue Op, SelectionDAG &DAG,
113                                          bool HasMips64) const {
114   SDLoc DL(Op);
115   EVT Ty = Op.getValueType();
116   unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
117   SDValue GOT = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
118                             getTargetNode(Op, DAG, GOTFlag));
119   SDValue Load = DAG.getLoad(Ty, DL, DAG.getEntryNode(), GOT,
120                              MachinePointerInfo::getGOT(), false, false, false,
121                              0);
122   unsigned LoFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
123   SDValue Lo = DAG.getNode(MipsISD::Lo, DL, Ty, getTargetNode(Op, DAG, LoFlag));
124   return DAG.getNode(ISD::ADD, DL, Ty, Load, Lo);
125 }
126
127 SDValue MipsTargetLowering::getAddrGlobal(SDValue Op, SelectionDAG &DAG,
128                                           unsigned Flag) const {
129   SDLoc DL(Op);
130   EVT Ty = Op.getValueType();
131   SDValue Tgt = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
132                             getTargetNode(Op, DAG, Flag));
133   return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Tgt,
134                      MachinePointerInfo::getGOT(), false, false, false, 0);
135 }
136
137 SDValue MipsTargetLowering::getAddrGlobalLargeGOT(SDValue Op, SelectionDAG &DAG,
138                                                   unsigned HiFlag,
139                                                   unsigned LoFlag) const {
140   SDLoc DL(Op);
141   EVT Ty = Op.getValueType();
142   SDValue Hi = DAG.getNode(MipsISD::Hi, DL, Ty, getTargetNode(Op, DAG, HiFlag));
143   Hi = DAG.getNode(ISD::ADD, DL, Ty, Hi, getGlobalReg(DAG, Ty));
144   SDValue Wrapper = DAG.getNode(MipsISD::Wrapper, DL, Ty, Hi,
145                                 getTargetNode(Op, DAG, LoFlag));
146   return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Wrapper,
147                      MachinePointerInfo::getGOT(), false, false, false, 0);
148 }
149
150 const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
151   switch (Opcode) {
152   case MipsISD::JmpLink:           return "MipsISD::JmpLink";
153   case MipsISD::TailCall:          return "MipsISD::TailCall";
154   case MipsISD::Hi:                return "MipsISD::Hi";
155   case MipsISD::Lo:                return "MipsISD::Lo";
156   case MipsISD::GPRel:             return "MipsISD::GPRel";
157   case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
158   case MipsISD::Ret:               return "MipsISD::Ret";
159   case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
160   case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
161   case MipsISD::FPCmp:             return "MipsISD::FPCmp";
162   case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
163   case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
164   case MipsISD::TruncIntFP:        return "MipsISD::TruncIntFP";
165   case MipsISD::ExtractLOHI:       return "MipsISD::ExtractLOHI";
166   case MipsISD::InsertLOHI:        return "MipsISD::InsertLOHI";
167   case MipsISD::Mult:              return "MipsISD::Mult";
168   case MipsISD::Multu:             return "MipsISD::Multu";
169   case MipsISD::MAdd:              return "MipsISD::MAdd";
170   case MipsISD::MAddu:             return "MipsISD::MAddu";
171   case MipsISD::MSub:              return "MipsISD::MSub";
172   case MipsISD::MSubu:             return "MipsISD::MSubu";
173   case MipsISD::DivRem:            return "MipsISD::DivRem";
174   case MipsISD::DivRemU:           return "MipsISD::DivRemU";
175   case MipsISD::DivRem16:          return "MipsISD::DivRem16";
176   case MipsISD::DivRemU16:         return "MipsISD::DivRemU16";
177   case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
178   case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
179   case MipsISD::Wrapper:           return "MipsISD::Wrapper";
180   case MipsISD::Sync:              return "MipsISD::Sync";
181   case MipsISD::Ext:               return "MipsISD::Ext";
182   case MipsISD::Ins:               return "MipsISD::Ins";
183   case MipsISD::LWL:               return "MipsISD::LWL";
184   case MipsISD::LWR:               return "MipsISD::LWR";
185   case MipsISD::SWL:               return "MipsISD::SWL";
186   case MipsISD::SWR:               return "MipsISD::SWR";
187   case MipsISD::LDL:               return "MipsISD::LDL";
188   case MipsISD::LDR:               return "MipsISD::LDR";
189   case MipsISD::SDL:               return "MipsISD::SDL";
190   case MipsISD::SDR:               return "MipsISD::SDR";
191   case MipsISD::EXTP:              return "MipsISD::EXTP";
192   case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
193   case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
194   case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
195   case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
196   case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
197   case MipsISD::SHILO:             return "MipsISD::SHILO";
198   case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
199   case MipsISD::MULT:              return "MipsISD::MULT";
200   case MipsISD::MULTU:             return "MipsISD::MULTU";
201   case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSP";
202   case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
203   case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
204   case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
205   case MipsISD::SHLL_DSP:          return "MipsISD::SHLL_DSP";
206   case MipsISD::SHRA_DSP:          return "MipsISD::SHRA_DSP";
207   case MipsISD::SHRL_DSP:          return "MipsISD::SHRL_DSP";
208   case MipsISD::SETCC_DSP:         return "MipsISD::SETCC_DSP";
209   case MipsISD::SELECT_CC_DSP:     return "MipsISD::SELECT_CC_DSP";
210   default:                         return NULL;
211   }
212 }
213
214 MipsTargetLowering::
215 MipsTargetLowering(MipsTargetMachine &TM)
216   : TargetLowering(TM, new MipsTargetObjectFile()),
217     Subtarget(&TM.getSubtarget<MipsSubtarget>()),
218     HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
219     IsO32(Subtarget->isABI_O32()) {
220   // Mips does not have i1 type, so use i32 for
221   // setcc operations results (slt, sgt, ...).
222   setBooleanContents(ZeroOrOneBooleanContent);
223   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
224
225   // Load extented operations for i1 types must be promoted
226   setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
227   setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
228   setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
229
230   // MIPS doesn't have extending float->double load/store
231   setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
232   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
233
234   // Used by legalize types to correctly generate the setcc result.
235   // Without this, every float setcc comes with a AND/OR with the result,
236   // we don't want this, since the fpcmp result goes to a flag register,
237   // which is used implicitly by brcond and select operations.
238   AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
239
240   // Mips Custom Operations
241   setOperationAction(ISD::BR_JT,              MVT::Other, Custom);
242   setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
243   setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
244   setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
245   setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
246   setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
247   setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
248   setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
249   setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
250   setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
251   setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
252   setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
253   setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
254   setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
255   setOperationAction(ISD::VASTART,            MVT::Other, Custom);
256   setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
257   setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
258   setOperationAction(ISD::FP_TO_SINT,         MVT::i32,   Custom);
259
260   if (!TM.Options.NoNaNsFPMath) {
261     setOperationAction(ISD::FABS,             MVT::f32,   Custom);
262     setOperationAction(ISD::FABS,             MVT::f64,   Custom);
263   }
264
265   if (HasMips64) {
266     setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
267     setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
268     setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
269     setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
270     setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
271     setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
272     setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
273     setOperationAction(ISD::STORE,              MVT::i64,   Custom);
274     setOperationAction(ISD::FP_TO_SINT,         MVT::i64,   Custom);
275   }
276
277   if (!HasMips64) {
278     setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
279     setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
280     setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
281   }
282
283   setOperationAction(ISD::ADD,                MVT::i32,   Custom);
284   if (HasMips64)
285     setOperationAction(ISD::ADD,                MVT::i64,   Custom);
286
287   setOperationAction(ISD::SDIV, MVT::i32, Expand);
288   setOperationAction(ISD::SREM, MVT::i32, Expand);
289   setOperationAction(ISD::UDIV, MVT::i32, Expand);
290   setOperationAction(ISD::UREM, MVT::i32, Expand);
291   setOperationAction(ISD::SDIV, MVT::i64, Expand);
292   setOperationAction(ISD::SREM, MVT::i64, Expand);
293   setOperationAction(ISD::UDIV, MVT::i64, Expand);
294   setOperationAction(ISD::UREM, MVT::i64, Expand);
295
296   // Operations not directly supported by Mips.
297   setOperationAction(ISD::BR_CC,             MVT::f32,   Expand);
298   setOperationAction(ISD::BR_CC,             MVT::f64,   Expand);
299   setOperationAction(ISD::BR_CC,             MVT::i32,   Expand);
300   setOperationAction(ISD::BR_CC,             MVT::i64,   Expand);
301   setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
302   setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
303   setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
304   setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
305   setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
306   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
307   setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
308   setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
309   setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
310   setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
311   setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
312   setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
313   setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
314   setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
315   setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
316   setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
317   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
318   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
319
320   if (!Subtarget->hasMips32r2())
321     setOperationAction(ISD::ROTR, MVT::i32,   Expand);
322
323   if (!Subtarget->hasMips64r2())
324     setOperationAction(ISD::ROTR, MVT::i64,   Expand);
325
326   setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
327   setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
328   setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
329   setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
330   setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
331   setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
332   setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
333   setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
334   setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
335   setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
336   setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
337   setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
338   setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
339   setOperationAction(ISD::FMA,               MVT::f32,   Expand);
340   setOperationAction(ISD::FMA,               MVT::f64,   Expand);
341   setOperationAction(ISD::FREM,              MVT::f32,   Expand);
342   setOperationAction(ISD::FREM,              MVT::f64,   Expand);
343
344   if (!TM.Options.NoNaNsFPMath) {
345     setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
346     setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
347   }
348
349   setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
350
351   setOperationAction(ISD::VAARG,             MVT::Other, Expand);
352   setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
353   setOperationAction(ISD::VAEND,             MVT::Other, Expand);
354
355   // Use the default for now
356   setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
357   setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
358
359   setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
360   setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
361   setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
362   setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
363
364   setInsertFencesForAtomic(true);
365
366   if (!Subtarget->hasSEInReg()) {
367     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
368     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
369   }
370
371   if (!Subtarget->hasBitCount()) {
372     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
373     setOperationAction(ISD::CTLZ, MVT::i64, Expand);
374   }
375
376   if (!Subtarget->hasSwap()) {
377     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
378     setOperationAction(ISD::BSWAP, MVT::i64, Expand);
379   }
380
381   if (HasMips64) {
382     setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
383     setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
384     setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
385     setTruncStoreAction(MVT::i64, MVT::i32, Custom);
386   }
387
388   setOperationAction(ISD::TRAP, MVT::Other, Legal);
389
390   setTargetDAGCombine(ISD::SDIVREM);
391   setTargetDAGCombine(ISD::UDIVREM);
392   setTargetDAGCombine(ISD::SELECT);
393   setTargetDAGCombine(ISD::AND);
394   setTargetDAGCombine(ISD::OR);
395   setTargetDAGCombine(ISD::ADD);
396
397   setMinFunctionAlignment(HasMips64 ? 3 : 2);
398
399   setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
400
401   setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
402   setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
403
404   MaxStoresPerMemcpy = 16;
405 }
406
407 const MipsTargetLowering *MipsTargetLowering::create(MipsTargetMachine &TM) {
408   if (TM.getSubtargetImpl()->inMips16Mode())
409     return llvm::createMips16TargetLowering(TM);
410
411   return llvm::createMipsSETargetLowering(TM);
412 }
413
414 EVT MipsTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
415   if (!VT.isVector())
416     return MVT::i32;
417   return VT.changeVectorElementTypeToInteger();
418 }
419
420 static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
421                                     TargetLowering::DAGCombinerInfo &DCI,
422                                     const MipsSubtarget *Subtarget) {
423   if (DCI.isBeforeLegalizeOps())
424     return SDValue();
425
426   EVT Ty = N->getValueType(0);
427   unsigned LO = (Ty == MVT::i32) ? Mips::LO : Mips::LO64;
428   unsigned HI = (Ty == MVT::i32) ? Mips::HI : Mips::HI64;
429   unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
430                                                   MipsISD::DivRemU16;
431   SDLoc DL(N);
432
433   SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
434                                N->getOperand(0), N->getOperand(1));
435   SDValue InChain = DAG.getEntryNode();
436   SDValue InGlue = DivRem;
437
438   // insert MFLO
439   if (N->hasAnyUseOfValue(0)) {
440     SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
441                                             InGlue);
442     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
443     InChain = CopyFromLo.getValue(1);
444     InGlue = CopyFromLo.getValue(2);
445   }
446
447   // insert MFHI
448   if (N->hasAnyUseOfValue(1)) {
449     SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
450                                             HI, Ty, InGlue);
451     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
452   }
453
454   return SDValue();
455 }
456
457 static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
458   switch (CC) {
459   default: llvm_unreachable("Unknown fp condition code!");
460   case ISD::SETEQ:
461   case ISD::SETOEQ: return Mips::FCOND_OEQ;
462   case ISD::SETUNE: return Mips::FCOND_UNE;
463   case ISD::SETLT:
464   case ISD::SETOLT: return Mips::FCOND_OLT;
465   case ISD::SETGT:
466   case ISD::SETOGT: return Mips::FCOND_OGT;
467   case ISD::SETLE:
468   case ISD::SETOLE: return Mips::FCOND_OLE;
469   case ISD::SETGE:
470   case ISD::SETOGE: return Mips::FCOND_OGE;
471   case ISD::SETULT: return Mips::FCOND_ULT;
472   case ISD::SETULE: return Mips::FCOND_ULE;
473   case ISD::SETUGT: return Mips::FCOND_UGT;
474   case ISD::SETUGE: return Mips::FCOND_UGE;
475   case ISD::SETUO:  return Mips::FCOND_UN;
476   case ISD::SETO:   return Mips::FCOND_OR;
477   case ISD::SETNE:
478   case ISD::SETONE: return Mips::FCOND_ONE;
479   case ISD::SETUEQ: return Mips::FCOND_UEQ;
480   }
481 }
482
483
484 /// This function returns true if the floating point conditional branches and
485 /// conditional moves which use condition code CC should be inverted.
486 static bool invertFPCondCodeUser(Mips::CondCode CC) {
487   if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
488     return false;
489
490   assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
491          "Illegal Condition Code");
492
493   return true;
494 }
495
496 // Creates and returns an FPCmp node from a setcc node.
497 // Returns Op if setcc is not a floating point comparison.
498 static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
499   // must be a SETCC node
500   if (Op.getOpcode() != ISD::SETCC)
501     return Op;
502
503   SDValue LHS = Op.getOperand(0);
504
505   if (!LHS.getValueType().isFloatingPoint())
506     return Op;
507
508   SDValue RHS = Op.getOperand(1);
509   SDLoc DL(Op);
510
511   // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
512   // node if necessary.
513   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
514
515   return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
516                      DAG.getConstant(condCodeToFCC(CC), MVT::i32));
517 }
518
519 // Creates and returns a CMovFPT/F node.
520 static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
521                             SDValue False, SDLoc DL) {
522   ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
523   bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
524   SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
525
526   return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
527                      True.getValueType(), True, FCC0, False, Cond);
528 }
529
530 static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
531                                     TargetLowering::DAGCombinerInfo &DCI,
532                                     const MipsSubtarget *Subtarget) {
533   if (DCI.isBeforeLegalizeOps())
534     return SDValue();
535
536   SDValue SetCC = N->getOperand(0);
537
538   if ((SetCC.getOpcode() != ISD::SETCC) ||
539       !SetCC.getOperand(0).getValueType().isInteger())
540     return SDValue();
541
542   SDValue False = N->getOperand(2);
543   EVT FalseTy = False.getValueType();
544
545   if (!FalseTy.isInteger())
546     return SDValue();
547
548   ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
549
550   if (!CN || CN->getZExtValue())
551     return SDValue();
552
553   const SDLoc DL(N);
554   ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
555   SDValue True = N->getOperand(1);
556
557   SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
558                        SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
559
560   return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
561 }
562
563 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
564                                  TargetLowering::DAGCombinerInfo &DCI,
565                                  const MipsSubtarget *Subtarget) {
566   // Pattern match EXT.
567   //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
568   //  => ext $dst, $src, size, pos
569   if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
570     return SDValue();
571
572   SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
573   unsigned ShiftRightOpc = ShiftRight.getOpcode();
574
575   // Op's first operand must be a shift right.
576   if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
577     return SDValue();
578
579   // The second operand of the shift must be an immediate.
580   ConstantSDNode *CN;
581   if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
582     return SDValue();
583
584   uint64_t Pos = CN->getZExtValue();
585   uint64_t SMPos, SMSize;
586
587   // Op's second operand must be a shifted mask.
588   if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
589       !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
590     return SDValue();
591
592   // Return if the shifted mask does not start at bit 0 or the sum of its size
593   // and Pos exceeds the word's size.
594   EVT ValTy = N->getValueType(0);
595   if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
596     return SDValue();
597
598   return DAG.getNode(MipsISD::Ext, SDLoc(N), ValTy,
599                      ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
600                      DAG.getConstant(SMSize, MVT::i32));
601 }
602
603 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
604                                 TargetLowering::DAGCombinerInfo &DCI,
605                                 const MipsSubtarget *Subtarget) {
606   // Pattern match INS.
607   //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
608   //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
609   //  => ins $dst, $src, size, pos, $src1
610   if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
611     return SDValue();
612
613   SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
614   uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
615   ConstantSDNode *CN;
616
617   // See if Op's first operand matches (and $src1 , mask0).
618   if (And0.getOpcode() != ISD::AND)
619     return SDValue();
620
621   if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
622       !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
623     return SDValue();
624
625   // See if Op's second operand matches (and (shl $src, pos), mask1).
626   if (And1.getOpcode() != ISD::AND)
627     return SDValue();
628
629   if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
630       !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
631     return SDValue();
632
633   // The shift masks must have the same position and size.
634   if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
635     return SDValue();
636
637   SDValue Shl = And1.getOperand(0);
638   if (Shl.getOpcode() != ISD::SHL)
639     return SDValue();
640
641   if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
642     return SDValue();
643
644   unsigned Shamt = CN->getZExtValue();
645
646   // Return if the shift amount and the first bit position of mask are not the
647   // same.
648   EVT ValTy = N->getValueType(0);
649   if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
650     return SDValue();
651
652   return DAG.getNode(MipsISD::Ins, SDLoc(N), ValTy, Shl.getOperand(0),
653                      DAG.getConstant(SMPos0, MVT::i32),
654                      DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
655 }
656
657 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
658                                  TargetLowering::DAGCombinerInfo &DCI,
659                                  const MipsSubtarget *Subtarget) {
660   // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
661
662   if (DCI.isBeforeLegalizeOps())
663     return SDValue();
664
665   SDValue Add = N->getOperand(1);
666
667   if (Add.getOpcode() != ISD::ADD)
668     return SDValue();
669
670   SDValue Lo = Add.getOperand(1);
671
672   if ((Lo.getOpcode() != MipsISD::Lo) ||
673       (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
674     return SDValue();
675
676   EVT ValTy = N->getValueType(0);
677   SDLoc DL(N);
678
679   SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
680                              Add.getOperand(0));
681   return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
682 }
683
684 SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
685   const {
686   SelectionDAG &DAG = DCI.DAG;
687   unsigned Opc = N->getOpcode();
688
689   switch (Opc) {
690   default: break;
691   case ISD::SDIVREM:
692   case ISD::UDIVREM:
693     return performDivRemCombine(N, DAG, DCI, Subtarget);
694   case ISD::SELECT:
695     return performSELECTCombine(N, DAG, DCI, Subtarget);
696   case ISD::AND:
697     return performANDCombine(N, DAG, DCI, Subtarget);
698   case ISD::OR:
699     return performORCombine(N, DAG, DCI, Subtarget);
700   case ISD::ADD:
701     return performADDCombine(N, DAG, DCI, Subtarget);
702   }
703
704   return SDValue();
705 }
706
707 void
708 MipsTargetLowering::LowerOperationWrapper(SDNode *N,
709                                           SmallVectorImpl<SDValue> &Results,
710                                           SelectionDAG &DAG) const {
711   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
712
713   for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
714     Results.push_back(Res.getValue(I));
715 }
716
717 void
718 MipsTargetLowering::ReplaceNodeResults(SDNode *N,
719                                        SmallVectorImpl<SDValue> &Results,
720                                        SelectionDAG &DAG) const {
721   return LowerOperationWrapper(N, Results, DAG);
722 }
723
724 SDValue MipsTargetLowering::
725 LowerOperation(SDValue Op, SelectionDAG &DAG) const
726 {
727   switch (Op.getOpcode())
728   {
729   case ISD::BR_JT:              return lowerBR_JT(Op, DAG);
730   case ISD::BRCOND:             return lowerBRCOND(Op, DAG);
731   case ISD::ConstantPool:       return lowerConstantPool(Op, DAG);
732   case ISD::GlobalAddress:      return lowerGlobalAddress(Op, DAG);
733   case ISD::BlockAddress:       return lowerBlockAddress(Op, DAG);
734   case ISD::GlobalTLSAddress:   return lowerGlobalTLSAddress(Op, DAG);
735   case ISD::JumpTable:          return lowerJumpTable(Op, DAG);
736   case ISD::SELECT:             return lowerSELECT(Op, DAG);
737   case ISD::SELECT_CC:          return lowerSELECT_CC(Op, DAG);
738   case ISD::SETCC:              return lowerSETCC(Op, DAG);
739   case ISD::VASTART:            return lowerVASTART(Op, DAG);
740   case ISD::FCOPYSIGN:          return lowerFCOPYSIGN(Op, DAG);
741   case ISD::FABS:               return lowerFABS(Op, DAG);
742   case ISD::FRAMEADDR:          return lowerFRAMEADDR(Op, DAG);
743   case ISD::RETURNADDR:         return lowerRETURNADDR(Op, DAG);
744   case ISD::EH_RETURN:          return lowerEH_RETURN(Op, DAG);
745   case ISD::ATOMIC_FENCE:       return lowerATOMIC_FENCE(Op, DAG);
746   case ISD::SHL_PARTS:          return lowerShiftLeftParts(Op, DAG);
747   case ISD::SRA_PARTS:          return lowerShiftRightParts(Op, DAG, true);
748   case ISD::SRL_PARTS:          return lowerShiftRightParts(Op, DAG, false);
749   case ISD::LOAD:               return lowerLOAD(Op, DAG);
750   case ISD::STORE:              return lowerSTORE(Op, DAG);
751   case ISD::ADD:                return lowerADD(Op, DAG);
752   case ISD::FP_TO_SINT:         return lowerFP_TO_SINT(Op, DAG);
753   }
754   return SDValue();
755 }
756
757 //===----------------------------------------------------------------------===//
758 //  Lower helper functions
759 //===----------------------------------------------------------------------===//
760
761 // addLiveIn - This helper function adds the specified physical register to the
762 // MachineFunction as a live in value.  It also creates a corresponding
763 // virtual register for it.
764 static unsigned
765 addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
766 {
767   unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
768   MF.getRegInfo().addLiveIn(PReg, VReg);
769   return VReg;
770 }
771
772 static MachineBasicBlock *expandPseudoDIV(MachineInstr *MI,
773                                           MachineBasicBlock &MBB,
774                                           const TargetInstrInfo &TII,
775                                           bool Is64Bit) {
776   if (NoZeroDivCheck)
777     return &MBB;
778
779   // Insert instruction "teq $divisor_reg, $zero, 7".
780   MachineBasicBlock::iterator I(MI);
781   MachineInstrBuilder MIB;
782   MIB = BuildMI(MBB, llvm::next(I), MI->getDebugLoc(), TII.get(Mips::TEQ))
783     .addOperand(MI->getOperand(2)).addReg(Mips::ZERO).addImm(7);
784
785   // Use the 32-bit sub-register if this is a 64-bit division.
786   if (Is64Bit)
787     MIB->getOperand(0).setSubReg(Mips::sub_32);
788
789   return &MBB;
790 }
791
792 MachineBasicBlock *
793 MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
794                                                 MachineBasicBlock *BB) const {
795   switch (MI->getOpcode()) {
796   default:
797     llvm_unreachable("Unexpected instr type to insert");
798   case Mips::ATOMIC_LOAD_ADD_I8:
799   case Mips::ATOMIC_LOAD_ADD_I8_P8:
800     return emitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
801   case Mips::ATOMIC_LOAD_ADD_I16:
802   case Mips::ATOMIC_LOAD_ADD_I16_P8:
803     return emitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
804   case Mips::ATOMIC_LOAD_ADD_I32:
805   case Mips::ATOMIC_LOAD_ADD_I32_P8:
806     return emitAtomicBinary(MI, BB, 4, Mips::ADDu);
807   case Mips::ATOMIC_LOAD_ADD_I64:
808   case Mips::ATOMIC_LOAD_ADD_I64_P8:
809     return emitAtomicBinary(MI, BB, 8, Mips::DADDu);
810
811   case Mips::ATOMIC_LOAD_AND_I8:
812   case Mips::ATOMIC_LOAD_AND_I8_P8:
813     return emitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
814   case Mips::ATOMIC_LOAD_AND_I16:
815   case Mips::ATOMIC_LOAD_AND_I16_P8:
816     return emitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
817   case Mips::ATOMIC_LOAD_AND_I32:
818   case Mips::ATOMIC_LOAD_AND_I32_P8:
819     return emitAtomicBinary(MI, BB, 4, Mips::AND);
820   case Mips::ATOMIC_LOAD_AND_I64:
821   case Mips::ATOMIC_LOAD_AND_I64_P8:
822     return emitAtomicBinary(MI, BB, 8, Mips::AND64);
823
824   case Mips::ATOMIC_LOAD_OR_I8:
825   case Mips::ATOMIC_LOAD_OR_I8_P8:
826     return emitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
827   case Mips::ATOMIC_LOAD_OR_I16:
828   case Mips::ATOMIC_LOAD_OR_I16_P8:
829     return emitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
830   case Mips::ATOMIC_LOAD_OR_I32:
831   case Mips::ATOMIC_LOAD_OR_I32_P8:
832     return emitAtomicBinary(MI, BB, 4, Mips::OR);
833   case Mips::ATOMIC_LOAD_OR_I64:
834   case Mips::ATOMIC_LOAD_OR_I64_P8:
835     return emitAtomicBinary(MI, BB, 8, Mips::OR64);
836
837   case Mips::ATOMIC_LOAD_XOR_I8:
838   case Mips::ATOMIC_LOAD_XOR_I8_P8:
839     return emitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
840   case Mips::ATOMIC_LOAD_XOR_I16:
841   case Mips::ATOMIC_LOAD_XOR_I16_P8:
842     return emitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
843   case Mips::ATOMIC_LOAD_XOR_I32:
844   case Mips::ATOMIC_LOAD_XOR_I32_P8:
845     return emitAtomicBinary(MI, BB, 4, Mips::XOR);
846   case Mips::ATOMIC_LOAD_XOR_I64:
847   case Mips::ATOMIC_LOAD_XOR_I64_P8:
848     return emitAtomicBinary(MI, BB, 8, Mips::XOR64);
849
850   case Mips::ATOMIC_LOAD_NAND_I8:
851   case Mips::ATOMIC_LOAD_NAND_I8_P8:
852     return emitAtomicBinaryPartword(MI, BB, 1, 0, true);
853   case Mips::ATOMIC_LOAD_NAND_I16:
854   case Mips::ATOMIC_LOAD_NAND_I16_P8:
855     return emitAtomicBinaryPartword(MI, BB, 2, 0, true);
856   case Mips::ATOMIC_LOAD_NAND_I32:
857   case Mips::ATOMIC_LOAD_NAND_I32_P8:
858     return emitAtomicBinary(MI, BB, 4, 0, true);
859   case Mips::ATOMIC_LOAD_NAND_I64:
860   case Mips::ATOMIC_LOAD_NAND_I64_P8:
861     return emitAtomicBinary(MI, BB, 8, 0, true);
862
863   case Mips::ATOMIC_LOAD_SUB_I8:
864   case Mips::ATOMIC_LOAD_SUB_I8_P8:
865     return emitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
866   case Mips::ATOMIC_LOAD_SUB_I16:
867   case Mips::ATOMIC_LOAD_SUB_I16_P8:
868     return emitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
869   case Mips::ATOMIC_LOAD_SUB_I32:
870   case Mips::ATOMIC_LOAD_SUB_I32_P8:
871     return emitAtomicBinary(MI, BB, 4, Mips::SUBu);
872   case Mips::ATOMIC_LOAD_SUB_I64:
873   case Mips::ATOMIC_LOAD_SUB_I64_P8:
874     return emitAtomicBinary(MI, BB, 8, Mips::DSUBu);
875
876   case Mips::ATOMIC_SWAP_I8:
877   case Mips::ATOMIC_SWAP_I8_P8:
878     return emitAtomicBinaryPartword(MI, BB, 1, 0);
879   case Mips::ATOMIC_SWAP_I16:
880   case Mips::ATOMIC_SWAP_I16_P8:
881     return emitAtomicBinaryPartword(MI, BB, 2, 0);
882   case Mips::ATOMIC_SWAP_I32:
883   case Mips::ATOMIC_SWAP_I32_P8:
884     return emitAtomicBinary(MI, BB, 4, 0);
885   case Mips::ATOMIC_SWAP_I64:
886   case Mips::ATOMIC_SWAP_I64_P8:
887     return emitAtomicBinary(MI, BB, 8, 0);
888
889   case Mips::ATOMIC_CMP_SWAP_I8:
890   case Mips::ATOMIC_CMP_SWAP_I8_P8:
891     return emitAtomicCmpSwapPartword(MI, BB, 1);
892   case Mips::ATOMIC_CMP_SWAP_I16:
893   case Mips::ATOMIC_CMP_SWAP_I16_P8:
894     return emitAtomicCmpSwapPartword(MI, BB, 2);
895   case Mips::ATOMIC_CMP_SWAP_I32:
896   case Mips::ATOMIC_CMP_SWAP_I32_P8:
897     return emitAtomicCmpSwap(MI, BB, 4);
898   case Mips::ATOMIC_CMP_SWAP_I64:
899   case Mips::ATOMIC_CMP_SWAP_I64_P8:
900     return emitAtomicCmpSwap(MI, BB, 8);
901   case Mips::PseudoSDIV:
902   case Mips::PseudoUDIV:
903     return expandPseudoDIV(MI, *BB, *getTargetMachine().getInstrInfo(), false);
904   case Mips::PseudoDSDIV:
905   case Mips::PseudoDUDIV:
906     return expandPseudoDIV(MI, *BB, *getTargetMachine().getInstrInfo(), true);
907   }
908 }
909
910 // This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
911 // Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
912 MachineBasicBlock *
913 MipsTargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
914                                      unsigned Size, unsigned BinOpcode,
915                                      bool Nand) const {
916   assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
917
918   MachineFunction *MF = BB->getParent();
919   MachineRegisterInfo &RegInfo = MF->getRegInfo();
920   const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
921   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
922   DebugLoc DL = MI->getDebugLoc();
923   unsigned LL, SC, AND, NOR, ZERO, BEQ;
924
925   if (Size == 4) {
926     LL = IsN64 ? Mips::LL_P8 : Mips::LL;
927     SC = IsN64 ? Mips::SC_P8 : Mips::SC;
928     AND = Mips::AND;
929     NOR = Mips::NOR;
930     ZERO = Mips::ZERO;
931     BEQ = Mips::BEQ;
932   }
933   else {
934     LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
935     SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
936     AND = Mips::AND64;
937     NOR = Mips::NOR64;
938     ZERO = Mips::ZERO_64;
939     BEQ = Mips::BEQ64;
940   }
941
942   unsigned OldVal = MI->getOperand(0).getReg();
943   unsigned Ptr = MI->getOperand(1).getReg();
944   unsigned Incr = MI->getOperand(2).getReg();
945
946   unsigned StoreVal = RegInfo.createVirtualRegister(RC);
947   unsigned AndRes = RegInfo.createVirtualRegister(RC);
948   unsigned Success = RegInfo.createVirtualRegister(RC);
949
950   // insert new blocks after the current block
951   const BasicBlock *LLVM_BB = BB->getBasicBlock();
952   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
953   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
954   MachineFunction::iterator It = BB;
955   ++It;
956   MF->insert(It, loopMBB);
957   MF->insert(It, exitMBB);
958
959   // Transfer the remainder of BB and its successor edges to exitMBB.
960   exitMBB->splice(exitMBB->begin(), BB,
961                   llvm::next(MachineBasicBlock::iterator(MI)),
962                   BB->end());
963   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
964
965   //  thisMBB:
966   //    ...
967   //    fallthrough --> loopMBB
968   BB->addSuccessor(loopMBB);
969   loopMBB->addSuccessor(loopMBB);
970   loopMBB->addSuccessor(exitMBB);
971
972   //  loopMBB:
973   //    ll oldval, 0(ptr)
974   //    <binop> storeval, oldval, incr
975   //    sc success, storeval, 0(ptr)
976   //    beq success, $0, loopMBB
977   BB = loopMBB;
978   BuildMI(BB, DL, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
979   if (Nand) {
980     //  and andres, oldval, incr
981     //  nor storeval, $0, andres
982     BuildMI(BB, DL, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
983     BuildMI(BB, DL, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
984   } else if (BinOpcode) {
985     //  <binop> storeval, oldval, incr
986     BuildMI(BB, DL, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
987   } else {
988     StoreVal = Incr;
989   }
990   BuildMI(BB, DL, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
991   BuildMI(BB, DL, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
992
993   MI->eraseFromParent();   // The instruction is gone now.
994
995   return exitMBB;
996 }
997
998 MachineBasicBlock *
999 MipsTargetLowering::emitAtomicBinaryPartword(MachineInstr *MI,
1000                                              MachineBasicBlock *BB,
1001                                              unsigned Size, unsigned BinOpcode,
1002                                              bool Nand) const {
1003   assert((Size == 1 || Size == 2) &&
1004       "Unsupported size for EmitAtomicBinaryPartial.");
1005
1006   MachineFunction *MF = BB->getParent();
1007   MachineRegisterInfo &RegInfo = MF->getRegInfo();
1008   const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1009   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1010   DebugLoc DL = MI->getDebugLoc();
1011   unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1012   unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1013
1014   unsigned Dest = MI->getOperand(0).getReg();
1015   unsigned Ptr = MI->getOperand(1).getReg();
1016   unsigned Incr = MI->getOperand(2).getReg();
1017
1018   unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1019   unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1020   unsigned Mask = RegInfo.createVirtualRegister(RC);
1021   unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1022   unsigned NewVal = RegInfo.createVirtualRegister(RC);
1023   unsigned OldVal = RegInfo.createVirtualRegister(RC);
1024   unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1025   unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1026   unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1027   unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1028   unsigned AndRes = RegInfo.createVirtualRegister(RC);
1029   unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1030   unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1031   unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1032   unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1033   unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1034   unsigned SllRes = RegInfo.createVirtualRegister(RC);
1035   unsigned Success = RegInfo.createVirtualRegister(RC);
1036
1037   // insert new blocks after the current block
1038   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1039   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1040   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1041   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1042   MachineFunction::iterator It = BB;
1043   ++It;
1044   MF->insert(It, loopMBB);
1045   MF->insert(It, sinkMBB);
1046   MF->insert(It, exitMBB);
1047
1048   // Transfer the remainder of BB and its successor edges to exitMBB.
1049   exitMBB->splice(exitMBB->begin(), BB,
1050                   llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1051   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1052
1053   BB->addSuccessor(loopMBB);
1054   loopMBB->addSuccessor(loopMBB);
1055   loopMBB->addSuccessor(sinkMBB);
1056   sinkMBB->addSuccessor(exitMBB);
1057
1058   //  thisMBB:
1059   //    addiu   masklsb2,$0,-4                # 0xfffffffc
1060   //    and     alignedaddr,ptr,masklsb2
1061   //    andi    ptrlsb2,ptr,3
1062   //    sll     shiftamt,ptrlsb2,3
1063   //    ori     maskupper,$0,255               # 0xff
1064   //    sll     mask,maskupper,shiftamt
1065   //    nor     mask2,$0,mask
1066   //    sll     incr2,incr,shiftamt
1067
1068   int64_t MaskImm = (Size == 1) ? 255 : 65535;
1069   BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1070     .addReg(Mips::ZERO).addImm(-4);
1071   BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1072     .addReg(Ptr).addReg(MaskLSB2);
1073   BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1074   if (Subtarget->isLittle()) {
1075     BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1076   } else {
1077     unsigned Off = RegInfo.createVirtualRegister(RC);
1078     BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1079       .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1080     BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1081   }
1082   BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1083     .addReg(Mips::ZERO).addImm(MaskImm);
1084   BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1085     .addReg(MaskUpper).addReg(ShiftAmt);
1086   BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1087   BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
1088
1089   // atomic.load.binop
1090   // loopMBB:
1091   //   ll      oldval,0(alignedaddr)
1092   //   binop   binopres,oldval,incr2
1093   //   and     newval,binopres,mask
1094   //   and     maskedoldval0,oldval,mask2
1095   //   or      storeval,maskedoldval0,newval
1096   //   sc      success,storeval,0(alignedaddr)
1097   //   beq     success,$0,loopMBB
1098
1099   // atomic.swap
1100   // loopMBB:
1101   //   ll      oldval,0(alignedaddr)
1102   //   and     newval,incr2,mask
1103   //   and     maskedoldval0,oldval,mask2
1104   //   or      storeval,maskedoldval0,newval
1105   //   sc      success,storeval,0(alignedaddr)
1106   //   beq     success,$0,loopMBB
1107
1108   BB = loopMBB;
1109   BuildMI(BB, DL, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1110   if (Nand) {
1111     //  and andres, oldval, incr2
1112     //  nor binopres, $0, andres
1113     //  and newval, binopres, mask
1114     BuildMI(BB, DL, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1115     BuildMI(BB, DL, TII->get(Mips::NOR), BinOpRes)
1116       .addReg(Mips::ZERO).addReg(AndRes);
1117     BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1118   } else if (BinOpcode) {
1119     //  <binop> binopres, oldval, incr2
1120     //  and newval, binopres, mask
1121     BuildMI(BB, DL, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1122     BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1123   } else {// atomic.swap
1124     //  and newval, incr2, mask
1125     BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1126   }
1127
1128   BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1129     .addReg(OldVal).addReg(Mask2);
1130   BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1131     .addReg(MaskedOldVal0).addReg(NewVal);
1132   BuildMI(BB, DL, TII->get(SC), Success)
1133     .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1134   BuildMI(BB, DL, TII->get(Mips::BEQ))
1135     .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1136
1137   //  sinkMBB:
1138   //    and     maskedoldval1,oldval,mask
1139   //    srl     srlres,maskedoldval1,shiftamt
1140   //    sll     sllres,srlres,24
1141   //    sra     dest,sllres,24
1142   BB = sinkMBB;
1143   int64_t ShiftImm = (Size == 1) ? 24 : 16;
1144
1145   BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1146     .addReg(OldVal).addReg(Mask);
1147   BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1148       .addReg(MaskedOldVal1).addReg(ShiftAmt);
1149   BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1150       .addReg(SrlRes).addImm(ShiftImm);
1151   BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1152       .addReg(SllRes).addImm(ShiftImm);
1153
1154   MI->eraseFromParent();   // The instruction is gone now.
1155
1156   return exitMBB;
1157 }
1158
1159 MachineBasicBlock *
1160 MipsTargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
1161                                       MachineBasicBlock *BB,
1162                                       unsigned Size) const {
1163   assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1164
1165   MachineFunction *MF = BB->getParent();
1166   MachineRegisterInfo &RegInfo = MF->getRegInfo();
1167   const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1168   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1169   DebugLoc DL = MI->getDebugLoc();
1170   unsigned LL, SC, ZERO, BNE, BEQ;
1171
1172   if (Size == 4) {
1173     LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1174     SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1175     ZERO = Mips::ZERO;
1176     BNE = Mips::BNE;
1177     BEQ = Mips::BEQ;
1178   }
1179   else {
1180     LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1181     SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1182     ZERO = Mips::ZERO_64;
1183     BNE = Mips::BNE64;
1184     BEQ = Mips::BEQ64;
1185   }
1186
1187   unsigned Dest    = MI->getOperand(0).getReg();
1188   unsigned Ptr     = MI->getOperand(1).getReg();
1189   unsigned OldVal  = MI->getOperand(2).getReg();
1190   unsigned NewVal  = MI->getOperand(3).getReg();
1191
1192   unsigned Success = RegInfo.createVirtualRegister(RC);
1193
1194   // insert new blocks after the current block
1195   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1196   MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1197   MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1198   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1199   MachineFunction::iterator It = BB;
1200   ++It;
1201   MF->insert(It, loop1MBB);
1202   MF->insert(It, loop2MBB);
1203   MF->insert(It, exitMBB);
1204
1205   // Transfer the remainder of BB and its successor edges to exitMBB.
1206   exitMBB->splice(exitMBB->begin(), BB,
1207                   llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1208   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1209
1210   //  thisMBB:
1211   //    ...
1212   //    fallthrough --> loop1MBB
1213   BB->addSuccessor(loop1MBB);
1214   loop1MBB->addSuccessor(exitMBB);
1215   loop1MBB->addSuccessor(loop2MBB);
1216   loop2MBB->addSuccessor(loop1MBB);
1217   loop2MBB->addSuccessor(exitMBB);
1218
1219   // loop1MBB:
1220   //   ll dest, 0(ptr)
1221   //   bne dest, oldval, exitMBB
1222   BB = loop1MBB;
1223   BuildMI(BB, DL, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1224   BuildMI(BB, DL, TII->get(BNE))
1225     .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1226
1227   // loop2MBB:
1228   //   sc success, newval, 0(ptr)
1229   //   beq success, $0, loop1MBB
1230   BB = loop2MBB;
1231   BuildMI(BB, DL, TII->get(SC), Success)
1232     .addReg(NewVal).addReg(Ptr).addImm(0);
1233   BuildMI(BB, DL, TII->get(BEQ))
1234     .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1235
1236   MI->eraseFromParent();   // The instruction is gone now.
1237
1238   return exitMBB;
1239 }
1240
1241 MachineBasicBlock *
1242 MipsTargetLowering::emitAtomicCmpSwapPartword(MachineInstr *MI,
1243                                               MachineBasicBlock *BB,
1244                                               unsigned Size) const {
1245   assert((Size == 1 || Size == 2) &&
1246       "Unsupported size for EmitAtomicCmpSwapPartial.");
1247
1248   MachineFunction *MF = BB->getParent();
1249   MachineRegisterInfo &RegInfo = MF->getRegInfo();
1250   const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1251   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1252   DebugLoc DL = MI->getDebugLoc();
1253   unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1254   unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1255
1256   unsigned Dest    = MI->getOperand(0).getReg();
1257   unsigned Ptr     = MI->getOperand(1).getReg();
1258   unsigned CmpVal  = MI->getOperand(2).getReg();
1259   unsigned NewVal  = MI->getOperand(3).getReg();
1260
1261   unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1262   unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1263   unsigned Mask = RegInfo.createVirtualRegister(RC);
1264   unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1265   unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1266   unsigned OldVal = RegInfo.createVirtualRegister(RC);
1267   unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1268   unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1269   unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1270   unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1271   unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1272   unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1273   unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1274   unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1275   unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1276   unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1277   unsigned SllRes = RegInfo.createVirtualRegister(RC);
1278   unsigned Success = RegInfo.createVirtualRegister(RC);
1279
1280   // insert new blocks after the current block
1281   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1282   MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1283   MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1284   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1285   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1286   MachineFunction::iterator It = BB;
1287   ++It;
1288   MF->insert(It, loop1MBB);
1289   MF->insert(It, loop2MBB);
1290   MF->insert(It, sinkMBB);
1291   MF->insert(It, exitMBB);
1292
1293   // Transfer the remainder of BB and its successor edges to exitMBB.
1294   exitMBB->splice(exitMBB->begin(), BB,
1295                   llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1296   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1297
1298   BB->addSuccessor(loop1MBB);
1299   loop1MBB->addSuccessor(sinkMBB);
1300   loop1MBB->addSuccessor(loop2MBB);
1301   loop2MBB->addSuccessor(loop1MBB);
1302   loop2MBB->addSuccessor(sinkMBB);
1303   sinkMBB->addSuccessor(exitMBB);
1304
1305   // FIXME: computation of newval2 can be moved to loop2MBB.
1306   //  thisMBB:
1307   //    addiu   masklsb2,$0,-4                # 0xfffffffc
1308   //    and     alignedaddr,ptr,masklsb2
1309   //    andi    ptrlsb2,ptr,3
1310   //    sll     shiftamt,ptrlsb2,3
1311   //    ori     maskupper,$0,255               # 0xff
1312   //    sll     mask,maskupper,shiftamt
1313   //    nor     mask2,$0,mask
1314   //    andi    maskedcmpval,cmpval,255
1315   //    sll     shiftedcmpval,maskedcmpval,shiftamt
1316   //    andi    maskednewval,newval,255
1317   //    sll     shiftednewval,maskednewval,shiftamt
1318   int64_t MaskImm = (Size == 1) ? 255 : 65535;
1319   BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
1320     .addReg(Mips::ZERO).addImm(-4);
1321   BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
1322     .addReg(Ptr).addReg(MaskLSB2);
1323   BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1324   if (Subtarget->isLittle()) {
1325     BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1326   } else {
1327     unsigned Off = RegInfo.createVirtualRegister(RC);
1328     BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1329       .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1330     BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1331   }
1332   BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1333     .addReg(Mips::ZERO).addImm(MaskImm);
1334   BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1335     .addReg(MaskUpper).addReg(ShiftAmt);
1336   BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1337   BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
1338     .addReg(CmpVal).addImm(MaskImm);
1339   BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
1340     .addReg(MaskedCmpVal).addReg(ShiftAmt);
1341   BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
1342     .addReg(NewVal).addImm(MaskImm);
1343   BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
1344     .addReg(MaskedNewVal).addReg(ShiftAmt);
1345
1346   //  loop1MBB:
1347   //    ll      oldval,0(alginedaddr)
1348   //    and     maskedoldval0,oldval,mask
1349   //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1350   BB = loop1MBB;
1351   BuildMI(BB, DL, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1352   BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
1353     .addReg(OldVal).addReg(Mask);
1354   BuildMI(BB, DL, TII->get(Mips::BNE))
1355     .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1356
1357   //  loop2MBB:
1358   //    and     maskedoldval1,oldval,mask2
1359   //    or      storeval,maskedoldval1,shiftednewval
1360   //    sc      success,storeval,0(alignedaddr)
1361   //    beq     success,$0,loop1MBB
1362   BB = loop2MBB;
1363   BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
1364     .addReg(OldVal).addReg(Mask2);
1365   BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
1366     .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1367   BuildMI(BB, DL, TII->get(SC), Success)
1368       .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1369   BuildMI(BB, DL, TII->get(Mips::BEQ))
1370       .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1371
1372   //  sinkMBB:
1373   //    srl     srlres,maskedoldval0,shiftamt
1374   //    sll     sllres,srlres,24
1375   //    sra     dest,sllres,24
1376   BB = sinkMBB;
1377   int64_t ShiftImm = (Size == 1) ? 24 : 16;
1378
1379   BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
1380       .addReg(MaskedOldVal0).addReg(ShiftAmt);
1381   BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
1382       .addReg(SrlRes).addImm(ShiftImm);
1383   BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
1384       .addReg(SllRes).addImm(ShiftImm);
1385
1386   MI->eraseFromParent();   // The instruction is gone now.
1387
1388   return exitMBB;
1389 }
1390
1391 //===----------------------------------------------------------------------===//
1392 //  Misc Lower Operation implementation
1393 //===----------------------------------------------------------------------===//
1394 SDValue MipsTargetLowering::lowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
1395   SDValue Chain = Op.getOperand(0);
1396   SDValue Table = Op.getOperand(1);
1397   SDValue Index = Op.getOperand(2);
1398   SDLoc DL(Op);
1399   EVT PTy = getPointerTy();
1400   unsigned EntrySize =
1401     DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(*getDataLayout());
1402
1403   Index = DAG.getNode(ISD::MUL, DL, PTy, Index,
1404                       DAG.getConstant(EntrySize, PTy));
1405   SDValue Addr = DAG.getNode(ISD::ADD, DL, PTy, Index, Table);
1406
1407   EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
1408   Addr = DAG.getExtLoad(ISD::SEXTLOAD, DL, PTy, Chain, Addr,
1409                         MachinePointerInfo::getJumpTable(), MemVT, false, false,
1410                         0);
1411   Chain = Addr.getValue(1);
1412
1413   if ((getTargetMachine().getRelocationModel() == Reloc::PIC_) || IsN64) {
1414     // For PIC, the sequence is:
1415     // BRIND(load(Jumptable + index) + RelocBase)
1416     // RelocBase can be JumpTable, GOT or some sort of global base.
1417     Addr = DAG.getNode(ISD::ADD, DL, PTy, Addr,
1418                        getPICJumpTableRelocBase(Table, DAG));
1419   }
1420
1421   return DAG.getNode(ISD::BRIND, DL, MVT::Other, Chain, Addr);
1422 }
1423
1424 SDValue MipsTargetLowering::
1425 lowerBRCOND(SDValue Op, SelectionDAG &DAG) const
1426 {
1427   // The first operand is the chain, the second is the condition, the third is
1428   // the block to branch to if the condition is true.
1429   SDValue Chain = Op.getOperand(0);
1430   SDValue Dest = Op.getOperand(2);
1431   SDLoc DL(Op);
1432
1433   SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
1434
1435   // Return if flag is not set by a floating point comparison.
1436   if (CondRes.getOpcode() != MipsISD::FPCmp)
1437     return Op;
1438
1439   SDValue CCNode  = CondRes.getOperand(2);
1440   Mips::CondCode CC =
1441     (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1442   unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
1443   SDValue BrCode = DAG.getConstant(Opc, MVT::i32);
1444   SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
1445   return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
1446                      FCC0, Dest, CondRes);
1447 }
1448
1449 SDValue MipsTargetLowering::
1450 lowerSELECT(SDValue Op, SelectionDAG &DAG) const
1451 {
1452   SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
1453
1454   // Return if flag is not set by a floating point comparison.
1455   if (Cond.getOpcode() != MipsISD::FPCmp)
1456     return Op;
1457
1458   return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1459                       SDLoc(Op));
1460 }
1461
1462 SDValue MipsTargetLowering::
1463 lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
1464 {
1465   SDLoc DL(Op);
1466   EVT Ty = Op.getOperand(0).getValueType();
1467   SDValue Cond = DAG.getNode(ISD::SETCC, DL,
1468                              getSetCCResultType(*DAG.getContext(), Ty),
1469                              Op.getOperand(0), Op.getOperand(1),
1470                              Op.getOperand(4));
1471
1472   return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
1473                      Op.getOperand(3));
1474 }
1475
1476 SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1477   SDValue Cond = createFPCmp(DAG, Op);
1478
1479   assert(Cond.getOpcode() == MipsISD::FPCmp &&
1480          "Floating point operand expected.");
1481
1482   SDValue True  = DAG.getConstant(1, MVT::i32);
1483   SDValue False = DAG.getConstant(0, MVT::i32);
1484
1485   return createCMovFP(DAG, Cond, True, False, SDLoc(Op));
1486 }
1487
1488 SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
1489                                                SelectionDAG &DAG) const {
1490   // FIXME there isn't actually debug info here
1491   SDLoc DL(Op);
1492   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1493
1494   if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1495     const MipsTargetObjectFile &TLOF =
1496       (const MipsTargetObjectFile&)getObjFileLowering();
1497
1498     // %gp_rel relocation
1499     if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1500       SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
1501                                               MipsII::MO_GPREL);
1502       SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, DL,
1503                                       DAG.getVTList(MVT::i32), &GA, 1);
1504       SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
1505       return DAG.getNode(ISD::ADD, DL, MVT::i32, GPReg, GPRelNode);
1506     }
1507
1508     // %hi/%lo relocation
1509     return getAddrNonPIC(Op, DAG);
1510   }
1511
1512   if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
1513     return getAddrLocal(Op, DAG, HasMips64);
1514
1515   if (LargeGOT)
1516     return getAddrGlobalLargeGOT(Op, DAG, MipsII::MO_GOT_HI16,
1517                                  MipsII::MO_GOT_LO16);
1518
1519   return getAddrGlobal(Op, DAG,
1520                        HasMips64 ? MipsII::MO_GOT_DISP : MipsII::MO_GOT16);
1521 }
1522
1523 SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
1524                                               SelectionDAG &DAG) const {
1525   if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1526     return getAddrNonPIC(Op, DAG);
1527
1528   return getAddrLocal(Op, DAG, HasMips64);
1529 }
1530
1531 SDValue MipsTargetLowering::
1532 lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1533 {
1534   // If the relocation model is PIC, use the General Dynamic TLS Model or
1535   // Local Dynamic TLS model, otherwise use the Initial Exec or
1536   // Local Exec TLS Model.
1537
1538   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1539   SDLoc DL(GA);
1540   const GlobalValue *GV = GA->getGlobal();
1541   EVT PtrVT = getPointerTy();
1542
1543   TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1544
1545   if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1546     // General Dynamic and Local Dynamic TLS Model.
1547     unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1548                                                       : MipsII::MO_TLSGD;
1549
1550     SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
1551     SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
1552                                    getGlobalReg(DAG, PtrVT), TGA);
1553     unsigned PtrSize = PtrVT.getSizeInBits();
1554     IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1555
1556     SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1557
1558     ArgListTy Args;
1559     ArgListEntry Entry;
1560     Entry.Node = Argument;
1561     Entry.Ty = PtrTy;
1562     Args.push_back(Entry);
1563
1564     TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
1565                   false, false, false, false, 0, CallingConv::C,
1566                   /*IsTailCall=*/false, /*doesNotRet=*/false,
1567                   /*isReturnValueUsed=*/true,
1568                   TlsGetAddr, Args, DAG, DL);
1569     std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1570
1571     SDValue Ret = CallResult.first;
1572
1573     if (model != TLSModel::LocalDynamic)
1574       return Ret;
1575
1576     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1577                                                MipsII::MO_DTPREL_HI);
1578     SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1579     SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1580                                                MipsII::MO_DTPREL_LO);
1581     SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1582     SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
1583     return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
1584   }
1585
1586   SDValue Offset;
1587   if (model == TLSModel::InitialExec) {
1588     // Initial Exec TLS Model
1589     SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1590                                              MipsII::MO_GOTTPREL);
1591     TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
1592                       TGA);
1593     Offset = DAG.getLoad(PtrVT, DL,
1594                          DAG.getEntryNode(), TGA, MachinePointerInfo(),
1595                          false, false, false, 0);
1596   } else {
1597     // Local Exec TLS Model
1598     assert(model == TLSModel::LocalExec);
1599     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1600                                                MipsII::MO_TPREL_HI);
1601     SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1602                                                MipsII::MO_TPREL_LO);
1603     SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
1604     SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
1605     Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1606   }
1607
1608   SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
1609   return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
1610 }
1611
1612 SDValue MipsTargetLowering::
1613 lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1614 {
1615   if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1616     return getAddrNonPIC(Op, DAG);
1617
1618   return getAddrLocal(Op, DAG, HasMips64);
1619 }
1620
1621 SDValue MipsTargetLowering::
1622 lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1623 {
1624   // gp_rel relocation
1625   // FIXME: we should reference the constant pool using small data sections,
1626   // but the asm printer currently doesn't support this feature without
1627   // hacking it. This feature should come soon so we can uncomment the
1628   // stuff below.
1629   //if (IsInSmallSection(C->getType())) {
1630   //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
1631   //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1632   //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
1633
1634   if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
1635     return getAddrNonPIC(Op, DAG);
1636
1637   return getAddrLocal(Op, DAG, HasMips64);
1638 }
1639
1640 SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1641   MachineFunction &MF = DAG.getMachineFunction();
1642   MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1643
1644   SDLoc DL(Op);
1645   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1646                                  getPointerTy());
1647
1648   // vastart just stores the address of the VarArgsFrameIndex slot into the
1649   // memory location argument.
1650   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1651   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1652                       MachinePointerInfo(SV), false, false, 0);
1653 }
1654
1655 static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1656   EVT TyX = Op.getOperand(0).getValueType();
1657   EVT TyY = Op.getOperand(1).getValueType();
1658   SDValue Const1 = DAG.getConstant(1, MVT::i32);
1659   SDValue Const31 = DAG.getConstant(31, MVT::i32);
1660   SDLoc DL(Op);
1661   SDValue Res;
1662
1663   // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1664   // to i32.
1665   SDValue X = (TyX == MVT::f32) ?
1666     DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1667     DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1668                 Const1);
1669   SDValue Y = (TyY == MVT::f32) ?
1670     DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
1671     DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
1672                 Const1);
1673
1674   if (HasR2) {
1675     // ext  E, Y, 31, 1  ; extract bit31 of Y
1676     // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
1677     SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
1678     Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
1679   } else {
1680     // sll SllX, X, 1
1681     // srl SrlX, SllX, 1
1682     // srl SrlY, Y, 31
1683     // sll SllY, SrlX, 31
1684     // or  Or, SrlX, SllY
1685     SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1686     SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1687     SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
1688     SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
1689     Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
1690   }
1691
1692   if (TyX == MVT::f32)
1693     return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
1694
1695   SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1696                              Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1697   return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1698 }
1699
1700 static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1701   unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
1702   unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
1703   EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
1704   SDValue Const1 = DAG.getConstant(1, MVT::i32);
1705   SDLoc DL(Op);
1706
1707   // Bitcast to integer nodes.
1708   SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
1709   SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
1710
1711   if (HasR2) {
1712     // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
1713     // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
1714     SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
1715                             DAG.getConstant(WidthY - 1, MVT::i32), Const1);
1716
1717     if (WidthX > WidthY)
1718       E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
1719     else if (WidthY > WidthX)
1720       E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
1721
1722     SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
1723                             DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
1724     return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
1725   }
1726
1727   // (d)sll SllX, X, 1
1728   // (d)srl SrlX, SllX, 1
1729   // (d)srl SrlY, Y, width(Y)-1
1730   // (d)sll SllY, SrlX, width(Y)-1
1731   // or     Or, SrlX, SllY
1732   SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
1733   SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
1734   SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
1735                              DAG.getConstant(WidthY - 1, MVT::i32));
1736
1737   if (WidthX > WidthY)
1738     SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
1739   else if (WidthY > WidthX)
1740     SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
1741
1742   SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
1743                              DAG.getConstant(WidthX - 1, MVT::i32));
1744   SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
1745   return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
1746 }
1747
1748 SDValue
1749 MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
1750   if (Subtarget->hasMips64())
1751     return lowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2());
1752
1753   return lowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2());
1754 }
1755
1756 static SDValue lowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1757   SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1758   SDLoc DL(Op);
1759
1760   // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1761   // to i32.
1762   SDValue X = (Op.getValueType() == MVT::f32) ?
1763     DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1764     DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1765                 Const1);
1766
1767   // Clear MSB.
1768   if (HasR2)
1769     Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
1770                       DAG.getRegister(Mips::ZERO, MVT::i32),
1771                       DAG.getConstant(31, MVT::i32), Const1, X);
1772   else {
1773     SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1774     Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1775   }
1776
1777   if (Op.getValueType() == MVT::f32)
1778     return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
1779
1780   SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1781                              Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1782   return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1783 }
1784
1785 static SDValue lowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1786   SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1787   SDLoc DL(Op);
1788
1789   // Bitcast to integer node.
1790   SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
1791
1792   // Clear MSB.
1793   if (HasR2)
1794     Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
1795                       DAG.getRegister(Mips::ZERO_64, MVT::i64),
1796                       DAG.getConstant(63, MVT::i32), Const1, X);
1797   else {
1798     SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
1799     Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
1800   }
1801
1802   return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
1803 }
1804
1805 SDValue
1806 MipsTargetLowering::lowerFABS(SDValue Op, SelectionDAG &DAG) const {
1807   if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
1808     return lowerFABS64(Op, DAG, Subtarget->hasMips32r2());
1809
1810   return lowerFABS32(Op, DAG, Subtarget->hasMips32r2());
1811 }
1812
1813 SDValue MipsTargetLowering::
1814 lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1815   // check the depth
1816   assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1817          "Frame address can only be determined for current frame.");
1818
1819   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1820   MFI->setFrameAddressIsTaken(true);
1821   EVT VT = Op.getValueType();
1822   SDLoc DL(Op);
1823   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1824                                          IsN64 ? Mips::FP_64 : Mips::FP, VT);
1825   return FrameAddr;
1826 }
1827
1828 SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
1829                                             SelectionDAG &DAG) const {
1830   // check the depth
1831   assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1832          "Return address can be determined only for current frame.");
1833
1834   MachineFunction &MF = DAG.getMachineFunction();
1835   MachineFrameInfo *MFI = MF.getFrameInfo();
1836   MVT VT = Op.getSimpleValueType();
1837   unsigned RA = IsN64 ? Mips::RA_64 : Mips::RA;
1838   MFI->setReturnAddressIsTaken(true);
1839
1840   // Return RA, which contains the return address. Mark it an implicit live-in.
1841   unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
1842   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
1843 }
1844
1845 // An EH_RETURN is the result of lowering llvm.eh.return which in turn is
1846 // generated from __builtin_eh_return (offset, handler)
1847 // The effect of this is to adjust the stack pointer by "offset"
1848 // and then branch to "handler".
1849 SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
1850                                                                      const {
1851   MachineFunction &MF = DAG.getMachineFunction();
1852   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
1853
1854   MipsFI->setCallsEhReturn();
1855   SDValue Chain     = Op.getOperand(0);
1856   SDValue Offset    = Op.getOperand(1);
1857   SDValue Handler   = Op.getOperand(2);
1858   SDLoc DL(Op);
1859   EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
1860
1861   // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
1862   // EH_RETURN nodes, so that instructions are emitted back-to-back.
1863   unsigned OffsetReg = IsN64 ? Mips::V1_64 : Mips::V1;
1864   unsigned AddrReg = IsN64 ? Mips::V0_64 : Mips::V0;
1865   Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
1866   Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
1867   return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
1868                      DAG.getRegister(OffsetReg, Ty),
1869                      DAG.getRegister(AddrReg, getPointerTy()),
1870                      Chain.getValue(1));
1871 }
1872
1873 SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
1874                                               SelectionDAG &DAG) const {
1875   // FIXME: Need pseudo-fence for 'singlethread' fences
1876   // FIXME: Set SType for weaker fences where supported/appropriate.
1877   unsigned SType = 0;
1878   SDLoc DL(Op);
1879   return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
1880                      DAG.getConstant(SType, MVT::i32));
1881 }
1882
1883 SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
1884                                                 SelectionDAG &DAG) const {
1885   SDLoc DL(Op);
1886   SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1887   SDValue Shamt = Op.getOperand(2);
1888
1889   // if shamt < 32:
1890   //  lo = (shl lo, shamt)
1891   //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
1892   // else:
1893   //  lo = 0
1894   //  hi = (shl lo, shamt[4:0])
1895   SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1896                             DAG.getConstant(-1, MVT::i32));
1897   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
1898                                       DAG.getConstant(1, MVT::i32));
1899   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
1900                                      Not);
1901   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
1902   SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1903   SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
1904   SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1905                              DAG.getConstant(0x20, MVT::i32));
1906   Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1907                    DAG.getConstant(0, MVT::i32), ShiftLeftLo);
1908   Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
1909
1910   SDValue Ops[2] = {Lo, Hi};
1911   return DAG.getMergeValues(Ops, 2, DL);
1912 }
1913
1914 SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
1915                                                  bool IsSRA) const {
1916   SDLoc DL(Op);
1917   SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
1918   SDValue Shamt = Op.getOperand(2);
1919
1920   // if shamt < 32:
1921   //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
1922   //  if isSRA:
1923   //    hi = (sra hi, shamt)
1924   //  else:
1925   //    hi = (srl hi, shamt)
1926   // else:
1927   //  if isSRA:
1928   //   lo = (sra hi, shamt[4:0])
1929   //   hi = (sra hi, 31)
1930   //  else:
1931   //   lo = (srl hi, shamt[4:0])
1932   //   hi = 0
1933   SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
1934                             DAG.getConstant(-1, MVT::i32));
1935   SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
1936                                      DAG.getConstant(1, MVT::i32));
1937   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
1938   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
1939   SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
1940   SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
1941                                      Hi, Shamt);
1942   SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
1943                              DAG.getConstant(0x20, MVT::i32));
1944   SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
1945                                 DAG.getConstant(31, MVT::i32));
1946   Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
1947   Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
1948                    IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
1949                    ShiftRightHi);
1950
1951   SDValue Ops[2] = {Lo, Hi};
1952   return DAG.getMergeValues(Ops, 2, DL);
1953 }
1954
1955 static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
1956                             SDValue Chain, SDValue Src, unsigned Offset) {
1957   SDValue Ptr = LD->getBasePtr();
1958   EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
1959   EVT BasePtrVT = Ptr.getValueType();
1960   SDLoc DL(LD);
1961   SDVTList VTList = DAG.getVTList(VT, MVT::Other);
1962
1963   if (Offset)
1964     Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
1965                       DAG.getConstant(Offset, BasePtrVT));
1966
1967   SDValue Ops[] = { Chain, Ptr, Src };
1968   return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
1969                                  LD->getMemOperand());
1970 }
1971
1972 // Expand an unaligned 32 or 64-bit integer load node.
1973 SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1974   LoadSDNode *LD = cast<LoadSDNode>(Op);
1975   EVT MemVT = LD->getMemoryVT();
1976
1977   // Return if load is aligned or if MemVT is neither i32 nor i64.
1978   if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
1979       ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
1980     return SDValue();
1981
1982   bool IsLittle = Subtarget->isLittle();
1983   EVT VT = Op.getValueType();
1984   ISD::LoadExtType ExtType = LD->getExtensionType();
1985   SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
1986
1987   assert((VT == MVT::i32) || (VT == MVT::i64));
1988
1989   // Expand
1990   //  (set dst, (i64 (load baseptr)))
1991   // to
1992   //  (set tmp, (ldl (add baseptr, 7), undef))
1993   //  (set dst, (ldr baseptr, tmp))
1994   if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
1995     SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
1996                                IsLittle ? 7 : 0);
1997     return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
1998                         IsLittle ? 0 : 7);
1999   }
2000
2001   SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
2002                              IsLittle ? 3 : 0);
2003   SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
2004                              IsLittle ? 0 : 3);
2005
2006   // Expand
2007   //  (set dst, (i32 (load baseptr))) or
2008   //  (set dst, (i64 (sextload baseptr))) or
2009   //  (set dst, (i64 (extload baseptr)))
2010   // to
2011   //  (set tmp, (lwl (add baseptr, 3), undef))
2012   //  (set dst, (lwr baseptr, tmp))
2013   if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
2014       (ExtType == ISD::EXTLOAD))
2015     return LWR;
2016
2017   assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2018
2019   // Expand
2020   //  (set dst, (i64 (zextload baseptr)))
2021   // to
2022   //  (set tmp0, (lwl (add baseptr, 3), undef))
2023   //  (set tmp1, (lwr baseptr, tmp0))
2024   //  (set tmp2, (shl tmp1, 32))
2025   //  (set dst, (srl tmp2, 32))
2026   SDLoc DL(LD);
2027   SDValue Const32 = DAG.getConstant(32, MVT::i32);
2028   SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2029   SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2030   SDValue Ops[] = { SRL, LWR.getValue(1) };
2031   return DAG.getMergeValues(Ops, 2, DL);
2032 }
2033
2034 static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2035                              SDValue Chain, unsigned Offset) {
2036   SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2037   EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2038   SDLoc DL(SD);
2039   SDVTList VTList = DAG.getVTList(MVT::Other);
2040
2041   if (Offset)
2042     Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2043                       DAG.getConstant(Offset, BasePtrVT));
2044
2045   SDValue Ops[] = { Chain, Value, Ptr };
2046   return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2047                                  SD->getMemOperand());
2048 }
2049
2050 // Expand an unaligned 32 or 64-bit integer store node.
2051 static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
2052                                       bool IsLittle) {
2053   SDValue Value = SD->getValue(), Chain = SD->getChain();
2054   EVT VT = Value.getValueType();
2055
2056   // Expand
2057   //  (store val, baseptr) or
2058   //  (truncstore val, baseptr)
2059   // to
2060   //  (swl val, (add baseptr, 3))
2061   //  (swr val, baseptr)
2062   if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2063     SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
2064                                 IsLittle ? 3 : 0);
2065     return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2066   }
2067
2068   assert(VT == MVT::i64);
2069
2070   // Expand
2071   //  (store val, baseptr)
2072   // to
2073   //  (sdl val, (add baseptr, 7))
2074   //  (sdr val, baseptr)
2075   SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2076   return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2077 }
2078
2079 // Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2080 static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG) {
2081   SDValue Val = SD->getValue();
2082
2083   if (Val.getOpcode() != ISD::FP_TO_SINT)
2084     return SDValue();
2085
2086   EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
2087   SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
2088                            Val.getOperand(0));
2089
2090   return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
2091                       SD->getPointerInfo(), SD->isVolatile(),
2092                       SD->isNonTemporal(), SD->getAlignment());
2093 }
2094
2095 SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2096   StoreSDNode *SD = cast<StoreSDNode>(Op);
2097   EVT MemVT = SD->getMemoryVT();
2098
2099   // Lower unaligned integer stores.
2100   if ((SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
2101       ((MemVT == MVT::i32) || (MemVT == MVT::i64)))
2102     return lowerUnalignedIntStore(SD, DAG, Subtarget->isLittle());
2103
2104   return lowerFP_TO_SINT_STORE(SD, DAG);
2105 }
2106
2107 SDValue MipsTargetLowering::lowerADD(SDValue Op, SelectionDAG &DAG) const {
2108   if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
2109       || cast<ConstantSDNode>
2110         (Op->getOperand(0).getOperand(0))->getZExtValue() != 0
2111       || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
2112     return SDValue();
2113
2114   // The pattern
2115   //   (add (frameaddr 0), (frame_to_args_offset))
2116   // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
2117   //   (add FrameObject, 0)
2118   // where FrameObject is a fixed StackObject with offset 0 which points to
2119   // the old stack pointer.
2120   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2121   EVT ValTy = Op->getValueType(0);
2122   int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2123   SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
2124   return DAG.getNode(ISD::ADD, SDLoc(Op), ValTy, InArgsAddr,
2125                      DAG.getConstant(0, ValTy));
2126 }
2127
2128 SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
2129                                             SelectionDAG &DAG) const {
2130   EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
2131   SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
2132                               Op.getOperand(0));
2133   return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
2134 }
2135
2136 //===----------------------------------------------------------------------===//
2137 //                      Calling Convention Implementation
2138 //===----------------------------------------------------------------------===//
2139
2140 //===----------------------------------------------------------------------===//
2141 // TODO: Implement a generic logic using tblgen that can support this.
2142 // Mips O32 ABI rules:
2143 // ---
2144 // i32 - Passed in A0, A1, A2, A3 and stack
2145 // f32 - Only passed in f32 registers if no int reg has been used yet to hold
2146 //       an argument. Otherwise, passed in A1, A2, A3 and stack.
2147 // f64 - Only passed in two aliased f32 registers if no int reg has been used
2148 //       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2149 //       not used, it must be shadowed. If only A3 is avaiable, shadow it and
2150 //       go to stack.
2151 //
2152 //  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2153 //===----------------------------------------------------------------------===//
2154
2155 static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
2156                        MVT LocVT, CCValAssign::LocInfo LocInfo,
2157                        ISD::ArgFlagsTy ArgFlags, CCState &State) {
2158
2159   static const unsigned IntRegsSize=4, FloatRegsSize=2;
2160
2161   static const uint16_t IntRegs[] = {
2162       Mips::A0, Mips::A1, Mips::A2, Mips::A3
2163   };
2164   static const uint16_t F32Regs[] = {
2165       Mips::F12, Mips::F14
2166   };
2167   static const uint16_t F64Regs[] = {
2168       Mips::D6, Mips::D7
2169   };
2170
2171   // Do not process byval args here.
2172   if (ArgFlags.isByVal())
2173     return true;
2174
2175   // Promote i8 and i16
2176   if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2177     LocVT = MVT::i32;
2178     if (ArgFlags.isSExt())
2179       LocInfo = CCValAssign::SExt;
2180     else if (ArgFlags.isZExt())
2181       LocInfo = CCValAssign::ZExt;
2182     else
2183       LocInfo = CCValAssign::AExt;
2184   }
2185
2186   unsigned Reg;
2187
2188   // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2189   // is true: function is vararg, argument is 3rd or higher, there is previous
2190   // argument which is not f32 or f64.
2191   bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2192       || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2193   unsigned OrigAlign = ArgFlags.getOrigAlign();
2194   bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2195
2196   if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2197     Reg = State.AllocateReg(IntRegs, IntRegsSize);
2198     // If this is the first part of an i64 arg,
2199     // the allocated register must be either A0 or A2.
2200     if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2201       Reg = State.AllocateReg(IntRegs, IntRegsSize);
2202     LocVT = MVT::i32;
2203   } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2204     // Allocate int register and shadow next int register. If first
2205     // available register is Mips::A1 or Mips::A3, shadow it too.
2206     Reg = State.AllocateReg(IntRegs, IntRegsSize);
2207     if (Reg == Mips::A1 || Reg == Mips::A3)
2208       Reg = State.AllocateReg(IntRegs, IntRegsSize);
2209     State.AllocateReg(IntRegs, IntRegsSize);
2210     LocVT = MVT::i32;
2211   } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2212     // we are guaranteed to find an available float register
2213     if (ValVT == MVT::f32) {
2214       Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2215       // Shadow int register
2216       State.AllocateReg(IntRegs, IntRegsSize);
2217     } else {
2218       Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2219       // Shadow int registers
2220       unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2221       if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2222         State.AllocateReg(IntRegs, IntRegsSize);
2223       State.AllocateReg(IntRegs, IntRegsSize);
2224     }
2225   } else
2226     llvm_unreachable("Cannot handle this ValVT.");
2227
2228   if (!Reg) {
2229     unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
2230                                           OrigAlign);
2231     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2232   } else
2233     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2234
2235   return false;
2236 }
2237
2238 #include "MipsGenCallingConv.inc"
2239
2240 //===----------------------------------------------------------------------===//
2241 //                  Call Calling Convention Implementation
2242 //===----------------------------------------------------------------------===//
2243
2244 static const unsigned O32IntRegsSize = 4;
2245
2246 // Return next O32 integer argument register.
2247 static unsigned getNextIntArgReg(unsigned Reg) {
2248   assert((Reg == Mips::A0) || (Reg == Mips::A2));
2249   return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2250 }
2251
2252 SDValue
2253 MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
2254                                    SDValue Chain, SDValue Arg, SDLoc DL,
2255                                    bool IsTailCall, SelectionDAG &DAG) const {
2256   if (!IsTailCall) {
2257     SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
2258                                  DAG.getIntPtrConstant(Offset));
2259     return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
2260                         false, 0);
2261   }
2262
2263   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2264   int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
2265   SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2266   return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
2267                       /*isVolatile=*/ true, false, 0);
2268 }
2269
2270 void MipsTargetLowering::
2271 getOpndList(SmallVectorImpl<SDValue> &Ops,
2272             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
2273             bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
2274             CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
2275   // Insert node "GP copy globalreg" before call to function.
2276   //
2277   // R_MIPS_CALL* operators (emitted when non-internal functions are called
2278   // in PIC mode) allow symbols to be resolved via lazy binding.
2279   // The lazy binding stub requires GP to point to the GOT.
2280   if (IsPICCall && !InternalLinkage) {
2281     unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
2282     EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
2283     RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
2284   }
2285
2286   // Build a sequence of copy-to-reg nodes chained together with token
2287   // chain and flag operands which copy the outgoing args into registers.
2288   // The InFlag in necessary since all emitted instructions must be
2289   // stuck together.
2290   SDValue InFlag;
2291
2292   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2293     Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
2294                                  RegsToPass[i].second, InFlag);
2295     InFlag = Chain.getValue(1);
2296   }
2297
2298   // Add argument registers to the end of the list so that they are
2299   // known live into the call.
2300   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2301     Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
2302                                       RegsToPass[i].second.getValueType()));
2303
2304   // Add a register mask operand representing the call-preserved registers.
2305   const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2306   const uint32_t *Mask = TRI->getCallPreservedMask(CLI.CallConv);
2307   assert(Mask && "Missing call preserved mask for calling convention");
2308   if (Subtarget->inMips16HardFloat()) {
2309     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
2310       llvm::StringRef Sym = G->getGlobal()->getName();
2311       Function *F = G->getGlobal()->getParent()->getFunction(Sym);
2312       if (F->hasFnAttribute("__Mips16RetHelper")) {
2313         Mask = MipsRegisterInfo::getMips16RetHelperMask();
2314       }
2315     }
2316   }
2317   Ops.push_back(CLI.DAG.getRegisterMask(Mask));
2318
2319   if (InFlag.getNode())
2320     Ops.push_back(InFlag);
2321 }
2322
2323 /// LowerCall - functions arguments are copied from virtual regs to
2324 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2325 SDValue
2326 MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2327                               SmallVectorImpl<SDValue> &InVals) const {
2328   SelectionDAG &DAG                     = CLI.DAG;
2329   SDLoc DL                              = CLI.DL;
2330   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2331   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
2332   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
2333   SDValue Chain                         = CLI.Chain;
2334   SDValue Callee                        = CLI.Callee;
2335   bool &IsTailCall                      = CLI.IsTailCall;
2336   CallingConv::ID CallConv              = CLI.CallConv;
2337   bool IsVarArg                         = CLI.IsVarArg;
2338
2339   MachineFunction &MF = DAG.getMachineFunction();
2340   MachineFrameInfo *MFI = MF.getFrameInfo();
2341   const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
2342   bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2343
2344   // Analyze operands of the call, assigning locations to each operand.
2345   SmallVector<CCValAssign, 16> ArgLocs;
2346   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2347                  getTargetMachine(), ArgLocs, *DAG.getContext());
2348   MipsCC::SpecialCallingConvType SpecialCallingConv =
2349     getSpecialCallingConv(Callee);
2350   MipsCC MipsCCInfo(CallConv, IsO32, CCInfo, SpecialCallingConv);
2351
2352   MipsCCInfo.analyzeCallOperands(Outs, IsVarArg,
2353                                  getTargetMachine().Options.UseSoftFloat,
2354                                  Callee.getNode(), CLI.Args);
2355
2356   // Get a count of how many bytes are to be pushed on the stack.
2357   unsigned NextStackOffset = CCInfo.getNextStackOffset();
2358
2359   // Check if it's really possible to do a tail call.
2360   if (IsTailCall)
2361     IsTailCall =
2362       isEligibleForTailCallOptimization(MipsCCInfo, NextStackOffset,
2363                                         *MF.getInfo<MipsFunctionInfo>());
2364
2365   if (IsTailCall)
2366     ++NumTailCalls;
2367
2368   // Chain is the output chain of the last Load/Store or CopyToReg node.
2369   // ByValChain is the output chain of the last Memcpy node created for copying
2370   // byval arguments to the stack.
2371   unsigned StackAlignment = TFL->getStackAlignment();
2372   NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
2373   SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
2374
2375   if (!IsTailCall)
2376     Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal, DL);
2377
2378   SDValue StackPtr = DAG.getCopyFromReg(Chain, DL,
2379                                         IsN64 ? Mips::SP_64 : Mips::SP,
2380                                         getPointerTy());
2381
2382   // With EABI is it possible to have 16 args on registers.
2383   std::deque< std::pair<unsigned, SDValue> > RegsToPass;
2384   SmallVector<SDValue, 8> MemOpChains;
2385   MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2386
2387   // Walk the register/memloc assignments, inserting copies/loads.
2388   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2389     SDValue Arg = OutVals[i];
2390     CCValAssign &VA = ArgLocs[i];
2391     MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2392     ISD::ArgFlagsTy Flags = Outs[i].Flags;
2393
2394     // ByVal Arg.
2395     if (Flags.isByVal()) {
2396       assert(Flags.getByValSize() &&
2397              "ByVal args of size 0 should have been ignored by front-end.");
2398       assert(ByValArg != MipsCCInfo.byval_end());
2399       assert(!IsTailCall &&
2400              "Do not tail-call optimize if there is a byval argument.");
2401       passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
2402                    MipsCCInfo, *ByValArg, Flags, Subtarget->isLittle());
2403       ++ByValArg;
2404       continue;
2405     }
2406
2407     // Promote the value if needed.
2408     switch (VA.getLocInfo()) {
2409     default: llvm_unreachable("Unknown loc info!");
2410     case CCValAssign::Full:
2411       if (VA.isRegLoc()) {
2412         if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2413             (ValVT == MVT::f64 && LocVT == MVT::i64) ||
2414             (ValVT == MVT::i64 && LocVT == MVT::f64))
2415           Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
2416         else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2417           SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2418                                    Arg, DAG.getConstant(0, MVT::i32));
2419           SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2420                                    Arg, DAG.getConstant(1, MVT::i32));
2421           if (!Subtarget->isLittle())
2422             std::swap(Lo, Hi);
2423           unsigned LocRegLo = VA.getLocReg();
2424           unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2425           RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2426           RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2427           continue;
2428         }
2429       }
2430       break;
2431     case CCValAssign::SExt:
2432       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
2433       break;
2434     case CCValAssign::ZExt:
2435       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
2436       break;
2437     case CCValAssign::AExt:
2438       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
2439       break;
2440     }
2441
2442     // Arguments that can be passed on register must be kept at
2443     // RegsToPass vector
2444     if (VA.isRegLoc()) {
2445       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2446       continue;
2447     }
2448
2449     // Register can't get to this point...
2450     assert(VA.isMemLoc());
2451
2452     // emit ISD::STORE whichs stores the
2453     // parameter value to a stack Location
2454     MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
2455                                          Chain, Arg, DL, IsTailCall, DAG));
2456   }
2457
2458   // Transform all store nodes into one single node because all store
2459   // nodes are independent of each other.
2460   if (!MemOpChains.empty())
2461     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2462                         &MemOpChains[0], MemOpChains.size());
2463
2464   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2465   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2466   // node so that legalize doesn't hack it.
2467   bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
2468   bool GlobalOrExternal = false, InternalLinkage = false;
2469   SDValue CalleeLo;
2470
2471   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2472     if (IsPICCall) {
2473       InternalLinkage = G->getGlobal()->hasInternalLinkage();
2474
2475       if (InternalLinkage)
2476         Callee = getAddrLocal(Callee, DAG, HasMips64);
2477       else if (LargeGOT)
2478         Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
2479                                        MipsII::MO_CALL_LO16);
2480       else
2481         Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
2482     } else
2483       Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, getPointerTy(), 0,
2484                                           MipsII::MO_NO_FLAG);
2485     GlobalOrExternal = true;
2486   }
2487   else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2488     if (!IsN64 && !IsPIC) // !N64 && static
2489       Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2490                                             MipsII::MO_NO_FLAG);
2491     else if (LargeGOT)
2492       Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
2493                                      MipsII::MO_CALL_LO16);
2494     else // N64 || PIC
2495       Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
2496
2497     GlobalOrExternal = true;
2498   }
2499
2500   SmallVector<SDValue, 8> Ops(1, Chain);
2501   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2502
2503   getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage,
2504               CLI, Callee, Chain);
2505
2506   if (IsTailCall)
2507     return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, &Ops[0], Ops.size());
2508
2509   Chain  = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, &Ops[0], Ops.size());
2510   SDValue InFlag = Chain.getValue(1);
2511
2512   // Create the CALLSEQ_END node.
2513   Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
2514                              DAG.getIntPtrConstant(0, true), InFlag, DL);
2515   InFlag = Chain.getValue(1);
2516
2517   // Handle result values, copying them out of physregs into vregs that we
2518   // return.
2519   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg,
2520                          Ins, DL, DAG, InVals, CLI.Callee.getNode(), CLI.RetTy);
2521 }
2522
2523 /// LowerCallResult - Lower the result values of a call into the
2524 /// appropriate copies out of appropriate physical registers.
2525 SDValue
2526 MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2527                                     CallingConv::ID CallConv, bool IsVarArg,
2528                                     const SmallVectorImpl<ISD::InputArg> &Ins,
2529                                     SDLoc DL, SelectionDAG &DAG,
2530                                     SmallVectorImpl<SDValue> &InVals,
2531                                     const SDNode *CallNode,
2532                                     const Type *RetTy) const {
2533   // Assign locations to each value returned by this call.
2534   SmallVector<CCValAssign, 16> RVLocs;
2535   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2536                  getTargetMachine(), RVLocs, *DAG.getContext());
2537   MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
2538
2539   MipsCCInfo.analyzeCallResult(Ins, getTargetMachine().Options.UseSoftFloat,
2540                                CallNode, RetTy);
2541
2542   // Copy all of the result registers out of their specified physreg.
2543   for (unsigned i = 0; i != RVLocs.size(); ++i) {
2544     SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
2545                                      RVLocs[i].getLocVT(), InFlag);
2546     Chain = Val.getValue(1);
2547     InFlag = Val.getValue(2);
2548
2549     if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2550       Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getValVT(), Val);
2551
2552     InVals.push_back(Val);
2553   }
2554
2555   return Chain;
2556 }
2557
2558 //===----------------------------------------------------------------------===//
2559 //             Formal Arguments Calling Convention Implementation
2560 //===----------------------------------------------------------------------===//
2561 /// LowerFormalArguments - transform physical registers into virtual registers
2562 /// and generate load operations for arguments places on the stack.
2563 SDValue
2564 MipsTargetLowering::LowerFormalArguments(SDValue Chain,
2565                                          CallingConv::ID CallConv,
2566                                          bool IsVarArg,
2567                                       const SmallVectorImpl<ISD::InputArg> &Ins,
2568                                          SDLoc DL, SelectionDAG &DAG,
2569                                          SmallVectorImpl<SDValue> &InVals)
2570                                           const {
2571   MachineFunction &MF = DAG.getMachineFunction();
2572   MachineFrameInfo *MFI = MF.getFrameInfo();
2573   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2574
2575   MipsFI->setVarArgsFrameIndex(0);
2576
2577   // Used with vargs to acumulate store chains.
2578   std::vector<SDValue> OutChains;
2579
2580   // Assign locations to all of the incoming arguments.
2581   SmallVector<CCValAssign, 16> ArgLocs;
2582   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
2583                  getTargetMachine(), ArgLocs, *DAG.getContext());
2584   MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
2585   Function::const_arg_iterator FuncArg =
2586     DAG.getMachineFunction().getFunction()->arg_begin();
2587   bool UseSoftFloat = getTargetMachine().Options.UseSoftFloat;
2588
2589   MipsCCInfo.analyzeFormalArguments(Ins, UseSoftFloat, FuncArg);
2590   MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
2591                            MipsCCInfo.hasByValArg());
2592
2593   unsigned CurArgIdx = 0;
2594   MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
2595
2596   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2597     CCValAssign &VA = ArgLocs[i];
2598     std::advance(FuncArg, Ins[i].OrigArgIndex - CurArgIdx);
2599     CurArgIdx = Ins[i].OrigArgIndex;
2600     EVT ValVT = VA.getValVT();
2601     ISD::ArgFlagsTy Flags = Ins[i].Flags;
2602     bool IsRegLoc = VA.isRegLoc();
2603
2604     if (Flags.isByVal()) {
2605       assert(Flags.getByValSize() &&
2606              "ByVal args of size 0 should have been ignored by front-end.");
2607       assert(ByValArg != MipsCCInfo.byval_end());
2608       copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
2609                     MipsCCInfo, *ByValArg);
2610       ++ByValArg;
2611       continue;
2612     }
2613
2614     // Arguments stored on registers
2615     if (IsRegLoc) {
2616       EVT RegVT = VA.getLocVT();
2617       unsigned ArgReg = VA.getLocReg();
2618       const TargetRegisterClass *RC;
2619
2620       if (RegVT == MVT::i32)
2621         RC = Subtarget->inMips16Mode()? &Mips::CPU16RegsRegClass :
2622                                         &Mips::GPR32RegClass;
2623       else if (RegVT == MVT::i64)
2624         RC = &Mips::GPR64RegClass;
2625       else if (RegVT == MVT::f32)
2626         RC = &Mips::FGR32RegClass;
2627       else if (RegVT == MVT::f64)
2628         RC = HasMips64 ? &Mips::FGR64RegClass : &Mips::AFGR64RegClass;
2629       else
2630         llvm_unreachable("RegVT not supported by FormalArguments Lowering");
2631
2632       // Transform the arguments stored on
2633       // physical registers into virtual ones
2634       unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
2635       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2636
2637       // If this is an 8 or 16-bit value, it has been passed promoted
2638       // to 32 bits.  Insert an assert[sz]ext to capture this, then
2639       // truncate to the right size.
2640       if (VA.getLocInfo() != CCValAssign::Full) {
2641         unsigned Opcode = 0;
2642         if (VA.getLocInfo() == CCValAssign::SExt)
2643           Opcode = ISD::AssertSext;
2644         else if (VA.getLocInfo() == CCValAssign::ZExt)
2645           Opcode = ISD::AssertZext;
2646         if (Opcode)
2647           ArgValue = DAG.getNode(Opcode, DL, RegVT, ArgValue,
2648                                  DAG.getValueType(ValVT));
2649         ArgValue = DAG.getNode(ISD::TRUNCATE, DL, ValVT, ArgValue);
2650       }
2651
2652       // Handle floating point arguments passed in integer registers and
2653       // long double arguments passed in floating point registers.
2654       if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
2655           (RegVT == MVT::i64 && ValVT == MVT::f64) ||
2656           (RegVT == MVT::f64 && ValVT == MVT::i64))
2657         ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
2658       else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
2659         unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
2660                                   getNextIntArgReg(ArgReg), RC);
2661         SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
2662         if (!Subtarget->isLittle())
2663           std::swap(ArgValue, ArgValue2);
2664         ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
2665                                ArgValue, ArgValue2);
2666       }
2667
2668       InVals.push_back(ArgValue);
2669     } else { // VA.isRegLoc()
2670
2671       // sanity check
2672       assert(VA.isMemLoc());
2673
2674       // The stack pointer offset is relative to the caller stack frame.
2675       int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2676                                       VA.getLocMemOffset(), true);
2677
2678       // Create load nodes to retrieve arguments from the stack
2679       SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2680       InVals.push_back(DAG.getLoad(ValVT, DL, Chain, FIN,
2681                                    MachinePointerInfo::getFixedStack(FI),
2682                                    false, false, false, 0));
2683     }
2684   }
2685
2686   // The mips ABIs for returning structs by value requires that we copy
2687   // the sret argument into $v0 for the return. Save the argument into
2688   // a virtual register so that we can access it from the return points.
2689   if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
2690     unsigned Reg = MipsFI->getSRetReturnReg();
2691     if (!Reg) {
2692       Reg = MF.getRegInfo().
2693         createVirtualRegister(getRegClassFor(IsN64 ? MVT::i64 : MVT::i32));
2694       MipsFI->setSRetReturnReg(Reg);
2695     }
2696     SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]);
2697     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
2698   }
2699
2700   if (IsVarArg)
2701     writeVarArgRegs(OutChains, MipsCCInfo, Chain, DL, DAG);
2702
2703   // All stores are grouped in one node to allow the matching between
2704   // the size of Ins and InVals. This only happens when on varg functions
2705   if (!OutChains.empty()) {
2706     OutChains.push_back(Chain);
2707     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2708                         &OutChains[0], OutChains.size());
2709   }
2710
2711   return Chain;
2712 }
2713
2714 //===----------------------------------------------------------------------===//
2715 //               Return Value Calling Convention Implementation
2716 //===----------------------------------------------------------------------===//
2717
2718 bool
2719 MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2720                                    MachineFunction &MF, bool IsVarArg,
2721                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2722                                    LLVMContext &Context) const {
2723   SmallVector<CCValAssign, 16> RVLocs;
2724   CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(),
2725                  RVLocs, Context);
2726   return CCInfo.CheckReturn(Outs, RetCC_Mips);
2727 }
2728
2729 SDValue
2730 MipsTargetLowering::LowerReturn(SDValue Chain,
2731                                 CallingConv::ID CallConv, bool IsVarArg,
2732                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
2733                                 const SmallVectorImpl<SDValue> &OutVals,
2734                                 SDLoc DL, SelectionDAG &DAG) const {
2735   // CCValAssign - represent the assignment of
2736   // the return value to a location
2737   SmallVector<CCValAssign, 16> RVLocs;
2738   MachineFunction &MF = DAG.getMachineFunction();
2739
2740   // CCState - Info about the registers and stack slot.
2741   CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(), RVLocs,
2742                  *DAG.getContext());
2743   MipsCC MipsCCInfo(CallConv, IsO32, CCInfo);
2744
2745   // Analyze return values.
2746   MipsCCInfo.analyzeReturn(Outs, getTargetMachine().Options.UseSoftFloat,
2747                            MF.getFunction()->getReturnType());
2748
2749   SDValue Flag;
2750   SmallVector<SDValue, 4> RetOps(1, Chain);
2751
2752   // Copy the result values into the output registers.
2753   for (unsigned i = 0; i != RVLocs.size(); ++i) {
2754     SDValue Val = OutVals[i];
2755     CCValAssign &VA = RVLocs[i];
2756     assert(VA.isRegLoc() && "Can only return in registers!");
2757
2758     if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
2759       Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getLocVT(), Val);
2760
2761     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
2762
2763     // Guarantee that all emitted copies are stuck together with flags.
2764     Flag = Chain.getValue(1);
2765     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2766   }
2767
2768   // The mips ABIs for returning structs by value requires that we copy
2769   // the sret argument into $v0 for the return. We saved the argument into
2770   // a virtual register in the entry block, so now we copy the value out
2771   // and into $v0.
2772   if (MF.getFunction()->hasStructRetAttr()) {
2773     MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2774     unsigned Reg = MipsFI->getSRetReturnReg();
2775
2776     if (!Reg)
2777       llvm_unreachable("sret virtual register not created in the entry block");
2778     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
2779     unsigned V0 = IsN64 ? Mips::V0_64 : Mips::V0;
2780
2781     Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
2782     Flag = Chain.getValue(1);
2783     RetOps.push_back(DAG.getRegister(V0, getPointerTy()));
2784   }
2785
2786   RetOps[0] = Chain;  // Update chain.
2787
2788   // Add the flag if we have it.
2789   if (Flag.getNode())
2790     RetOps.push_back(Flag);
2791
2792   // Return on Mips is always a "jr $ra"
2793   return DAG.getNode(MipsISD::Ret, DL, MVT::Other, &RetOps[0], RetOps.size());
2794 }
2795
2796 //===----------------------------------------------------------------------===//
2797 //                           Mips Inline Assembly Support
2798 //===----------------------------------------------------------------------===//
2799
2800 /// getConstraintType - Given a constraint letter, return the type of
2801 /// constraint it is for this target.
2802 MipsTargetLowering::ConstraintType MipsTargetLowering::
2803 getConstraintType(const std::string &Constraint) const
2804 {
2805   // Mips specific constrainy
2806   // GCC config/mips/constraints.md
2807   //
2808   // 'd' : An address register. Equivalent to r
2809   //       unless generating MIPS16 code.
2810   // 'y' : Equivalent to r; retained for
2811   //       backwards compatibility.
2812   // 'c' : A register suitable for use in an indirect
2813   //       jump. This will always be $25 for -mabicalls.
2814   // 'l' : The lo register. 1 word storage.
2815   // 'x' : The hilo register pair. Double word storage.
2816   if (Constraint.size() == 1) {
2817     switch (Constraint[0]) {
2818       default : break;
2819       case 'd':
2820       case 'y':
2821       case 'f':
2822       case 'c':
2823       case 'l':
2824       case 'x':
2825         return C_RegisterClass;
2826       case 'R':
2827         return C_Memory;
2828     }
2829   }
2830   return TargetLowering::getConstraintType(Constraint);
2831 }
2832
2833 /// Examine constraint type and operand type and determine a weight value.
2834 /// This object must already have been set up with the operand type
2835 /// and the current alternative constraint selected.
2836 TargetLowering::ConstraintWeight
2837 MipsTargetLowering::getSingleConstraintMatchWeight(
2838     AsmOperandInfo &info, const char *constraint) const {
2839   ConstraintWeight weight = CW_Invalid;
2840   Value *CallOperandVal = info.CallOperandVal;
2841     // If we don't have a value, we can't do a match,
2842     // but allow it at the lowest weight.
2843   if (CallOperandVal == NULL)
2844     return CW_Default;
2845   Type *type = CallOperandVal->getType();
2846   // Look at the constraint type.
2847   switch (*constraint) {
2848   default:
2849     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
2850     break;
2851   case 'd':
2852   case 'y':
2853     if (type->isIntegerTy())
2854       weight = CW_Register;
2855     break;
2856   case 'f':
2857     if (type->isFloatTy())
2858       weight = CW_Register;
2859     break;
2860   case 'c': // $25 for indirect jumps
2861   case 'l': // lo register
2862   case 'x': // hilo register pair
2863       if (type->isIntegerTy())
2864       weight = CW_SpecificReg;
2865       break;
2866   case 'I': // signed 16 bit immediate
2867   case 'J': // integer zero
2868   case 'K': // unsigned 16 bit immediate
2869   case 'L': // signed 32 bit immediate where lower 16 bits are 0
2870   case 'N': // immediate in the range of -65535 to -1 (inclusive)
2871   case 'O': // signed 15 bit immediate (+- 16383)
2872   case 'P': // immediate in the range of 65535 to 1 (inclusive)
2873     if (isa<ConstantInt>(CallOperandVal))
2874       weight = CW_Constant;
2875     break;
2876   case 'R':
2877     weight = CW_Memory;
2878     break;
2879   }
2880   return weight;
2881 }
2882
2883 /// Given a register class constraint, like 'r', if this corresponds directly
2884 /// to an LLVM register class, return a register of 0 and the register class
2885 /// pointer.
2886 std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
2887 getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const
2888 {
2889   if (Constraint.size() == 1) {
2890     switch (Constraint[0]) {
2891     case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
2892     case 'y': // Same as 'r'. Exists for compatibility.
2893     case 'r':
2894       if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
2895         if (Subtarget->inMips16Mode())
2896           return std::make_pair(0U, &Mips::CPU16RegsRegClass);
2897         return std::make_pair(0U, &Mips::GPR32RegClass);
2898       }
2899       if (VT == MVT::i64 && !HasMips64)
2900         return std::make_pair(0U, &Mips::GPR32RegClass);
2901       if (VT == MVT::i64 && HasMips64)
2902         return std::make_pair(0U, &Mips::GPR64RegClass);
2903       // This will generate an error message
2904       return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2905     case 'f':
2906       if (VT == MVT::f32)
2907         return std::make_pair(0U, &Mips::FGR32RegClass);
2908       if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
2909         if (Subtarget->isFP64bit())
2910           return std::make_pair(0U, &Mips::FGR64RegClass);
2911         return std::make_pair(0U, &Mips::AFGR64RegClass);
2912       }
2913       break;
2914     case 'c': // register suitable for indirect jump
2915       if (VT == MVT::i32)
2916         return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
2917       assert(VT == MVT::i64 && "Unexpected type.");
2918       return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
2919     case 'l': // register suitable for indirect jump
2920       if (VT == MVT::i32)
2921         return std::make_pair((unsigned)Mips::LO, &Mips::LORegsRegClass);
2922       return std::make_pair((unsigned)Mips::LO64, &Mips::LORegs64RegClass);
2923     case 'x': // register suitable for indirect jump
2924       // Fixme: Not triggering the use of both hi and low
2925       // This will generate an error message
2926       return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2927     }
2928   }
2929   return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
2930 }
2931
2932 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2933 /// vector.  If it is invalid, don't add anything to Ops.
2934 void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2935                                                      std::string &Constraint,
2936                                                      std::vector<SDValue>&Ops,
2937                                                      SelectionDAG &DAG) const {
2938   SDValue Result(0, 0);
2939
2940   // Only support length 1 constraints for now.
2941   if (Constraint.length() > 1) return;
2942
2943   char ConstraintLetter = Constraint[0];
2944   switch (ConstraintLetter) {
2945   default: break; // This will fall through to the generic implementation
2946   case 'I': // Signed 16 bit constant
2947     // If this fails, the parent routine will give an error
2948     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2949       EVT Type = Op.getValueType();
2950       int64_t Val = C->getSExtValue();
2951       if (isInt<16>(Val)) {
2952         Result = DAG.getTargetConstant(Val, Type);
2953         break;
2954       }
2955     }
2956     return;
2957   case 'J': // integer zero
2958     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2959       EVT Type = Op.getValueType();
2960       int64_t Val = C->getZExtValue();
2961       if (Val == 0) {
2962         Result = DAG.getTargetConstant(0, Type);
2963         break;
2964       }
2965     }
2966     return;
2967   case 'K': // unsigned 16 bit immediate
2968     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2969       EVT Type = Op.getValueType();
2970       uint64_t Val = (uint64_t)C->getZExtValue();
2971       if (isUInt<16>(Val)) {
2972         Result = DAG.getTargetConstant(Val, Type);
2973         break;
2974       }
2975     }
2976     return;
2977   case 'L': // signed 32 bit immediate where lower 16 bits are 0
2978     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2979       EVT Type = Op.getValueType();
2980       int64_t Val = C->getSExtValue();
2981       if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
2982         Result = DAG.getTargetConstant(Val, Type);
2983         break;
2984       }
2985     }
2986     return;
2987   case 'N': // immediate in the range of -65535 to -1 (inclusive)
2988     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2989       EVT Type = Op.getValueType();
2990       int64_t Val = C->getSExtValue();
2991       if ((Val >= -65535) && (Val <= -1)) {
2992         Result = DAG.getTargetConstant(Val, Type);
2993         break;
2994       }
2995     }
2996     return;
2997   case 'O': // signed 15 bit immediate
2998     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2999       EVT Type = Op.getValueType();
3000       int64_t Val = C->getSExtValue();
3001       if ((isInt<15>(Val))) {
3002         Result = DAG.getTargetConstant(Val, Type);
3003         break;
3004       }
3005     }
3006     return;
3007   case 'P': // immediate in the range of 1 to 65535 (inclusive)
3008     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3009       EVT Type = Op.getValueType();
3010       int64_t Val = C->getSExtValue();
3011       if ((Val <= 65535) && (Val >= 1)) {
3012         Result = DAG.getTargetConstant(Val, Type);
3013         break;
3014       }
3015     }
3016     return;
3017   }
3018
3019   if (Result.getNode()) {
3020     Ops.push_back(Result);
3021     return;
3022   }
3023
3024   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3025 }
3026
3027 bool
3028 MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM, Type *Ty) const {
3029   // No global is ever allowed as a base.
3030   if (AM.BaseGV)
3031     return false;
3032
3033   switch (AM.Scale) {
3034   case 0: // "r+i" or just "i", depending on HasBaseReg.
3035     break;
3036   case 1:
3037     if (!AM.HasBaseReg) // allow "r+i".
3038       break;
3039     return false; // disallow "r+r" or "r+r+i".
3040   default:
3041     return false;
3042   }
3043
3044   return true;
3045 }
3046
3047 bool
3048 MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3049   // The Mips target isn't yet aware of offsets.
3050   return false;
3051 }
3052
3053 EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3054                                             unsigned SrcAlign,
3055                                             bool IsMemset, bool ZeroMemset,
3056                                             bool MemcpyStrSrc,
3057                                             MachineFunction &MF) const {
3058   if (Subtarget->hasMips64())
3059     return MVT::i64;
3060
3061   return MVT::i32;
3062 }
3063
3064 bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3065   if (VT != MVT::f32 && VT != MVT::f64)
3066     return false;
3067   if (Imm.isNegZero())
3068     return false;
3069   return Imm.isZero();
3070 }
3071
3072 unsigned MipsTargetLowering::getJumpTableEncoding() const {
3073   if (IsN64)
3074     return MachineJumpTableInfo::EK_GPRel64BlockAddress;
3075
3076   return TargetLowering::getJumpTableEncoding();
3077 }
3078
3079 /// This function returns true if CallSym is a long double emulation routine.
3080 static bool isF128SoftLibCall(const char *CallSym) {
3081   const char *const LibCalls[] =
3082     {"__addtf3", "__divtf3", "__eqtf2", "__extenddftf2", "__extendsftf2",
3083      "__fixtfdi", "__fixtfsi", "__fixtfti", "__fixunstfdi", "__fixunstfsi",
3084      "__fixunstfti", "__floatditf", "__floatsitf", "__floattitf",
3085      "__floatunditf", "__floatunsitf", "__floatuntitf", "__getf2", "__gttf2",
3086      "__letf2", "__lttf2", "__multf3", "__netf2", "__powitf2", "__subtf3",
3087      "__trunctfdf2", "__trunctfsf2", "__unordtf2",
3088      "ceill", "copysignl", "cosl", "exp2l", "expl", "floorl", "fmal", "fmodl",
3089      "log10l", "log2l", "logl", "nearbyintl", "powl", "rintl", "sinl", "sqrtl",
3090      "truncl"};
3091
3092   const char * const *End = LibCalls + array_lengthof(LibCalls);
3093
3094   // Check that LibCalls is sorted alphabetically.
3095   MipsTargetLowering::LTStr Comp;
3096
3097 #ifndef NDEBUG
3098   for (const char * const *I = LibCalls; I < End - 1; ++I)
3099     assert(Comp(*I, *(I + 1)));
3100 #endif
3101
3102   return std::binary_search(LibCalls, End, CallSym, Comp);
3103 }
3104
3105 /// This function returns true if Ty is fp128 or i128 which was originally a
3106 /// fp128.
3107 static bool originalTypeIsF128(const Type *Ty, const SDNode *CallNode) {
3108   if (Ty->isFP128Ty())
3109     return true;
3110
3111   const ExternalSymbolSDNode *ES =
3112     dyn_cast_or_null<const ExternalSymbolSDNode>(CallNode);
3113
3114   // If the Ty is i128 and the function being called is a long double emulation
3115   // routine, then the original type is f128.
3116   return (ES && Ty->isIntegerTy(128) && isF128SoftLibCall(ES->getSymbol()));
3117 }
3118
3119 MipsTargetLowering::MipsCC::SpecialCallingConvType
3120   MipsTargetLowering::getSpecialCallingConv(SDValue Callee) const {
3121   MipsCC::SpecialCallingConvType SpecialCallingConv =
3122     MipsCC::NoSpecialCallingConv;;
3123   if (Subtarget->inMips16HardFloat()) {
3124     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3125       llvm::StringRef Sym = G->getGlobal()->getName();
3126       Function *F = G->getGlobal()->getParent()->getFunction(Sym);
3127       if (F->hasFnAttribute("__Mips16RetHelper")) {
3128         SpecialCallingConv = MipsCC::Mips16RetHelperConv;
3129       }
3130     }
3131   }
3132   return SpecialCallingConv;
3133 }
3134
3135 MipsTargetLowering::MipsCC::MipsCC(
3136   CallingConv::ID CC, bool IsO32_, CCState &Info,
3137     MipsCC::SpecialCallingConvType SpecialCallingConv_)
3138   : CCInfo(Info), CallConv(CC), IsO32(IsO32_),
3139     SpecialCallingConv(SpecialCallingConv_){
3140   // Pre-allocate reserved argument area.
3141   CCInfo.AllocateStack(reservedArgArea(), 1);
3142 }
3143
3144
3145 void MipsTargetLowering::MipsCC::
3146 analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Args,
3147                     bool IsVarArg, bool IsSoftFloat, const SDNode *CallNode,
3148                     std::vector<ArgListEntry> &FuncArgs) {
3149   assert((CallConv != CallingConv::Fast || !IsVarArg) &&
3150          "CallingConv::Fast shouldn't be used for vararg functions.");
3151
3152   unsigned NumOpnds = Args.size();
3153   llvm::CCAssignFn *FixedFn = fixedArgFn(), *VarFn = varArgFn();
3154
3155   for (unsigned I = 0; I != NumOpnds; ++I) {
3156     MVT ArgVT = Args[I].VT;
3157     ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3158     bool R;
3159
3160     if (ArgFlags.isByVal()) {
3161       handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3162       continue;
3163     }
3164
3165     if (IsVarArg && !Args[I].IsFixed)
3166       R = VarFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3167     else {
3168       MVT RegVT = getRegVT(ArgVT, FuncArgs[Args[I].OrigArgIndex].Ty, CallNode,
3169                            IsSoftFloat);
3170       R = FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo);
3171     }
3172
3173     if (R) {
3174 #ifndef NDEBUG
3175       dbgs() << "Call operand #" << I << " has unhandled type "
3176              << EVT(ArgVT).getEVTString();
3177 #endif
3178       llvm_unreachable(0);
3179     }
3180   }
3181 }
3182
3183 void MipsTargetLowering::MipsCC::
3184 analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Args,
3185                        bool IsSoftFloat, Function::const_arg_iterator FuncArg) {
3186   unsigned NumArgs = Args.size();
3187   llvm::CCAssignFn *FixedFn = fixedArgFn();
3188   unsigned CurArgIdx = 0;
3189
3190   for (unsigned I = 0; I != NumArgs; ++I) {
3191     MVT ArgVT = Args[I].VT;
3192     ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
3193     std::advance(FuncArg, Args[I].OrigArgIndex - CurArgIdx);
3194     CurArgIdx = Args[I].OrigArgIndex;
3195
3196     if (ArgFlags.isByVal()) {
3197       handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
3198       continue;
3199     }
3200
3201     MVT RegVT = getRegVT(ArgVT, FuncArg->getType(), 0, IsSoftFloat);
3202
3203     if (!FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo))
3204       continue;
3205
3206 #ifndef NDEBUG
3207     dbgs() << "Formal Arg #" << I << " has unhandled type "
3208            << EVT(ArgVT).getEVTString();
3209 #endif
3210     llvm_unreachable(0);
3211   }
3212 }
3213
3214 template<typename Ty>
3215 void MipsTargetLowering::MipsCC::
3216 analyzeReturn(const SmallVectorImpl<Ty> &RetVals, bool IsSoftFloat,
3217               const SDNode *CallNode, const Type *RetTy) const {
3218   CCAssignFn *Fn;
3219
3220   if (IsSoftFloat && originalTypeIsF128(RetTy, CallNode))
3221     Fn = RetCC_F128Soft;
3222   else
3223     Fn = RetCC_Mips;
3224
3225   for (unsigned I = 0, E = RetVals.size(); I < E; ++I) {
3226     MVT VT = RetVals[I].VT;
3227     ISD::ArgFlagsTy Flags = RetVals[I].Flags;
3228     MVT RegVT = this->getRegVT(VT, RetTy, CallNode, IsSoftFloat);
3229
3230     if (Fn(I, VT, RegVT, CCValAssign::Full, Flags, this->CCInfo)) {
3231 #ifndef NDEBUG
3232       dbgs() << "Call result #" << I << " has unhandled type "
3233              << EVT(VT).getEVTString() << '\n';
3234 #endif
3235       llvm_unreachable(0);
3236     }
3237   }
3238 }
3239
3240 void MipsTargetLowering::MipsCC::
3241 analyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins, bool IsSoftFloat,
3242                   const SDNode *CallNode, const Type *RetTy) const {
3243   analyzeReturn(Ins, IsSoftFloat, CallNode, RetTy);
3244 }
3245
3246 void MipsTargetLowering::MipsCC::
3247 analyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsSoftFloat,
3248               const Type *RetTy) const {
3249   analyzeReturn(Outs, IsSoftFloat, 0, RetTy);
3250 }
3251
3252 void
3253 MipsTargetLowering::MipsCC::handleByValArg(unsigned ValNo, MVT ValVT,
3254                                            MVT LocVT,
3255                                            CCValAssign::LocInfo LocInfo,
3256                                            ISD::ArgFlagsTy ArgFlags) {
3257   assert(ArgFlags.getByValSize() && "Byval argument's size shouldn't be 0.");
3258
3259   struct ByValArgInfo ByVal;
3260   unsigned RegSize = regSize();
3261   unsigned ByValSize = RoundUpToAlignment(ArgFlags.getByValSize(), RegSize);
3262   unsigned Align = std::min(std::max(ArgFlags.getByValAlign(), RegSize),
3263                             RegSize * 2);
3264
3265   if (useRegsForByval())
3266     allocateRegs(ByVal, ByValSize, Align);
3267
3268   // Allocate space on caller's stack.
3269   ByVal.Address = CCInfo.AllocateStack(ByValSize - RegSize * ByVal.NumRegs,
3270                                        Align);
3271   CCInfo.addLoc(CCValAssign::getMem(ValNo, ValVT, ByVal.Address, LocVT,
3272                                     LocInfo));
3273   ByValArgs.push_back(ByVal);
3274 }
3275
3276 unsigned MipsTargetLowering::MipsCC::numIntArgRegs() const {
3277   return IsO32 ? array_lengthof(O32IntRegs) : array_lengthof(Mips64IntRegs);
3278 }
3279
3280 unsigned MipsTargetLowering::MipsCC::reservedArgArea() const {
3281   return (IsO32 && (CallConv != CallingConv::Fast)) ? 16 : 0;
3282 }
3283
3284 const uint16_t *MipsTargetLowering::MipsCC::intArgRegs() const {
3285   return IsO32 ? O32IntRegs : Mips64IntRegs;
3286 }
3287
3288 llvm::CCAssignFn *MipsTargetLowering::MipsCC::fixedArgFn() const {
3289   if (CallConv == CallingConv::Fast)
3290     return CC_Mips_FastCC;
3291
3292   if (SpecialCallingConv == Mips16RetHelperConv)
3293     return CC_Mips16RetHelper;
3294   return IsO32 ? CC_MipsO32 : CC_MipsN;
3295 }
3296
3297 llvm::CCAssignFn *MipsTargetLowering::MipsCC::varArgFn() const {
3298   return IsO32 ? CC_MipsO32 : CC_MipsN_VarArg;
3299 }
3300
3301 const uint16_t *MipsTargetLowering::MipsCC::shadowRegs() const {
3302   return IsO32 ? O32IntRegs : Mips64DPRegs;
3303 }
3304
3305 void MipsTargetLowering::MipsCC::allocateRegs(ByValArgInfo &ByVal,
3306                                               unsigned ByValSize,
3307                                               unsigned Align) {
3308   unsigned RegSize = regSize(), NumIntArgRegs = numIntArgRegs();
3309   const uint16_t *IntArgRegs = intArgRegs(), *ShadowRegs = shadowRegs();
3310   assert(!(ByValSize % RegSize) && !(Align % RegSize) &&
3311          "Byval argument's size and alignment should be a multiple of"
3312          "RegSize.");
3313
3314   ByVal.FirstIdx = CCInfo.getFirstUnallocated(IntArgRegs, NumIntArgRegs);
3315
3316   // If Align > RegSize, the first arg register must be even.
3317   if ((Align > RegSize) && (ByVal.FirstIdx % 2)) {
3318     CCInfo.AllocateReg(IntArgRegs[ByVal.FirstIdx], ShadowRegs[ByVal.FirstIdx]);
3319     ++ByVal.FirstIdx;
3320   }
3321
3322   // Mark the registers allocated.
3323   for (unsigned I = ByVal.FirstIdx; ByValSize && (I < NumIntArgRegs);
3324        ByValSize -= RegSize, ++I, ++ByVal.NumRegs)
3325     CCInfo.AllocateReg(IntArgRegs[I], ShadowRegs[I]);
3326 }
3327
3328 MVT MipsTargetLowering::MipsCC::getRegVT(MVT VT, const Type *OrigTy,
3329                                          const SDNode *CallNode,
3330                                          bool IsSoftFloat) const {
3331   if (IsSoftFloat || IsO32)
3332     return VT;
3333
3334   // Check if the original type was fp128.
3335   if (originalTypeIsF128(OrigTy, CallNode)) {
3336     assert(VT == MVT::i64);
3337     return MVT::f64;
3338   }
3339
3340   return VT;
3341 }
3342
3343 void MipsTargetLowering::
3344 copyByValRegs(SDValue Chain, SDLoc DL, std::vector<SDValue> &OutChains,
3345               SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
3346               SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
3347               const MipsCC &CC, const ByValArgInfo &ByVal) const {
3348   MachineFunction &MF = DAG.getMachineFunction();
3349   MachineFrameInfo *MFI = MF.getFrameInfo();
3350   unsigned RegAreaSize = ByVal.NumRegs * CC.regSize();
3351   unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
3352   int FrameObjOffset;
3353
3354   if (RegAreaSize)
3355     FrameObjOffset = (int)CC.reservedArgArea() -
3356       (int)((CC.numIntArgRegs() - ByVal.FirstIdx) * CC.regSize());
3357   else
3358     FrameObjOffset = ByVal.Address;
3359
3360   // Create frame object.
3361   EVT PtrTy = getPointerTy();
3362   int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
3363   SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
3364   InVals.push_back(FIN);
3365
3366   if (!ByVal.NumRegs)
3367     return;
3368
3369   // Copy arg registers.
3370   MVT RegTy = MVT::getIntegerVT(CC.regSize() * 8);
3371   const TargetRegisterClass *RC = getRegClassFor(RegTy);
3372
3373   for (unsigned I = 0; I < ByVal.NumRegs; ++I) {
3374     unsigned ArgReg = CC.intArgRegs()[ByVal.FirstIdx + I];
3375     unsigned VReg = addLiveIn(MF, ArgReg, RC);
3376     unsigned Offset = I * CC.regSize();
3377     SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
3378                                    DAG.getConstant(Offset, PtrTy));
3379     SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
3380                                  StorePtr, MachinePointerInfo(FuncArg, Offset),
3381                                  false, false, 0);
3382     OutChains.push_back(Store);
3383   }
3384 }
3385
3386 // Copy byVal arg to registers and stack.
3387 void MipsTargetLowering::
3388 passByValArg(SDValue Chain, SDLoc DL,
3389              std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
3390              SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
3391              MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
3392              const MipsCC &CC, const ByValArgInfo &ByVal,
3393              const ISD::ArgFlagsTy &Flags, bool isLittle) const {
3394   unsigned ByValSize = Flags.getByValSize();
3395   unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
3396   unsigned RegSize = CC.regSize();
3397   unsigned Alignment = std::min(Flags.getByValAlign(), RegSize);
3398   EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSize * 8);
3399
3400   if (ByVal.NumRegs) {
3401     const uint16_t *ArgRegs = CC.intArgRegs();
3402     bool LeftoverBytes = (ByVal.NumRegs * RegSize > ByValSize);
3403     unsigned I = 0;
3404
3405     // Copy words to registers.
3406     for (; I < ByVal.NumRegs - LeftoverBytes; ++I, Offset += RegSize) {
3407       SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3408                                     DAG.getConstant(Offset, PtrTy));
3409       SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
3410                                     MachinePointerInfo(), false, false, false,
3411                                     Alignment);
3412       MemOpChains.push_back(LoadVal.getValue(1));
3413       unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3414       RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
3415     }
3416
3417     // Return if the struct has been fully copied.
3418     if (ByValSize == Offset)
3419       return;
3420
3421     // Copy the remainder of the byval argument with sub-word loads and shifts.
3422     if (LeftoverBytes) {
3423       assert((ByValSize > Offset) && (ByValSize < Offset + RegSize) &&
3424              "Size of the remainder should be smaller than RegSize.");
3425       SDValue Val;
3426
3427       for (unsigned LoadSize = RegSize / 2, TotalSizeLoaded = 0;
3428            Offset < ByValSize; LoadSize /= 2) {
3429         unsigned RemSize = ByValSize - Offset;
3430
3431         if (RemSize < LoadSize)
3432           continue;
3433
3434         // Load subword.
3435         SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3436                                       DAG.getConstant(Offset, PtrTy));
3437         SDValue LoadVal =
3438           DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr,
3439                          MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
3440                          false, false, Alignment);
3441         MemOpChains.push_back(LoadVal.getValue(1));
3442
3443         // Shift the loaded value.
3444         unsigned Shamt;
3445
3446         if (isLittle)
3447           Shamt = TotalSizeLoaded;
3448         else
3449           Shamt = (RegSize - (TotalSizeLoaded + LoadSize)) * 8;
3450
3451         SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
3452                                     DAG.getConstant(Shamt, MVT::i32));
3453
3454         if (Val.getNode())
3455           Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
3456         else
3457           Val = Shift;
3458
3459         Offset += LoadSize;
3460         TotalSizeLoaded += LoadSize;
3461         Alignment = std::min(Alignment, LoadSize);
3462       }
3463
3464       unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
3465       RegsToPass.push_back(std::make_pair(ArgReg, Val));
3466       return;
3467     }
3468   }
3469
3470   // Copy remainder of byval arg to it with memcpy.
3471   unsigned MemCpySize = ByValSize - Offset;
3472   SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
3473                             DAG.getConstant(Offset, PtrTy));
3474   SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
3475                             DAG.getIntPtrConstant(ByVal.Address));
3476   Chain = DAG.getMemcpy(Chain, DL, Dst, Src,
3477                         DAG.getConstant(MemCpySize, PtrTy), Alignment,
3478                         /*isVolatile=*/false, /*AlwaysInline=*/false,
3479                         MachinePointerInfo(0), MachinePointerInfo(0));
3480   MemOpChains.push_back(Chain);
3481 }
3482
3483 void
3484 MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
3485                                     const MipsCC &CC, SDValue Chain,
3486                                     SDLoc DL, SelectionDAG &DAG) const {
3487   unsigned NumRegs = CC.numIntArgRegs();
3488   const uint16_t *ArgRegs = CC.intArgRegs();
3489   const CCState &CCInfo = CC.getCCInfo();
3490   unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumRegs);
3491   unsigned RegSize = CC.regSize();
3492   MVT RegTy = MVT::getIntegerVT(RegSize * 8);
3493   const TargetRegisterClass *RC = getRegClassFor(RegTy);
3494   MachineFunction &MF = DAG.getMachineFunction();
3495   MachineFrameInfo *MFI = MF.getFrameInfo();
3496   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3497
3498   // Offset of the first variable argument from stack pointer.
3499   int VaArgOffset;
3500
3501   if (NumRegs == Idx)
3502     VaArgOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), RegSize);
3503   else
3504     VaArgOffset =
3505       (int)CC.reservedArgArea() - (int)(RegSize * (NumRegs - Idx));
3506
3507   // Record the frame index of the first variable argument
3508   // which is a value necessary to VASTART.
3509   int FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3510   MipsFI->setVarArgsFrameIndex(FI);
3511
3512   // Copy the integer registers that have not been used for argument passing
3513   // to the argument register save area. For O32, the save area is allocated
3514   // in the caller's stack frame, while for N32/64, it is allocated in the
3515   // callee's stack frame.
3516   for (unsigned I = Idx; I < NumRegs; ++I, VaArgOffset += RegSize) {
3517     unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
3518     SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
3519     FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
3520     SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
3521     SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
3522                                  MachinePointerInfo(), false, false, 0);
3523     cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(0);
3524     OutChains.push_back(Store);
3525   }
3526 }