[Hexagon] Merge adjacent stores
[oota-llvm.git] / lib / Target / Hexagon / HexagonStoreWidening.cpp
1 //===--- HexagonStoreWidening.cpp------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // Replace sequences of "narrow" stores to adjacent memory locations with
10 // a fewer "wide" stores that have the same effect.
11 // For example, replace:
12 //   S4_storeirb_io  %vreg100, 0, 0   ; store-immediate-byte
13 //   S4_storeirb_io  %vreg100, 1, 0   ; store-immediate-byte
14 // with
15 //   S4_storeirh_io  %vreg100, 0, 0   ; store-immediate-halfword
16 // The above is the general idea.  The actual cases handled by the code
17 // may be a bit more complex.
18 // The purpose of this pass is to reduce the number of outstanding stores,
19 // or as one could say, "reduce store queue pressure".  Also, wide stores
20 // mean fewer stores, and since there are only two memory instructions allowed
21 // per packet, it also means fewer packets, and ultimately fewer cycles.
22 //===---------------------------------------------------------------------===//
23
24 #define DEBUG_TYPE "hexagon-widen-stores"
25
26 #include "HexagonTargetMachine.h"
27
28 #include "llvm/PassSupport.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/CodeGen/Passes.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/MC/MCInstrDesc.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include "llvm/Target/TargetRegisterInfo.h"
40 #include "llvm/Target/TargetInstrInfo.h"
41
42 #include <algorithm>
43
44
45 using namespace llvm;
46
47 namespace llvm {
48   FunctionPass *createHexagonStoreWidening();
49   void initializeHexagonStoreWideningPass(PassRegistry&);
50 }
51
52 namespace {
53   struct HexagonStoreWidening : public MachineFunctionPass {
54     const HexagonInstrInfo      *TII;
55     const HexagonRegisterInfo   *TRI;
56     const MachineRegisterInfo   *MRI;
57     AliasAnalysis               *AA;
58     MachineFunction             *MF;
59
60   public:
61     static char ID;
62     HexagonStoreWidening() : MachineFunctionPass(ID) {
63       initializeHexagonStoreWideningPass(*PassRegistry::getPassRegistry());
64     }
65
66     bool runOnMachineFunction(MachineFunction &MF) override;
67
68     const char *getPassName() const override {
69       return "Hexagon Store Widening";
70     }
71
72     void getAnalysisUsage(AnalysisUsage &AU) const override {
73       AU.addRequired<AAResultsWrapperPass>();
74       AU.addPreserved<AAResultsWrapperPass>();
75       MachineFunctionPass::getAnalysisUsage(AU);
76     }
77
78     static bool handledStoreType(const MachineInstr *MI);
79
80   private:
81     static const int MaxWideSize = 4;
82
83     typedef std::vector<MachineInstr*> InstrGroup;
84     typedef std::vector<InstrGroup> InstrGroupList;
85
86     bool instrAliased(InstrGroup &Stores, const MachineMemOperand &MMO);
87     bool instrAliased(InstrGroup &Stores, const MachineInstr *MI);
88     void createStoreGroup(MachineInstr *BaseStore, InstrGroup::iterator Begin,
89         InstrGroup::iterator End, InstrGroup &Group);
90     void createStoreGroups(MachineBasicBlock &MBB,
91         InstrGroupList &StoreGroups);
92     bool processBasicBlock(MachineBasicBlock &MBB);
93     bool processStoreGroup(InstrGroup &Group);
94     bool selectStores(InstrGroup::iterator Begin, InstrGroup::iterator End,
95         InstrGroup &OG, unsigned &TotalSize, unsigned MaxSize);
96     bool createWideStores(InstrGroup &OG, InstrGroup &NG, unsigned TotalSize);
97     bool replaceStores(InstrGroup &OG, InstrGroup &NG);
98     bool storesAreAdjacent(const MachineInstr *S1, const MachineInstr *S2);
99   };
100
101 } // namespace
102
103
104 namespace {
105
106 // Some local helper functions...
107 unsigned getBaseAddressRegister(const MachineInstr *MI) {
108   const MachineOperand &MO = MI->getOperand(0);
109   assert(MO.isReg() && "Expecting register operand");
110   return MO.getReg();
111 }
112
113 int64_t getStoreOffset(const MachineInstr *MI) {
114   unsigned OpC = MI->getOpcode();
115   assert(HexagonStoreWidening::handledStoreType(MI) && "Unhandled opcode");
116
117   switch (OpC) {
118     case Hexagon::S4_storeirb_io:
119     case Hexagon::S4_storeirh_io:
120     case Hexagon::S4_storeiri_io: {
121       const MachineOperand &MO = MI->getOperand(1);
122       assert(MO.isImm() && "Expecting immediate offset");
123       return MO.getImm();
124     }
125   }
126   dbgs() << *MI;
127   llvm_unreachable("Store offset calculation missing for a handled opcode");
128   return 0;
129 }
130
131 const MachineMemOperand &getStoreTarget(const MachineInstr *MI) {
132   assert(!MI->memoperands_empty() && "Expecting memory operands");
133   return **MI->memoperands_begin();
134 }
135
136 } // namespace
137
138
139 char HexagonStoreWidening::ID = 0;
140
141 INITIALIZE_PASS_BEGIN(HexagonStoreWidening, "hexagon-widen-stores",
142                 "Hexason Store Widening", false, false)
143 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
144 INITIALIZE_PASS_END(HexagonStoreWidening, "hexagon-widen-stores",
145                 "Hexagon Store Widening", false, false)
146
147
148 // Filtering function: any stores whose opcodes are not "approved" of by
149 // this function will not be subjected to widening.
150 inline bool HexagonStoreWidening::handledStoreType(const MachineInstr *MI) {
151   // For now, only handle stores of immediate values.
152   // Also, reject stores to stack slots.
153   unsigned Opc = MI->getOpcode();
154   switch (Opc) {
155     case Hexagon::S4_storeirb_io:
156     case Hexagon::S4_storeirh_io:
157     case Hexagon::S4_storeiri_io:
158       // Base address must be a register. (Implement FI later.)
159       return MI->getOperand(0).isReg();
160     default:
161       return false;
162   }
163 }
164
165
166 // Check if the machine memory operand MMO is aliased with any of the
167 // stores in the store group Stores.
168 bool HexagonStoreWidening::instrAliased(InstrGroup &Stores,
169       const MachineMemOperand &MMO) {
170   if (!MMO.getValue())
171     return true;
172
173   MemoryLocation L(MMO.getValue(), MMO.getSize(), MMO.getAAInfo());
174
175   for (auto SI : Stores) {
176     const MachineMemOperand &SMO = getStoreTarget(SI);
177     if (!SMO.getValue())
178       return true;
179
180     MemoryLocation SL(SMO.getValue(), SMO.getSize(), SMO.getAAInfo());
181     if (AA->alias(L, SL))
182       return true;
183   }
184
185   return false;
186 }
187
188
189 // Check if the machine instruction MI accesses any storage aliased with
190 // any store in the group Stores.
191 bool HexagonStoreWidening::instrAliased(InstrGroup &Stores,
192       const MachineInstr *MI) {
193   for (auto &I : MI->memoperands())
194     if (instrAliased(Stores, *I))
195       return true;
196   return false;
197 }
198
199
200 // Inspect a machine basic block, and generate store groups out of stores
201 // encountered in the block.
202 //
203 // A store group is a group of stores that use the same base register,
204 // and which can be reordered within that group without altering the
205 // semantics of the program.  A single store group could be widened as
206 // a whole, if there existed a single store instruction with the same
207 // semantics as the entire group.  In many cases, a single store group
208 // may need more than one wide store.
209 void HexagonStoreWidening::createStoreGroups(MachineBasicBlock &MBB,
210       InstrGroupList &StoreGroups) {
211   InstrGroup AllInsns;
212
213   // Copy all instruction pointers from the basic block to a temporary
214   // list.  This will allow operating on the list, and modifying its
215   // elements without affecting the basic block.
216   for (auto &I : MBB)
217     AllInsns.push_back(&I);
218
219   // Traverse all instructions in the AllInsns list, and if we encounter
220   // a store, then try to create a store group starting at that instruction
221   // i.e. a sequence of independent stores that can be widened.
222   for (auto I = AllInsns.begin(), E = AllInsns.end(); I != E; ++I) {
223     MachineInstr *MI = *I;
224     // Skip null pointers (processed instructions).
225     if (!MI || !handledStoreType(MI))
226       continue;
227
228     // Found a store.  Try to create a store group.
229     InstrGroup G;
230     createStoreGroup(MI, I+1, E, G);
231     if (G.size() > 1)
232       StoreGroups.push_back(G);
233   }
234 }
235
236
237 // Create a single store group.  The stores need to be independent between
238 // themselves, and also there cannot be other instructions between them
239 // that could read or modify storage being stored into.
240 void HexagonStoreWidening::createStoreGroup(MachineInstr *BaseStore,
241       InstrGroup::iterator Begin, InstrGroup::iterator End, InstrGroup &Group) {
242   assert(handledStoreType(BaseStore) && "Unexpected instruction");
243   unsigned BaseReg = getBaseAddressRegister(BaseStore);
244   InstrGroup Other;
245
246   Group.push_back(BaseStore);
247
248   for (auto I = Begin; I != End; ++I) {
249     MachineInstr *MI = *I;
250     if (!MI)
251       continue;
252
253     if (handledStoreType(MI)) {
254       // If this store instruction is aliased with anything already in the
255       // group, terminate the group now.
256       if (instrAliased(Group, getStoreTarget(MI)))
257         return;
258       // If this store is aliased to any of the memory instructions we have
259       // seen so far (that are not a part of this group), terminate the group.
260       if (instrAliased(Other, getStoreTarget(MI)))
261         return;
262
263       unsigned BR = getBaseAddressRegister(MI);
264       if (BR == BaseReg) {
265         Group.push_back(MI);
266         *I = 0;
267         continue;
268       }
269     }
270
271     // Assume calls are aliased to everything.
272     if (MI->isCall() || MI->hasUnmodeledSideEffects())
273       return;
274
275     if (MI->mayLoad() || MI->mayStore()) {
276       if (MI->hasOrderedMemoryRef() || instrAliased(Group, MI))
277         return;
278       Other.push_back(MI);
279     }
280   } // for
281 }
282
283
284 // Check if store instructions S1 and S2 are adjacent.  More precisely,
285 // S2 has to access memory immediately following that accessed by S1.
286 bool HexagonStoreWidening::storesAreAdjacent(const MachineInstr *S1,
287       const MachineInstr *S2) {
288   if (!handledStoreType(S1) || !handledStoreType(S2))
289     return false;
290
291   const MachineMemOperand &S1MO = getStoreTarget(S1);
292
293   // Currently only handling immediate stores.
294   int Off1 = S1->getOperand(1).getImm();
295   int Off2 = S2->getOperand(1).getImm();
296
297   return (Off1 >= 0) ? Off1+S1MO.getSize() == unsigned(Off2)
298                      : int(Off1+S1MO.getSize()) == Off2;
299 }
300
301
302 /// Given a sequence of adjacent stores, and a maximum size of a single wide
303 /// store, pick a group of stores that  can be replaced by a single store
304 /// of size not exceeding MaxSize.  The selected sequence will be recorded
305 /// in OG ("old group" of instructions).
306 /// OG should be empty on entry, and should be left empty if the function
307 /// fails.
308 bool HexagonStoreWidening::selectStores(InstrGroup::iterator Begin,
309       InstrGroup::iterator End, InstrGroup &OG, unsigned &TotalSize,
310       unsigned MaxSize) {
311   assert(Begin != End && "No instructions to analyze");
312   assert(OG.empty() && "Old group not empty on entry");
313
314   if (std::distance(Begin, End) <= 1)
315     return false;
316
317   MachineInstr *FirstMI = *Begin;
318   assert(!FirstMI->memoperands_empty() && "Expecting some memory operands");
319   const MachineMemOperand &FirstMMO = getStoreTarget(FirstMI);
320   unsigned Alignment = FirstMMO.getAlignment();
321   unsigned SizeAccum = FirstMMO.getSize();
322   unsigned FirstOffset = getStoreOffset(FirstMI);
323
324   // The initial value of SizeAccum should always be a power of 2.
325   assert(isPowerOf2_32(SizeAccum) && "First store size not a power of 2");
326
327   // If the size of the first store equals to or exceeds the limit, do nothing.
328   if (SizeAccum >= MaxSize)
329     return false;
330
331   // If the size of the first store is greater than or equal to the address
332   // stored to, then the store cannot be made any wider.
333   if (SizeAccum >= Alignment)
334     return false;
335
336   // The offset of a store will put restrictions on how wide the store can be.
337   // Offsets in stores of size 2^n bytes need to have the n lowest bits be 0.
338   // If the first store already exhausts the offset limits, quit.  Test this
339   // by checking if the next wider size would exceed the limit.
340   if ((2*SizeAccum-1) & FirstOffset)
341     return false;
342
343   OG.push_back(FirstMI);
344   MachineInstr *S1 = FirstMI, *S2 = *(Begin+1);
345   InstrGroup::iterator I = Begin+1;
346
347   // Pow2Num will be the largest number of elements in OG such that the sum
348   // of sizes of stores 0...Pow2Num-1 will be a power of 2.
349   unsigned Pow2Num = 1;
350   unsigned Pow2Size = SizeAccum;
351
352   // Be greedy: keep accumulating stores as long as they are to adjacent
353   // memory locations, and as long as the total number of bytes stored
354   // does not exceed the limit (MaxSize).
355   // Keep track of when the total size covered is a power of 2, since
356   // this is a size a single store can cover.
357   while (I != End) {
358     S2 = *I;
359     // Stores are sorted, so if S1 and S2 are not adjacent, there won't be
360     // any other store to fill the "hole".
361     if (!storesAreAdjacent(S1, S2))
362       break;
363
364     unsigned S2Size = getStoreTarget(S2).getSize();
365     if (SizeAccum + S2Size > std::min(MaxSize, Alignment))
366       break;
367
368     OG.push_back(S2);
369     SizeAccum += S2Size;
370     if (isPowerOf2_32(SizeAccum)) {
371       Pow2Num = OG.size();
372       Pow2Size = SizeAccum;
373     }
374     if ((2*Pow2Size-1) & FirstOffset)
375       break;
376
377     S1 = S2;
378     ++I;
379   }
380
381   // The stores don't add up to anything that can be widened.  Clean up.
382   if (Pow2Num <= 1) {
383     OG.clear();
384     return false;
385   }
386
387   // Only leave the stored being widened.
388   OG.resize(Pow2Num);
389   TotalSize = Pow2Size;
390   return true;
391 }
392
393
394 /// Given an "old group" OG of stores, create a "new group" NG of instructions
395 /// to replace them.  Ideally, NG would only have a single instruction in it,
396 /// but that may only be possible for store-immediate.
397 bool HexagonStoreWidening::createWideStores(InstrGroup &OG, InstrGroup &NG,
398       unsigned TotalSize) {
399   // XXX Current limitations:
400   // - only expect stores of immediate values in OG,
401   // - only handle a TotalSize of up to 4.
402
403   if (TotalSize > 4)
404     return false;
405
406   unsigned Acc = 0;  // Value accumulator.
407   unsigned Shift = 0;
408
409   for (InstrGroup::iterator I = OG.begin(), E = OG.end(); I != E; ++I) {
410     MachineInstr *MI = *I;
411     const MachineMemOperand &MMO = getStoreTarget(MI);
412     MachineOperand &SO = MI->getOperand(2);  // Source.
413     assert(SO.isImm() && "Expecting an immediate operand");
414
415     unsigned NBits = MMO.getSize()*8;
416     unsigned Mask = (0xFFFFFFFFU >> (32-NBits));
417     unsigned Val = (SO.getImm() & Mask) << Shift;
418     Acc |= Val;
419     Shift += NBits;
420   }
421
422
423   MachineInstr *FirstSt = OG.front();
424   DebugLoc DL = OG.back()->getDebugLoc();
425   const MachineMemOperand &OldM = getStoreTarget(FirstSt);
426   MachineMemOperand *NewM =
427     MF->getMachineMemOperand(OldM.getPointerInfo(), OldM.getFlags(),
428                              TotalSize, OldM.getAlignment(),
429                              OldM.getAAInfo());
430
431   if (Acc < 0x10000) {
432     // Create mem[hw] = #Acc
433     unsigned WOpc = (TotalSize == 2) ? Hexagon::S4_storeirh_io :
434                     (TotalSize == 4) ? Hexagon::S4_storeiri_io : 0;
435     assert(WOpc && "Unexpected size");
436
437     int Val = (TotalSize == 2) ? int16_t(Acc) : int(Acc);
438     const MCInstrDesc &StD = TII->get(WOpc);
439     MachineOperand &MR = FirstSt->getOperand(0);
440     int64_t Off = FirstSt->getOperand(1).getImm();
441     MachineInstr *StI = BuildMI(*MF, DL, StD)
442                           .addReg(MR.getReg(), getKillRegState(MR.isKill()))
443                           .addImm(Off)
444                           .addImm(Val);
445     StI->addMemOperand(*MF, NewM);
446     NG.push_back(StI);
447   } else {
448     // Create vreg = A2_tfrsi #Acc; mem[hw] = vreg
449     const MCInstrDesc &TfrD = TII->get(Hexagon::A2_tfrsi);
450     const TargetRegisterClass *RC = TII->getRegClass(TfrD, 0, TRI, *MF);
451     unsigned VReg = MF->getRegInfo().createVirtualRegister(RC);
452     MachineInstr *TfrI = BuildMI(*MF, DL, TfrD, VReg)
453                            .addImm(int(Acc));
454     NG.push_back(TfrI);
455
456     unsigned WOpc = (TotalSize == 2) ? Hexagon::S2_storerh_io :
457                     (TotalSize == 4) ? Hexagon::S2_storeri_io : 0;
458     assert(WOpc && "Unexpected size");
459
460     const MCInstrDesc &StD = TII->get(WOpc);
461     MachineOperand &MR = FirstSt->getOperand(0);
462     int64_t Off = FirstSt->getOperand(1).getImm();
463     MachineInstr *StI = BuildMI(*MF, DL, StD)
464                           .addReg(MR.getReg(), getKillRegState(MR.isKill()))
465                           .addImm(Off)
466                           .addReg(VReg, RegState::Kill);
467     StI->addMemOperand(*MF, NewM);
468     NG.push_back(StI);
469   }
470
471   return true;
472 }
473
474
475 // Replace instructions from the old group OG with instructions from the
476 // new group NG.  Conceptually, remove all instructions in OG, and then
477 // insert all instructions in NG, starting at where the first instruction
478 // from OG was (in the order in which they appeared in the basic block).
479 // (The ordering in OG does not have to match the order in the basic block.)
480 bool HexagonStoreWidening::replaceStores(InstrGroup &OG, InstrGroup &NG) {
481   DEBUG({
482     dbgs() << "Replacing:\n";
483     for (auto I : OG)
484       dbgs() << "  " << *I;
485     dbgs() << "with\n";
486     for (auto I : NG)
487       dbgs() << "  " << *I;
488   });
489
490   MachineBasicBlock *MBB = OG.back()->getParent();
491   MachineBasicBlock::iterator InsertAt = MBB->end();
492
493   // Need to establish the insertion point.  The best one is right before
494   // the first store in the OG, but in the order in which the stores occur
495   // in the program list.  Since the ordering in OG does not correspond
496   // to the order in the program list, we need to do some work to find
497   // the insertion point.
498
499   // Create a set of all instructions in OG (for quick lookup).
500   SmallPtrSet<MachineInstr*, 4> InstrSet;
501   for (auto I : OG)
502     InstrSet.insert(I);
503
504   // Traverse the block, until we hit an instruction from OG.
505   for (auto &I : *MBB) {
506     if (InstrSet.count(&I)) {
507       InsertAt = I;
508       break;
509     }
510   }
511
512   assert((InsertAt != MBB->end()) && "Cannot locate any store from the group");
513
514   bool AtBBStart = false;
515
516   // InsertAt points at the first instruction that will be removed.  We need
517   // to move it out of the way, so it remains valid after removing all the
518   // old stores, and so we are able to recover it back to the proper insertion
519   // position.
520   if (InsertAt != MBB->begin())
521     --InsertAt;
522   else
523     AtBBStart = true;
524
525   for (auto I : OG)
526     I->eraseFromParent();
527
528   if (!AtBBStart)
529     ++InsertAt;
530   else
531     InsertAt = MBB->begin();
532
533   for (auto I : NG)
534     MBB->insert(InsertAt, I);
535
536   return true;
537 }
538
539
540 // Break up the group into smaller groups, each of which can be replaced by
541 // a single wide store.  Widen each such smaller group and replace the old
542 // instructions with the widened ones.
543 bool HexagonStoreWidening::processStoreGroup(InstrGroup &Group) {
544   bool Changed = false;
545   InstrGroup::iterator I = Group.begin(), E = Group.end();
546   InstrGroup OG, NG;   // Old and new groups.
547   unsigned CollectedSize;
548
549   while (I != E) {
550     OG.clear();
551     NG.clear();
552
553     bool Succ = selectStores(I++, E, OG, CollectedSize, MaxWideSize) &&
554                 createWideStores(OG, NG, CollectedSize)              &&
555                 replaceStores(OG, NG);
556     if (!Succ)
557       continue;
558
559     assert(OG.size() > 1 && "Created invalid group");
560     assert(distance(I, E)+1 >= int(OG.size()) && "Too many elements");
561     I += OG.size()-1;
562
563     Changed = true;
564   }
565
566   return Changed;
567 }
568
569
570 // Process a single basic block: create the store groups, and replace them
571 // with the widened stores, if possible.  Processing of each basic block
572 // is independent from processing of any other basic block.  This transfor-
573 // mation could be stopped after having processed any basic block without
574 // any ill effects (other than not having performed widening in the unpro-
575 // cessed blocks).  Also, the basic blocks can be processed in any order.
576 bool HexagonStoreWidening::processBasicBlock(MachineBasicBlock &MBB) {
577   InstrGroupList SGs;
578   bool Changed = false;
579
580   createStoreGroups(MBB, SGs);
581
582   auto Less = [] (const MachineInstr *A, const MachineInstr *B) -> bool {
583     return getStoreOffset(A) < getStoreOffset(B);
584   };
585   for (auto &G : SGs) {
586     assert(G.size() > 1 && "Store group with fewer than 2 elements");
587     std::sort(G.begin(), G.end(), Less);
588
589     Changed |= processStoreGroup(G);
590   }
591
592   return Changed;
593 }
594
595
596 bool HexagonStoreWidening::runOnMachineFunction(MachineFunction &MFn) {
597   MF = &MFn;
598   auto &ST = MFn.getSubtarget<HexagonSubtarget>();
599   TII = ST.getInstrInfo();
600   TRI = ST.getRegisterInfo();
601   MRI = &MFn.getRegInfo();
602   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
603
604   bool Changed = false;
605
606   for (auto &B : MFn)
607     Changed |= processBasicBlock(B);
608
609   return Changed;
610 }
611
612
613 FunctionPass *llvm::createHexagonStoreWidening() {
614   return new HexagonStoreWidening();
615 }
616