[Hexagon] Split double registers
[oota-llvm.git] / lib / Target / Hexagon / HexagonSplitDouble.cpp
1 //===--- HexagonSplitDouble.cpp -------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #define DEBUG_TYPE "hsdr"
11
12 #include "HexagonRegisterInfo.h"
13 #include "HexagonTargetMachine.h"
14
15 #include "llvm/Pass.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineFunctionPass.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Target/TargetRegisterInfo.h"
26
27 #include <map>
28 #include <set>
29 #include <vector>
30
31 using namespace llvm;
32
33 namespace llvm {
34   FunctionPass *createHexagonSplitDoubleRegs();
35   void initializeHexagonSplitDoubleRegsPass(PassRegistry&);
36 }
37
38 namespace {
39   static cl::opt<int> MaxHSDR("max-hsdr", cl::Hidden, cl::init(-1),
40       cl::desc("Maximum number of split partitions"));
41   static cl::opt<bool> MemRefsFixed("hsdr-no-mem", cl::Hidden, cl::init(true),
42       cl::desc("Do not split loads or stores"));
43
44   class HexagonSplitDoubleRegs : public MachineFunctionPass {
45   public:
46     static char ID;
47     HexagonSplitDoubleRegs() : MachineFunctionPass(ID), TRI(nullptr),
48         TII(nullptr) {
49       initializeHexagonSplitDoubleRegsPass(*PassRegistry::getPassRegistry());
50     }
51     const char *getPassName() const override {
52       return "Hexagon Split Double Registers";
53     }
54     void getAnalysisUsage(AnalysisUsage &AU) const override {
55       AU.addRequired<MachineLoopInfo>();
56       AU.addPreserved<MachineLoopInfo>();
57       MachineFunctionPass::getAnalysisUsage(AU);
58     }
59     bool runOnMachineFunction(MachineFunction &MF) override;
60
61   private:
62     static const TargetRegisterClass *const DoubleRC;
63
64     const HexagonRegisterInfo *TRI;
65     const HexagonInstrInfo *TII;
66     const MachineLoopInfo *MLI;
67     MachineRegisterInfo *MRI;
68
69     typedef std::set<unsigned> USet;
70     typedef std::map<unsigned,USet> UUSetMap;
71     typedef std::pair<unsigned,unsigned> UUPair;
72     typedef std::map<unsigned,UUPair> UUPairMap;
73     typedef std::map<const MachineLoop*,USet> LoopRegMap;
74
75     bool isInduction(unsigned Reg, LoopRegMap &IRM) const;
76     bool isVolatileInstr(const MachineInstr *MI) const;
77     bool isFixedInstr(const MachineInstr *MI) const;
78     void partitionRegisters(UUSetMap &P2Rs);
79     int32_t profit(const MachineInstr *MI) const;
80     bool isProfitable(const USet &Part, LoopRegMap &IRM) const;
81
82     void collectIndRegsForLoop(const MachineLoop *L, USet &Rs);
83     void collectIndRegs(LoopRegMap &IRM);
84
85     void createHalfInstr(unsigned Opc, MachineInstr *MI,
86         const UUPairMap &PairMap, unsigned SubR);
87     void splitMemRef(MachineInstr *MI, const UUPairMap &PairMap);
88     void splitImmediate(MachineInstr *MI, const UUPairMap &PairMap);
89     void splitCombine(MachineInstr *MI, const UUPairMap &PairMap);
90     void splitExt(MachineInstr *MI, const UUPairMap &PairMap);
91     void splitShift(MachineInstr *MI, const UUPairMap &PairMap);
92     void splitAslOr(MachineInstr *MI, const UUPairMap &PairMap);
93     bool splitInstr(MachineInstr *MI, const UUPairMap &PairMap);
94     void replaceSubregUses(MachineInstr *MI, const UUPairMap &PairMap);
95     void collapseRegPairs(MachineInstr *MI, const UUPairMap &PairMap);
96     bool splitPartition(const USet &Part);
97
98     static int Counter;
99     static void dump_partition(raw_ostream&, const USet&,
100        const TargetRegisterInfo&);
101   };
102   char HexagonSplitDoubleRegs::ID;
103   int HexagonSplitDoubleRegs::Counter = 0;
104   const TargetRegisterClass *const HexagonSplitDoubleRegs::DoubleRC
105       = &Hexagon::DoubleRegsRegClass;
106 }
107
108 INITIALIZE_PASS(HexagonSplitDoubleRegs, "hexagon-split-double",
109   "Hexagon Split Double Registers", false, false)
110
111
112 static inline uint32_t getRegState(const MachineOperand &R) {
113   assert(R.isReg());
114   return getDefRegState(R.isDef()) |
115          getImplRegState(R.isImplicit()) |
116          getKillRegState(R.isKill()) |
117          getDeadRegState(R.isDead()) |
118          getUndefRegState(R.isUndef()) |
119          getInternalReadRegState(R.isInternalRead()) |
120          (R.isDebug() ? RegState::Debug : 0);
121 }
122
123
124 void HexagonSplitDoubleRegs::dump_partition(raw_ostream &os,
125       const USet &Part, const TargetRegisterInfo &TRI) {
126   dbgs() << '{';
127   for (auto I : Part)
128     dbgs() << ' ' << PrintReg(I, &TRI);
129   dbgs() << " }";
130 }
131
132
133 bool HexagonSplitDoubleRegs::isInduction(unsigned Reg, LoopRegMap &IRM) const {
134   for (auto I : IRM) {
135     const USet &Rs = I.second;
136     if (Rs.find(Reg) != Rs.end())
137       return true;
138   }
139   return false;
140 }
141
142
143 bool HexagonSplitDoubleRegs::isVolatileInstr(const MachineInstr *MI) const {
144   for (auto &I : MI->memoperands())
145     if (I->isVolatile())
146       return true;
147   return false;
148 }
149
150
151 bool HexagonSplitDoubleRegs::isFixedInstr(const MachineInstr *MI) const {
152   if (MI->mayLoad() || MI->mayStore())
153     if (MemRefsFixed || isVolatileInstr(MI))
154       return true;
155   if (MI->isDebugValue())
156     return false;
157
158   unsigned Opc = MI->getOpcode();
159   switch (Opc) {
160     default:
161       return true;
162
163     case TargetOpcode::PHI:
164     case TargetOpcode::COPY:
165       break;
166
167     case Hexagon::L2_loadrd_io:
168       // Not handling stack stores (only reg-based addresses).
169       if (MI->getOperand(1).isReg())
170         break;
171       return true;
172     case Hexagon::S2_storerd_io:
173       // Not handling stack stores (only reg-based addresses).
174       if (MI->getOperand(0).isReg())
175         break;
176       return true;
177     case Hexagon::L2_loadrd_pi:
178     case Hexagon::S2_storerd_pi:
179
180     case Hexagon::A2_tfrpi:
181     case Hexagon::A2_combineii:
182     case Hexagon::A4_combineir:
183     case Hexagon::A4_combineii:
184     case Hexagon::A4_combineri:
185     case Hexagon::A2_combinew:
186     case Hexagon::CONST64_Int_Real:
187
188     case Hexagon::A2_sxtw:
189
190     case Hexagon::A2_andp:
191     case Hexagon::A2_orp:
192     case Hexagon::A2_xorp:
193     case Hexagon::S2_asl_i_p_or:
194     case Hexagon::S2_asl_i_p:
195     case Hexagon::S2_asr_i_p:
196     case Hexagon::S2_lsr_i_p:
197       break;
198   }
199
200   for (auto &Op : MI->operands()) {
201     if (!Op.isReg())
202       continue;
203     unsigned R = Op.getReg();
204     if (!TargetRegisterInfo::isVirtualRegister(R))
205       return true;
206   }
207   return false;
208 }
209
210
211 void HexagonSplitDoubleRegs::partitionRegisters(UUSetMap &P2Rs) {
212   typedef std::map<unsigned,unsigned> UUMap;
213   typedef std::vector<unsigned> UVect;
214
215   unsigned NumRegs = MRI->getNumVirtRegs();
216   BitVector DoubleRegs(NumRegs);
217   for (unsigned i = 0; i < NumRegs; ++i) {
218     unsigned R = TargetRegisterInfo::index2VirtReg(i);
219     if (MRI->getRegClass(R) == DoubleRC)
220       DoubleRegs.set(i);
221   }
222
223   BitVector FixedRegs(NumRegs);
224   for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
225     unsigned R = TargetRegisterInfo::index2VirtReg(x);
226     MachineInstr *DefI = MRI->getVRegDef(R);
227     // In some cases a register may exist, but never be defined or used.
228     // It should never appear anywhere, but mark it as "fixed", just to be
229     // safe.
230     if (!DefI || isFixedInstr(DefI))
231       FixedRegs.set(x);
232   }
233
234   UUSetMap AssocMap;
235   for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
236     if (FixedRegs[x])
237       continue;
238     unsigned R = TargetRegisterInfo::index2VirtReg(x);
239     DEBUG(dbgs() << PrintReg(R, TRI) << " ~~");
240     USet &Asc = AssocMap[R];
241     for (auto U = MRI->use_nodbg_begin(R), Z = MRI->use_nodbg_end();
242          U != Z; ++U) {
243       MachineOperand &Op = *U;
244       MachineInstr *UseI = Op.getParent();
245       if (isFixedInstr(UseI))
246         continue;
247       for (unsigned i = 0, n = UseI->getNumOperands(); i < n; ++i) {
248         MachineOperand &MO = UseI->getOperand(i);
249         // Skip non-registers or registers with subregisters.
250         if (&MO == &Op || !MO.isReg() || MO.getSubReg())
251           continue;
252         unsigned T = MO.getReg();
253         if (!TargetRegisterInfo::isVirtualRegister(T)) {
254           FixedRegs.set(x);
255           continue;
256         }
257         if (MRI->getRegClass(T) != DoubleRC)
258           continue;
259         unsigned u = TargetRegisterInfo::virtReg2Index(T);
260         if (FixedRegs[u])
261           continue;
262         DEBUG(dbgs() << ' ' << PrintReg(T, TRI));
263         Asc.insert(T);
264         // Make it symmetric.
265         AssocMap[T].insert(R);
266       }
267     }
268     DEBUG(dbgs() << '\n');
269   }
270
271   UUMap R2P;
272   unsigned NextP = 1;
273   USet Visited;
274   for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
275     unsigned R = TargetRegisterInfo::index2VirtReg(x);
276     if (Visited.count(R))
277       continue;
278     // Create a new partition for R.
279     unsigned ThisP = FixedRegs[x] ? 0 : NextP++;
280     UVect WorkQ;
281     WorkQ.push_back(R);
282     for (unsigned i = 0; i < WorkQ.size(); ++i) {
283       unsigned T = WorkQ[i];
284       if (Visited.count(T))
285         continue;
286       R2P[T] = ThisP;
287       Visited.insert(T);
288       // Add all registers associated with T.
289       USet &Asc = AssocMap[T];
290       for (USet::iterator J = Asc.begin(), F = Asc.end(); J != F; ++J)
291         WorkQ.push_back(*J);
292     }
293   }
294
295   for (auto I : R2P)
296     P2Rs[I.second].insert(I.first);
297 }
298
299
300 static inline int32_t profitImm(unsigned Lo, unsigned Hi) {
301   int32_t P = 0;
302   bool LoZ1 = false, HiZ1 = false;
303   if (Lo == 0 || Lo == 0xFFFFFFFF)
304     P += 10, LoZ1 = true;
305   if (Hi == 0 || Hi == 0xFFFFFFFF)
306     P += 10, HiZ1 = true;
307   if (!LoZ1 && !HiZ1 && Lo == Hi)
308     P += 3;
309   return P;
310 }
311
312
313 int32_t HexagonSplitDoubleRegs::profit(const MachineInstr *MI) const {
314   unsigned ImmX = 0;
315   unsigned Opc = MI->getOpcode();
316   switch (Opc) {
317     case TargetOpcode::PHI:
318       for (const auto &Op : MI->operands())
319         if (!Op.getSubReg())
320           return 0;
321       return 10;
322     case TargetOpcode::COPY:
323       if (MI->getOperand(1).getSubReg() != 0)
324         return 10;
325       return 0;
326
327     case Hexagon::L2_loadrd_io:
328     case Hexagon::S2_storerd_io:
329       return -1;
330     case Hexagon::L2_loadrd_pi:
331     case Hexagon::S2_storerd_pi:
332       return 2;
333
334     case Hexagon::A2_tfrpi:
335     case Hexagon::CONST64_Int_Real: {
336       uint64_t D = MI->getOperand(1).getImm();
337       unsigned Lo = D & 0xFFFFFFFFULL;
338       unsigned Hi = D >> 32;
339       return profitImm(Lo, Hi);
340     }
341     case Hexagon::A2_combineii:
342     case Hexagon::A4_combineii:
343       return profitImm(MI->getOperand(1).getImm(),
344                        MI->getOperand(2).getImm());
345     case Hexagon::A4_combineri:
346       ImmX++;
347     case Hexagon::A4_combineir: {
348       ImmX++;
349       int64_t V = MI->getOperand(ImmX).getImm();
350       if (V == 0 || V == -1)
351         return 10;
352       // Fall through into A2_combinew.
353     }
354     case Hexagon::A2_combinew:
355       return 2;
356
357     case Hexagon::A2_sxtw:
358       return 3;
359
360     case Hexagon::A2_andp:
361     case Hexagon::A2_orp:
362     case Hexagon::A2_xorp:
363       return 1;
364
365     case Hexagon::S2_asl_i_p_or: {
366       unsigned S = MI->getOperand(3).getImm();
367       if (S == 0 || S == 32)
368         return 10;
369       return -1;
370     }
371     case Hexagon::S2_asl_i_p:
372     case Hexagon::S2_asr_i_p:
373     case Hexagon::S2_lsr_i_p:
374       unsigned S = MI->getOperand(2).getImm();
375       if (S == 0 || S == 32)
376         return 10;
377       if (S == 16)
378         return 5;
379       if (S == 48)
380         return 7;
381       return -10;
382   }
383
384   return 0;
385 }
386
387
388 bool HexagonSplitDoubleRegs::isProfitable(const USet &Part, LoopRegMap &IRM)
389       const {
390   unsigned FixedNum = 0, SplitNum = 0, LoopPhiNum = 0;
391   int32_t TotalP = 0;
392
393   for (unsigned DR : Part) {
394     MachineInstr *DefI = MRI->getVRegDef(DR);
395     int32_t P = profit(DefI);
396     if (P == INT_MIN)
397       return false;
398     TotalP += P;
399     // Reduce the profitability of splitting induction registers.
400     if (isInduction(DR, IRM))
401       TotalP -= 30;
402
403     for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
404          U != W; ++U) {
405       MachineInstr *UseI = U->getParent();
406       if (isFixedInstr(UseI)) {
407         FixedNum++;
408         // Calculate the cost of generating REG_SEQUENCE instructions.
409         for (auto &Op : UseI->operands()) {
410           if (Op.isReg() && Part.count(Op.getReg()))
411             if (Op.getSubReg())
412               TotalP -= 2;
413         }
414         continue;
415       }
416       // If a register from this partition is used in a fixed instruction,
417       // and there is also a register in this partition that is used in
418       // a loop phi node, then decrease the splitting profit as this can
419       // confuse the modulo scheduler.
420       if (UseI->isPHI()) {
421         const MachineBasicBlock *PB = UseI->getParent();
422         const MachineLoop *L = MLI->getLoopFor(PB);
423         if (L && L->getHeader() == PB)
424           LoopPhiNum++;
425       }
426       // Splittable instruction.
427       SplitNum++;
428       int32_t P = profit(UseI);
429       if (P == INT_MIN)
430         return false;
431       TotalP += P;
432     }
433   }
434
435   if (FixedNum > 0 && LoopPhiNum > 0)
436     TotalP -= 20*LoopPhiNum;
437
438   DEBUG(dbgs() << "Partition profit: " << TotalP << '\n');
439   return TotalP > 0;
440 }
441
442
443 void HexagonSplitDoubleRegs::collectIndRegsForLoop(const MachineLoop *L,
444       USet &Rs) {
445   const MachineBasicBlock *HB = L->getHeader();
446   const MachineBasicBlock *LB = L->getLoopLatch();
447   if (!HB || !LB)
448     return;
449
450   // Examine the latch branch. Expect it to be a conditional branch to
451   // the header (either "br-cond header" or "br-cond exit; br header").
452   MachineBasicBlock *TB = 0, *FB = 0;
453   MachineBasicBlock *TmpLB = const_cast<MachineBasicBlock*>(LB);
454   SmallVector<MachineOperand,2> Cond;
455   bool BadLB = TII->AnalyzeBranch(*TmpLB, TB, FB, Cond, false);
456   // Only analyzable conditional branches. HII::AnalyzeBranch will put
457   // the branch opcode as the first element of Cond, and the predicate
458   // operand as the second.
459   if (BadLB || Cond.size() != 2)
460     return;
461   // Only simple jump-conditional (with or without negation).
462   if (!TII->PredOpcodeHasJMP_c(Cond[0].getImm()))
463     return;
464   // Must go to the header.
465   if (TB != HB && FB != HB)
466     return;
467   assert(Cond[1].isReg() && "Unexpected Cond vector from AnalyzeBranch");
468   // Expect a predicate register.
469   unsigned PR = Cond[1].getReg();
470   assert(MRI->getRegClass(PR) == &Hexagon::PredRegsRegClass);
471
472   // Get the registers on which the loop controlling compare instruction
473   // depends.
474   unsigned CmpR1 = 0, CmpR2 = 0;
475   const MachineInstr *CmpI = MRI->getVRegDef(PR);
476   while (CmpI->getOpcode() == Hexagon::C2_not)
477     CmpI = MRI->getVRegDef(CmpI->getOperand(1).getReg());
478
479   int Mask = 0, Val = 0;
480   bool OkCI = TII->analyzeCompare(CmpI, CmpR1, CmpR2, Mask, Val);
481   if (!OkCI)
482     return;
483   // Eliminate non-double input registers.
484   if (CmpR1 && MRI->getRegClass(CmpR1) != DoubleRC)
485     CmpR1 = 0;
486   if (CmpR2 && MRI->getRegClass(CmpR2) != DoubleRC)
487     CmpR2 = 0;
488   if (!CmpR1 && !CmpR2)
489     return;
490
491   // Now examine the top of the loop: the phi nodes that could poten-
492   // tially define loop induction registers. The registers defined by
493   // such a phi node would be used in a 64-bit add, which then would
494   // be used in the loop compare instruction.
495
496   // Get the set of all double registers defined by phi nodes in the
497   // loop header.
498   typedef std::vector<unsigned> UVect;
499   UVect DP;
500   for (auto &MI : *HB) {
501     if (!MI.isPHI())
502       break;
503     const MachineOperand &MD = MI.getOperand(0);
504     unsigned R = MD.getReg();
505     if (MRI->getRegClass(R) == DoubleRC)
506       DP.push_back(R);
507   }
508   if (DP.empty())
509     return;
510
511   auto NoIndOp = [this, CmpR1, CmpR2] (unsigned R) -> bool {
512     for (auto I = MRI->use_nodbg_begin(R), E = MRI->use_nodbg_end();
513          I != E; ++I) {
514       const MachineInstr *UseI = I->getParent();
515       if (UseI->getOpcode() != Hexagon::A2_addp)
516         continue;
517       // Get the output from the add. If it is one of the inputs to the
518       // loop-controlling compare instruction, then R is likely an induc-
519       // tion register.
520       unsigned T = UseI->getOperand(0).getReg();
521       if (T == CmpR1 || T == CmpR2)
522         return false;
523     }
524     return true;
525   };
526   UVect::iterator End = std::remove_if(DP.begin(), DP.end(), NoIndOp);
527   Rs.insert(DP.begin(), End);
528   Rs.insert(CmpR1);
529   Rs.insert(CmpR2);
530
531   DEBUG({
532     dbgs() << "For loop at BB#" << HB->getNumber() << " ind regs: ";
533     dump_partition(dbgs(), Rs, *TRI);
534     dbgs() << '\n';
535   });
536 }
537
538
539 void HexagonSplitDoubleRegs::collectIndRegs(LoopRegMap &IRM) {
540   typedef std::vector<MachineLoop*> LoopVector;
541   LoopVector WorkQ;
542
543   for (auto I : *MLI)
544     WorkQ.push_back(I);
545   for (unsigned i = 0; i < WorkQ.size(); ++i) {
546     for (auto I : *WorkQ[i])
547       WorkQ.push_back(I);
548   }
549
550   USet Rs;
551   for (unsigned i = 0, n = WorkQ.size(); i < n; ++i) {
552     MachineLoop *L = WorkQ[i];
553     Rs.clear();
554     collectIndRegsForLoop(L, Rs);
555     if (!Rs.empty())
556       IRM.insert(std::make_pair(L, Rs));
557   }
558 }
559
560
561 void HexagonSplitDoubleRegs::createHalfInstr(unsigned Opc, MachineInstr *MI,
562       const UUPairMap &PairMap, unsigned SubR) {
563   MachineBasicBlock &B = *MI->getParent();
564   DebugLoc DL = MI->getDebugLoc();
565   MachineInstr *NewI = BuildMI(B, MI, DL, TII->get(Opc));
566
567   for (auto &Op : MI->operands()) {
568     if (!Op.isReg()) {
569       NewI->addOperand(Op);
570       continue;
571     }
572     // For register operands, set the subregister.
573     unsigned R = Op.getReg();
574     unsigned SR = Op.getSubReg();
575     bool isVirtReg = TargetRegisterInfo::isVirtualRegister(R);
576     bool isKill = Op.isKill();
577     if (isVirtReg && MRI->getRegClass(R) == DoubleRC) {
578       isKill = false;
579       UUPairMap::const_iterator F = PairMap.find(R);
580       if (F == PairMap.end()) {
581         SR = SubR;
582       } else {
583         const UUPair &P = F->second;
584         R = (SubR == Hexagon::subreg_loreg) ? P.first : P.second;
585         SR = 0;
586       }
587     }
588     auto CO = MachineOperand::CreateReg(R, Op.isDef(), Op.isImplicit(), isKill,
589           Op.isDead(), Op.isUndef(), Op.isEarlyClobber(), SR, Op.isDebug(),
590           Op.isInternalRead());
591     NewI->addOperand(CO);
592   }
593 }
594
595
596 void HexagonSplitDoubleRegs::splitMemRef(MachineInstr *MI,
597       const UUPairMap &PairMap) {
598   bool Load = MI->mayLoad();
599   unsigned OrigOpc = MI->getOpcode();
600   bool PostInc = (OrigOpc == Hexagon::L2_loadrd_pi ||
601                   OrigOpc == Hexagon::S2_storerd_pi);
602   MachineInstr *LowI, *HighI;
603   MachineBasicBlock &B = *MI->getParent();
604   DebugLoc DL = MI->getDebugLoc();
605
606   // Index of the base-address-register operand.
607   unsigned AdrX = PostInc ? (Load ? 2 : 1)
608                           : (Load ? 1 : 0);
609   MachineOperand &AdrOp = MI->getOperand(AdrX);
610   unsigned RSA = getRegState(AdrOp);
611   MachineOperand &ValOp = Load ? MI->getOperand(0)
612                                : (PostInc ? MI->getOperand(3)
613                                           : MI->getOperand(2));
614   UUPairMap::const_iterator F = PairMap.find(ValOp.getReg());
615   assert(F != PairMap.end());
616
617   if (Load) {
618     const UUPair &P = F->second;
619     int64_t Off = PostInc ? 0 : MI->getOperand(2).getImm();
620     LowI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.first)
621              .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
622              .addImm(Off);
623     HighI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.second)
624               .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
625               .addImm(Off+4);
626   } else {
627     const UUPair &P = F->second;
628     int64_t Off = PostInc ? 0 : MI->getOperand(1).getImm();
629     LowI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io))
630              .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
631              .addImm(Off)
632              .addReg(P.first);
633     HighI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io))
634               .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
635               .addImm(Off+4)
636               .addReg(P.second);
637   }
638
639   if (PostInc) {
640     // Create the increment of the address register.
641     int64_t Inc = Load ? MI->getOperand(3).getImm()
642                        : MI->getOperand(2).getImm();
643     MachineOperand &UpdOp = Load ? MI->getOperand(1) : MI->getOperand(0);
644     const TargetRegisterClass *RC = MRI->getRegClass(UpdOp.getReg());
645     unsigned NewR = MRI->createVirtualRegister(RC);
646     assert(!UpdOp.getSubReg() && "Def operand with subreg");
647     BuildMI(B, MI, DL, TII->get(Hexagon::A2_addi), NewR)
648       .addReg(AdrOp.getReg(), RSA)
649       .addImm(Inc);
650     MRI->replaceRegWith(UpdOp.getReg(), NewR);
651     // The original instruction will be deleted later.
652   }
653
654   // Generate a new pair of memory-operands.
655   MachineFunction &MF = *B.getParent();
656   for (auto &MO : MI->memoperands()) {
657     const MachinePointerInfo &Ptr = MO->getPointerInfo();
658     unsigned F = MO->getFlags();
659     int A = MO->getAlignment();
660
661     auto *Tmp1 = MF.getMachineMemOperand(Ptr, F, 4/*size*/, A);
662     LowI->addMemOperand(MF, Tmp1);
663     auto *Tmp2 = MF.getMachineMemOperand(Ptr, F, 4/*size*/, std::min(A, 4));
664     HighI->addMemOperand(MF, Tmp2);
665   }
666 }
667
668
669 void HexagonSplitDoubleRegs::splitImmediate(MachineInstr *MI,
670       const UUPairMap &PairMap) {
671   MachineOperand &Op0 = MI->getOperand(0);
672   MachineOperand &Op1 = MI->getOperand(1);
673   assert(Op0.isReg() && Op1.isImm());
674   uint64_t V = Op1.getImm();
675
676   MachineBasicBlock &B = *MI->getParent();
677   DebugLoc DL = MI->getDebugLoc();
678   UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
679   assert(F != PairMap.end());
680   const UUPair &P = F->second;
681
682   // The operand to A2_tfrsi can only have 32 significant bits. Immediate
683   // values in MachineOperand are stored as 64-bit integers, and so the
684   // value -1 may be represented either as 64-bit -1, or 4294967295. Both
685   // will have the 32 higher bits truncated in the end, but -1 will remain
686   // as -1, while the latter may appear to be a large unsigned value
687   // requiring a constant extender. The casting to int32_t will select the
688   // former representation. (The same reasoning applies to all 32-bit
689   // values.)
690   BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first)
691     .addImm(int32_t(V & 0xFFFFFFFFULL));
692   BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second)
693     .addImm(int32_t(V >> 32));
694 }
695
696
697 void HexagonSplitDoubleRegs::splitCombine(MachineInstr *MI,
698       const UUPairMap &PairMap) {
699   MachineOperand &Op0 = MI->getOperand(0);
700   MachineOperand &Op1 = MI->getOperand(1);
701   MachineOperand &Op2 = MI->getOperand(2);
702   assert(Op0.isReg());
703
704   MachineBasicBlock &B = *MI->getParent();
705   DebugLoc DL = MI->getDebugLoc();
706   UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
707   assert(F != PairMap.end());
708   const UUPair &P = F->second;
709
710   if (Op1.isImm()) {
711     BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second)
712       .addImm(Op1.getImm());
713   } else if (Op1.isReg()) {
714     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.second)
715       .addReg(Op1.getReg(), getRegState(Op1), Op1.getSubReg());
716   } else
717     llvm_unreachable("Unexpected operand");
718
719   if (Op2.isImm()) {
720     BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first)
721       .addImm(Op2.getImm());
722   } else if (Op2.isReg()) {
723     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first)
724       .addReg(Op2.getReg(), getRegState(Op2), Op2.getSubReg());
725   } else
726     llvm_unreachable("Unexpected operand");
727 }
728
729
730 void HexagonSplitDoubleRegs::splitExt(MachineInstr *MI,
731       const UUPairMap &PairMap) {
732   MachineOperand &Op0 = MI->getOperand(0);
733   MachineOperand &Op1 = MI->getOperand(1);
734   assert(Op0.isReg() && Op1.isReg());
735
736   MachineBasicBlock &B = *MI->getParent();
737   DebugLoc DL = MI->getDebugLoc();
738   UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
739   assert(F != PairMap.end());
740   const UUPair &P = F->second;
741   unsigned RS = getRegState(Op1);
742
743   BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first)
744     .addReg(Op1.getReg(), RS & ~RegState::Kill, Op1.getSubReg());
745   BuildMI(B, MI, DL, TII->get(Hexagon::S2_asr_i_r), P.second)
746     .addReg(Op1.getReg(), RS, Op1.getSubReg())
747     .addImm(31);
748 }
749
750
751 void HexagonSplitDoubleRegs::splitShift(MachineInstr *MI,
752       const UUPairMap &PairMap) {
753   MachineOperand &Op0 = MI->getOperand(0);
754   MachineOperand &Op1 = MI->getOperand(1);
755   MachineOperand &Op2 = MI->getOperand(2);
756   assert(Op0.isReg() && Op1.isReg() && Op2.isImm());
757   int64_t Sh64 = Op2.getImm();
758   assert(Sh64 >= 0 && Sh64 < 64);
759   unsigned S = Sh64;
760
761   UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
762   assert(F != PairMap.end());
763   const UUPair &P = F->second;
764   unsigned LoR = P.first;
765   unsigned HiR = P.second;
766   using namespace Hexagon;
767
768   unsigned Opc = MI->getOpcode();
769   bool Right = (Opc == S2_lsr_i_p || Opc == S2_asr_i_p);
770   bool Left = !Right;
771   bool Signed = (Opc == S2_asr_i_p);
772
773   MachineBasicBlock &B = *MI->getParent();
774   DebugLoc DL = MI->getDebugLoc();
775   unsigned RS = getRegState(Op1);
776   unsigned ShiftOpc = Left ? S2_asl_i_r
777                            : (Signed ? S2_asr_i_r : S2_lsr_i_r);
778   unsigned LoSR = subreg_loreg;
779   unsigned HiSR = subreg_hireg;
780
781   if (S == 0) {
782     // No shift, subregister copy.
783     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
784       .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
785     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), HiR)
786       .addReg(Op1.getReg(), RS, HiSR);
787   } else if (S < 32) {
788     const TargetRegisterClass *IntRC = &IntRegsRegClass;
789     unsigned TmpR = MRI->createVirtualRegister(IntRC);
790     // Expansion:
791     // Shift left:    DR = shl R, #s
792     //   LoR  = shl R.lo, #s
793     //   TmpR = extractu R.lo, #s, #32-s
794     //   HiR  = or (TmpR, asl(R.hi, #s))
795     // Shift right:   DR = shr R, #s
796     //   HiR  = shr R.hi, #s
797     //   TmpR = shr R.lo, #s
798     //   LoR  = insert TmpR, R.hi, #s, #32-s
799
800     // Shift left:
801     //   LoR  = shl R.lo, #s
802     // Shift right:
803     //   TmpR = shr R.lo, #s
804
805     // Make a special case for A2_aslh and A2_asrh (they are predicable as
806     // opposed to S2_asl_i_r/S2_asr_i_r).
807     if (S == 16 && Left)
808       BuildMI(B, MI, DL, TII->get(A2_aslh), LoR)
809         .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
810     else if (S == 16 && Signed)
811       BuildMI(B, MI, DL, TII->get(A2_asrh), TmpR)
812         .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
813     else
814       BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? LoR : TmpR))
815         .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR)
816         .addImm(S);
817
818     if (Left) {
819       // TmpR = extractu R.lo, #s, #32-s
820       BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR)
821         .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR)
822         .addImm(S)
823         .addImm(32-S);
824       // HiR  = or (TmpR, asl(R.hi, #s))
825       BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
826         .addReg(TmpR)
827         .addReg(Op1.getReg(), RS, HiSR)
828         .addImm(S);
829     } else {
830       // HiR  = shr R.hi, #s
831       BuildMI(B, MI, DL, TII->get(ShiftOpc), HiR)
832         .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR)
833         .addImm(S);
834       // LoR  = insert TmpR, R.hi, #s, #32-s
835       BuildMI(B, MI, DL, TII->get(S2_insert), LoR)
836         .addReg(TmpR)
837         .addReg(Op1.getReg(), RS, HiSR)
838         .addImm(S)
839         .addImm(32-S);
840     }
841   } else if (S == 32) {
842     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), (Left ? HiR : LoR))
843       .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR));
844     if (!Signed)
845       BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR))
846         .addImm(0);
847     else  // Must be right shift.
848       BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR)
849         .addReg(Op1.getReg(), RS, HiSR)
850         .addImm(31);
851   } else if (S < 64) {
852     S -= 32;
853     if (S == 16 && Left)
854       BuildMI(B, MI, DL, TII->get(A2_aslh), HiR)
855         .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
856     else if (S == 16 && Signed)
857       BuildMI(B, MI, DL, TII->get(A2_asrh), LoR)
858         .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR);
859     else
860       BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? HiR : LoR))
861         .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR))
862         .addImm(S);
863
864     if (Signed)
865       BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR)
866         .addReg(Op1.getReg(), RS, HiSR)
867         .addImm(31);
868     else
869       BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR))
870         .addImm(0);
871   }
872 }
873
874
875 void HexagonSplitDoubleRegs::splitAslOr(MachineInstr *MI,
876       const UUPairMap &PairMap) {
877   MachineOperand &Op0 = MI->getOperand(0);
878   MachineOperand &Op1 = MI->getOperand(1);
879   MachineOperand &Op2 = MI->getOperand(2);
880   MachineOperand &Op3 = MI->getOperand(3);
881   assert(Op0.isReg() && Op1.isReg() && Op2.isReg() && Op3.isImm());
882   int64_t Sh64 = Op3.getImm();
883   assert(Sh64 >= 0 && Sh64 < 64);
884   unsigned S = Sh64;
885
886   UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
887   assert(F != PairMap.end());
888   const UUPair &P = F->second;
889   unsigned LoR = P.first;
890   unsigned HiR = P.second;
891   using namespace Hexagon;
892
893   MachineBasicBlock &B = *MI->getParent();
894   DebugLoc DL = MI->getDebugLoc();
895   unsigned RS1 = getRegState(Op1);
896   unsigned RS2 = getRegState(Op2);
897   const TargetRegisterClass *IntRC = &IntRegsRegClass;
898
899   unsigned LoSR = subreg_loreg;
900   unsigned HiSR = subreg_hireg;
901
902   // Op0 = S2_asl_i_p_or Op1, Op2, Op3
903   // means:  Op0 = or (Op1, asl(Op2, Op3))
904
905   // Expansion of
906   //   DR = or (R1, asl(R2, #s))
907   //
908   //   LoR  = or (R1.lo, asl(R2.lo, #s))
909   //   Tmp1 = extractu R2.lo, #s, #32-s
910   //   Tmp2 = or R1.hi, Tmp1
911   //   HiR  = or (Tmp2, asl(R2.hi, #s))
912
913   if (S == 0) {
914     // DR  = or (R1, asl(R2, #0))
915     //    -> or (R1, R2)
916     // i.e. LoR = or R1.lo, R2.lo
917     //      HiR = or R1.hi, R2.hi
918     BuildMI(B, MI, DL, TII->get(A2_or), LoR)
919       .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR)
920       .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR);
921     BuildMI(B, MI, DL, TII->get(A2_or), HiR)
922       .addReg(Op1.getReg(), RS1, HiSR)
923       .addReg(Op2.getReg(), RS2, HiSR);
924   } else if (S < 32) {
925     BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), LoR)
926       .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR)
927       .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR)
928       .addImm(S);
929     unsigned TmpR1 = MRI->createVirtualRegister(IntRC);
930     BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR1)
931       .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR)
932       .addImm(S)
933       .addImm(32-S);
934     unsigned TmpR2 = MRI->createVirtualRegister(IntRC);
935     BuildMI(B, MI, DL, TII->get(A2_or), TmpR2)
936       .addReg(Op1.getReg(), RS1, HiSR)
937       .addReg(TmpR1);
938     BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
939       .addReg(TmpR2)
940       .addReg(Op2.getReg(), RS2, HiSR)
941       .addImm(S);
942   } else if (S == 32) {
943     // DR  = or (R1, asl(R2, #32))
944     //    -> or R1, R2.lo
945     // LoR = R1.lo
946     // HiR = or R1.hi, R2.lo
947     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
948       .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR);
949     BuildMI(B, MI, DL, TII->get(A2_or), HiR)
950       .addReg(Op1.getReg(), RS1, HiSR)
951       .addReg(Op2.getReg(), RS2, LoSR);
952   } else if (S < 64) {
953     // DR  = or (R1, asl(R2, #s))
954     //
955     // LoR = R1:lo
956     // HiR = or (R1:hi, asl(R2:lo, #s-32))
957     S -= 32;
958     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
959       .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR);
960     BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
961       .addReg(Op1.getReg(), RS1, HiSR)
962       .addReg(Op2.getReg(), RS2, LoSR)
963       .addImm(S);
964   }
965 }
966
967
968 bool HexagonSplitDoubleRegs::splitInstr(MachineInstr *MI,
969       const UUPairMap &PairMap) {
970   DEBUG(dbgs() << "Splitting: " << *MI);
971   bool Split = false;
972   unsigned Opc = MI->getOpcode();
973   using namespace Hexagon;
974
975   switch (Opc) {
976     case TargetOpcode::PHI:
977     case TargetOpcode::COPY: {
978       unsigned DstR = MI->getOperand(0).getReg();
979       if (MRI->getRegClass(DstR) == DoubleRC) {
980         createHalfInstr(Opc, MI, PairMap, subreg_loreg);
981         createHalfInstr(Opc, MI, PairMap, subreg_hireg);
982         Split = true;
983       }
984       break;
985     }
986     case A2_andp:
987       createHalfInstr(A2_and, MI, PairMap, subreg_loreg);
988       createHalfInstr(A2_and, MI, PairMap, subreg_hireg);
989       Split = true;
990       break;
991     case A2_orp:
992       createHalfInstr(A2_or, MI, PairMap, subreg_loreg);
993       createHalfInstr(A2_or, MI, PairMap, subreg_hireg);
994       Split = true;
995       break;
996     case A2_xorp:
997       createHalfInstr(A2_xor, MI, PairMap, subreg_loreg);
998       createHalfInstr(A2_xor, MI, PairMap, subreg_hireg);
999       Split = true;
1000       break;
1001
1002     case L2_loadrd_io:
1003     case L2_loadrd_pi:
1004     case S2_storerd_io:
1005     case S2_storerd_pi:
1006       splitMemRef(MI, PairMap);
1007       Split = true;
1008       break;
1009
1010     case A2_tfrpi:
1011     case CONST64_Int_Real:
1012       splitImmediate(MI, PairMap);
1013       Split = true;
1014       break;
1015
1016     case A2_combineii:
1017     case A4_combineir:
1018     case A4_combineii:
1019     case A4_combineri:
1020     case A2_combinew:
1021       splitCombine(MI, PairMap);
1022       Split = true;
1023       break;
1024
1025     case A2_sxtw:
1026       splitExt(MI, PairMap);
1027       Split = true;
1028       break;
1029
1030     case S2_asl_i_p:
1031     case S2_asr_i_p:
1032     case S2_lsr_i_p:
1033       splitShift(MI, PairMap);
1034       Split = true;
1035       break;
1036
1037     case S2_asl_i_p_or:
1038       splitAslOr(MI, PairMap);
1039       Split = true;
1040       break;
1041
1042     default:
1043       llvm_unreachable("Instruction not splitable");
1044       return false;
1045   }
1046
1047   return Split;
1048 }
1049
1050
1051 void HexagonSplitDoubleRegs::replaceSubregUses(MachineInstr *MI,
1052       const UUPairMap &PairMap) {
1053   for (auto &Op : MI->operands()) {
1054     if (!Op.isReg() || !Op.isUse() || !Op.getSubReg())
1055       continue;
1056     unsigned R = Op.getReg();
1057     UUPairMap::const_iterator F = PairMap.find(R);
1058     if (F == PairMap.end())
1059       continue;
1060     const UUPair &P = F->second;
1061     switch (Op.getSubReg()) {
1062       case Hexagon::subreg_loreg:
1063         Op.setReg(P.first);
1064         break;
1065       case Hexagon::subreg_hireg:
1066         Op.setReg(P.second);
1067         break;
1068     }
1069     Op.setSubReg(0);
1070   }
1071 }
1072
1073
1074 void HexagonSplitDoubleRegs::collapseRegPairs(MachineInstr *MI,
1075       const UUPairMap &PairMap) {
1076   MachineBasicBlock &B = *MI->getParent();
1077   DebugLoc DL = MI->getDebugLoc();
1078
1079   for (auto &Op : MI->operands()) {
1080     if (!Op.isReg() || !Op.isUse())
1081       continue;
1082     unsigned R = Op.getReg();
1083     if (!TargetRegisterInfo::isVirtualRegister(R))
1084       continue;
1085     if (MRI->getRegClass(R) != DoubleRC || Op.getSubReg())
1086       continue;
1087     UUPairMap::const_iterator F = PairMap.find(R);
1088     if (F == PairMap.end())
1089       continue;
1090     const UUPair &Pr = F->second;
1091     unsigned NewDR = MRI->createVirtualRegister(DoubleRC);
1092     BuildMI(B, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), NewDR)
1093       .addReg(Pr.first)
1094       .addImm(Hexagon::subreg_loreg)
1095       .addReg(Pr.second)
1096       .addImm(Hexagon::subreg_hireg);
1097     Op.setReg(NewDR);
1098   }
1099 }
1100
1101
1102 bool HexagonSplitDoubleRegs::splitPartition(const USet &Part) {
1103   const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;
1104   typedef std::set<MachineInstr*> MISet;
1105   bool Changed = false;
1106
1107   DEBUG(dbgs() << "Splitting partition: "; dump_partition(dbgs(), Part, *TRI);
1108         dbgs() << '\n');
1109
1110   UUPairMap PairMap;
1111
1112   MISet SplitIns;
1113   for (unsigned DR : Part) {
1114     MachineInstr *DefI = MRI->getVRegDef(DR);
1115     SplitIns.insert(DefI);
1116
1117     // Collect all instructions, including fixed ones.  We won't split them,
1118     // but we need to visit them again to insert the REG_SEQUENCE instructions.
1119     for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
1120          U != W; ++U)
1121       SplitIns.insert(U->getParent());
1122
1123     unsigned LoR = MRI->createVirtualRegister(IntRC);
1124     unsigned HiR = MRI->createVirtualRegister(IntRC);
1125     DEBUG(dbgs() << "Created mapping: " << PrintReg(DR, TRI) << " -> "
1126                  << PrintReg(HiR, TRI) << ':' << PrintReg(LoR, TRI) << '\n');
1127     PairMap.insert(std::make_pair(DR, UUPair(LoR, HiR)));
1128   }
1129
1130   MISet Erase;
1131   for (auto MI : SplitIns) {
1132     if (isFixedInstr(MI)) {
1133       collapseRegPairs(MI, PairMap);
1134     } else {
1135       bool Done = splitInstr(MI, PairMap);
1136       if (Done)
1137         Erase.insert(MI);
1138       Changed |= Done;
1139     }
1140   }
1141
1142   for (unsigned DR : Part) {
1143     // Before erasing "double" instructions, revisit all uses of the double
1144     // registers in this partition, and replace all uses of them with subre-
1145     // gisters, with the corresponding single registers.
1146     MISet Uses;
1147     for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
1148          U != W; ++U)
1149       Uses.insert(U->getParent());
1150     for (auto M : Uses)
1151       replaceSubregUses(M, PairMap);
1152   }
1153
1154   for (auto MI : Erase) {
1155     MachineBasicBlock *B = MI->getParent();
1156     B->erase(MI);
1157   }
1158
1159   return Changed;
1160 }
1161
1162
1163 bool HexagonSplitDoubleRegs::runOnMachineFunction(MachineFunction &MF) {
1164   DEBUG(dbgs() << "Splitting double registers in function: "
1165         << MF.getName() << '\n');
1166
1167   auto &ST = MF.getSubtarget<HexagonSubtarget>();
1168   TRI = ST.getRegisterInfo();
1169   TII = ST.getInstrInfo();
1170   MRI = &MF.getRegInfo();
1171   MLI = &getAnalysis<MachineLoopInfo>();
1172
1173   UUSetMap P2Rs;
1174   LoopRegMap IRM;
1175
1176   collectIndRegs(IRM);
1177   partitionRegisters(P2Rs);
1178
1179   DEBUG({
1180     dbgs() << "Register partitioning: (partition #0 is fixed)\n";
1181     for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) {
1182       dbgs() << '#' << I->first << " -> ";
1183       dump_partition(dbgs(), I->second, *TRI);
1184       dbgs() << '\n';
1185     }
1186   });
1187
1188   bool Changed = false;
1189   int Limit = MaxHSDR;
1190
1191   for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) {
1192     if (I->first == 0)
1193       continue;
1194     if (Limit >= 0 && Counter >= Limit)
1195       break;
1196     USet &Part = I->second;
1197     DEBUG(dbgs() << "Calculating profit for partition #" << I->first << '\n');
1198     if (!isProfitable(Part, IRM))
1199       continue;
1200     Counter++;
1201     Changed |= splitPartition(Part);
1202   }
1203
1204   return Changed;
1205 }
1206
1207 FunctionPass *llvm::createHexagonSplitDoubleRegs() {
1208   return new HexagonSplitDoubleRegs();
1209 }