Expand MUX instructions early on Hexagon
[oota-llvm.git] / lib / Target / Hexagon / HexagonInstrInfo.cpp
1 //===-- HexagonInstrInfo.cpp - Hexagon Instruction Information ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the Hexagon implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "HexagonInstrInfo.h"
15 #include "Hexagon.h"
16 #include "HexagonRegisterInfo.h"
17 #include "HexagonSubtarget.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/DFAPacketizer.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineMemOperand.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/PseudoSourceValue.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29
30 using namespace llvm;
31
32 #define DEBUG_TYPE "hexagon-instrinfo"
33
34 #define GET_INSTRINFO_CTOR_DTOR
35 #define GET_INSTRMAP_INFO
36 #include "HexagonGenInstrInfo.inc"
37 #include "HexagonGenDFAPacketizer.inc"
38
39 ///
40 /// Constants for Hexagon instructions.
41 ///
42 const int Hexagon_MEMW_OFFSET_MAX = 4095;
43 const int Hexagon_MEMW_OFFSET_MIN = -4096;
44 const int Hexagon_MEMD_OFFSET_MAX = 8191;
45 const int Hexagon_MEMD_OFFSET_MIN = -8192;
46 const int Hexagon_MEMH_OFFSET_MAX = 2047;
47 const int Hexagon_MEMH_OFFSET_MIN = -2048;
48 const int Hexagon_MEMB_OFFSET_MAX = 1023;
49 const int Hexagon_MEMB_OFFSET_MIN = -1024;
50 const int Hexagon_ADDI_OFFSET_MAX = 32767;
51 const int Hexagon_ADDI_OFFSET_MIN = -32768;
52 const int Hexagon_MEMD_AUTOINC_MAX = 56;
53 const int Hexagon_MEMD_AUTOINC_MIN = -64;
54 const int Hexagon_MEMW_AUTOINC_MAX = 28;
55 const int Hexagon_MEMW_AUTOINC_MIN = -32;
56 const int Hexagon_MEMH_AUTOINC_MAX = 14;
57 const int Hexagon_MEMH_AUTOINC_MIN = -16;
58 const int Hexagon_MEMB_AUTOINC_MAX = 7;
59 const int Hexagon_MEMB_AUTOINC_MIN = -8;
60
61 // Pin the vtable to this file.
62 void HexagonInstrInfo::anchor() {}
63
64 HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
65     : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
66       RI(), Subtarget(ST) {}
67
68 /// isLoadFromStackSlot - If the specified machine instruction is a direct
69 /// load from a stack slot, return the virtual or physical register number of
70 /// the destination along with the FrameIndex of the loaded stack slot.  If
71 /// not, return 0.  This predicate must return 0 if the instruction has
72 /// any side effects other than loading from the stack slot.
73 unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
74                                              int &FrameIndex) const {
75
76
77   switch (MI->getOpcode()) {
78   default: break;
79   case Hexagon::L2_loadri_io:
80   case Hexagon::L2_loadrd_io:
81   case Hexagon::L2_loadrh_io:
82   case Hexagon::L2_loadrb_io:
83   case Hexagon::L2_loadrub_io:
84     if (MI->getOperand(2).isFI() &&
85         MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
86       FrameIndex = MI->getOperand(2).getIndex();
87       return MI->getOperand(0).getReg();
88     }
89     break;
90   }
91   return 0;
92 }
93
94
95 /// isStoreToStackSlot - If the specified machine instruction is a direct
96 /// store to a stack slot, return the virtual or physical register number of
97 /// the source reg along with the FrameIndex of the loaded stack slot.  If
98 /// not, return 0.  This predicate must return 0 if the instruction has
99 /// any side effects other than storing to the stack slot.
100 unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
101                                             int &FrameIndex) const {
102   switch (MI->getOpcode()) {
103   default: break;
104   case Hexagon::S2_storeri_io:
105   case Hexagon::S2_storerd_io:
106   case Hexagon::S2_storerh_io:
107   case Hexagon::S2_storerb_io:
108     if (MI->getOperand(2).isFI() &&
109         MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
110       FrameIndex = MI->getOperand(0).getIndex();
111       return MI->getOperand(2).getReg();
112     }
113     break;
114   }
115   return 0;
116 }
117
118
119 unsigned
120 HexagonInstrInfo::InsertBranch(MachineBasicBlock &MBB,MachineBasicBlock *TBB,
121                              MachineBasicBlock *FBB,
122                              const SmallVectorImpl<MachineOperand> &Cond,
123                              DebugLoc DL) const{
124
125     int BOpc   = Hexagon::J2_jump;
126     int BccOpc = Hexagon::J2_jumpt;
127
128     assert(TBB && "InsertBranch must not be told to insert a fallthrough");
129
130     int regPos = 0;
131     // Check if ReverseBranchCondition has asked to reverse this branch
132     // If we want to reverse the branch an odd number of times, we want
133     // JMP_f.
134     if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
135       BccOpc = Hexagon::J2_jumpf;
136       regPos = 1;
137     }
138
139     if (!FBB) {
140       if (Cond.empty()) {
141         // Due to a bug in TailMerging/CFG Optimization, we need to add a
142         // special case handling of a predicated jump followed by an
143         // unconditional jump. If not, Tail Merging and CFG Optimization go
144         // into an infinite loop.
145         MachineBasicBlock *NewTBB, *NewFBB;
146         SmallVector<MachineOperand, 4> Cond;
147         MachineInstr *Term = MBB.getFirstTerminator();
148         if (isPredicated(Term) && !AnalyzeBranch(MBB, NewTBB, NewFBB, Cond,
149                                                  false)) {
150           MachineBasicBlock *NextBB =
151             std::next(MachineFunction::iterator(&MBB));
152           if (NewTBB == NextBB) {
153             ReverseBranchCondition(Cond);
154             RemoveBranch(MBB);
155             return InsertBranch(MBB, TBB, nullptr, Cond, DL);
156           }
157         }
158         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
159       } else {
160         // If Cond[0] is a basic block, insert ENDLOOP0.
161         if (Cond[0].isMBB())
162           BuildMI(&MBB, DL, get(Hexagon::ENDLOOP0)).addMBB(Cond[0].getMBB());
163         else
164           BuildMI(&MBB, DL,
165                   get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB);
166       }
167       return 1;
168     }
169
170     // We don't handle ENDLOOP0 with a conditional branch in AnalyzeBranch.
171     BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB);
172     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
173     return 2;
174 }
175
176
177 bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
178                                      MachineBasicBlock *&TBB,
179                                  MachineBasicBlock *&FBB,
180                                  SmallVectorImpl<MachineOperand> &Cond,
181                                  bool AllowModify) const {
182   TBB = nullptr;
183   FBB = nullptr;
184
185   // If the block has no terminators, it just falls into the block after it.
186   MachineBasicBlock::instr_iterator I = MBB.instr_end();
187   if (I == MBB.instr_begin())
188     return false;
189
190   // A basic block may looks like this:
191   //
192   //  [   insn
193   //     EH_LABEL
194   //      insn
195   //      insn
196   //      insn
197   //     EH_LABEL
198   //      insn     ]
199   //
200   // It has two succs but does not have a terminator
201   // Don't know how to handle it.
202   do {
203     --I;
204     if (I->isEHLabel())
205       return true;
206   } while (I != MBB.instr_begin());
207
208   I = MBB.instr_end();
209   --I;
210
211   while (I->isDebugValue()) {
212     if (I == MBB.instr_begin())
213       return false;
214     --I;
215   }
216   
217   bool JumpToBlock = I->getOpcode() == Hexagon::J2_jump &&
218                      I->getOperand(0).isMBB();
219   // Delete the JMP if it's equivalent to a fall-through.
220   if (AllowModify && JumpToBlock &&
221       MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
222     DEBUG(dbgs()<< "\nErasing the jump to successor block\n";);
223     I->eraseFromParent();
224     I = MBB.instr_end();
225     if (I == MBB.instr_begin())
226       return false;
227     --I;
228   }
229   if (!isUnpredicatedTerminator(I))
230     return false;
231
232   // Get the last instruction in the block.
233   MachineInstr *LastInst = I;
234   MachineInstr *SecondLastInst = nullptr;
235   // Find one more terminator if present.
236   do {
237     if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(I)) {
238       if (!SecondLastInst)
239         SecondLastInst = I;
240       else
241         // This is a third branch.
242         return true;
243     }
244     if (I == MBB.instr_begin())
245       break;
246     --I;
247   } while(I);
248
249   int LastOpcode = LastInst->getOpcode();
250   int SecLastOpcode = SecondLastInst ? SecondLastInst->getOpcode() : 0;
251   // If the branch target is not a basic block, it could be a tail call.
252   // (It is, if the target is a function.)
253   if (LastOpcode == Hexagon::J2_jump && !LastInst->getOperand(0).isMBB())
254     return true;
255   if (SecLastOpcode == Hexagon::J2_jump &&
256       !SecondLastInst->getOperand(0).isMBB())
257     return true;
258
259   bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
260   bool LastOpcodeHasNot = PredOpcodeHasNot(LastOpcode);
261
262   // If there is only one terminator instruction, process it.
263   if (LastInst && !SecondLastInst) {
264     if (LastOpcode == Hexagon::J2_jump) {
265       TBB = LastInst->getOperand(0).getMBB();
266       return false;
267     }
268     if (LastOpcode == Hexagon::ENDLOOP0) {
269       TBB = LastInst->getOperand(0).getMBB();
270       Cond.push_back(LastInst->getOperand(0));
271       return false;
272     }
273     if (LastOpcodeHasJMP_c) {
274       TBB = LastInst->getOperand(1).getMBB();
275       if (LastOpcodeHasNot) {
276         Cond.push_back(MachineOperand::CreateImm(0));
277       }
278       Cond.push_back(LastInst->getOperand(0));
279       return false;
280     }
281     // Otherwise, don't know what this is.
282     return true;
283   }
284
285   bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
286   bool SecLastOpcodeHasNot = PredOpcodeHasNot(SecLastOpcode);
287   if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) {
288     TBB =  SecondLastInst->getOperand(1).getMBB();
289     if (SecLastOpcodeHasNot)
290       Cond.push_back(MachineOperand::CreateImm(0));
291     Cond.push_back(SecondLastInst->getOperand(0));
292     FBB = LastInst->getOperand(0).getMBB();
293     return false;
294   }
295
296   // If the block ends with two Hexagon:JMPs, handle it.  The second one is not
297   // executed, so remove it.
298   if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) {
299     TBB = SecondLastInst->getOperand(0).getMBB();
300     I = LastInst;
301     if (AllowModify)
302       I->eraseFromParent();
303     return false;
304   }
305
306   // If the block ends with an ENDLOOP, and JMP, handle it.
307   if (SecLastOpcode == Hexagon::ENDLOOP0 &&
308       LastOpcode == Hexagon::J2_jump) {
309     TBB = SecondLastInst->getOperand(0).getMBB();
310     Cond.push_back(SecondLastInst->getOperand(0));
311     FBB = LastInst->getOperand(0).getMBB();
312     return false;
313   }
314
315   // Otherwise, can't handle this.
316   return true;
317 }
318
319
320 unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
321   MachineBasicBlock::iterator I = MBB.end();
322   if (I == MBB.begin()) return 0;
323   --I;
324   unsigned Opc1 = I->getOpcode();
325   switch (Opc1) {
326     case Hexagon::J2_jump:
327     case Hexagon::J2_jumpt:
328     case Hexagon::J2_jumpf:
329     case Hexagon::ENDLOOP0:
330       I->eraseFromParent();
331       break;
332     default:
333       return 0;
334   }
335
336   I = MBB.end();
337
338   if (I == MBB.begin()) return 1;
339   --I;
340   unsigned Opc2 = I->getOpcode();
341   switch (Opc2) {
342     case Hexagon::J2_jumpt:
343     case Hexagon::J2_jumpf:
344     case Hexagon::ENDLOOP0:
345       I->eraseFromParent();
346       return 2;
347     default:
348       return 1;
349   }
350 }
351
352
353 /// \brief For a comparison instruction, return the source registers in
354 /// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
355 /// compares against in CmpValue. Return true if the comparison instruction
356 /// can be analyzed.
357 bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI,
358                                       unsigned &SrcReg, unsigned &SrcReg2,
359                                       int &Mask, int &Value) const {
360   unsigned Opc = MI->getOpcode();
361
362   // Set mask and the first source register.
363   switch (Opc) {
364     case Hexagon::C2_cmpeqp:
365     case Hexagon::C2_cmpeqi:
366     case Hexagon::C2_cmpeq:
367     case Hexagon::C2_cmpgtp:
368     case Hexagon::C2_cmpgtup:
369     case Hexagon::C2_cmpgtui:
370     case Hexagon::C2_cmpgtu:
371     case Hexagon::C2_cmpgti:
372     case Hexagon::C2_cmpgt:
373       SrcReg = MI->getOperand(1).getReg();
374       Mask = ~0;
375       break;
376     case Hexagon::A4_cmpbeqi:
377     case Hexagon::A4_cmpbeq:
378     case Hexagon::A4_cmpbgtui:
379     case Hexagon::A4_cmpbgtu:
380     case Hexagon::A4_cmpbgt:
381       SrcReg = MI->getOperand(1).getReg();
382       Mask = 0xFF;
383       break;
384     case Hexagon::A4_cmpheqi:
385     case Hexagon::A4_cmpheq:
386     case Hexagon::A4_cmphgtui:
387     case Hexagon::A4_cmphgtu:
388     case Hexagon::A4_cmphgt:
389       SrcReg = MI->getOperand(1).getReg();
390       Mask = 0xFFFF;
391       break;
392   }
393
394   // Set the value/second source register.
395   switch (Opc) {
396     case Hexagon::C2_cmpeqp:
397     case Hexagon::C2_cmpeq:
398     case Hexagon::C2_cmpgtp:
399     case Hexagon::C2_cmpgtup:
400     case Hexagon::C2_cmpgtu:
401     case Hexagon::C2_cmpgt:
402     case Hexagon::A4_cmpbeq:
403     case Hexagon::A4_cmpbgtu:
404     case Hexagon::A4_cmpbgt:
405     case Hexagon::A4_cmpheq:
406     case Hexagon::A4_cmphgtu:
407     case Hexagon::A4_cmphgt:
408       SrcReg2 = MI->getOperand(2).getReg();
409       return true;
410
411     case Hexagon::C2_cmpeqi:
412     case Hexagon::C2_cmpgtui:
413     case Hexagon::C2_cmpgti:
414     case Hexagon::A4_cmpbeqi:
415     case Hexagon::A4_cmpbgtui:
416     case Hexagon::A4_cmpheqi:
417     case Hexagon::A4_cmphgtui:
418       SrcReg2 = 0;
419       Value = MI->getOperand(2).getImm();
420       return true;
421   }
422
423   return false;
424 }
425
426
427 void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
428                                  MachineBasicBlock::iterator I, DebugLoc DL,
429                                  unsigned DestReg, unsigned SrcReg,
430                                  bool KillSrc) const {
431   if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
432     BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg).addReg(SrcReg);
433     return;
434   }
435   if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
436     BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg).addReg(SrcReg);
437     return;
438   }
439   if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
440     // Map Pd = Ps to Pd = or(Ps, Ps).
441     BuildMI(MBB, I, DL, get(Hexagon::C2_or),
442             DestReg).addReg(SrcReg).addReg(SrcReg);
443     return;
444   }
445   if (Hexagon::DoubleRegsRegClass.contains(DestReg) &&
446       Hexagon::IntRegsRegClass.contains(SrcReg)) {
447     // We can have an overlap between single and double reg: r1:0 = r0.
448     if(SrcReg == RI.getSubReg(DestReg, Hexagon::subreg_loreg)) {
449         // r1:0 = r0
450         BuildMI(MBB, I, DL, get(Hexagon::A2_tfrsi), (RI.getSubReg(DestReg,
451                 Hexagon::subreg_hireg))).addImm(0);
452     } else {
453         // r1:0 = r1 or no overlap.
454         BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), (RI.getSubReg(DestReg,
455                 Hexagon::subreg_loreg))).addReg(SrcReg);
456         BuildMI(MBB, I, DL, get(Hexagon::A2_tfrsi), (RI.getSubReg(DestReg,
457                 Hexagon::subreg_hireg))).addImm(0);
458     }
459     return;
460   }
461   if (Hexagon::CtrRegsRegClass.contains(DestReg) &&
462       Hexagon::IntRegsRegClass.contains(SrcReg)) {
463     BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg).addReg(SrcReg);
464     return;
465   }
466   if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
467       Hexagon::IntRegsRegClass.contains(DestReg)) {
468     BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg).
469       addReg(SrcReg, getKillRegState(KillSrc));
470     return;
471   }
472   if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
473       Hexagon::PredRegsRegClass.contains(DestReg)) {
474     BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg).
475       addReg(SrcReg, getKillRegState(KillSrc));
476     return;
477   }
478
479   llvm_unreachable("Unimplemented");
480 }
481
482
483 void HexagonInstrInfo::
484 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
485                     unsigned SrcReg, bool isKill, int FI,
486                     const TargetRegisterClass *RC,
487                     const TargetRegisterInfo *TRI) const {
488
489   DebugLoc DL = MBB.findDebugLoc(I);
490   MachineFunction &MF = *MBB.getParent();
491   MachineFrameInfo &MFI = *MF.getFrameInfo();
492   unsigned Align = MFI.getObjectAlignment(FI);
493
494   MachineMemOperand *MMO =
495       MF.getMachineMemOperand(
496                       MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
497                       MachineMemOperand::MOStore,
498                       MFI.getObjectSize(FI),
499                       Align);
500
501   if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
502     BuildMI(MBB, I, DL, get(Hexagon::S2_storeri_io))
503           .addFrameIndex(FI).addImm(0)
504           .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
505   } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
506     BuildMI(MBB, I, DL, get(Hexagon::S2_storerd_io))
507           .addFrameIndex(FI).addImm(0)
508           .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
509   } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
510     BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
511           .addFrameIndex(FI).addImm(0)
512           .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
513   } else {
514     llvm_unreachable("Unimplemented");
515   }
516 }
517
518
519 void HexagonInstrInfo::storeRegToAddr(
520                                  MachineFunction &MF, unsigned SrcReg,
521                                  bool isKill,
522                                  SmallVectorImpl<MachineOperand> &Addr,
523                                  const TargetRegisterClass *RC,
524                                  SmallVectorImpl<MachineInstr*> &NewMIs) const
525 {
526   llvm_unreachable("Unimplemented");
527 }
528
529
530 void HexagonInstrInfo::
531 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
532                      unsigned DestReg, int FI,
533                      const TargetRegisterClass *RC,
534                      const TargetRegisterInfo *TRI) const {
535   DebugLoc DL = MBB.findDebugLoc(I);
536   MachineFunction &MF = *MBB.getParent();
537   MachineFrameInfo &MFI = *MF.getFrameInfo();
538   unsigned Align = MFI.getObjectAlignment(FI);
539
540   MachineMemOperand *MMO =
541       MF.getMachineMemOperand(
542                       MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
543                       MachineMemOperand::MOLoad,
544                       MFI.getObjectSize(FI),
545                       Align);
546   if (RC == &Hexagon::IntRegsRegClass) {
547     BuildMI(MBB, I, DL, get(Hexagon::L2_loadri_io), DestReg)
548           .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
549   } else if (RC == &Hexagon::DoubleRegsRegClass) {
550     BuildMI(MBB, I, DL, get(Hexagon::L2_loadrd_io), DestReg)
551           .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
552   } else if (RC == &Hexagon::PredRegsRegClass) {
553     BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
554           .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
555   } else {
556     llvm_unreachable("Can't store this register to stack slot");
557   }
558 }
559
560
561 void HexagonInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
562                                         SmallVectorImpl<MachineOperand> &Addr,
563                                         const TargetRegisterClass *RC,
564                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
565   llvm_unreachable("Unimplemented");
566 }
567 bool
568 HexagonInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
569   const HexagonRegisterInfo &TRI = getRegisterInfo();
570   MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
571   MachineBasicBlock &MBB = *MI->getParent();
572   DebugLoc DL = MI->getDebugLoc();
573   unsigned Opc = MI->getOpcode();
574
575   switch (Opc) {
576     case Hexagon::TFR_PdTrue: {
577       unsigned Reg = MI->getOperand(0).getReg();
578       BuildMI(MBB, MI, DL, get(Hexagon::C2_orn), Reg)
579         .addReg(Reg, RegState::Undef)
580         .addReg(Reg, RegState::Undef);
581       MBB.erase(MI);
582       return true;
583     }
584     case Hexagon::TFR_PdFalse: {
585       unsigned Reg = MI->getOperand(0).getReg();
586       BuildMI(MBB, MI, DL, get(Hexagon::C2_andn), Reg)
587         .addReg(Reg, RegState::Undef)
588         .addReg(Reg, RegState::Undef);
589       MBB.erase(MI);
590       return true;
591     }
592     case Hexagon::VMULW: {
593       // Expand a 64-bit vector multiply into 2 32-bit scalar multiplies.
594       unsigned DstReg = MI->getOperand(0).getReg();
595       unsigned Src1Reg = MI->getOperand(1).getReg();
596       unsigned Src2Reg = MI->getOperand(2).getReg();
597       unsigned Src1SubHi = TRI.getSubReg(Src1Reg, Hexagon::subreg_hireg);
598       unsigned Src1SubLo = TRI.getSubReg(Src1Reg, Hexagon::subreg_loreg);
599       unsigned Src2SubHi = TRI.getSubReg(Src2Reg, Hexagon::subreg_hireg);
600       unsigned Src2SubLo = TRI.getSubReg(Src2Reg, Hexagon::subreg_loreg);
601       BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_mpyi),
602               TRI.getSubReg(DstReg, Hexagon::subreg_hireg)).addReg(Src1SubHi)
603           .addReg(Src2SubHi);
604       BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_mpyi),
605               TRI.getSubReg(DstReg, Hexagon::subreg_loreg)).addReg(Src1SubLo)
606           .addReg(Src2SubLo);
607       MBB.erase(MI);
608       MRI.clearKillFlags(Src1SubHi);
609       MRI.clearKillFlags(Src1SubLo);
610       MRI.clearKillFlags(Src2SubHi);
611       MRI.clearKillFlags(Src2SubLo);
612       return true;
613     }
614     case Hexagon::VMULW_ACC: {
615       // Expand 64-bit vector multiply with addition into 2 scalar multiplies.
616       unsigned DstReg = MI->getOperand(0).getReg();
617       unsigned Src1Reg = MI->getOperand(1).getReg();
618       unsigned Src2Reg = MI->getOperand(2).getReg();
619       unsigned Src3Reg = MI->getOperand(3).getReg();
620       unsigned Src1SubHi = TRI.getSubReg(Src1Reg, Hexagon::subreg_hireg);
621       unsigned Src1SubLo = TRI.getSubReg(Src1Reg, Hexagon::subreg_loreg);
622       unsigned Src2SubHi = TRI.getSubReg(Src2Reg, Hexagon::subreg_hireg);
623       unsigned Src2SubLo = TRI.getSubReg(Src2Reg, Hexagon::subreg_loreg);
624       unsigned Src3SubHi = TRI.getSubReg(Src3Reg, Hexagon::subreg_hireg);
625       unsigned Src3SubLo = TRI.getSubReg(Src3Reg, Hexagon::subreg_loreg);
626       BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_maci),
627               TRI.getSubReg(DstReg, Hexagon::subreg_hireg)).addReg(Src1SubHi)
628           .addReg(Src2SubHi).addReg(Src3SubHi);
629       BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_maci),
630               TRI.getSubReg(DstReg, Hexagon::subreg_loreg)).addReg(Src1SubLo)
631           .addReg(Src2SubLo).addReg(Src3SubLo);
632       MBB.erase(MI);
633       MRI.clearKillFlags(Src1SubHi);
634       MRI.clearKillFlags(Src1SubLo);
635       MRI.clearKillFlags(Src2SubHi);
636       MRI.clearKillFlags(Src2SubLo);
637       MRI.clearKillFlags(Src3SubHi);
638       MRI.clearKillFlags(Src3SubLo);
639       return true;
640     }
641     case Hexagon::TCRETURNi:
642       MI->setDesc(get(Hexagon::J2_jump));
643       return true;
644     case Hexagon::TCRETURNr:
645       MI->setDesc(get(Hexagon::J2_jumpr));
646       return true;
647   }
648
649   return false;
650 }
651
652 MachineInstr *HexagonInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
653                                                       MachineInstr *MI,
654                                                       ArrayRef<unsigned> Ops,
655                                                       int FI) const {
656   // Hexagon_TODO: Implement.
657   return nullptr;
658 }
659
660 unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const {
661
662   MachineRegisterInfo &RegInfo = MF->getRegInfo();
663   const TargetRegisterClass *TRC;
664   if (VT == MVT::i1) {
665     TRC = &Hexagon::PredRegsRegClass;
666   } else if (VT == MVT::i32 || VT == MVT::f32) {
667     TRC = &Hexagon::IntRegsRegClass;
668   } else if (VT == MVT::i64 || VT == MVT::f64) {
669     TRC = &Hexagon::DoubleRegsRegClass;
670   } else {
671     llvm_unreachable("Cannot handle this register class");
672   }
673
674   unsigned NewReg = RegInfo.createVirtualRegister(TRC);
675   return NewReg;
676 }
677
678 bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const {
679   const MCInstrDesc &MID = MI->getDesc();
680   const uint64_t F = MID.TSFlags;
681   if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
682     return true;
683
684   // TODO: This is largely obsolete now. Will need to be removed
685   // in consecutive patches.
686   switch(MI->getOpcode()) {
687     // TFR_FI Remains a special case.
688     case Hexagon::TFR_FI:
689       return true;
690     default:
691       return false;
692   }
693   return  false;
694 }
695
696 // This returns true in two cases:
697 // - The OP code itself indicates that this is an extended instruction.
698 // - One of MOs has been marked with HMOTF_ConstExtended flag.
699 bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const {
700   // First check if this is permanently extended op code.
701   const uint64_t F = MI->getDesc().TSFlags;
702   if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
703     return true;
704   // Use MO operand flags to determine if one of MI's operands
705   // has HMOTF_ConstExtended flag set.
706   for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
707        E = MI->operands_end(); I != E; ++I) {
708     if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended)
709       return true;
710   }
711   return  false;
712 }
713
714 bool HexagonInstrInfo::isBranch (const MachineInstr *MI) const {
715   return MI->getDesc().isBranch();
716 }
717
718 bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const {
719   if (isNewValueJump(MI))
720     return true;
721
722   if (isNewValueStore(MI))
723     return true;
724
725   return false;
726 }
727
728 bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const {
729   return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4;
730 }
731
732 bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const {
733   bool isPred = MI->getDesc().isPredicable();
734
735   if (!isPred)
736     return false;
737
738   const int Opc = MI->getOpcode();
739
740   switch(Opc) {
741   case Hexagon::A2_tfrsi:
742     return (isOperandExtended(MI, 1) && isConstExtended(MI)) || isInt<12>(MI->getOperand(1).getImm());
743
744   case Hexagon::S2_storerd_io:
745     return isShiftedUInt<6,3>(MI->getOperand(1).getImm());
746
747   case Hexagon::S2_storeri_io:
748   case Hexagon::S2_storerinew_io:
749     return isShiftedUInt<6,2>(MI->getOperand(1).getImm());
750
751   case Hexagon::S2_storerh_io:
752   case Hexagon::S2_storerhnew_io:
753     return isShiftedUInt<6,1>(MI->getOperand(1).getImm());
754
755   case Hexagon::S2_storerb_io:
756   case Hexagon::S2_storerbnew_io:
757     return isUInt<6>(MI->getOperand(1).getImm());
758
759   case Hexagon::L2_loadrd_io:
760     return isShiftedUInt<6,3>(MI->getOperand(2).getImm());
761
762   case Hexagon::L2_loadri_io:
763     return isShiftedUInt<6,2>(MI->getOperand(2).getImm());
764
765   case Hexagon::L2_loadrh_io:
766   case Hexagon::L2_loadruh_io:
767     return isShiftedUInt<6,1>(MI->getOperand(2).getImm());
768
769   case Hexagon::L2_loadrb_io:
770   case Hexagon::L2_loadrub_io:
771     return isUInt<6>(MI->getOperand(2).getImm());
772
773   case Hexagon::L2_loadrd_pi:
774     return isShiftedInt<4,3>(MI->getOperand(3).getImm());
775
776   case Hexagon::L2_loadri_pi:
777     return isShiftedInt<4,2>(MI->getOperand(3).getImm());
778
779   case Hexagon::L2_loadrh_pi:
780   case Hexagon::L2_loadruh_pi:
781     return isShiftedInt<4,1>(MI->getOperand(3).getImm());
782
783   case Hexagon::L2_loadrb_pi:
784   case Hexagon::L2_loadrub_pi:
785     return isInt<4>(MI->getOperand(3).getImm());
786
787   case Hexagon::S4_storeirb_io:
788   case Hexagon::S4_storeirh_io:
789   case Hexagon::S4_storeiri_io:
790     return (isUInt<6>(MI->getOperand(1).getImm()) &&
791             isInt<6>(MI->getOperand(2).getImm()));
792
793   case Hexagon::A2_addi:
794     return isInt<8>(MI->getOperand(2).getImm());
795
796   case Hexagon::A2_aslh:
797   case Hexagon::A2_asrh:
798   case Hexagon::A2_sxtb:
799   case Hexagon::A2_sxth:
800   case Hexagon::A2_zxtb:
801   case Hexagon::A2_zxth:
802     return true;
803   }
804
805   return true;
806 }
807
808 // This function performs the following inversiones:
809 //
810 //  cPt    ---> cNotPt
811 //  cNotPt ---> cPt
812 //
813 unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
814   int InvPredOpcode;
815   InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
816                                         : Hexagon::getTruePredOpcode(Opc);
817   if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
818     return InvPredOpcode;
819
820   switch(Opc) {
821     default: llvm_unreachable("Unexpected predicated instruction");
822     case Hexagon::C2_ccombinewt:
823       return Hexagon::C2_ccombinewf;
824     case Hexagon::C2_ccombinewf:
825       return Hexagon::C2_ccombinewt;
826
827       // Dealloc_return.
828     case Hexagon::L4_return_t:
829       return Hexagon::L4_return_f;
830     case Hexagon::L4_return_f:
831       return Hexagon::L4_return_t;
832   }
833 }
834
835 // New Value Store instructions.
836 bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const {
837   const uint64_t F = MI->getDesc().TSFlags;
838
839   return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
840 }
841
842 bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
843   const uint64_t F = get(Opcode).TSFlags;
844
845   return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
846 }
847
848 int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const {
849   enum Hexagon::PredSense inPredSense;
850   inPredSense = invertPredicate ? Hexagon::PredSense_false :
851                                   Hexagon::PredSense_true;
852   int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
853   if (CondOpcode >= 0) // Valid Conditional opcode/instruction
854     return CondOpcode;
855
856   // This switch case will be removed once all the instructions have been
857   // modified to use relation maps.
858   switch(Opc) {
859   case Hexagon::TFRI_f:
860     return !invertPredicate ? Hexagon::TFRI_cPt_f :
861                               Hexagon::TFRI_cNotPt_f;
862   case Hexagon::A2_combinew:
863     return !invertPredicate ? Hexagon::C2_ccombinewt :
864                               Hexagon::C2_ccombinewf;
865
866   // DEALLOC_RETURN.
867   case Hexagon::L4_return:
868     return !invertPredicate ? Hexagon::L4_return_t:
869                               Hexagon::L4_return_f;
870   }
871   llvm_unreachable("Unexpected predicable instruction");
872 }
873
874
875 bool HexagonInstrInfo::
876 PredicateInstruction(MachineInstr *MI,
877                      const SmallVectorImpl<MachineOperand> &Cond) const {
878   int Opc = MI->getOpcode();
879   assert (isPredicable(MI) && "Expected predicable instruction");
880   bool invertJump = (!Cond.empty() && Cond[0].isImm() &&
881                      (Cond[0].getImm() == 0));
882
883   // This will change MI's opcode to its predicate version.
884   // However, its operand list is still the old one, i.e. the
885   // non-predicate one.
886   MI->setDesc(get(getCondOpcode(Opc, invertJump)));
887
888   int oper = -1;
889   unsigned int GAIdx = 0;
890
891   // Indicates whether the current MI has a GlobalAddress operand
892   bool hasGAOpnd = false;
893   std::vector<MachineOperand> tmpOpnds;
894
895   // Indicates whether we need to shift operands to right.
896   bool needShift = true;
897
898   // The predicate is ALWAYS the FIRST input operand !!!
899   if (MI->getNumOperands() == 0) {
900     // The non-predicate version of MI does not take any operands,
901     // i.e. no outs and no ins. In this condition, the predicate
902     // operand will be directly placed at Operands[0]. No operand
903     // shift is needed.
904     // Example: BARRIER
905     needShift = false;
906     oper = -1;
907   }
908   else if (   MI->getOperand(MI->getNumOperands()-1).isReg()
909            && MI->getOperand(MI->getNumOperands()-1).isDef()
910            && !MI->getOperand(MI->getNumOperands()-1).isImplicit()) {
911     // The non-predicate version of MI does not have any input operands.
912     // In this condition, we extend the length of Operands[] by one and
913     // copy the original last operand to the newly allocated slot.
914     // At this moment, it is just a place holder. Later, we will put
915     // predicate operand directly into it. No operand shift is needed.
916     // Example: r0=BARRIER (this is a faked insn used here for illustration)
917     MI->addOperand(MI->getOperand(MI->getNumOperands()-1));
918     needShift = false;
919     oper = MI->getNumOperands() - 2;
920   }
921   else {
922     // We need to right shift all input operands by one. Duplicate the
923     // last operand into the newly allocated slot.
924     MI->addOperand(MI->getOperand(MI->getNumOperands()-1));
925   }
926
927   if (needShift)
928   {
929     // Operands[ MI->getNumOperands() - 2 ] has been copied into
930     // Operands[ MI->getNumOperands() - 1 ], so we start from
931     // Operands[ MI->getNumOperands() - 3 ].
932     // oper is a signed int.
933     // It is ok if "MI->getNumOperands()-3" is -3, -2, or -1.
934     for (oper = MI->getNumOperands() - 3; oper >= 0; --oper)
935     {
936       MachineOperand &MO = MI->getOperand(oper);
937
938       // Opnd[0] Opnd[1] Opnd[2] Opnd[3] Opnd[4]   Opnd[5]   Opnd[6]   Opnd[7]
939       // <Def0>  <Def1>  <Use0>  <Use1>  <ImpDef0> <ImpDef1> <ImpUse0> <ImpUse1>
940       //               /\~
941       //              /||\~
942       //               ||
943       //        Predicate Operand here
944       if (MO.isReg() && !MO.isUse() && !MO.isImplicit()) {
945         break;
946       }
947       if (MO.isReg()) {
948         MI->getOperand(oper+1).ChangeToRegister(MO.getReg(), MO.isDef(),
949                                                 MO.isImplicit(), MO.isKill(),
950                                                 MO.isDead(), MO.isUndef(),
951                                                 MO.isDebug());
952       }
953       else if (MO.isImm()) {
954         MI->getOperand(oper+1).ChangeToImmediate(MO.getImm());
955       }
956       else if (MO.isGlobal()) {
957         // MI can not have more than one GlobalAddress operand.
958         assert(hasGAOpnd == false && "MI can only have one GlobalAddress opnd");
959
960         // There is no member function called "ChangeToGlobalAddress" in the
961         // MachineOperand class (not like "ChangeToRegister" and
962         // "ChangeToImmediate"). So we have to remove them from Operands[] list
963         // first, and then add them back after we have inserted the predicate
964         // operand. tmpOpnds[] is to remember these operands before we remove
965         // them.
966         tmpOpnds.push_back(MO);
967
968         // Operands[oper] is a GlobalAddress operand;
969         // Operands[oper+1] has been copied into Operands[oper+2];
970         hasGAOpnd = true;
971         GAIdx = oper;
972         continue;
973       }
974       else {
975         llvm_unreachable("Unexpected operand type");
976       }
977     }
978   }
979
980   int regPos = invertJump ? 1 : 0;
981   MachineOperand PredMO = Cond[regPos];
982
983   // [oper] now points to the last explicit Def. Predicate operand must be
984   // located at [oper+1]. See diagram above.
985   // This assumes that the predicate is always the first operand,
986   // i.e. Operands[0+numResults], in the set of inputs
987   // It is better to have an assert here to check this. But I don't know how
988   // to write this assert because findFirstPredOperandIdx() would return -1
989   if (oper < -1) oper = -1;
990
991   MI->getOperand(oper+1).ChangeToRegister(PredMO.getReg(), PredMO.isDef(),
992                                           PredMO.isImplicit(), false,
993                                           PredMO.isDead(), PredMO.isUndef(),
994                                           PredMO.isDebug());
995
996   MachineRegisterInfo &RegInfo = MI->getParent()->getParent()->getRegInfo();
997   RegInfo.clearKillFlags(PredMO.getReg());
998
999   if (hasGAOpnd)
1000   {
1001     unsigned int i;
1002
1003     // Operands[GAIdx] is the original GlobalAddress operand, which is
1004     // already copied into tmpOpnds[0].
1005     // Operands[GAIdx] now stores a copy of Operands[GAIdx-1]
1006     // Operands[GAIdx+1] has already been copied into Operands[GAIdx+2],
1007     // so we start from [GAIdx+2]
1008     for (i = GAIdx + 2; i < MI->getNumOperands(); ++i)
1009       tmpOpnds.push_back(MI->getOperand(i));
1010
1011     // Remove all operands in range [ (GAIdx+1) ... (MI->getNumOperands()-1) ]
1012     // It is very important that we always remove from the end of Operands[]
1013     // MI->getNumOperands() is at least 2 if program goes to here.
1014     for (i = MI->getNumOperands() - 1; i > GAIdx; --i)
1015       MI->RemoveOperand(i);
1016
1017     for (i = 0; i < tmpOpnds.size(); ++i)
1018       MI->addOperand(tmpOpnds[i]);
1019   }
1020
1021   return true;
1022 }
1023
1024
1025 bool
1026 HexagonInstrInfo::
1027 isProfitableToIfCvt(MachineBasicBlock &MBB,
1028                     unsigned NumCycles,
1029                     unsigned ExtraPredCycles,
1030                     const BranchProbability &Probability) const {
1031   return true;
1032 }
1033
1034
1035 bool
1036 HexagonInstrInfo::
1037 isProfitableToIfCvt(MachineBasicBlock &TMBB,
1038                     unsigned NumTCycles,
1039                     unsigned ExtraTCycles,
1040                     MachineBasicBlock &FMBB,
1041                     unsigned NumFCycles,
1042                     unsigned ExtraFCycles,
1043                     const BranchProbability &Probability) const {
1044   return true;
1045 }
1046
1047 // Returns true if an instruction is predicated irrespective of the predicate
1048 // sense. For example, all of the following will return true.
1049 // if (p0) R1 = add(R2, R3)
1050 // if (!p0) R1 = add(R2, R3)
1051 // if (p0.new) R1 = add(R2, R3)
1052 // if (!p0.new) R1 = add(R2, R3)
1053 bool HexagonInstrInfo::isPredicated(const MachineInstr *MI) const {
1054   const uint64_t F = MI->getDesc().TSFlags;
1055
1056   return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
1057 }
1058
1059 bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
1060   const uint64_t F = get(Opcode).TSFlags;
1061
1062   return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
1063 }
1064
1065 bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr *MI) const {
1066   const uint64_t F = MI->getDesc().TSFlags;
1067
1068   assert(isPredicated(MI));
1069   return (!((F >> HexagonII::PredicatedFalsePos) &
1070             HexagonII::PredicatedFalseMask));
1071 }
1072
1073 bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
1074   const uint64_t F = get(Opcode).TSFlags;
1075
1076   // Make sure that the instruction is predicated.
1077   assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
1078   return (!((F >> HexagonII::PredicatedFalsePos) &
1079             HexagonII::PredicatedFalseMask));
1080 }
1081
1082 bool HexagonInstrInfo::isPredicatedNew(const MachineInstr *MI) const {
1083   const uint64_t F = MI->getDesc().TSFlags;
1084
1085   assert(isPredicated(MI));
1086   return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
1087 }
1088
1089 bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
1090   const uint64_t F = get(Opcode).TSFlags;
1091
1092   assert(isPredicated(Opcode));
1093   return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
1094 }
1095
1096 // Returns true, if a ST insn can be promoted to a new-value store.
1097 bool HexagonInstrInfo::mayBeNewStore(const MachineInstr *MI) const {
1098   const uint64_t F = MI->getDesc().TSFlags;
1099
1100   return ((F >> HexagonII::mayNVStorePos) &
1101            HexagonII::mayNVStoreMask);
1102 }
1103
1104 bool
1105 HexagonInstrInfo::DefinesPredicate(MachineInstr *MI,
1106                                    std::vector<MachineOperand> &Pred) const {
1107   for (unsigned oper = 0; oper < MI->getNumOperands(); ++oper) {
1108     MachineOperand MO = MI->getOperand(oper);
1109     if (MO.isReg() && MO.isDef()) {
1110       const TargetRegisterClass* RC = RI.getMinimalPhysRegClass(MO.getReg());
1111       if (RC == &Hexagon::PredRegsRegClass) {
1112         Pred.push_back(MO);
1113         return true;
1114       }
1115     }
1116   }
1117   return false;
1118 }
1119
1120
1121 bool
1122 HexagonInstrInfo::
1123 SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
1124                   const SmallVectorImpl<MachineOperand> &Pred2) const {
1125   // TODO: Fix this
1126   return false;
1127 }
1128
1129
1130 //
1131 // We indicate that we want to reverse the branch by
1132 // inserting a 0 at the beginning of the Cond vector.
1133 //
1134 bool HexagonInstrInfo::
1135 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1136   if (!Cond.empty() && Cond[0].isMBB())
1137     return true;
1138   if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
1139     Cond.erase(Cond.begin());
1140   } else {
1141     Cond.insert(Cond.begin(), MachineOperand::CreateImm(0));
1142   }
1143   return false;
1144 }
1145
1146
1147 bool HexagonInstrInfo::
1148 isProfitableToDupForIfCvt(MachineBasicBlock &MBB,unsigned NumInstrs,
1149                           const BranchProbability &Probability) const {
1150   return (NumInstrs <= 4);
1151 }
1152
1153 bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const {
1154   switch (MI->getOpcode()) {
1155   default: return false;
1156   case Hexagon::L4_return:
1157   case Hexagon::L4_return_t:
1158   case Hexagon::L4_return_f:
1159   case Hexagon::L4_return_tnew_pnt:
1160   case Hexagon::L4_return_fnew_pnt:
1161   case Hexagon::L4_return_tnew_pt:
1162   case Hexagon::L4_return_fnew_pt:
1163    return true;
1164   }
1165 }
1166
1167
1168 bool HexagonInstrInfo::
1169 isValidOffset(const int Opcode, const int Offset) const {
1170   // This function is to check whether the "Offset" is in the correct range of
1171   // the given "Opcode". If "Offset" is not in the correct range, "ADD_ri" is
1172   // inserted to calculate the final address. Due to this reason, the function
1173   // assumes that the "Offset" has correct alignment.
1174   // We used to assert if the offset was not properly aligned, however,
1175   // there are cases where a misaligned pointer recast can cause this
1176   // problem, and we need to allow for it. The front end warns of such
1177   // misaligns with respect to load size.
1178
1179   switch(Opcode) {
1180
1181   case Hexagon::L2_loadri_io:
1182   case Hexagon::S2_storeri_io:
1183     return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
1184       (Offset <= Hexagon_MEMW_OFFSET_MAX);
1185
1186   case Hexagon::L2_loadrd_io:
1187   case Hexagon::S2_storerd_io:
1188     return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
1189       (Offset <= Hexagon_MEMD_OFFSET_MAX);
1190
1191   case Hexagon::L2_loadrh_io:
1192   case Hexagon::L2_loadruh_io:
1193   case Hexagon::S2_storerh_io:
1194     return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
1195       (Offset <= Hexagon_MEMH_OFFSET_MAX);
1196
1197   case Hexagon::L2_loadrb_io:
1198   case Hexagon::S2_storerb_io:
1199   case Hexagon::L2_loadrub_io:
1200     return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
1201       (Offset <= Hexagon_MEMB_OFFSET_MAX);
1202
1203   case Hexagon::A2_addi:
1204   case Hexagon::TFR_FI:
1205     return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
1206       (Offset <= Hexagon_ADDI_OFFSET_MAX);
1207
1208   case Hexagon::L4_iadd_memopw_io:
1209   case Hexagon::L4_isub_memopw_io:
1210   case Hexagon::L4_add_memopw_io:
1211   case Hexagon::L4_sub_memopw_io:
1212   case Hexagon::L4_and_memopw_io:
1213   case Hexagon::L4_or_memopw_io:
1214     return (0 <= Offset && Offset <= 255);
1215
1216   case Hexagon::L4_iadd_memoph_io:
1217   case Hexagon::L4_isub_memoph_io:
1218   case Hexagon::L4_add_memoph_io:
1219   case Hexagon::L4_sub_memoph_io:
1220   case Hexagon::L4_and_memoph_io:
1221   case Hexagon::L4_or_memoph_io:
1222     return (0 <= Offset && Offset <= 127);
1223
1224   case Hexagon::L4_iadd_memopb_io:
1225   case Hexagon::L4_isub_memopb_io:
1226   case Hexagon::L4_add_memopb_io:
1227   case Hexagon::L4_sub_memopb_io:
1228   case Hexagon::L4_and_memopb_io:
1229   case Hexagon::L4_or_memopb_io:
1230     return (0 <= Offset && Offset <= 63);
1231
1232   // LDri_pred and STriw_pred are pseudo operations, so it has to take offset of
1233   // any size. Later pass knows how to handle it.
1234   case Hexagon::STriw_pred:
1235   case Hexagon::LDriw_pred:
1236     return true;
1237
1238   case Hexagon::J2_loop0i:
1239     return isUInt<10>(Offset);
1240
1241   // INLINEASM is very special.
1242   case Hexagon::INLINEASM:
1243     return true;
1244   }
1245
1246   llvm_unreachable("No offset range is defined for this opcode. "
1247                    "Please define it in the above switch statement!");
1248 }
1249
1250
1251 //
1252 // Check if the Offset is a valid auto-inc imm by Load/Store Type.
1253 //
1254 bool HexagonInstrInfo::
1255 isValidAutoIncImm(const EVT VT, const int Offset) const {
1256
1257   if (VT == MVT::i64) {
1258       return (Offset >= Hexagon_MEMD_AUTOINC_MIN &&
1259               Offset <= Hexagon_MEMD_AUTOINC_MAX &&
1260               (Offset & 0x7) == 0);
1261   }
1262   if (VT == MVT::i32) {
1263       return (Offset >= Hexagon_MEMW_AUTOINC_MIN &&
1264               Offset <= Hexagon_MEMW_AUTOINC_MAX &&
1265               (Offset & 0x3) == 0);
1266   }
1267   if (VT == MVT::i16) {
1268       return (Offset >= Hexagon_MEMH_AUTOINC_MIN &&
1269               Offset <= Hexagon_MEMH_AUTOINC_MAX &&
1270               (Offset & 0x1) == 0);
1271   }
1272   if (VT == MVT::i8) {
1273       return (Offset >= Hexagon_MEMB_AUTOINC_MIN &&
1274               Offset <= Hexagon_MEMB_AUTOINC_MAX);
1275   }
1276   llvm_unreachable("Not an auto-inc opc!");
1277 }
1278
1279
1280 bool HexagonInstrInfo::
1281 isMemOp(const MachineInstr *MI) const {
1282 //  return MI->getDesc().mayLoad() && MI->getDesc().mayStore();
1283
1284   switch (MI->getOpcode())
1285   {
1286   default: return false;
1287   case Hexagon::L4_iadd_memopw_io:
1288   case Hexagon::L4_isub_memopw_io:
1289   case Hexagon::L4_add_memopw_io:
1290   case Hexagon::L4_sub_memopw_io:
1291   case Hexagon::L4_and_memopw_io:
1292   case Hexagon::L4_or_memopw_io:
1293   case Hexagon::L4_iadd_memoph_io:
1294   case Hexagon::L4_isub_memoph_io:
1295   case Hexagon::L4_add_memoph_io:
1296   case Hexagon::L4_sub_memoph_io:
1297   case Hexagon::L4_and_memoph_io:
1298   case Hexagon::L4_or_memoph_io:
1299   case Hexagon::L4_iadd_memopb_io:
1300   case Hexagon::L4_isub_memopb_io:
1301   case Hexagon::L4_add_memopb_io:
1302   case Hexagon::L4_sub_memopb_io:
1303   case Hexagon::L4_and_memopb_io:
1304   case Hexagon::L4_or_memopb_io:
1305   case Hexagon::L4_ior_memopb_io:
1306   case Hexagon::L4_ior_memoph_io:
1307   case Hexagon::L4_ior_memopw_io:
1308   case Hexagon::L4_iand_memopb_io:
1309   case Hexagon::L4_iand_memoph_io:
1310   case Hexagon::L4_iand_memopw_io:
1311     return true;
1312   }
1313   return false;
1314 }
1315
1316
1317 bool HexagonInstrInfo::
1318 isSpillPredRegOp(const MachineInstr *MI) const {
1319   switch (MI->getOpcode()) {
1320     default: return false;
1321     case Hexagon::STriw_pred :
1322     case Hexagon::LDriw_pred :
1323       return true;
1324   }
1325 }
1326
1327 bool HexagonInstrInfo::isNewValueJumpCandidate(const MachineInstr *MI) const {
1328   switch (MI->getOpcode()) {
1329     default: return false;
1330     case Hexagon::C2_cmpeq:
1331     case Hexagon::C2_cmpeqi:
1332     case Hexagon::C2_cmpgt:
1333     case Hexagon::C2_cmpgti:
1334     case Hexagon::C2_cmpgtu:
1335     case Hexagon::C2_cmpgtui:
1336       return true;
1337   }
1338 }
1339
1340 bool HexagonInstrInfo::
1341 isConditionalTransfer (const MachineInstr *MI) const {
1342   switch (MI->getOpcode()) {
1343     default: return false;
1344     case Hexagon::A2_tfrt:
1345     case Hexagon::A2_tfrf:
1346     case Hexagon::C2_cmoveit:
1347     case Hexagon::C2_cmoveif:
1348     case Hexagon::A2_tfrtnew:
1349     case Hexagon::A2_tfrfnew:
1350     case Hexagon::C2_cmovenewit:
1351     case Hexagon::C2_cmovenewif:
1352       return true;
1353   }
1354 }
1355
1356 bool HexagonInstrInfo::isConditionalALU32 (const MachineInstr* MI) const {
1357   switch (MI->getOpcode())
1358   {
1359     default: return false;
1360     case Hexagon::A2_paddf:
1361     case Hexagon::A2_paddfnew:
1362     case Hexagon::A2_paddt:
1363     case Hexagon::A2_paddtnew:
1364     case Hexagon::A2_pandf:
1365     case Hexagon::A2_pandfnew:
1366     case Hexagon::A2_pandt:
1367     case Hexagon::A2_pandtnew:
1368     case Hexagon::A4_paslhf:
1369     case Hexagon::A4_paslhfnew:
1370     case Hexagon::A4_paslht:
1371     case Hexagon::A4_paslhtnew:
1372     case Hexagon::A4_pasrhf:
1373     case Hexagon::A4_pasrhfnew:
1374     case Hexagon::A4_pasrht:
1375     case Hexagon::A4_pasrhtnew:
1376     case Hexagon::A2_porf:
1377     case Hexagon::A2_porfnew:
1378     case Hexagon::A2_port:
1379     case Hexagon::A2_portnew:
1380     case Hexagon::A2_psubf:
1381     case Hexagon::A2_psubfnew:
1382     case Hexagon::A2_psubt:
1383     case Hexagon::A2_psubtnew:
1384     case Hexagon::A2_pxorf:
1385     case Hexagon::A2_pxorfnew:
1386     case Hexagon::A2_pxort:
1387     case Hexagon::A2_pxortnew:
1388     case Hexagon::A4_psxthf:
1389     case Hexagon::A4_psxthfnew:
1390     case Hexagon::A4_psxtht:
1391     case Hexagon::A4_psxthtnew:
1392     case Hexagon::A4_psxtbf:
1393     case Hexagon::A4_psxtbfnew:
1394     case Hexagon::A4_psxtbt:
1395     case Hexagon::A4_psxtbtnew:
1396     case Hexagon::A4_pzxtbf:
1397     case Hexagon::A4_pzxtbfnew:
1398     case Hexagon::A4_pzxtbt:
1399     case Hexagon::A4_pzxtbtnew:
1400     case Hexagon::A4_pzxthf:
1401     case Hexagon::A4_pzxthfnew:
1402     case Hexagon::A4_pzxtht:
1403     case Hexagon::A4_pzxthtnew:
1404     case Hexagon::A2_paddit:
1405     case Hexagon::A2_paddif:
1406     case Hexagon::C2_ccombinewt:
1407     case Hexagon::C2_ccombinewf:
1408       return true;
1409   }
1410 }
1411
1412 bool HexagonInstrInfo::
1413 isConditionalLoad (const MachineInstr* MI) const {
1414   switch (MI->getOpcode())
1415   {
1416     default: return false;
1417     case Hexagon::L2_ploadrdt_io :
1418     case Hexagon::L2_ploadrdf_io:
1419     case Hexagon::L2_ploadrit_io:
1420     case Hexagon::L2_ploadrif_io:
1421     case Hexagon::L2_ploadrht_io:
1422     case Hexagon::L2_ploadrhf_io:
1423     case Hexagon::L2_ploadrbt_io:
1424     case Hexagon::L2_ploadrbf_io:
1425     case Hexagon::L2_ploadruht_io:
1426     case Hexagon::L2_ploadruhf_io:
1427     case Hexagon::L2_ploadrubt_io:
1428     case Hexagon::L2_ploadrubf_io:
1429     case Hexagon::L2_ploadrdt_pi:
1430     case Hexagon::L2_ploadrdf_pi:
1431     case Hexagon::L2_ploadrit_pi:
1432     case Hexagon::L2_ploadrif_pi:
1433     case Hexagon::L2_ploadrht_pi:
1434     case Hexagon::L2_ploadrhf_pi:
1435     case Hexagon::L2_ploadrbt_pi:
1436     case Hexagon::L2_ploadrbf_pi:
1437     case Hexagon::L2_ploadruht_pi:
1438     case Hexagon::L2_ploadruhf_pi:
1439     case Hexagon::L2_ploadrubt_pi:
1440     case Hexagon::L2_ploadrubf_pi:
1441     case Hexagon::L4_ploadrdt_rr:
1442     case Hexagon::L4_ploadrdf_rr:
1443     case Hexagon::L4_ploadrbt_rr:
1444     case Hexagon::L4_ploadrbf_rr:
1445     case Hexagon::L4_ploadrubt_rr:
1446     case Hexagon::L4_ploadrubf_rr:
1447     case Hexagon::L4_ploadrht_rr:
1448     case Hexagon::L4_ploadrhf_rr:
1449     case Hexagon::L4_ploadruht_rr:
1450     case Hexagon::L4_ploadruhf_rr:
1451     case Hexagon::L4_ploadrit_rr:
1452     case Hexagon::L4_ploadrif_rr:
1453       return true;
1454   }
1455 }
1456
1457 // Returns true if an instruction is a conditional store.
1458 //
1459 // Note: It doesn't include conditional new-value stores as they can't be
1460 // converted to .new predicate.
1461 //
1462 //               p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
1463 //                ^           ^
1464 //               /             \ (not OK. it will cause new-value store to be
1465 //              /               X conditional on p0.new while R2 producer is
1466 //             /                 \ on p0)
1467 //            /                   \.
1468 //     p.new store                 p.old NV store
1469 // [if(p0.new)memw(R0+#0)=R2]    [if(p0)memw(R0+#0)=R2.new]
1470 //            ^                  ^
1471 //             \                /
1472 //              \              /
1473 //               \            /
1474 //                 p.old store
1475 //             [if (p0)memw(R0+#0)=R2]
1476 //
1477 // The above diagram shows the steps involoved in the conversion of a predicated
1478 // store instruction to its .new predicated new-value form.
1479 //
1480 // The following set of instructions further explains the scenario where
1481 // conditional new-value store becomes invalid when promoted to .new predicate
1482 // form.
1483 //
1484 // { 1) if (p0) r0 = add(r1, r2)
1485 //   2) p0 = cmp.eq(r3, #0) }
1486 //
1487 //   3) if (p0) memb(r1+#0) = r0  --> this instruction can't be grouped with
1488 // the first two instructions because in instr 1, r0 is conditional on old value
1489 // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
1490 // is not valid for new-value stores.
1491 bool HexagonInstrInfo::
1492 isConditionalStore (const MachineInstr* MI) const {
1493   switch (MI->getOpcode())
1494   {
1495     default: return false;
1496     case Hexagon::S4_storeirbt_io:
1497     case Hexagon::S4_storeirbf_io:
1498     case Hexagon::S4_pstorerbt_rr:
1499     case Hexagon::S4_pstorerbf_rr:
1500     case Hexagon::S2_pstorerbt_io:
1501     case Hexagon::S2_pstorerbf_io:
1502     case Hexagon::S2_pstorerbt_pi:
1503     case Hexagon::S2_pstorerbf_pi:
1504     case Hexagon::S2_pstorerdt_io:
1505     case Hexagon::S2_pstorerdf_io:
1506     case Hexagon::S4_pstorerdt_rr:
1507     case Hexagon::S4_pstorerdf_rr:
1508     case Hexagon::S2_pstorerdt_pi:
1509     case Hexagon::S2_pstorerdf_pi:
1510     case Hexagon::S2_pstorerht_io:
1511     case Hexagon::S2_pstorerhf_io:
1512     case Hexagon::S4_storeirht_io:
1513     case Hexagon::S4_storeirhf_io:
1514     case Hexagon::S4_pstorerht_rr:
1515     case Hexagon::S4_pstorerhf_rr:
1516     case Hexagon::S2_pstorerht_pi:
1517     case Hexagon::S2_pstorerhf_pi:
1518     case Hexagon::S2_pstorerit_io:
1519     case Hexagon::S2_pstorerif_io:
1520     case Hexagon::S4_storeirit_io:
1521     case Hexagon::S4_storeirif_io:
1522     case Hexagon::S4_pstorerit_rr:
1523     case Hexagon::S4_pstorerif_rr:
1524     case Hexagon::S2_pstorerit_pi:
1525     case Hexagon::S2_pstorerif_pi:
1526
1527     // V4 global address store before promoting to dot new.
1528     case Hexagon::S4_pstorerdt_abs:
1529     case Hexagon::S4_pstorerdf_abs:
1530     case Hexagon::S4_pstorerbt_abs:
1531     case Hexagon::S4_pstorerbf_abs:
1532     case Hexagon::S4_pstorerht_abs:
1533     case Hexagon::S4_pstorerhf_abs:
1534     case Hexagon::S4_pstorerit_abs:
1535     case Hexagon::S4_pstorerif_abs:
1536       return true;
1537
1538     // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
1539     // from the "Conditional Store" list. Because a predicated new value store
1540     // would NOT be promoted to a double dot new store. See diagram below:
1541     // This function returns yes for those stores that are predicated but not
1542     // yet promoted to predicate dot new instructions.
1543     //
1544     //                          +---------------------+
1545     //                    /-----| if (p0) memw(..)=r0 |---------\~
1546     //                   ||     +---------------------+         ||
1547     //          promote  ||       /\       /\                   ||  promote
1548     //                   ||      /||\     /||\                  ||
1549     //                  \||/    demote     ||                  \||/
1550     //                   \/       ||       ||                   \/
1551     //       +-------------------------+   ||   +-------------------------+
1552     //       | if (p0.new) memw(..)=r0 |   ||   | if (p0) memw(..)=r0.new |
1553     //       +-------------------------+   ||   +-------------------------+
1554     //                        ||           ||         ||
1555     //                        ||         demote      \||/
1556     //                      promote        ||         \/ NOT possible
1557     //                        ||           ||         /\~
1558     //                       \||/          ||        /||\~
1559     //                        \/           ||         ||
1560     //                      +-----------------------------+
1561     //                      | if (p0.new) memw(..)=r0.new |
1562     //                      +-----------------------------+
1563     //                           Double Dot New Store
1564     //
1565   }
1566 }
1567
1568
1569 bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const {
1570   if (isNewValue(MI) && isBranch(MI))
1571     return true;
1572   return false;
1573 }
1574
1575 bool HexagonInstrInfo::isPostIncrement (const MachineInstr* MI) const {
1576   return (getAddrMode(MI) == HexagonII::PostInc);
1577 }
1578
1579 bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const {
1580   const uint64_t F = MI->getDesc().TSFlags;
1581   return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
1582 }
1583
1584 // Returns true, if any one of the operands is a dot new
1585 // insn, whether it is predicated dot new or register dot new.
1586 bool HexagonInstrInfo::isDotNewInst (const MachineInstr* MI) const {
1587   return (isNewValueInst(MI) ||
1588      (isPredicated(MI) && isPredicatedNew(MI)));
1589 }
1590
1591 // Returns the most basic instruction for the .new predicated instructions and
1592 // new-value stores.
1593 // For example, all of the following instructions will be converted back to the
1594 // same instruction:
1595 // 1) if (p0.new) memw(R0+#0) = R1.new  --->
1596 // 2) if (p0) memw(R0+#0)= R1.new      -------> if (p0) memw(R0+#0) = R1
1597 // 3) if (p0.new) memw(R0+#0) = R1      --->
1598 //
1599
1600 int HexagonInstrInfo::GetDotOldOp(const int opc) const {
1601   int NewOp = opc;
1602   if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
1603     NewOp = Hexagon::getPredOldOpcode(NewOp);
1604     assert(NewOp >= 0 &&
1605            "Couldn't change predicate new instruction to its old form.");
1606   }
1607
1608   if (isNewValueStore(NewOp)) { // Convert into non-new-value format
1609     NewOp = Hexagon::getNonNVStore(NewOp);
1610     assert(NewOp >= 0 && "Couldn't change new-value store to its old form.");
1611   }
1612   return NewOp;
1613 }
1614
1615 // Return the new value instruction for a given store.
1616 int HexagonInstrInfo::GetDotNewOp(const MachineInstr* MI) const {
1617   int NVOpcode = Hexagon::getNewValueOpcode(MI->getOpcode());
1618   if (NVOpcode >= 0) // Valid new-value store instruction.
1619     return NVOpcode;
1620
1621   switch (MI->getOpcode()) {
1622   default: llvm_unreachable("Unknown .new type");
1623   case Hexagon::S4_storerb_ur:
1624     return Hexagon::S4_storerbnew_ur;
1625
1626   case Hexagon::S4_storerh_ur:
1627     return Hexagon::S4_storerhnew_ur;
1628
1629   case Hexagon::S4_storeri_ur:
1630     return Hexagon::S4_storerinew_ur;
1631
1632   case Hexagon::S2_storerb_pci:
1633     return Hexagon::S2_storerb_pci;
1634
1635   case Hexagon::S2_storeri_pci:
1636     return Hexagon::S2_storeri_pci;
1637
1638   case Hexagon::S2_storerh_pci:
1639     return Hexagon::S2_storerh_pci;
1640
1641   case Hexagon::S2_storerd_pci:
1642     return Hexagon::S2_storerd_pci;
1643
1644   case Hexagon::S2_storerf_pci:
1645     return Hexagon::S2_storerf_pci;
1646   }
1647   return 0;
1648 }
1649
1650 // Return .new predicate version for an instruction.
1651 int HexagonInstrInfo::GetDotNewPredOp(MachineInstr *MI,
1652                                       const MachineBranchProbabilityInfo
1653                                       *MBPI) const {
1654
1655   int NewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
1656   if (NewOpcode >= 0) // Valid predicate new instruction
1657     return NewOpcode;
1658
1659   switch (MI->getOpcode()) {
1660   default: llvm_unreachable("Unknown .new type");
1661   // Condtional Jumps
1662   case Hexagon::J2_jumpt:
1663   case Hexagon::J2_jumpf:
1664     return getDotNewPredJumpOp(MI, MBPI);
1665
1666   case Hexagon::J2_jumprt:
1667     return Hexagon::J2_jumptnewpt;
1668
1669   case Hexagon::J2_jumprf:
1670     return Hexagon::J2_jumprfnewpt;
1671
1672   case Hexagon::JMPrett:
1673     return Hexagon::J2_jumprtnewpt;
1674
1675   case Hexagon::JMPretf:
1676     return Hexagon::J2_jumprfnewpt;
1677
1678
1679   // Conditional combine
1680   case Hexagon::C2_ccombinewt:
1681     return Hexagon::C2_ccombinewnewt;
1682   case Hexagon::C2_ccombinewf:
1683     return Hexagon::C2_ccombinewnewf;
1684   }
1685 }
1686
1687
1688 unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const {
1689   const uint64_t F = MI->getDesc().TSFlags;
1690
1691   return((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask);
1692 }
1693
1694 /// immediateExtend - Changes the instruction in place to one using an immediate
1695 /// extender.
1696 void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const {
1697   assert((isExtendable(MI)||isConstExtended(MI)) &&
1698                                "Instruction must be extendable");
1699   // Find which operand is extendable.
1700   short ExtOpNum = getCExtOpNum(MI);
1701   MachineOperand &MO = MI->getOperand(ExtOpNum);
1702   // This needs to be something we understand.
1703   assert((MO.isMBB() || MO.isImm()) &&
1704          "Branch with unknown extendable field type");
1705   // Mark given operand as extended.
1706   MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
1707 }
1708
1709 DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState(
1710     const TargetSubtargetInfo &STI) const {
1711   const InstrItineraryData *II = STI.getInstrItineraryData();
1712   return static_cast<const HexagonSubtarget &>(STI).createDFAPacketizer(II);
1713 }
1714
1715 bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
1716                                             const MachineBasicBlock *MBB,
1717                                             const MachineFunction &MF) const {
1718   // Debug info is never a scheduling boundary. It's necessary to be explicit
1719   // due to the special treatment of IT instructions below, otherwise a
1720   // dbg_value followed by an IT will result in the IT instruction being
1721   // considered a scheduling hazard, which is wrong. It should be the actual
1722   // instruction preceding the dbg_value instruction(s), just like it is
1723   // when debug info is not present.
1724   if (MI->isDebugValue())
1725     return false;
1726
1727   // Terminators and labels can't be scheduled around.
1728   if (MI->getDesc().isTerminator() || MI->isPosition() || MI->isInlineAsm())
1729     return true;
1730
1731   return false;
1732 }
1733
1734 bool HexagonInstrInfo::isConstExtended(MachineInstr *MI) const {
1735   const uint64_t F = MI->getDesc().TSFlags;
1736   unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
1737   if (isExtended) // Instruction must be extended.
1738     return true;
1739
1740   unsigned isExtendable = (F >> HexagonII::ExtendablePos)
1741                           & HexagonII::ExtendableMask;
1742   if (!isExtendable)
1743     return false;
1744
1745   short ExtOpNum = getCExtOpNum(MI);
1746   const MachineOperand &MO = MI->getOperand(ExtOpNum);
1747   // Use MO operand flags to determine if MO
1748   // has the HMOTF_ConstExtended flag set.
1749   if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended)
1750     return true;
1751   // If this is a Machine BB address we are talking about, and it is
1752   // not marked as extended, say so.
1753   if (MO.isMBB())
1754     return false;
1755
1756   // We could be using an instruction with an extendable immediate and shoehorn
1757   // a global address into it. If it is a global address it will be constant
1758   // extended. We do this for COMBINE.
1759   // We currently only handle isGlobal() because it is the only kind of
1760   // object we are going to end up with here for now.
1761   // In the future we probably should add isSymbol(), etc.
1762   if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress())
1763     return true;
1764
1765   // If the extendable operand is not 'Immediate' type, the instruction should
1766   // have 'isExtended' flag set.
1767   assert(MO.isImm() && "Extendable operand must be Immediate type");
1768
1769   int MinValue = getMinValue(MI);
1770   int MaxValue = getMaxValue(MI);
1771   int ImmValue = MO.getImm();
1772
1773   return (ImmValue < MinValue || ImmValue > MaxValue);
1774 }
1775
1776 // Returns the opcode to use when converting MI, which is a conditional jump,
1777 // into a conditional instruction which uses the .new value of the predicate.
1778 // We also use branch probabilities to add a hint to the jump.
1779 int
1780 HexagonInstrInfo::getDotNewPredJumpOp(MachineInstr *MI,
1781                                   const
1782                                   MachineBranchProbabilityInfo *MBPI) const {
1783
1784   // We assume that block can have at most two successors.
1785   bool taken = false;
1786   MachineBasicBlock *Src = MI->getParent();
1787   MachineOperand *BrTarget = &MI->getOperand(1);
1788   MachineBasicBlock *Dst = BrTarget->getMBB();
1789
1790   const BranchProbability Prediction = MBPI->getEdgeProbability(Src, Dst);
1791   if (Prediction >= BranchProbability(1,2))
1792     taken = true;
1793
1794   switch (MI->getOpcode()) {
1795   case Hexagon::J2_jumpt:
1796     return taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew;
1797   case Hexagon::J2_jumpf:
1798     return taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew;
1799
1800   default:
1801     llvm_unreachable("Unexpected jump instruction.");
1802   }
1803 }
1804 // Returns true if a particular operand is extendable for an instruction.
1805 bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI,
1806                                          unsigned short OperandNum) const {
1807   const uint64_t F = MI->getDesc().TSFlags;
1808
1809   return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
1810           == OperandNum;
1811 }
1812
1813 // Returns Operand Index for the constant extended instruction.
1814 unsigned short HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const {
1815   const uint64_t F = MI->getDesc().TSFlags;
1816   return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
1817 }
1818
1819 // Returns the min value that doesn't need to be extended.
1820 int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const {
1821   const uint64_t F = MI->getDesc().TSFlags;
1822   unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
1823                     & HexagonII::ExtentSignedMask;
1824   unsigned bits =  (F >> HexagonII::ExtentBitsPos)
1825                     & HexagonII::ExtentBitsMask;
1826
1827   if (isSigned) // if value is signed
1828     return -1U << (bits - 1);
1829   else
1830     return 0;
1831 }
1832
1833 // Returns the max value that doesn't need to be extended.
1834 int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const {
1835   const uint64_t F = MI->getDesc().TSFlags;
1836   unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
1837                     & HexagonII::ExtentSignedMask;
1838   unsigned bits =  (F >> HexagonII::ExtentBitsPos)
1839                     & HexagonII::ExtentBitsMask;
1840
1841   if (isSigned) // if value is signed
1842     return ~(-1U << (bits - 1));
1843   else
1844     return ~(-1U << bits);
1845 }
1846
1847 // Returns true if an instruction can be converted into a non-extended
1848 // equivalent instruction.
1849 bool HexagonInstrInfo::NonExtEquivalentExists (const MachineInstr *MI) const {
1850
1851   short NonExtOpcode;
1852   // Check if the instruction has a register form that uses register in place
1853   // of the extended operand, if so return that as the non-extended form.
1854   if (Hexagon::getRegForm(MI->getOpcode()) >= 0)
1855     return true;
1856
1857   if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
1858     // Check addressing mode and retrieve non-ext equivalent instruction.
1859
1860     switch (getAddrMode(MI)) {
1861     case HexagonII::Absolute :
1862       // Load/store with absolute addressing mode can be converted into
1863       // base+offset mode.
1864       NonExtOpcode = Hexagon::getBasedWithImmOffset(MI->getOpcode());
1865       break;
1866     case HexagonII::BaseImmOffset :
1867       // Load/store with base+offset addressing mode can be converted into
1868       // base+register offset addressing mode. However left shift operand should
1869       // be set to 0.
1870       NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode());
1871       break;
1872     default:
1873       return false;
1874     }
1875     if (NonExtOpcode < 0)
1876       return false;
1877     return true;
1878   }
1879   return false;
1880 }
1881
1882 // Returns opcode of the non-extended equivalent instruction.
1883 short HexagonInstrInfo::getNonExtOpcode (const MachineInstr *MI) const {
1884
1885   // Check if the instruction has a register form that uses register in place
1886   // of the extended operand, if so return that as the non-extended form.
1887   short NonExtOpcode = Hexagon::getRegForm(MI->getOpcode());
1888     if (NonExtOpcode >= 0)
1889       return NonExtOpcode;
1890
1891   if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
1892     // Check addressing mode and retrieve non-ext equivalent instruction.
1893     switch (getAddrMode(MI)) {
1894     case HexagonII::Absolute :
1895       return Hexagon::getBasedWithImmOffset(MI->getOpcode());
1896     case HexagonII::BaseImmOffset :
1897       return Hexagon::getBaseWithRegOffset(MI->getOpcode());
1898     default:
1899       return -1;
1900     }
1901   }
1902   return -1;
1903 }
1904
1905 bool HexagonInstrInfo::PredOpcodeHasJMP_c(Opcode_t Opcode) const {
1906   return (Opcode == Hexagon::J2_jumpt) ||
1907          (Opcode == Hexagon::J2_jumpf) ||
1908          (Opcode == Hexagon::J2_jumptnewpt) ||
1909          (Opcode == Hexagon::J2_jumpfnewpt) ||
1910          (Opcode == Hexagon::J2_jumpt) ||
1911          (Opcode == Hexagon::J2_jumpf);
1912 }
1913
1914 bool HexagonInstrInfo::PredOpcodeHasNot(Opcode_t Opcode) const {
1915   return (Opcode == Hexagon::J2_jumpf) ||
1916          (Opcode == Hexagon::J2_jumpfnewpt) ||
1917          (Opcode == Hexagon::J2_jumpfnew);
1918 }