[Hexagon] Add PIC support
[oota-llvm.git] / lib / Target / Hexagon / HexagonISelLowering.cpp
1 //===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the interfaces that Hexagon uses to lower LLVM code
11 // into a selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "HexagonISelLowering.h"
16 #include "HexagonMachineFunctionInfo.h"
17 #include "HexagonSubtarget.h"
18 #include "HexagonTargetMachine.h"
19 #include "HexagonTargetObjectFile.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineJumpTableInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/SelectionDAGISel.h"
27 #include "llvm/CodeGen/ValueTypes.h"
28 #include "llvm/IR/CallingConv.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/raw_ostream.h"
39
40 using namespace llvm;
41
42 #define DEBUG_TYPE "hexagon-lowering"
43
44 static cl::opt<bool> EmitJumpTables("hexagon-emit-jump-tables",
45   cl::init(true), cl::Hidden,
46   cl::desc("Control jump table emission on Hexagon target"));
47
48 static cl::opt<bool> EnableHexSDNodeSched("enable-hexagon-sdnode-sched",
49   cl::Hidden, cl::ZeroOrMore, cl::init(false),
50   cl::desc("Enable Hexagon SDNode scheduling"));
51
52 static cl::opt<bool> EnableFastMath("ffast-math",
53   cl::Hidden, cl::ZeroOrMore, cl::init(false),
54   cl::desc("Enable Fast Math processing"));
55
56 static cl::opt<int> MinimumJumpTables("minimum-jump-tables",
57   cl::Hidden, cl::ZeroOrMore, cl::init(5),
58   cl::desc("Set minimum jump tables"));
59
60 static cl::opt<int> MaxStoresPerMemcpyCL("max-store-memcpy",
61   cl::Hidden, cl::ZeroOrMore, cl::init(6),
62   cl::desc("Max #stores to inline memcpy"));
63
64 static cl::opt<int> MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os",
65   cl::Hidden, cl::ZeroOrMore, cl::init(4),
66   cl::desc("Max #stores to inline memcpy"));
67
68 static cl::opt<int> MaxStoresPerMemmoveCL("max-store-memmove",
69   cl::Hidden, cl::ZeroOrMore, cl::init(6),
70   cl::desc("Max #stores to inline memmove"));
71
72 static cl::opt<int> MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os",
73   cl::Hidden, cl::ZeroOrMore, cl::init(4),
74   cl::desc("Max #stores to inline memmove"));
75
76 static cl::opt<int> MaxStoresPerMemsetCL("max-store-memset",
77   cl::Hidden, cl::ZeroOrMore, cl::init(8),
78   cl::desc("Max #stores to inline memset"));
79
80 static cl::opt<int> MaxStoresPerMemsetOptSizeCL("max-store-memset-Os",
81   cl::Hidden, cl::ZeroOrMore, cl::init(4),
82   cl::desc("Max #stores to inline memset"));
83
84
85 namespace {
86 class HexagonCCState : public CCState {
87   unsigned NumNamedVarArgParams;
88
89 public:
90   HexagonCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
91                  SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
92                  int NumNamedVarArgParams)
93       : CCState(CC, isVarArg, MF, locs, C),
94         NumNamedVarArgParams(NumNamedVarArgParams) {}
95
96   unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; }
97 };
98 }
99
100 // Implement calling convention for Hexagon.
101
102 static bool IsHvxVectorType(MVT ty);
103
104 static bool
105 CC_Hexagon(unsigned ValNo, MVT ValVT,
106            MVT LocVT, CCValAssign::LocInfo LocInfo,
107            ISD::ArgFlagsTy ArgFlags, CCState &State);
108
109 static bool
110 CC_Hexagon32(unsigned ValNo, MVT ValVT,
111              MVT LocVT, CCValAssign::LocInfo LocInfo,
112              ISD::ArgFlagsTy ArgFlags, CCState &State);
113
114 static bool
115 CC_Hexagon64(unsigned ValNo, MVT ValVT,
116              MVT LocVT, CCValAssign::LocInfo LocInfo,
117              ISD::ArgFlagsTy ArgFlags, CCState &State);
118
119 static bool
120 CC_HexagonVector(unsigned ValNo, MVT ValVT,
121                  MVT LocVT, CCValAssign::LocInfo LocInfo,
122                  ISD::ArgFlagsTy ArgFlags, CCState &State);
123
124 static bool
125 RetCC_Hexagon(unsigned ValNo, MVT ValVT,
126               MVT LocVT, CCValAssign::LocInfo LocInfo,
127               ISD::ArgFlagsTy ArgFlags, CCState &State);
128
129 static bool
130 RetCC_Hexagon32(unsigned ValNo, MVT ValVT,
131                 MVT LocVT, CCValAssign::LocInfo LocInfo,
132                 ISD::ArgFlagsTy ArgFlags, CCState &State);
133
134 static bool
135 RetCC_Hexagon64(unsigned ValNo, MVT ValVT,
136                 MVT LocVT, CCValAssign::LocInfo LocInfo,
137                 ISD::ArgFlagsTy ArgFlags, CCState &State);
138
139 static bool
140 RetCC_HexagonVector(unsigned ValNo, MVT ValVT,
141                     MVT LocVT, CCValAssign::LocInfo LocInfo,
142                     ISD::ArgFlagsTy ArgFlags, CCState &State);
143
144 static bool
145 CC_Hexagon_VarArg (unsigned ValNo, MVT ValVT,
146             MVT LocVT, CCValAssign::LocInfo LocInfo,
147             ISD::ArgFlagsTy ArgFlags, CCState &State) {
148   HexagonCCState &HState = static_cast<HexagonCCState &>(State);
149
150   if (ValNo < HState.getNumNamedVarArgParams()) {
151     // Deal with named arguments.
152     return CC_Hexagon(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State);
153   }
154
155   // Deal with un-named arguments.
156   unsigned ofst;
157   if (ArgFlags.isByVal()) {
158     // If pass-by-value, the size allocated on stack is decided
159     // by ArgFlags.getByValSize(), not by the size of LocVT.
160     ofst = State.AllocateStack(ArgFlags.getByValSize(),
161                                ArgFlags.getByValAlign());
162     State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
163     return false;
164   }
165   if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) {
166     LocVT = MVT::i32;
167     ValVT = MVT::i32;
168     if (ArgFlags.isSExt())
169       LocInfo = CCValAssign::SExt;
170     else if (ArgFlags.isZExt())
171       LocInfo = CCValAssign::ZExt;
172     else
173       LocInfo = CCValAssign::AExt;
174   }
175   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
176     ofst = State.AllocateStack(4, 4);
177     State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
178     return false;
179   }
180   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
181     ofst = State.AllocateStack(8, 8);
182     State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
183     return false;
184   }
185   if (LocVT == MVT::v2i64 || LocVT == MVT::v4i32 || LocVT == MVT::v8i16 ||
186       LocVT == MVT::v16i8) {
187     ofst = State.AllocateStack(16, 16);
188     State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
189     return false;
190   }
191   if (LocVT == MVT::v4i64 || LocVT == MVT::v8i32 || LocVT == MVT::v16i16 ||
192       LocVT == MVT::v32i8) {
193     ofst = State.AllocateStack(32, 32);
194     State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
195     return false;
196   }
197   if (LocVT == MVT::v8i64 || LocVT == MVT::v16i32 || LocVT == MVT::v32i16 ||
198       LocVT == MVT::v64i8 || LocVT == MVT::v512i1) {
199     ofst = State.AllocateStack(64, 64);
200     State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
201     return false;
202   }
203   if (LocVT == MVT::v16i64 || LocVT == MVT::v32i32 || LocVT == MVT::v64i16 ||
204       LocVT == MVT::v128i8 || LocVT == MVT::v1024i1) {
205     ofst = State.AllocateStack(128, 128);
206     State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
207     return false;
208   }
209   if (LocVT == MVT::v32i64 || LocVT == MVT::v64i32 || LocVT == MVT::v128i16 ||
210       LocVT == MVT::v256i8) {
211     ofst = State.AllocateStack(256, 256);
212     State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
213     return false;
214   }
215
216   llvm_unreachable(nullptr);
217 }
218
219
220 static bool CC_Hexagon (unsigned ValNo, MVT ValVT, MVT LocVT,
221       CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State) {
222   if (ArgFlags.isByVal()) {
223     // Passed on stack.
224     unsigned Offset = State.AllocateStack(ArgFlags.getByValSize(),
225                                           ArgFlags.getByValAlign());
226     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
227     return false;
228   }
229
230   if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) {
231     LocVT = MVT::i32;
232     ValVT = MVT::i32;
233     if (ArgFlags.isSExt())
234       LocInfo = CCValAssign::SExt;
235     else if (ArgFlags.isZExt())
236       LocInfo = CCValAssign::ZExt;
237     else
238       LocInfo = CCValAssign::AExt;
239   } else if (LocVT == MVT::v4i8 || LocVT == MVT::v2i16) {
240     LocVT = MVT::i32;
241     LocInfo = CCValAssign::BCvt;
242   } else if (LocVT == MVT::v8i8 || LocVT == MVT::v4i16 || LocVT == MVT::v2i32) {
243     LocVT = MVT::i64;
244     LocInfo = CCValAssign::BCvt;
245   }
246
247   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
248     if (!CC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
249       return false;
250   }
251
252   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
253     if (!CC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
254       return false;
255   }
256
257   if (LocVT == MVT::v8i32 || LocVT == MVT::v16i16 || LocVT == MVT::v32i8) {
258     unsigned Offset = State.AllocateStack(ArgFlags.getByValSize(), 32);
259     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
260     return false;
261   }
262
263   if (IsHvxVectorType(LocVT)) {
264     if (!CC_HexagonVector(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
265       return false;
266   }
267
268   return true;  // CC didn't match.
269 }
270
271
272 static bool CC_Hexagon32(unsigned ValNo, MVT ValVT,
273                          MVT LocVT, CCValAssign::LocInfo LocInfo,
274                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
275
276   static const MCPhysReg RegList[] = {
277     Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3, Hexagon::R4,
278     Hexagon::R5
279   };
280   if (unsigned Reg = State.AllocateReg(RegList)) {
281     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
282     return false;
283   }
284
285   unsigned Offset = State.AllocateStack(4, 4);
286   State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
287   return false;
288 }
289
290 static bool CC_Hexagon64(unsigned ValNo, MVT ValVT,
291                          MVT LocVT, CCValAssign::LocInfo LocInfo,
292                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
293
294   if (unsigned Reg = State.AllocateReg(Hexagon::D0)) {
295     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
296     return false;
297   }
298
299   static const MCPhysReg RegList1[] = {
300     Hexagon::D1, Hexagon::D2
301   };
302   static const MCPhysReg RegList2[] = {
303     Hexagon::R1, Hexagon::R3
304   };
305   if (unsigned Reg = State.AllocateReg(RegList1, RegList2)) {
306     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
307     return false;
308   }
309
310   unsigned Offset = State.AllocateStack(8, 8, Hexagon::D2);
311   State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
312   return false;
313 }
314
315 static bool CC_HexagonVector(unsigned ValNo, MVT ValVT,
316                              MVT LocVT, CCValAssign::LocInfo LocInfo,
317                              ISD::ArgFlagsTy ArgFlags, CCState &State) {
318
319     static const MCPhysReg VecLstS[] = { Hexagon::V0, Hexagon::V1,
320                                          Hexagon::V2, Hexagon::V3,
321                                          Hexagon::V4, Hexagon::V5,
322                                          Hexagon::V6, Hexagon::V7,
323                                          Hexagon::V8, Hexagon::V9,
324                                          Hexagon::V10, Hexagon::V11,
325                                          Hexagon::V12, Hexagon::V13,
326                                          Hexagon::V14, Hexagon::V15};
327     static const MCPhysReg VecLstD[] = { Hexagon::W0, Hexagon::W1,
328                                          Hexagon::W2, Hexagon::W3,
329                                          Hexagon::W4, Hexagon::W5,
330                                          Hexagon::W6, Hexagon::W7};
331   auto &MF = State.getMachineFunction();
332   auto &HST = MF.getSubtarget<HexagonSubtarget>();
333   bool UseHVX = HST.useHVXOps();
334   bool UseHVXDbl = HST.useHVXDblOps();
335
336   if ((UseHVX && !UseHVXDbl) &&
337       (LocVT == MVT::v8i64 || LocVT == MVT::v16i32 || LocVT == MVT::v32i16 ||
338        LocVT == MVT::v64i8 || LocVT == MVT::v512i1)) {
339     if (unsigned Reg = State.AllocateReg(VecLstS)) {
340       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
341       return false;
342     }
343     unsigned Offset = State.AllocateStack(64, 64);
344     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
345     return false;
346   }
347   if ((UseHVX && !UseHVXDbl) &&
348       (LocVT == MVT::v16i64 || LocVT == MVT::v32i32 || LocVT == MVT::v64i16 ||
349        LocVT == MVT::v128i8)) {
350     if (unsigned Reg = State.AllocateReg(VecLstD)) {
351       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
352       return false;
353     }
354     unsigned Offset = State.AllocateStack(128, 128);
355     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
356     return false;
357   }
358   // 128B Mode
359   if ((UseHVX && UseHVXDbl) &&
360       (LocVT == MVT::v32i64 || LocVT == MVT::v64i32 || LocVT == MVT::v128i16 ||
361        LocVT == MVT::v256i8)) {
362     if (unsigned Reg = State.AllocateReg(VecLstD)) {
363       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
364       return false;
365     }
366     unsigned Offset = State.AllocateStack(256, 256);
367     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
368     return false;
369   }
370   if ((UseHVX && UseHVXDbl) &&
371       (LocVT == MVT::v16i64 || LocVT == MVT::v32i32 || LocVT == MVT::v64i16 ||
372        LocVT == MVT::v128i8 || LocVT == MVT::v1024i1)) {
373     if (unsigned Reg = State.AllocateReg(VecLstS)) {
374       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
375       return false;
376     }
377     unsigned Offset = State.AllocateStack(128, 128);
378     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
379     return false;
380   }
381   return true;
382 }
383
384 static bool RetCC_Hexagon(unsigned ValNo, MVT ValVT,
385                           MVT LocVT, CCValAssign::LocInfo LocInfo,
386                           ISD::ArgFlagsTy ArgFlags, CCState &State) {
387   auto &MF = State.getMachineFunction();
388   auto &HST = MF.getSubtarget<HexagonSubtarget>();
389   bool UseHVX = HST.useHVXOps();
390   bool UseHVXDbl = HST.useHVXDblOps();
391
392   if (LocVT == MVT::i1 ||
393       LocVT == MVT::i8 ||
394       LocVT == MVT::i16) {
395     LocVT = MVT::i32;
396     ValVT = MVT::i32;
397     if (ArgFlags.isSExt())
398       LocInfo = CCValAssign::SExt;
399     else if (ArgFlags.isZExt())
400       LocInfo = CCValAssign::ZExt;
401     else
402       LocInfo = CCValAssign::AExt;
403   } else if (LocVT == MVT::v4i8 || LocVT == MVT::v2i16) {
404     LocVT = MVT::i32;
405     LocInfo = CCValAssign::BCvt;
406   } else if (LocVT == MVT::v8i8 || LocVT == MVT::v4i16 || LocVT == MVT::v2i32) {
407     LocVT = MVT::i64;
408     LocInfo = CCValAssign::BCvt;
409   } else if (LocVT == MVT::v64i8 || LocVT == MVT::v32i16 ||
410              LocVT == MVT::v16i32 || LocVT == MVT::v8i64 ||
411              LocVT == MVT::v512i1) {
412     LocVT = MVT::v16i32;
413     ValVT = MVT::v16i32;
414     LocInfo = CCValAssign::Full;
415   } else if (LocVT == MVT::v128i8 || LocVT == MVT::v64i16 ||
416              LocVT == MVT::v32i32 || LocVT == MVT::v16i64 ||
417              (LocVT == MVT::v1024i1 && UseHVX && UseHVXDbl)) {
418     LocVT = MVT::v32i32;
419     ValVT = MVT::v32i32;
420     LocInfo = CCValAssign::Full;
421   } else if (LocVT == MVT::v256i8 || LocVT == MVT::v128i16 ||
422              LocVT == MVT::v64i32 || LocVT == MVT::v32i64) {
423     LocVT = MVT::v64i32;
424     ValVT = MVT::v64i32;
425     LocInfo = CCValAssign::Full;
426   }
427   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
428     if (!RetCC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
429     return false;
430   }
431
432   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
433     if (!RetCC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
434     return false;
435   }
436   if (LocVT == MVT::v16i32 || LocVT == MVT::v32i32 || LocVT == MVT::v64i32) {
437     if (!RetCC_HexagonVector(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
438     return false;
439   }
440   return true;  // CC didn't match.
441 }
442
443 static bool RetCC_Hexagon32(unsigned ValNo, MVT ValVT,
444                             MVT LocVT, CCValAssign::LocInfo LocInfo,
445                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
446
447   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
448     if (unsigned Reg = State.AllocateReg(Hexagon::R0)) {
449       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
450       return false;
451     }
452   }
453
454   unsigned Offset = State.AllocateStack(4, 4);
455   State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
456   return false;
457 }
458
459 static bool RetCC_Hexagon64(unsigned ValNo, MVT ValVT,
460                             MVT LocVT, CCValAssign::LocInfo LocInfo,
461                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
462   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
463     if (unsigned Reg = State.AllocateReg(Hexagon::D0)) {
464       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
465       return false;
466     }
467   }
468
469   unsigned Offset = State.AllocateStack(8, 8);
470   State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
471   return false;
472 }
473
474 static bool RetCC_HexagonVector(unsigned ValNo, MVT ValVT,
475                                 MVT LocVT, CCValAssign::LocInfo LocInfo,
476                                 ISD::ArgFlagsTy ArgFlags, CCState &State) {
477   auto &MF = State.getMachineFunction();
478   auto &HST = MF.getSubtarget<HexagonSubtarget>();
479   bool UseHVX = HST.useHVXOps();
480   bool UseHVXDbl = HST.useHVXDblOps();
481
482   unsigned OffSiz = 64;
483   if (LocVT == MVT::v16i32) {
484     if (unsigned Reg = State.AllocateReg(Hexagon::V0)) {
485       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
486       return false;
487     }
488   } else if (LocVT == MVT::v32i32) {
489     unsigned Req = (UseHVX && UseHVXDbl) ? Hexagon::V0 : Hexagon::W0;
490     if (unsigned Reg = State.AllocateReg(Req)) {
491       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
492       return false;
493     }
494     OffSiz = 128;
495   } else if (LocVT == MVT::v64i32) {
496     if (unsigned Reg = State.AllocateReg(Hexagon::W0)) {
497       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
498       return false;
499     }
500     OffSiz = 256;
501   }
502
503   unsigned Offset = State.AllocateStack(OffSiz, OffSiz);
504   State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
505   return false;
506 }
507
508 void HexagonTargetLowering::promoteLdStType(EVT VT, EVT PromotedLdStVT) {
509   if (VT != PromotedLdStVT) {
510     setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
511     AddPromotedToType(ISD::LOAD, VT.getSimpleVT(),
512                       PromotedLdStVT.getSimpleVT());
513
514     setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
515     AddPromotedToType(ISD::STORE, VT.getSimpleVT(),
516                       PromotedLdStVT.getSimpleVT());
517   }
518 }
519
520 SDValue
521 HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG)
522 const {
523   return SDValue();
524 }
525
526 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
527 /// by "Src" to address "Dst" of size "Size".  Alignment information is
528 /// specified by the specific parameter attribute. The copy will be passed as
529 /// a byval function parameter.  Sometimes what we are copying is the end of a
530 /// larger object, the part that does not fit in registers.
531 static SDValue
532 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
533                           ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
534                           SDLoc dl) {
535
536   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
537   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
538                        /*isVolatile=*/false, /*AlwaysInline=*/false,
539                        /*isTailCall=*/false,
540                        MachinePointerInfo(), MachinePointerInfo());
541 }
542
543 static bool IsHvxVectorType(MVT ty) {
544   return (ty == MVT::v8i64 || ty == MVT::v16i32 || ty == MVT::v32i16 ||
545           ty == MVT::v64i8 ||
546           ty == MVT::v16i64 || ty == MVT::v32i32 || ty == MVT::v64i16 ||
547           ty == MVT::v128i8 ||
548           ty == MVT::v32i64 || ty == MVT::v64i32 || ty == MVT::v128i16 ||
549           ty == MVT::v256i8 ||
550           ty == MVT::v512i1 || ty == MVT::v1024i1);
551 }
552
553 // LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is
554 // passed by value, the function prototype is modified to return void and
555 // the value is stored in memory pointed by a pointer passed by caller.
556 SDValue
557 HexagonTargetLowering::LowerReturn(SDValue Chain,
558                                    CallingConv::ID CallConv, bool isVarArg,
559                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
560                                    const SmallVectorImpl<SDValue> &OutVals,
561                                    SDLoc dl, SelectionDAG &DAG) const {
562
563   // CCValAssign - represent the assignment of the return value to locations.
564   SmallVector<CCValAssign, 16> RVLocs;
565
566   // CCState - Info about the registers and stack slot.
567   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
568                  *DAG.getContext());
569
570   // Analyze return values of ISD::RET
571   CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon);
572
573   SDValue Flag;
574   SmallVector<SDValue, 4> RetOps(1, Chain);
575
576   // Copy the result values into the output registers.
577   for (unsigned i = 0; i != RVLocs.size(); ++i) {
578     CCValAssign &VA = RVLocs[i];
579
580     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
581
582     // Guarantee that all emitted copies are stuck together with flags.
583     Flag = Chain.getValue(1);
584     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
585   }
586
587   RetOps[0] = Chain;  // Update chain.
588
589   // Add the flag if we have it.
590   if (Flag.getNode())
591     RetOps.push_back(Flag);
592
593   return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, RetOps);
594 }
595
596 bool HexagonTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
597   // If either no tail call or told not to tail call at all, don't.
598   auto Attr =
599       CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
600   if (!CI->isTailCall() || Attr.getValueAsString() == "true")
601     return false;
602
603   return true;
604 }
605
606 /// LowerCallResult - Lower the result values of an ISD::CALL into the
607 /// appropriate copies out of appropriate physical registers.  This assumes that
608 /// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
609 /// being lowered. Returns a SDNode with the same number of values as the
610 /// ISD::CALL.
611 SDValue
612 HexagonTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
613                                        CallingConv::ID CallConv, bool isVarArg,
614                                        const
615                                        SmallVectorImpl<ISD::InputArg> &Ins,
616                                        SDLoc dl, SelectionDAG &DAG,
617                                        SmallVectorImpl<SDValue> &InVals,
618                                        const SmallVectorImpl<SDValue> &OutVals,
619                                        SDValue Callee) const {
620
621   // Assign locations to each value returned by this call.
622   SmallVector<CCValAssign, 16> RVLocs;
623
624   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
625                  *DAG.getContext());
626
627   CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon);
628
629   // Copy all of the result registers out of their specified physreg.
630   for (unsigned i = 0; i != RVLocs.size(); ++i) {
631     Chain = DAG.getCopyFromReg(Chain, dl,
632                                RVLocs[i].getLocReg(),
633                                RVLocs[i].getValVT(), InFlag).getValue(1);
634     InFlag = Chain.getValue(2);
635     InVals.push_back(Chain.getValue(0));
636   }
637
638   return Chain;
639 }
640
641 /// LowerCall - Functions arguments are copied from virtual regs to
642 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
643 SDValue
644 HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
645                                  SmallVectorImpl<SDValue> &InVals) const {
646   SelectionDAG &DAG                     = CLI.DAG;
647   SDLoc &dl                             = CLI.DL;
648   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
649   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
650   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
651   SDValue Chain                         = CLI.Chain;
652   SDValue Callee                        = CLI.Callee;
653   bool &isTailCall                      = CLI.IsTailCall;
654   CallingConv::ID CallConv              = CLI.CallConv;
655   bool isVarArg                         = CLI.IsVarArg;
656   bool doesNotReturn                    = CLI.DoesNotReturn;
657
658   bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
659   MachineFunction &MF = DAG.getMachineFunction();
660   auto PtrVT = getPointerTy(MF.getDataLayout());
661
662   // Check for varargs.
663   int NumNamedVarArgParams = -1;
664   if (GlobalAddressSDNode *GAN = dyn_cast<GlobalAddressSDNode>(Callee)) {
665     const GlobalValue *GV = GAN->getGlobal();
666     Callee = DAG.getTargetGlobalAddress(GV, dl, MVT::i32);
667     if (const Function* F = dyn_cast<Function>(GV)) {
668       // If a function has zero args and is a vararg function, that's
669       // disallowed so it must be an undeclared function.  Do not assume
670       // varargs if the callee is undefined.
671       if (F->isVarArg() && F->getFunctionType()->getNumParams() != 0)
672         NumNamedVarArgParams = F->getFunctionType()->getNumParams();
673     }
674   }
675
676   // Analyze operands of the call, assigning locations to each operand.
677   SmallVector<CCValAssign, 16> ArgLocs;
678   HexagonCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
679                         *DAG.getContext(), NumNamedVarArgParams);
680
681   if (isVarArg)
682     CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_VarArg);
683   else
684     CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon);
685
686   auto Attr = MF.getFunction()->getFnAttribute("disable-tail-calls");
687   if (Attr.getValueAsString() == "true")
688     isTailCall = false;
689
690   if (isTailCall) {
691     bool StructAttrFlag = MF.getFunction()->hasStructRetAttr();
692     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
693                                                    isVarArg, IsStructRet,
694                                                    StructAttrFlag,
695                                                    Outs, OutVals, Ins, DAG);
696     for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
697       CCValAssign &VA = ArgLocs[i];
698       if (VA.isMemLoc()) {
699         isTailCall = false;
700         break;
701       }
702     }
703     DEBUG(dbgs() << (isTailCall ? "Eligible for Tail Call\n"
704                                 : "Argument must be passed on stack. "
705                                   "Not eligible for Tail Call\n"));
706   }
707   // Get a count of how many bytes are to be pushed on the stack.
708   unsigned NumBytes = CCInfo.getNextStackOffset();
709   SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
710   SmallVector<SDValue, 8> MemOpChains;
711
712   auto &HRI = *Subtarget.getRegisterInfo();
713   SDValue StackPtr =
714       DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(), PtrVT);
715
716   bool NeedsArgAlign = false;
717   unsigned LargestAlignSeen = 0;
718   // Walk the register/memloc assignments, inserting copies/loads.
719   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
720     CCValAssign &VA = ArgLocs[i];
721     SDValue Arg = OutVals[i];
722     ISD::ArgFlagsTy Flags = Outs[i].Flags;
723     // Record if we need > 8 byte alignment on an argument.
724     bool ArgAlign = IsHvxVectorType(VA.getValVT());
725     NeedsArgAlign |= ArgAlign;
726
727     // Promote the value if needed.
728     switch (VA.getLocInfo()) {
729       default:
730         // Loc info must be one of Full, SExt, ZExt, or AExt.
731         llvm_unreachable("Unknown loc info!");
732       case CCValAssign::BCvt:
733       case CCValAssign::Full:
734         break;
735       case CCValAssign::SExt:
736         Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
737         break;
738       case CCValAssign::ZExt:
739         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
740         break;
741       case CCValAssign::AExt:
742         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
743         break;
744     }
745
746     if (VA.isMemLoc()) {
747       unsigned LocMemOffset = VA.getLocMemOffset();
748       SDValue MemAddr = DAG.getConstant(LocMemOffset, dl,
749                                         StackPtr.getValueType());
750       MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr);
751       if (ArgAlign)
752         LargestAlignSeen = std::max(LargestAlignSeen,
753                                     VA.getLocVT().getStoreSizeInBits() >> 3);
754       if (Flags.isByVal()) {
755         // The argument is a struct passed by value. According to LLVM, "Arg"
756         // is is pointer.
757         MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain,
758                                                         Flags, DAG, dl));
759       } else {
760         MachinePointerInfo LocPI = MachinePointerInfo::getStack(
761             DAG.getMachineFunction(), LocMemOffset);
762         SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI, false,
763                                  false, 0);
764         MemOpChains.push_back(S);
765       }
766       continue;
767     }
768
769     // Arguments that can be passed on register must be kept at RegsToPass
770     // vector.
771     if (VA.isRegLoc())
772       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
773   }
774
775   if (NeedsArgAlign && Subtarget.hasV60TOps()) {
776     DEBUG(dbgs() << "Function needs byte stack align due to call args\n");
777     MachineFrameInfo* MFI = DAG.getMachineFunction().getFrameInfo();
778     // V6 vectors passed by value have 64 or 128 byte alignment depending
779     // on whether we are 64 byte vector mode or 128 byte.
780     bool UseHVXDbl = Subtarget.useHVXDblOps();
781     assert(Subtarget.useHVXOps());
782     const unsigned ObjAlign = UseHVXDbl ? 128 : 64;
783     LargestAlignSeen = std::max(LargestAlignSeen, ObjAlign);
784     MFI->ensureMaxAlignment(LargestAlignSeen);
785   }
786   // Transform all store nodes into one single node because all store
787   // nodes are independent of each other.
788   if (!MemOpChains.empty())
789     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
790
791   if (!isTailCall) {
792     SDValue C = DAG.getConstant(NumBytes, dl, PtrVT, true);
793     Chain = DAG.getCALLSEQ_START(Chain, C, dl);
794   }
795
796   // Build a sequence of copy-to-reg nodes chained together with token
797   // chain and flag operands which copy the outgoing args into registers.
798   // The InFlag in necessary since all emitted instructions must be
799   // stuck together.
800   SDValue InFlag;
801   if (!isTailCall) {
802     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
803       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
804                                RegsToPass[i].second, InFlag);
805       InFlag = Chain.getValue(1);
806     }
807   } else {
808     // For tail calls lower the arguments to the 'real' stack slot.
809     //
810     // Force all the incoming stack arguments to be loaded from the stack
811     // before any new outgoing arguments are stored to the stack, because the
812     // outgoing stack slots may alias the incoming argument stack slots, and
813     // the alias isn't otherwise explicit. This is slightly more conservative
814     // than necessary, because it means that each store effectively depends
815     // on every argument instead of just those arguments it would clobber.
816     //
817     // Do not flag preceding copytoreg stuff together with the following stuff.
818     InFlag = SDValue();
819     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
820       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
821                                RegsToPass[i].second, InFlag);
822       InFlag = Chain.getValue(1);
823     }
824     InFlag = SDValue();
825   }
826
827   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
828   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
829   // node so that legalize doesn't hack it.
830   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
831     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, PtrVT);
832   } else if (ExternalSymbolSDNode *S =
833              dyn_cast<ExternalSymbolSDNode>(Callee)) {
834     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT);
835   }
836
837   // Returns a chain & a flag for retval copy to use.
838   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
839   SmallVector<SDValue, 8> Ops;
840   Ops.push_back(Chain);
841   Ops.push_back(Callee);
842
843   // Add argument registers to the end of the list so that they are
844   // known live into the call.
845   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
846     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
847                                   RegsToPass[i].second.getValueType()));
848   }
849
850   if (InFlag.getNode())
851     Ops.push_back(InFlag);
852
853   if (isTailCall) {
854     MF.getFrameInfo()->setHasTailCall();
855     return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops);
856   }
857
858   int OpCode = doesNotReturn ? HexagonISD::CALLv3nr : HexagonISD::CALLv3;
859   Chain = DAG.getNode(OpCode, dl, NodeTys, Ops);
860   InFlag = Chain.getValue(1);
861
862   // Create the CALLSEQ_END node.
863   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
864                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
865   InFlag = Chain.getValue(1);
866
867   // Handle result values, copying them out of physregs into vregs that we
868   // return.
869   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
870                          InVals, OutVals, Callee);
871 }
872
873 static bool getIndexedAddressParts(SDNode *Ptr, EVT VT,
874                                    bool isSEXTLoad, SDValue &Base,
875                                    SDValue &Offset, bool &isInc,
876                                    SelectionDAG &DAG) {
877   if (Ptr->getOpcode() != ISD::ADD)
878     return false;
879
880   auto &HST = static_cast<const HexagonSubtarget&>(DAG.getSubtarget());
881   bool UseHVX = HST.useHVXOps();
882   bool UseHVXDbl = HST.useHVXDblOps();
883
884   bool ValidHVXDblType =
885     (UseHVX && UseHVXDbl) && (VT == MVT::v32i32 || VT == MVT::v16i64 ||
886                               VT == MVT::v64i16 || VT == MVT::v128i8);
887   bool ValidHVXType =
888     UseHVX && !UseHVXDbl && (VT == MVT::v16i32 || VT == MVT::v8i64 ||
889                              VT == MVT::v32i16 || VT == MVT::v64i8);
890
891   if (ValidHVXDblType || ValidHVXType ||
892       VT == MVT::i64 || VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
893     isInc = (Ptr->getOpcode() == ISD::ADD);
894     Base = Ptr->getOperand(0);
895     Offset = Ptr->getOperand(1);
896     // Ensure that Offset is a constant.
897     return (isa<ConstantSDNode>(Offset));
898   }
899
900   return false;
901 }
902
903 /// getPostIndexedAddressParts - returns true by value, base pointer and
904 /// offset pointer and addressing mode by reference if this node can be
905 /// combined with a load / store to form a post-indexed load / store.
906 bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
907                                                        SDValue &Base,
908                                                        SDValue &Offset,
909                                                        ISD::MemIndexedMode &AM,
910                                                        SelectionDAG &DAG) const
911 {
912   EVT VT;
913   SDValue Ptr;
914   bool isSEXTLoad = false;
915
916   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
917     VT  = LD->getMemoryVT();
918     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
919   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
920     VT  = ST->getMemoryVT();
921     if (ST->getValue().getValueType() == MVT::i64 && ST->isTruncatingStore()) {
922       return false;
923     }
924   } else {
925     return false;
926   }
927
928   bool isInc = false;
929   bool isLegal = getIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
930                                         isInc, DAG);
931   if (isLegal) {
932     auto &HII = *Subtarget.getInstrInfo();
933     int32_t OffsetVal = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
934     if (HII.isValidAutoIncImm(VT, OffsetVal)) {
935       AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
936       return true;
937     }
938   }
939
940   return false;
941 }
942
943 SDValue
944 HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
945   SDNode *Node = Op.getNode();
946   MachineFunction &MF = DAG.getMachineFunction();
947   auto &FuncInfo = *MF.getInfo<HexagonMachineFunctionInfo>();
948   switch (Node->getOpcode()) {
949     case ISD::INLINEASM: {
950       unsigned NumOps = Node->getNumOperands();
951       if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
952         --NumOps;  // Ignore the flag operand.
953
954       for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
955         if (FuncInfo.hasClobberLR())
956           break;
957         unsigned Flags =
958           cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
959         unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
960         ++i;  // Skip the ID value.
961
962         switch (InlineAsm::getKind(Flags)) {
963         default: llvm_unreachable("Bad flags!");
964           case InlineAsm::Kind_RegDef:
965           case InlineAsm::Kind_RegUse:
966           case InlineAsm::Kind_Imm:
967           case InlineAsm::Kind_Clobber:
968           case InlineAsm::Kind_Mem: {
969             for (; NumVals; --NumVals, ++i) {}
970             break;
971           }
972           case InlineAsm::Kind_RegDefEarlyClobber: {
973             for (; NumVals; --NumVals, ++i) {
974               unsigned Reg =
975                 cast<RegisterSDNode>(Node->getOperand(i))->getReg();
976
977               // Check it to be lr
978               const HexagonRegisterInfo *QRI = Subtarget.getRegisterInfo();
979               if (Reg == QRI->getRARegister()) {
980                 FuncInfo.setHasClobberLR(true);
981                 break;
982               }
983             }
984             break;
985           }
986         }
987       }
988     }
989   } // Node->getOpcode
990   return Op;
991 }
992
993 SDValue
994 HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
995                                                SelectionDAG &DAG) const {
996   SDValue Chain = Op.getOperand(0);
997   SDValue Size = Op.getOperand(1);
998   SDValue Align = Op.getOperand(2);
999   SDLoc dl(Op);
1000
1001   ConstantSDNode *AlignConst = dyn_cast<ConstantSDNode>(Align);
1002   assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC");
1003
1004   unsigned A = AlignConst->getSExtValue();
1005   auto &HFI = *Subtarget.getFrameLowering();
1006   // "Zero" means natural stack alignment.
1007   if (A == 0)
1008     A = HFI.getStackAlignment();
1009
1010   DEBUG({
1011     dbgs () << LLVM_FUNCTION_NAME << " Align: " << A << " Size: ";
1012     Size.getNode()->dump(&DAG);
1013     dbgs() << "\n";
1014   });
1015
1016   SDValue AC = DAG.getConstant(A, dl, MVT::i32);
1017   SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
1018   SDValue AA = DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC);
1019   if (Op.getNode()->getHasDebugValue())
1020     DAG.TransferDbgValues(Op, AA);
1021   return AA;
1022 }
1023
1024 SDValue
1025 HexagonTargetLowering::LowerFormalArguments(SDValue Chain,
1026                                             CallingConv::ID CallConv,
1027                                             bool isVarArg,
1028                                             const
1029                                             SmallVectorImpl<ISD::InputArg> &Ins,
1030                                             SDLoc dl, SelectionDAG &DAG,
1031                                             SmallVectorImpl<SDValue> &InVals)
1032 const {
1033
1034   MachineFunction &MF = DAG.getMachineFunction();
1035   MachineFrameInfo *MFI = MF.getFrameInfo();
1036   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1037   auto &FuncInfo = *MF.getInfo<HexagonMachineFunctionInfo>();
1038
1039   // Assign locations to all of the incoming arguments.
1040   SmallVector<CCValAssign, 16> ArgLocs;
1041   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1042                  *DAG.getContext());
1043
1044   CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon);
1045
1046   // For LLVM, in the case when returning a struct by value (>8byte),
1047   // the first argument is a pointer that points to the location on caller's
1048   // stack where the return value will be stored. For Hexagon, the location on
1049   // caller's stack is passed only when the struct size is smaller than (and
1050   // equal to) 8 bytes. If not, no address will be passed into callee and
1051   // callee return the result direclty through R0/R1.
1052
1053   SmallVector<SDValue, 8> MemOps;
1054   bool UseHVX = Subtarget.useHVXOps(), UseHVXDbl = Subtarget.useHVXDblOps();
1055
1056   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1057     CCValAssign &VA = ArgLocs[i];
1058     ISD::ArgFlagsTy Flags = Ins[i].Flags;
1059     unsigned ObjSize;
1060     unsigned StackLocation;
1061     int FI;
1062
1063     if (   (VA.isRegLoc() && !Flags.isByVal())
1064         || (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() > 8)) {
1065       // Arguments passed in registers
1066       // 1. int, long long, ptr args that get allocated in register.
1067       // 2. Large struct that gets an register to put its address in.
1068       EVT RegVT = VA.getLocVT();
1069       if (RegVT == MVT::i8 || RegVT == MVT::i16 ||
1070           RegVT == MVT::i32 || RegVT == MVT::f32) {
1071         unsigned VReg =
1072           RegInfo.createVirtualRegister(&Hexagon::IntRegsRegClass);
1073         RegInfo.addLiveIn(VA.getLocReg(), VReg);
1074         InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
1075       } else if (RegVT == MVT::i64 || RegVT == MVT::f64) {
1076         unsigned VReg =
1077           RegInfo.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
1078         RegInfo.addLiveIn(VA.getLocReg(), VReg);
1079         InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
1080
1081       // Single Vector
1082       } else if ((RegVT == MVT::v8i64 || RegVT == MVT::v16i32 ||
1083                   RegVT == MVT::v32i16 || RegVT == MVT::v64i8)) {
1084         unsigned VReg =
1085           RegInfo.createVirtualRegister(&Hexagon::VectorRegsRegClass);
1086         RegInfo.addLiveIn(VA.getLocReg(), VReg);
1087         InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
1088     } else if (UseHVX && UseHVXDbl &&
1089                ((RegVT == MVT::v16i64 || RegVT == MVT::v32i32 ||
1090                  RegVT == MVT::v64i16 || RegVT == MVT::v128i8))) {
1091         unsigned VReg =
1092           RegInfo.createVirtualRegister(&Hexagon::VectorRegs128BRegClass);
1093         RegInfo.addLiveIn(VA.getLocReg(), VReg);
1094         InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
1095
1096       // Double Vector
1097       } else if ((RegVT == MVT::v16i64 || RegVT == MVT::v32i32 ||
1098                   RegVT == MVT::v64i16 || RegVT == MVT::v128i8)) {
1099         unsigned VReg =
1100           RegInfo.createVirtualRegister(&Hexagon::VecDblRegsRegClass);
1101         RegInfo.addLiveIn(VA.getLocReg(), VReg);
1102         InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
1103       } else if (UseHVX && UseHVXDbl &&
1104                 ((RegVT == MVT::v32i64 || RegVT == MVT::v64i32 ||
1105                   RegVT == MVT::v128i16 || RegVT == MVT::v256i8))) {
1106         unsigned VReg =
1107           RegInfo.createVirtualRegister(&Hexagon::VecDblRegs128BRegClass);
1108         RegInfo.addLiveIn(VA.getLocReg(), VReg);
1109         InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
1110       } else if (RegVT == MVT::v512i1 || RegVT == MVT::v1024i1) {
1111         assert(0 && "need to support VecPred regs");
1112         unsigned VReg =
1113           RegInfo.createVirtualRegister(&Hexagon::VecPredRegsRegClass);
1114         RegInfo.addLiveIn(VA.getLocReg(), VReg);
1115         InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
1116       } else {
1117         assert (0);
1118       }
1119     } else if (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() <= 8) {
1120       assert (0 && "ByValSize must be bigger than 8 bytes");
1121     } else {
1122       // Sanity check.
1123       assert(VA.isMemLoc());
1124
1125       if (Flags.isByVal()) {
1126         // If it's a byval parameter, then we need to compute the
1127         // "real" size, not the size of the pointer.
1128         ObjSize = Flags.getByValSize();
1129       } else {
1130         ObjSize = VA.getLocVT().getStoreSizeInBits() >> 3;
1131       }
1132
1133       StackLocation = HEXAGON_LRFP_SIZE + VA.getLocMemOffset();
1134       // Create the frame index object for this incoming parameter...
1135       FI = MFI->CreateFixedObject(ObjSize, StackLocation, true);
1136
1137       // Create the SelectionDAG nodes cordl, responding to a load
1138       // from this parameter.
1139       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1140
1141       if (Flags.isByVal()) {
1142         // If it's a pass-by-value aggregate, then do not dereference the stack
1143         // location. Instead, we should generate a reference to the stack
1144         // location.
1145         InVals.push_back(FIN);
1146       } else {
1147         InVals.push_back(DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
1148                                      MachinePointerInfo(), false, false,
1149                                      false, 0));
1150       }
1151     }
1152   }
1153
1154   if (!MemOps.empty())
1155     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
1156
1157   if (isVarArg) {
1158     // This will point to the next argument passed via stack.
1159     int FrameIndex = MFI->CreateFixedObject(Hexagon_PointerSize,
1160                                             HEXAGON_LRFP_SIZE +
1161                                             CCInfo.getNextStackOffset(),
1162                                             true);
1163     FuncInfo.setVarArgsFrameIndex(FrameIndex);
1164   }
1165
1166   return Chain;
1167 }
1168
1169 SDValue
1170 HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1171   // VASTART stores the address of the VarArgsFrameIndex slot into the
1172   // memory location argument.
1173   MachineFunction &MF = DAG.getMachineFunction();
1174   HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>();
1175   SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32);
1176   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1177   return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr,
1178                       Op.getOperand(1), MachinePointerInfo(SV), false,
1179                       false, 0);
1180 }
1181
1182 // Creates a SPLAT instruction for a constant value VAL.
1183 static SDValue createSplat(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue Val) {
1184   if (VT.getSimpleVT() == MVT::v4i8)
1185     return DAG.getNode(HexagonISD::VSPLATB, dl, VT, Val);
1186
1187   if (VT.getSimpleVT() == MVT::v4i16)
1188     return DAG.getNode(HexagonISD::VSPLATH, dl, VT, Val);
1189
1190   return SDValue();
1191 }
1192
1193 static bool isSExtFree(SDValue N) {
1194   // A sign-extend of a truncate of a sign-extend is free.
1195   if (N.getOpcode() == ISD::TRUNCATE &&
1196       N.getOperand(0).getOpcode() == ISD::AssertSext)
1197     return true;
1198   // We have sign-extended loads.
1199   if (N.getOpcode() == ISD::LOAD)
1200     return true;
1201   return false;
1202 }
1203
1204 SDValue HexagonTargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
1205   SDLoc dl(Op);
1206   SDValue InpVal = Op.getOperand(0);
1207   if (isa<ConstantSDNode>(InpVal)) {
1208     uint64_t V = cast<ConstantSDNode>(InpVal)->getZExtValue();
1209     return DAG.getTargetConstant(countPopulation(V), dl, MVT::i64);
1210   }
1211   SDValue PopOut = DAG.getNode(HexagonISD::POPCOUNT, dl, MVT::i32, InpVal);
1212   return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, PopOut);
1213 }
1214
1215 SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1216   SDLoc dl(Op);
1217
1218   SDValue LHS = Op.getOperand(0);
1219   SDValue RHS = Op.getOperand(1);
1220   SDValue Cmp = Op.getOperand(2);
1221   ISD::CondCode CC = cast<CondCodeSDNode>(Cmp)->get();
1222
1223   EVT VT = Op.getValueType();
1224   EVT LHSVT = LHS.getValueType();
1225   EVT RHSVT = RHS.getValueType();
1226
1227   if (LHSVT == MVT::v2i16) {
1228     assert(ISD::isSignedIntSetCC(CC) || ISD::isUnsignedIntSetCC(CC));
1229     unsigned ExtOpc = ISD::isSignedIntSetCC(CC) ? ISD::SIGN_EXTEND
1230                                                 : ISD::ZERO_EXTEND;
1231     SDValue LX = DAG.getNode(ExtOpc, dl, MVT::v2i32, LHS);
1232     SDValue RX = DAG.getNode(ExtOpc, dl, MVT::v2i32, RHS);
1233     SDValue SC = DAG.getNode(ISD::SETCC, dl, MVT::v2i1, LX, RX, Cmp);
1234     return SC;
1235   }
1236
1237   // Treat all other vector types as legal.
1238   if (VT.isVector())
1239     return Op;
1240
1241   // Equals and not equals should use sign-extend, not zero-extend, since
1242   // we can represent small negative values in the compare instructions.
1243   // The LLVM default is to use zero-extend arbitrarily in these cases.
1244   if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
1245       (RHSVT == MVT::i8 || RHSVT == MVT::i16) &&
1246       (LHSVT == MVT::i8 || LHSVT == MVT::i16)) {
1247     ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS);
1248     if (C && C->getAPIntValue().isNegative()) {
1249       LHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, LHS);
1250       RHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, RHS);
1251       return DAG.getNode(ISD::SETCC, dl, Op.getValueType(),
1252                          LHS, RHS, Op.getOperand(2));
1253     }
1254     if (isSExtFree(LHS) || isSExtFree(RHS)) {
1255       LHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, LHS);
1256       RHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, RHS);
1257       return DAG.getNode(ISD::SETCC, dl, Op.getValueType(),
1258                          LHS, RHS, Op.getOperand(2));
1259     }
1260   }
1261   return SDValue();
1262 }
1263
1264 SDValue
1265 HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
1266   SDValue PredOp = Op.getOperand(0);
1267   SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2);
1268   EVT OpVT = Op1.getValueType();
1269   SDLoc DL(Op);
1270
1271   if (OpVT == MVT::v2i16) {
1272     SDValue X1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op1);
1273     SDValue X2 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op2);
1274     SDValue SL = DAG.getNode(ISD::VSELECT, DL, MVT::v2i32, PredOp, X1, X2);
1275     SDValue TR = DAG.getNode(ISD::TRUNCATE, DL, MVT::v2i16, SL);
1276     return TR;
1277   }
1278
1279   return SDValue();
1280 }
1281
1282 // Handle only specific vector loads.
1283 SDValue HexagonTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1284   EVT VT = Op.getValueType();
1285   SDLoc DL(Op);
1286   LoadSDNode *LoadNode = cast<LoadSDNode>(Op);
1287   SDValue Chain = LoadNode->getChain();
1288   SDValue Ptr = Op.getOperand(1);
1289   SDValue LoweredLoad;
1290   SDValue Result;
1291   SDValue Base = LoadNode->getBasePtr();
1292   ISD::LoadExtType Ext = LoadNode->getExtensionType();
1293   unsigned Alignment = LoadNode->getAlignment();
1294   SDValue LoadChain;
1295
1296   if(Ext == ISD::NON_EXTLOAD)
1297     Ext = ISD::ZEXTLOAD;
1298
1299   if (VT == MVT::v4i16) {
1300     if (Alignment == 2) {
1301       SDValue Loads[4];
1302       // Base load.
1303       Loads[0] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Base,
1304                                 LoadNode->getPointerInfo(), MVT::i16,
1305                                 LoadNode->isVolatile(),
1306                                 LoadNode->isNonTemporal(),
1307                                 LoadNode->isInvariant(),
1308                                 Alignment);
1309       // Base+2 load.
1310       SDValue Increment = DAG.getConstant(2, DL, MVT::i32);
1311       Ptr = DAG.getNode(ISD::ADD, DL, Base.getValueType(), Base, Increment);
1312       Loads[1] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Ptr,
1313                                 LoadNode->getPointerInfo(), MVT::i16,
1314                                 LoadNode->isVolatile(),
1315                                 LoadNode->isNonTemporal(),
1316                                 LoadNode->isInvariant(),
1317                                 Alignment);
1318       // SHL 16, then OR base and base+2.
1319       SDValue ShiftAmount = DAG.getConstant(16, DL, MVT::i32);
1320       SDValue Tmp1 = DAG.getNode(ISD::SHL, DL, MVT::i32, Loads[1], ShiftAmount);
1321       SDValue Tmp2 = DAG.getNode(ISD::OR, DL, MVT::i32, Tmp1, Loads[0]);
1322       // Base + 4.
1323       Increment = DAG.getConstant(4, DL, MVT::i32);
1324       Ptr = DAG.getNode(ISD::ADD, DL, Base.getValueType(), Base, Increment);
1325       Loads[2] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Ptr,
1326                                 LoadNode->getPointerInfo(), MVT::i16,
1327                                 LoadNode->isVolatile(),
1328                                 LoadNode->isNonTemporal(),
1329                                 LoadNode->isInvariant(),
1330                                 Alignment);
1331       // Base + 6.
1332       Increment = DAG.getConstant(6, DL, MVT::i32);
1333       Ptr = DAG.getNode(ISD::ADD, DL, Base.getValueType(), Base, Increment);
1334       Loads[3] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Ptr,
1335                                 LoadNode->getPointerInfo(), MVT::i16,
1336                                 LoadNode->isVolatile(),
1337                                 LoadNode->isNonTemporal(),
1338                                 LoadNode->isInvariant(),
1339                                 Alignment);
1340       // SHL 16, then OR base+4 and base+6.
1341       Tmp1 = DAG.getNode(ISD::SHL, DL, MVT::i32, Loads[3], ShiftAmount);
1342       SDValue Tmp4 = DAG.getNode(ISD::OR, DL, MVT::i32, Tmp1, Loads[2]);
1343       // Combine to i64. This could be optimised out later if we can
1344       // affect reg allocation of this code.
1345       Result = DAG.getNode(HexagonISD::COMBINE, DL, MVT::i64, Tmp4, Tmp2);
1346       LoadChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1347                               Loads[0].getValue(1), Loads[1].getValue(1),
1348                               Loads[2].getValue(1), Loads[3].getValue(1));
1349     } else {
1350       // Perform default type expansion.
1351       Result = DAG.getLoad(MVT::i64, DL, Chain, Ptr, LoadNode->getPointerInfo(),
1352                            LoadNode->isVolatile(), LoadNode->isNonTemporal(),
1353                           LoadNode->isInvariant(), LoadNode->getAlignment());
1354       LoadChain = Result.getValue(1);
1355     }
1356   } else
1357     llvm_unreachable("Custom lowering unsupported load");
1358
1359   Result = DAG.getNode(ISD::BITCAST, DL, VT, Result);
1360   // Since we pretend to lower a load, we need the original chain
1361   // info attached to the result.
1362   SDValue Ops[] = { Result, LoadChain };
1363
1364   return DAG.getMergeValues(Ops, DL);
1365 }
1366
1367
1368 SDValue
1369 HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
1370   EVT ValTy = Op.getValueType();
1371   ConstantPoolSDNode *CPN = cast<ConstantPoolSDNode>(Op);
1372   unsigned Align = CPN->getAlignment();
1373   Reloc::Model RM = HTM.getRelocationModel();
1374   unsigned char TF = (RM == Reloc::PIC_) ? HexagonII::MO_PCREL : 0;
1375
1376   SDValue T;
1377   if (CPN->isMachineConstantPoolEntry())
1378     T = DAG.getTargetConstantPool(CPN->getMachineCPVal(), ValTy, Align, TF);
1379   else
1380     T = DAG.getTargetConstantPool(CPN->getConstVal(), ValTy, Align, TF);
1381   if (RM == Reloc::PIC_)
1382     return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), ValTy, T);
1383   return DAG.getNode(HexagonISD::CP, SDLoc(Op), ValTy, T);
1384 }
1385
1386 SDValue
1387 HexagonTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1388   EVT VT = Op.getValueType();
1389   int Idx = cast<JumpTableSDNode>(Op)->getIndex();
1390   Reloc::Model RM = HTM.getRelocationModel();
1391   if (RM == Reloc::PIC_) {
1392     SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
1393     return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), VT, T);
1394   }
1395
1396   SDValue T = DAG.getTargetJumpTable(Idx, VT);
1397   return DAG.getNode(HexagonISD::JT, SDLoc(Op), VT, T);
1398 }
1399
1400 SDValue
1401 HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
1402   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1403   MachineFunction &MF = DAG.getMachineFunction();
1404   MachineFrameInfo &MFI = *MF.getFrameInfo();
1405   MFI.setReturnAddressIsTaken(true);
1406
1407   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1408     return SDValue();
1409
1410   EVT VT = Op.getValueType();
1411   SDLoc dl(Op);
1412   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1413   if (Depth) {
1414     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
1415     SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
1416     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
1417                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
1418                        MachinePointerInfo(), false, false, false, 0);
1419   }
1420
1421   // Return LR, which contains the return address. Mark it an implicit live-in.
1422   unsigned Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32));
1423   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
1424 }
1425
1426 SDValue
1427 HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1428   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1429   MachineFrameInfo &MFI = *DAG.getMachineFunction().getFrameInfo();
1430   MFI.setFrameAddressIsTaken(true);
1431
1432   EVT VT = Op.getValueType();
1433   SDLoc dl(Op);
1434   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1435   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
1436                                          HRI.getFrameRegister(), VT);
1437   while (Depth--)
1438     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
1439                             MachinePointerInfo(),
1440                             false, false, false, 0);
1441   return FrameAddr;
1442 }
1443
1444 SDValue
1445 HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const {
1446   SDLoc dl(Op);
1447   return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0));
1448 }
1449
1450
1451 SDValue
1452 HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const {
1453   SDLoc dl(Op);
1454   auto *GAN = cast<GlobalAddressSDNode>(Op);
1455   auto PtrVT = getPointerTy(DAG.getDataLayout());
1456   auto *GV = GAN->getGlobal();
1457   int64_t Offset = GAN->getOffset();
1458
1459   auto &HLOF = *HTM.getObjFileLowering();
1460   Reloc::Model RM = HTM.getRelocationModel();
1461
1462   if (RM == Reloc::Static) {
1463     SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset);
1464     if (HLOF.IsGlobalInSmallSection(GV, HTM))
1465       return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, GA);
1466     return DAG.getNode(HexagonISD::CONST32, dl, PtrVT, GA);
1467   }
1468
1469   bool UsePCRel = GV->hasInternalLinkage() || GV->hasHiddenVisibility() ||
1470                   (GV->hasLocalLinkage() && !isa<Function>(GV));
1471   if (UsePCRel) {
1472     SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset,
1473                                             HexagonII::MO_PCREL);
1474     return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, GA);
1475   }
1476
1477   // Use GOT index.
1478   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1479   SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HexagonII::MO_GOT);
1480   SDValue Off = DAG.getConstant(Offset, dl, MVT::i32);
1481   return DAG.getNode(HexagonISD::AT_GOT, dl, PtrVT, GOT, GA, Off);
1482 }
1483
1484 // Specifies that for loads and stores VT can be promoted to PromotedLdStVT.
1485 SDValue
1486 HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
1487   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1488   SDLoc dl(Op);
1489   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1490
1491   Reloc::Model RM = HTM.getRelocationModel();
1492   if (RM == Reloc::Static) {
1493     SDValue A =  DAG.getTargetBlockAddress(BA, PtrVT);
1494     return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, A);
1495   }
1496
1497   SDValue A = DAG.getTargetBlockAddress(BA, PtrVT, 0, HexagonII::MO_PCREL);
1498   return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, A);
1499 }
1500
1501 SDValue
1502 HexagonTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG)
1503       const {
1504   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1505   SDValue GOTSym = DAG.getTargetExternalSymbol(HEXAGON_GOT_SYM_NAME, PtrVT,
1506                                                HexagonII::MO_PCREL);
1507   return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), PtrVT, GOTSym);
1508 }
1509
1510 //===----------------------------------------------------------------------===//
1511 // TargetLowering Implementation
1512 //===----------------------------------------------------------------------===//
1513
1514 HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM,
1515                                              const HexagonSubtarget &ST)
1516     : TargetLowering(TM), HTM(static_cast<const HexagonTargetMachine&>(TM)),
1517       Subtarget(ST) {
1518   bool IsV4 = !Subtarget.hasV5TOps();
1519   auto &HRI = *Subtarget.getRegisterInfo();
1520   bool UseHVX = Subtarget.useHVXOps();
1521   bool UseHVXSgl = Subtarget.useHVXSglOps();
1522   bool UseHVXDbl = Subtarget.useHVXDblOps();
1523
1524   setPrefLoopAlignment(4);
1525   setPrefFunctionAlignment(4);
1526   setMinFunctionAlignment(2);
1527   setInsertFencesForAtomic(false);
1528   setStackPointerRegisterToSaveRestore(HRI.getStackRegister());
1529
1530   if (EnableHexSDNodeSched)
1531     setSchedulingPreference(Sched::VLIW);
1532   else
1533     setSchedulingPreference(Sched::Source);
1534
1535   // Limits for inline expansion of memcpy/memmove
1536   MaxStoresPerMemcpy = MaxStoresPerMemcpyCL;
1537   MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL;
1538   MaxStoresPerMemmove = MaxStoresPerMemmoveCL;
1539   MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL;
1540   MaxStoresPerMemset = MaxStoresPerMemsetCL;
1541   MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL;
1542
1543   //
1544   // Set up register classes.
1545   //
1546
1547   addRegisterClass(MVT::i1,    &Hexagon::PredRegsRegClass);
1548   addRegisterClass(MVT::v2i1,  &Hexagon::PredRegsRegClass);  // bbbbaaaa
1549   addRegisterClass(MVT::v4i1,  &Hexagon::PredRegsRegClass);  // ddccbbaa
1550   addRegisterClass(MVT::v8i1,  &Hexagon::PredRegsRegClass);  // hgfedcba
1551   addRegisterClass(MVT::i32,   &Hexagon::IntRegsRegClass);
1552   addRegisterClass(MVT::v4i8,  &Hexagon::IntRegsRegClass);
1553   addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass);
1554   addRegisterClass(MVT::i64,   &Hexagon::DoubleRegsRegClass);
1555   addRegisterClass(MVT::v8i8,  &Hexagon::DoubleRegsRegClass);
1556   addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass);
1557   addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass);
1558
1559   if (Subtarget.hasV5TOps()) {
1560     addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass);
1561     addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass);
1562   }
1563
1564   if (Subtarget.hasV60TOps()) {
1565     if (Subtarget.useHVXSglOps()) {
1566       addRegisterClass(MVT::v64i8,  &Hexagon::VectorRegsRegClass);
1567       addRegisterClass(MVT::v32i16, &Hexagon::VectorRegsRegClass);
1568       addRegisterClass(MVT::v16i32, &Hexagon::VectorRegsRegClass);
1569       addRegisterClass(MVT::v8i64,  &Hexagon::VectorRegsRegClass);
1570       addRegisterClass(MVT::v128i8, &Hexagon::VecDblRegsRegClass);
1571       addRegisterClass(MVT::v64i16, &Hexagon::VecDblRegsRegClass);
1572       addRegisterClass(MVT::v32i32, &Hexagon::VecDblRegsRegClass);
1573       addRegisterClass(MVT::v16i64, &Hexagon::VecDblRegsRegClass);
1574       addRegisterClass(MVT::v512i1, &Hexagon::VecPredRegsRegClass);
1575     } else if (Subtarget.useHVXDblOps()) {
1576       addRegisterClass(MVT::v128i8,  &Hexagon::VectorRegs128BRegClass);
1577       addRegisterClass(MVT::v64i16,  &Hexagon::VectorRegs128BRegClass);
1578       addRegisterClass(MVT::v32i32,  &Hexagon::VectorRegs128BRegClass);
1579       addRegisterClass(MVT::v16i64,  &Hexagon::VectorRegs128BRegClass);
1580       addRegisterClass(MVT::v256i8,  &Hexagon::VecDblRegs128BRegClass);
1581       addRegisterClass(MVT::v128i16, &Hexagon::VecDblRegs128BRegClass);
1582       addRegisterClass(MVT::v64i32,  &Hexagon::VecDblRegs128BRegClass);
1583       addRegisterClass(MVT::v32i64,  &Hexagon::VecDblRegs128BRegClass);
1584       addRegisterClass(MVT::v1024i1, &Hexagon::VecPredRegs128BRegClass);
1585     }
1586
1587   }
1588
1589   //
1590   // Handling of scalar operations.
1591   //
1592   // All operations default to "legal", except:
1593   // - indexed loads and stores (pre-/post-incremented),
1594   // - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS,
1595   //   ConstantFP, DEBUGTRAP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN,
1596   //   FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP,
1597   //   FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG,
1598   // which default to "expand" for at least one type.
1599
1600   // Misc operations.
1601   setOperationAction(ISD::ConstantFP, MVT::f32, Legal); // Default: expand
1602   setOperationAction(ISD::ConstantFP, MVT::f64, Legal); // Default: expand
1603
1604   setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
1605   setOperationAction(ISD::JumpTable, MVT::i32, Custom);
1606   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
1607   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
1608   setOperationAction(ISD::INLINEASM, MVT::Other, Custom);
1609   setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
1610   setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
1611   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
1612
1613   // Custom legalize GlobalAddress nodes into CONST32.
1614   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
1615   setOperationAction(ISD::GlobalAddress, MVT::i8,  Custom);
1616   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
1617
1618   // Hexagon needs to optimize cases with negative constants.
1619   setOperationAction(ISD::SETCC, MVT::i8,  Custom);
1620   setOperationAction(ISD::SETCC, MVT::i16, Custom);
1621
1622   // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
1623   setOperationAction(ISD::VASTART, MVT::Other, Custom);
1624   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
1625   setOperationAction(ISD::VAARG,   MVT::Other, Expand);
1626
1627   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
1628   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
1629   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
1630
1631   if (EmitJumpTables)
1632     setMinimumJumpTableEntries(2);
1633   else
1634     setMinimumJumpTableEntries(MinimumJumpTables);
1635   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
1636
1637   // Hexagon has instructions for add/sub with carry. The problem with
1638   // modeling these instructions is that they produce 2 results: Rdd and Px.
1639   // To model the update of Px, we will have to use Defs[p0..p3] which will
1640   // cause any predicate live range to spill. So, we pretend we dont't have
1641   // these instructions.
1642   setOperationAction(ISD::ADDE, MVT::i8,  Expand);
1643   setOperationAction(ISD::ADDE, MVT::i16, Expand);
1644   setOperationAction(ISD::ADDE, MVT::i32, Expand);
1645   setOperationAction(ISD::ADDE, MVT::i64, Expand);
1646   setOperationAction(ISD::SUBE, MVT::i8,  Expand);
1647   setOperationAction(ISD::SUBE, MVT::i16, Expand);
1648   setOperationAction(ISD::SUBE, MVT::i32, Expand);
1649   setOperationAction(ISD::SUBE, MVT::i64, Expand);
1650   setOperationAction(ISD::ADDC, MVT::i8,  Expand);
1651   setOperationAction(ISD::ADDC, MVT::i16, Expand);
1652   setOperationAction(ISD::ADDC, MVT::i32, Expand);
1653   setOperationAction(ISD::ADDC, MVT::i64, Expand);
1654   setOperationAction(ISD::SUBC, MVT::i8,  Expand);
1655   setOperationAction(ISD::SUBC, MVT::i16, Expand);
1656   setOperationAction(ISD::SUBC, MVT::i32, Expand);
1657   setOperationAction(ISD::SUBC, MVT::i64, Expand);
1658
1659   // Only add and sub that detect overflow are the saturating ones.
1660   for (MVT VT : MVT::integer_valuetypes()) {
1661     setOperationAction(ISD::UADDO, VT, Expand);
1662     setOperationAction(ISD::SADDO, VT, Expand);
1663     setOperationAction(ISD::USUBO, VT, Expand);
1664     setOperationAction(ISD::SSUBO, VT, Expand);
1665   }
1666
1667   setOperationAction(ISD::CTLZ, MVT::i8,  Promote);
1668   setOperationAction(ISD::CTLZ, MVT::i16, Promote);
1669   setOperationAction(ISD::CTTZ, MVT::i8,  Promote);
1670   setOperationAction(ISD::CTTZ, MVT::i16, Promote);
1671   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8,  Promote);
1672   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
1673   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i8,  Promote);
1674   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
1675
1676   // In V5, popcount can count # of 1s in i64 but returns i32.
1677   // On V4 it will be expanded (set later).
1678   setOperationAction(ISD::CTPOP, MVT::i8,  Promote);
1679   setOperationAction(ISD::CTPOP, MVT::i16, Promote);
1680   setOperationAction(ISD::CTPOP, MVT::i32, Promote);
1681   setOperationAction(ISD::CTPOP, MVT::i64, Custom);
1682
1683   // We custom lower i64 to i64 mul, so that it is not considered as a legal
1684   // operation. There is a pattern that will match i64 mul and transform it
1685   // to a series of instructions.
1686   setOperationAction(ISD::MUL,   MVT::i64, Expand);
1687   setOperationAction(ISD::MULHS, MVT::i64, Expand);
1688
1689   for (unsigned IntExpOp :
1690        { ISD::SDIV,      ISD::UDIV,      ISD::SREM,      ISD::UREM,
1691          ISD::SDIVREM,   ISD::UDIVREM,   ISD::ROTL,      ISD::ROTR,
1692          ISD::BSWAP,     ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS,
1693          ISD::SMUL_LOHI, ISD::UMUL_LOHI }) {
1694     setOperationAction(IntExpOp, MVT::i32, Expand);
1695     setOperationAction(IntExpOp, MVT::i64, Expand);
1696   }
1697
1698   for (unsigned FPExpOp :
1699        {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS,
1700         ISD::FPOW, ISD::FCOPYSIGN}) {
1701     setOperationAction(FPExpOp, MVT::f32, Expand);
1702     setOperationAction(FPExpOp, MVT::f64, Expand);
1703   }
1704
1705   // No extending loads from i32.
1706   for (MVT VT : MVT::integer_valuetypes()) {
1707     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
1708     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
1709     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i32, Expand);
1710   }
1711   // Turn FP truncstore into trunc + store.
1712   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1713   // Turn FP extload into load/fextend.
1714   for (MVT VT : MVT::fp_valuetypes())
1715     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1716
1717   // Expand BR_CC and SELECT_CC for all integer and fp types.
1718   for (MVT VT : MVT::integer_valuetypes()) {
1719     setOperationAction(ISD::BR_CC,     VT, Expand);
1720     setOperationAction(ISD::SELECT_CC, VT, Expand);
1721   }
1722   for (MVT VT : MVT::fp_valuetypes()) {
1723     setOperationAction(ISD::BR_CC,     VT, Expand);
1724     setOperationAction(ISD::SELECT_CC, VT, Expand);
1725   }
1726   setOperationAction(ISD::BR_CC, MVT::Other, Expand);
1727
1728   //
1729   // Handling of vector operations.
1730   //
1731
1732   // Custom lower v4i16 load only. Let v4i16 store to be
1733   // promoted for now.
1734   promoteLdStType(MVT::v4i8,  MVT::i32);
1735   promoteLdStType(MVT::v2i16, MVT::i32);
1736   promoteLdStType(MVT::v8i8,  MVT::i64);
1737   promoteLdStType(MVT::v2i32, MVT::i64);
1738
1739   setOperationAction(ISD::LOAD,  MVT::v4i16, Custom);
1740   setOperationAction(ISD::STORE, MVT::v4i16, Promote);
1741   AddPromotedToType(ISD::LOAD,  MVT::v4i16, MVT::i64);
1742   AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::i64);
1743
1744   // Set the action for vector operations to "expand", then override it with
1745   // either "custom" or "legal" for specific cases.
1746   static const unsigned VectExpOps[] = {
1747     // Integer arithmetic:
1748     ISD::ADD,     ISD::SUB,     ISD::MUL,     ISD::SDIV,    ISD::UDIV,
1749     ISD::SREM,    ISD::UREM,    ISD::SDIVREM, ISD::UDIVREM, ISD::ADDC,
1750     ISD::SUBC,    ISD::SADDO,   ISD::UADDO,   ISD::SSUBO,   ISD::USUBO,
1751     ISD::SMUL_LOHI,             ISD::UMUL_LOHI,
1752     // Logical/bit:
1753     ISD::AND,     ISD::OR,      ISD::XOR,     ISD::ROTL,    ISD::ROTR,
1754     ISD::CTPOP,   ISD::CTLZ,    ISD::CTTZ,    ISD::CTLZ_ZERO_UNDEF,
1755     ISD::CTTZ_ZERO_UNDEF,
1756     // Floating point arithmetic/math functions:
1757     ISD::FADD,    ISD::FSUB,    ISD::FMUL,    ISD::FMA,     ISD::FDIV,
1758     ISD::FREM,    ISD::FNEG,    ISD::FABS,    ISD::FSQRT,   ISD::FSIN,
1759     ISD::FCOS,    ISD::FPOWI,   ISD::FPOW,    ISD::FLOG,    ISD::FLOG2,
1760     ISD::FLOG10,  ISD::FEXP,    ISD::FEXP2,   ISD::FCEIL,   ISD::FTRUNC,
1761     ISD::FRINT,   ISD::FNEARBYINT,            ISD::FROUND,  ISD::FFLOOR,
1762     ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS,
1763     // Misc:
1764     ISD::SELECT,  ISD::ConstantPool,
1765     // Vector:
1766     ISD::BUILD_VECTOR,          ISD::SCALAR_TO_VECTOR,
1767     ISD::EXTRACT_VECTOR_ELT,    ISD::INSERT_VECTOR_ELT,
1768     ISD::EXTRACT_SUBVECTOR,     ISD::INSERT_SUBVECTOR,
1769     ISD::CONCAT_VECTORS,        ISD::VECTOR_SHUFFLE
1770   };
1771
1772   for (MVT VT : MVT::vector_valuetypes()) {
1773     for (unsigned VectExpOp : VectExpOps)
1774       setOperationAction(VectExpOp, VT, Expand);
1775
1776     // Expand all extended loads and truncating stores:
1777     for (MVT TargetVT : MVT::vector_valuetypes()) {
1778       setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand);
1779       setTruncStoreAction(VT, TargetVT, Expand);
1780     }
1781
1782     setOperationAction(ISD::SRA, VT, Custom);
1783     setOperationAction(ISD::SHL, VT, Custom);
1784     setOperationAction(ISD::SRL, VT, Custom);
1785   }
1786
1787   // Types natively supported:
1788   for (MVT NativeVT : {MVT::v2i1, MVT::v4i1, MVT::v8i1, MVT::v32i1, MVT::v64i1,
1789                        MVT::v4i8, MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v1i32,
1790                        MVT::v2i32, MVT::v1i64}) {
1791     setOperationAction(ISD::BUILD_VECTOR,       NativeVT, Custom);
1792     setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom);
1793     setOperationAction(ISD::INSERT_VECTOR_ELT,  NativeVT, Custom);
1794     setOperationAction(ISD::EXTRACT_SUBVECTOR,  NativeVT, Custom);
1795     setOperationAction(ISD::INSERT_SUBVECTOR,   NativeVT, Custom);
1796     setOperationAction(ISD::CONCAT_VECTORS,     NativeVT, Custom);
1797
1798     setOperationAction(ISD::ADD, NativeVT, Legal);
1799     setOperationAction(ISD::SUB, NativeVT, Legal);
1800     setOperationAction(ISD::MUL, NativeVT, Legal);
1801     setOperationAction(ISD::AND, NativeVT, Legal);
1802     setOperationAction(ISD::OR,  NativeVT, Legal);
1803     setOperationAction(ISD::XOR, NativeVT, Legal);
1804   }
1805
1806   setOperationAction(ISD::SETCC,          MVT::v2i16, Custom);
1807   setOperationAction(ISD::VSELECT,        MVT::v2i16, Custom);
1808   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
1809   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8,  Custom);
1810   if (UseHVX) {
1811     if (UseHVXSgl) {
1812       setOperationAction(ISD::CONCAT_VECTORS, MVT::v128i8,  Custom);
1813       setOperationAction(ISD::CONCAT_VECTORS, MVT::v64i16,  Custom);
1814       setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i32,  Custom);
1815       setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i64,  Custom);
1816     } else if (UseHVXDbl) {
1817       setOperationAction(ISD::CONCAT_VECTORS, MVT::v256i8,  Custom);
1818       setOperationAction(ISD::CONCAT_VECTORS, MVT::v128i16, Custom);
1819       setOperationAction(ISD::CONCAT_VECTORS, MVT::v64i32,  Custom);
1820       setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i64,  Custom);
1821     } else {
1822       llvm_unreachable("Unrecognized HVX mode");
1823     }
1824   }
1825   // Subtarget-specific operation actions.
1826   //
1827   if (Subtarget.hasV5TOps()) {
1828     setOperationAction(ISD::FMA,  MVT::f64, Expand);
1829     setOperationAction(ISD::FADD, MVT::f64, Expand);
1830     setOperationAction(ISD::FSUB, MVT::f64, Expand);
1831     setOperationAction(ISD::FMUL, MVT::f64, Expand);
1832
1833     setOperationAction(ISD::FP_TO_UINT, MVT::i1,  Promote);
1834     setOperationAction(ISD::FP_TO_UINT, MVT::i8,  Promote);
1835     setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
1836     setOperationAction(ISD::FP_TO_SINT, MVT::i1,  Promote);
1837     setOperationAction(ISD::FP_TO_SINT, MVT::i8,  Promote);
1838     setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
1839     setOperationAction(ISD::UINT_TO_FP, MVT::i1,  Promote);
1840     setOperationAction(ISD::UINT_TO_FP, MVT::i8,  Promote);
1841     setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
1842     setOperationAction(ISD::SINT_TO_FP, MVT::i1,  Promote);
1843     setOperationAction(ISD::SINT_TO_FP, MVT::i8,  Promote);
1844     setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
1845
1846   } else { // V4
1847     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
1848     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Expand);
1849     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
1850     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
1851     setOperationAction(ISD::FP_TO_SINT, MVT::f64, Expand);
1852     setOperationAction(ISD::FP_TO_SINT, MVT::f32, Expand);
1853     setOperationAction(ISD::FP_EXTEND,  MVT::f32, Expand);
1854     setOperationAction(ISD::FP_ROUND,   MVT::f64, Expand);
1855     setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
1856
1857     setOperationAction(ISD::CTPOP, MVT::i8,  Expand);
1858     setOperationAction(ISD::CTPOP, MVT::i16, Expand);
1859     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
1860     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
1861
1862     // Expand these operations for both f32 and f64:
1863     for (unsigned FPExpOpV4 :
1864          {ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FABS, ISD::FNEG, ISD::FMA}) {
1865       setOperationAction(FPExpOpV4, MVT::f32, Expand);
1866       setOperationAction(FPExpOpV4, MVT::f64, Expand);
1867     }
1868
1869     for (ISD::CondCode FPExpCCV4 :
1870          {ISD::SETOEQ, ISD::SETOGT, ISD::SETOLT, ISD::SETOGE, ISD::SETOLE,
1871           ISD::SETUO,  ISD::SETO}) {
1872       setCondCodeAction(FPExpCCV4, MVT::f32, Expand);
1873       setCondCodeAction(FPExpCCV4, MVT::f64, Expand);
1874     }
1875   }
1876
1877   // Handling of indexed loads/stores: default is "expand".
1878   //
1879   for (MVT LSXTy : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) {
1880     setIndexedLoadAction(ISD::POST_INC, LSXTy, Legal);
1881     setIndexedStoreAction(ISD::POST_INC, LSXTy, Legal);
1882   }
1883
1884   if (UseHVXDbl) {
1885     for (MVT VT : {MVT::v128i8, MVT::v64i16, MVT::v32i32, MVT::v16i64}) {
1886       setIndexedLoadAction(ISD::POST_INC, VT, Legal);
1887       setIndexedStoreAction(ISD::POST_INC, VT, Legal);
1888     }
1889   }
1890
1891   computeRegisterProperties(&HRI);
1892
1893   //
1894   // Library calls for unsupported operations
1895   //
1896   bool FastMath  = EnableFastMath;
1897
1898   setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3");
1899   setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3");
1900   setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3");
1901   setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3");
1902   setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3");
1903   setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3");
1904   setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3");
1905   setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3");
1906
1907   setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf");
1908   setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf");
1909   setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti");
1910   setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti");
1911   setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti");
1912   setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti");
1913
1914   if (IsV4) {
1915     // Handle single-precision floating point operations on V4.
1916     if (FastMath) {
1917       setLibcallName(RTLIB::ADD_F32, "__hexagon_fast_addsf3");
1918       setLibcallName(RTLIB::SUB_F32, "__hexagon_fast_subsf3");
1919       setLibcallName(RTLIB::MUL_F32, "__hexagon_fast_mulsf3");
1920       setLibcallName(RTLIB::OGT_F32, "__hexagon_fast_gtsf2");
1921       setLibcallName(RTLIB::OLT_F32, "__hexagon_fast_ltsf2");
1922       // Double-precision compares.
1923       setLibcallName(RTLIB::OGT_F64, "__hexagon_fast_gtdf2");
1924       setLibcallName(RTLIB::OLT_F64, "__hexagon_fast_ltdf2");
1925     } else {
1926       setLibcallName(RTLIB::ADD_F32, "__hexagon_addsf3");
1927       setLibcallName(RTLIB::SUB_F32, "__hexagon_subsf3");
1928       setLibcallName(RTLIB::MUL_F32, "__hexagon_mulsf3");
1929       setLibcallName(RTLIB::OGT_F32, "__hexagon_gtsf2");
1930       setLibcallName(RTLIB::OLT_F32, "__hexagon_ltsf2");
1931       // Double-precision compares.
1932       setLibcallName(RTLIB::OGT_F64, "__hexagon_gtdf2");
1933       setLibcallName(RTLIB::OLT_F64, "__hexagon_ltdf2");
1934     }
1935   }
1936
1937   // This is the only fast library function for sqrtd.
1938   if (FastMath)
1939     setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2");
1940
1941   // Prefix is: nothing  for "slow-math",
1942   //            "fast2_" for V4 fast-math and V5+ fast-math double-precision
1943   // (actually, keep fast-math and fast-math2 separate for now)
1944   if (FastMath) {
1945     setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3");
1946     setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3");
1947     setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3");
1948     setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3");
1949     // Calling __hexagon_fast2_divsf3 with fast-math on V5 (ok).
1950     setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3");
1951   } else {
1952     setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3");
1953     setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
1954     setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3");
1955     setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3");
1956     setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3");
1957   }
1958
1959   if (Subtarget.hasV5TOps()) {
1960     if (FastMath)
1961       setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf");
1962     else
1963       setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf");
1964   } else {
1965     // V4
1966     setLibcallName(RTLIB::SINTTOFP_I32_F32, "__hexagon_floatsisf");
1967     setLibcallName(RTLIB::SINTTOFP_I32_F64, "__hexagon_floatsidf");
1968     setLibcallName(RTLIB::SINTTOFP_I64_F32, "__hexagon_floatdisf");
1969     setLibcallName(RTLIB::SINTTOFP_I64_F64, "__hexagon_floatdidf");
1970     setLibcallName(RTLIB::UINTTOFP_I32_F32, "__hexagon_floatunsisf");
1971     setLibcallName(RTLIB::UINTTOFP_I32_F64, "__hexagon_floatunsidf");
1972     setLibcallName(RTLIB::UINTTOFP_I64_F32, "__hexagon_floatundisf");
1973     setLibcallName(RTLIB::UINTTOFP_I64_F64, "__hexagon_floatundidf");
1974     setLibcallName(RTLIB::FPTOUINT_F32_I32, "__hexagon_fixunssfsi");
1975     setLibcallName(RTLIB::FPTOUINT_F32_I64, "__hexagon_fixunssfdi");
1976     setLibcallName(RTLIB::FPTOUINT_F64_I32, "__hexagon_fixunsdfsi");
1977     setLibcallName(RTLIB::FPTOUINT_F64_I64, "__hexagon_fixunsdfdi");
1978     setLibcallName(RTLIB::FPTOSINT_F32_I32, "__hexagon_fixsfsi");
1979     setLibcallName(RTLIB::FPTOSINT_F32_I64, "__hexagon_fixsfdi");
1980     setLibcallName(RTLIB::FPTOSINT_F64_I32, "__hexagon_fixdfsi");
1981     setLibcallName(RTLIB::FPTOSINT_F64_I64, "__hexagon_fixdfdi");
1982     setLibcallName(RTLIB::FPEXT_F32_F64,    "__hexagon_extendsfdf2");
1983     setLibcallName(RTLIB::FPROUND_F64_F32,  "__hexagon_truncdfsf2");
1984     setLibcallName(RTLIB::OEQ_F32, "__hexagon_eqsf2");
1985     setLibcallName(RTLIB::OEQ_F64, "__hexagon_eqdf2");
1986     setLibcallName(RTLIB::OGE_F32, "__hexagon_gesf2");
1987     setLibcallName(RTLIB::OGE_F64, "__hexagon_gedf2");
1988     setLibcallName(RTLIB::OLE_F32, "__hexagon_lesf2");
1989     setLibcallName(RTLIB::OLE_F64, "__hexagon_ledf2");
1990     setLibcallName(RTLIB::UNE_F32, "__hexagon_nesf2");
1991     setLibcallName(RTLIB::UNE_F64, "__hexagon_nedf2");
1992     setLibcallName(RTLIB::UO_F32,  "__hexagon_unordsf2");
1993     setLibcallName(RTLIB::UO_F64,  "__hexagon_unorddf2");
1994     setLibcallName(RTLIB::O_F32,   "__hexagon_unordsf2");
1995     setLibcallName(RTLIB::O_F64,   "__hexagon_unorddf2");
1996   }
1997
1998   // These cause problems when the shift amount is non-constant.
1999   setLibcallName(RTLIB::SHL_I128, nullptr);
2000   setLibcallName(RTLIB::SRL_I128, nullptr);
2001   setLibcallName(RTLIB::SRA_I128, nullptr);
2002 }
2003
2004
2005 const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const {
2006   switch ((HexagonISD::NodeType)Opcode) {
2007   case HexagonISD::ALLOCA:        return "HexagonISD::ALLOCA";
2008   case HexagonISD::ARGEXTEND:     return "HexagonISD::ARGEXTEND";
2009   case HexagonISD::AT_GOT:        return "HexagonISD::AT_GOT";
2010   case HexagonISD::AT_PCREL:      return "HexagonISD::AT_PCREL";
2011   case HexagonISD::BARRIER:       return "HexagonISD::BARRIER";
2012   case HexagonISD::CALLR:         return "HexagonISD::CALLR";
2013   case HexagonISD::CALLv3nr:      return "HexagonISD::CALLv3nr";
2014   case HexagonISD::CALLv3:        return "HexagonISD::CALLv3";
2015   case HexagonISD::COMBINE:       return "HexagonISD::COMBINE";
2016   case HexagonISD::CONST32_GP:    return "HexagonISD::CONST32_GP";
2017   case HexagonISD::CONST32:       return "HexagonISD::CONST32";
2018   case HexagonISD::CP:            return "HexagonISD::CP";
2019   case HexagonISD::DCFETCH:       return "HexagonISD::DCFETCH";
2020   case HexagonISD::EH_RETURN:     return "HexagonISD::EH_RETURN";
2021   case HexagonISD::EXTRACTU:      return "HexagonISD::EXTRACTU";
2022   case HexagonISD::EXTRACTURP:    return "HexagonISD::EXTRACTURP";
2023   case HexagonISD::FCONST32:      return "HexagonISD::FCONST32";
2024   case HexagonISD::INSERT:        return "HexagonISD::INSERT";
2025   case HexagonISD::INSERTRP:      return "HexagonISD::INSERTRP";
2026   case HexagonISD::JT:            return "HexagonISD::JT";
2027   case HexagonISD::PACKHL:        return "HexagonISD::PACKHL";
2028   case HexagonISD::POPCOUNT:      return "HexagonISD::POPCOUNT";
2029   case HexagonISD::RET_FLAG:      return "HexagonISD::RET_FLAG";
2030   case HexagonISD::SHUFFEB:       return "HexagonISD::SHUFFEB";
2031   case HexagonISD::SHUFFEH:       return "HexagonISD::SHUFFEH";
2032   case HexagonISD::SHUFFOB:       return "HexagonISD::SHUFFOB";
2033   case HexagonISD::SHUFFOH:       return "HexagonISD::SHUFFOH";
2034   case HexagonISD::TC_RETURN:     return "HexagonISD::TC_RETURN";
2035   case HexagonISD::VCMPBEQ:       return "HexagonISD::VCMPBEQ";
2036   case HexagonISD::VCMPBGT:       return "HexagonISD::VCMPBGT";
2037   case HexagonISD::VCMPBGTU:      return "HexagonISD::VCMPBGTU";
2038   case HexagonISD::VCMPHEQ:       return "HexagonISD::VCMPHEQ";
2039   case HexagonISD::VCMPHGT:       return "HexagonISD::VCMPHGT";
2040   case HexagonISD::VCMPHGTU:      return "HexagonISD::VCMPHGTU";
2041   case HexagonISD::VCMPWEQ:       return "HexagonISD::VCMPWEQ";
2042   case HexagonISD::VCMPWGT:       return "HexagonISD::VCMPWGT";
2043   case HexagonISD::VCMPWGTU:      return "HexagonISD::VCMPWGTU";
2044   case HexagonISD::VCOMBINE:      return "HexagonISD::VCOMBINE";
2045   case HexagonISD::VSHLH:         return "HexagonISD::VSHLH";
2046   case HexagonISD::VSHLW:         return "HexagonISD::VSHLW";
2047   case HexagonISD::VSPLATB:       return "HexagonISD::VSPLTB";
2048   case HexagonISD::VSPLATH:       return "HexagonISD::VSPLATH";
2049   case HexagonISD::VSRAH:         return "HexagonISD::VSRAH";
2050   case HexagonISD::VSRAW:         return "HexagonISD::VSRAW";
2051   case HexagonISD::VSRLH:         return "HexagonISD::VSRLH";
2052   case HexagonISD::VSRLW:         return "HexagonISD::VSRLW";
2053   case HexagonISD::VSXTBH:        return "HexagonISD::VSXTBH";
2054   case HexagonISD::VSXTBW:        return "HexagonISD::VSXTBW";
2055   case HexagonISD::OP_END:        break;
2056   }
2057   return nullptr;
2058 }
2059
2060 bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
2061   EVT MTy1 = EVT::getEVT(Ty1);
2062   EVT MTy2 = EVT::getEVT(Ty2);
2063   if (!MTy1.isSimple() || !MTy2.isSimple())
2064     return false;
2065   return (MTy1.getSimpleVT() == MVT::i64) && (MTy2.getSimpleVT() == MVT::i32);
2066 }
2067
2068 bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
2069   if (!VT1.isSimple() || !VT2.isSimple())
2070     return false;
2071   return (VT1.getSimpleVT() == MVT::i64) && (VT2.getSimpleVT() == MVT::i32);
2072 }
2073
2074 // shouldExpandBuildVectorWithShuffles
2075 // Should we expand the build vector with shuffles?
2076 bool
2077 HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT,
2078                                   unsigned DefinedValues) const {
2079
2080   // Hexagon vector shuffle operates on element sizes of bytes or halfwords
2081   EVT EltVT = VT.getVectorElementType();
2082   int EltBits = EltVT.getSizeInBits();
2083   if ((EltBits != 8) && (EltBits != 16))
2084     return false;
2085
2086   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
2087 }
2088
2089 // LowerVECTOR_SHUFFLE - Lower a vector shuffle (V1, V2, V3).  V1 and
2090 // V2 are the two vectors to select data from, V3 is the permutation.
2091 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
2092   const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2093   SDValue V1 = Op.getOperand(0);
2094   SDValue V2 = Op.getOperand(1);
2095   SDLoc dl(Op);
2096   EVT VT = Op.getValueType();
2097
2098   if (V2.getOpcode() == ISD::UNDEF)
2099     V2 = V1;
2100
2101   if (SVN->isSplat()) {
2102     int Lane = SVN->getSplatIndex();
2103     if (Lane == -1) Lane = 0;
2104
2105     // Test if V1 is a SCALAR_TO_VECTOR.
2106     if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
2107       return createSplat(DAG, dl, VT, V1.getOperand(0));
2108
2109     // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
2110     // (and probably will turn into a SCALAR_TO_VECTOR once legalization
2111     // reaches it).
2112     if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
2113         !isa<ConstantSDNode>(V1.getOperand(0))) {
2114       bool IsScalarToVector = true;
2115       for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
2116         if (V1.getOperand(i).getOpcode() != ISD::UNDEF) {
2117           IsScalarToVector = false;
2118           break;
2119         }
2120       if (IsScalarToVector)
2121         return createSplat(DAG, dl, VT, V1.getOperand(0));
2122     }
2123     return createSplat(DAG, dl, VT, DAG.getConstant(Lane, dl, MVT::i32));
2124   }
2125
2126   // FIXME: We need to support more general vector shuffles.  See
2127   // below the comment from the ARM backend that deals in the general
2128   // case with the vector shuffles.  For now, let expand handle these.
2129   return SDValue();
2130
2131   // If the shuffle is not directly supported and it has 4 elements, use
2132   // the PerfectShuffle-generated table to synthesize it from other shuffles.
2133 }
2134
2135 // If BUILD_VECTOR has same base element repeated several times,
2136 // report true.
2137 static bool isCommonSplatElement(BuildVectorSDNode *BVN) {
2138   unsigned NElts = BVN->getNumOperands();
2139   SDValue V0 = BVN->getOperand(0);
2140
2141   for (unsigned i = 1, e = NElts; i != e; ++i) {
2142     if (BVN->getOperand(i) != V0)
2143       return false;
2144   }
2145   return true;
2146 }
2147
2148 // LowerVECTOR_SHIFT - Lower a vector shift. Try to convert
2149 // <VT> = SHL/SRA/SRL <VT> by <VT> to Hexagon specific
2150 // <VT> = SHL/SRA/SRL <VT> by <IT/i32>.
2151 static SDValue LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) {
2152   BuildVectorSDNode *BVN = 0;
2153   SDValue V1 = Op.getOperand(0);
2154   SDValue V2 = Op.getOperand(1);
2155   SDValue V3;
2156   SDLoc dl(Op);
2157   EVT VT = Op.getValueType();
2158
2159   if ((BVN = dyn_cast<BuildVectorSDNode>(V1.getNode())) &&
2160       isCommonSplatElement(BVN))
2161     V3 = V2;
2162   else if ((BVN = dyn_cast<BuildVectorSDNode>(V2.getNode())) &&
2163            isCommonSplatElement(BVN))
2164     V3 = V1;
2165   else
2166     return SDValue();
2167
2168   SDValue CommonSplat = BVN->getOperand(0);
2169   SDValue Result;
2170
2171   if (VT.getSimpleVT() == MVT::v4i16) {
2172     switch (Op.getOpcode()) {
2173     case ISD::SRA:
2174       Result = DAG.getNode(HexagonISD::VSRAH, dl, VT, V3, CommonSplat);
2175       break;
2176     case ISD::SHL:
2177       Result = DAG.getNode(HexagonISD::VSHLH, dl, VT, V3, CommonSplat);
2178       break;
2179     case ISD::SRL:
2180       Result = DAG.getNode(HexagonISD::VSRLH, dl, VT, V3, CommonSplat);
2181       break;
2182     default:
2183       return SDValue();
2184     }
2185   } else if (VT.getSimpleVT() == MVT::v2i32) {
2186     switch (Op.getOpcode()) {
2187     case ISD::SRA:
2188       Result = DAG.getNode(HexagonISD::VSRAW, dl, VT, V3, CommonSplat);
2189       break;
2190     case ISD::SHL:
2191       Result = DAG.getNode(HexagonISD::VSHLW, dl, VT, V3, CommonSplat);
2192       break;
2193     case ISD::SRL:
2194       Result = DAG.getNode(HexagonISD::VSRLW, dl, VT, V3, CommonSplat);
2195       break;
2196     default:
2197       return SDValue();
2198     }
2199   } else {
2200     return SDValue();
2201   }
2202
2203   return DAG.getNode(ISD::BITCAST, dl, VT, Result);
2204 }
2205
2206 SDValue
2207 HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
2208   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
2209   SDLoc dl(Op);
2210   EVT VT = Op.getValueType();
2211
2212   unsigned Size = VT.getSizeInBits();
2213
2214   // Only handle vectors of 64 bits or shorter.
2215   if (Size > 64)
2216     return SDValue();
2217
2218   APInt APSplatBits, APSplatUndef;
2219   unsigned SplatBitSize;
2220   bool HasAnyUndefs;
2221   unsigned NElts = BVN->getNumOperands();
2222
2223   // Try to generate a SPLAT instruction.
2224   if ((VT.getSimpleVT() == MVT::v4i8 || VT.getSimpleVT() == MVT::v4i16) &&
2225       (BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
2226                             HasAnyUndefs, 0, true) && SplatBitSize <= 16)) {
2227     unsigned SplatBits = APSplatBits.getZExtValue();
2228     int32_t SextVal = ((int32_t) (SplatBits << (32 - SplatBitSize)) >>
2229                        (32 - SplatBitSize));
2230     return createSplat(DAG, dl, VT, DAG.getConstant(SextVal, dl, MVT::i32));
2231   }
2232
2233   // Try to generate COMBINE to build v2i32 vectors.
2234   if (VT.getSimpleVT() == MVT::v2i32) {
2235     SDValue V0 = BVN->getOperand(0);
2236     SDValue V1 = BVN->getOperand(1);
2237
2238     if (V0.getOpcode() == ISD::UNDEF)
2239       V0 = DAG.getConstant(0, dl, MVT::i32);
2240     if (V1.getOpcode() == ISD::UNDEF)
2241       V1 = DAG.getConstant(0, dl, MVT::i32);
2242
2243     ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(V0);
2244     ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(V1);
2245     // If the element isn't a constant, it is in a register:
2246     // generate a COMBINE Register Register instruction.
2247     if (!C0 || !C1)
2248       return DAG.getNode(HexagonISD::COMBINE, dl, VT, V1, V0);
2249
2250     // If one of the operands is an 8 bit integer constant, generate
2251     // a COMBINE Immediate Immediate instruction.
2252     if (isInt<8>(C0->getSExtValue()) ||
2253         isInt<8>(C1->getSExtValue()))
2254       return DAG.getNode(HexagonISD::COMBINE, dl, VT, V1, V0);
2255   }
2256
2257   // Try to generate a S2_packhl to build v2i16 vectors.
2258   if (VT.getSimpleVT() == MVT::v2i16) {
2259     for (unsigned i = 0, e = NElts; i != e; ++i) {
2260       if (BVN->getOperand(i).getOpcode() == ISD::UNDEF)
2261         continue;
2262       ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(BVN->getOperand(i));
2263       // If the element isn't a constant, it is in a register:
2264       // generate a S2_packhl instruction.
2265       if (!Cst) {
2266         SDValue pack = DAG.getNode(HexagonISD::PACKHL, dl, MVT::v4i16,
2267                                    BVN->getOperand(1), BVN->getOperand(0));
2268
2269         return DAG.getTargetExtractSubreg(Hexagon::subreg_loreg, dl, MVT::v2i16,
2270                                           pack);
2271       }
2272     }
2273   }
2274
2275   // In the general case, generate a CONST32 or a CONST64 for constant vectors,
2276   // and insert_vector_elt for all the other cases.
2277   uint64_t Res = 0;
2278   unsigned EltSize = Size / NElts;
2279   SDValue ConstVal;
2280   uint64_t Mask = ~uint64_t(0ULL) >> (64 - EltSize);
2281   bool HasNonConstantElements = false;
2282
2283   for (unsigned i = 0, e = NElts; i != e; ++i) {
2284     // LLVM's BUILD_VECTOR operands are in Little Endian mode, whereas Hexagon's
2285     // combine, const64, etc. are Big Endian.
2286     unsigned OpIdx = NElts - i - 1;
2287     SDValue Operand = BVN->getOperand(OpIdx);
2288     if (Operand.getOpcode() == ISD::UNDEF)
2289       continue;
2290
2291     int64_t Val = 0;
2292     if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Operand))
2293       Val = Cst->getSExtValue();
2294     else
2295       HasNonConstantElements = true;
2296
2297     Val &= Mask;
2298     Res = (Res << EltSize) | Val;
2299   }
2300
2301   if (Size == 64)
2302     ConstVal = DAG.getConstant(Res, dl, MVT::i64);
2303   else
2304     ConstVal = DAG.getConstant(Res, dl, MVT::i32);
2305
2306   // When there are non constant operands, add them with INSERT_VECTOR_ELT to
2307   // ConstVal, the constant part of the vector.
2308   if (HasNonConstantElements) {
2309     EVT EltVT = VT.getVectorElementType();
2310     SDValue Width = DAG.getConstant(EltVT.getSizeInBits(), dl, MVT::i64);
2311     SDValue Shifted = DAG.getNode(ISD::SHL, dl, MVT::i64, Width,
2312                                   DAG.getConstant(32, dl, MVT::i64));
2313
2314     for (unsigned i = 0, e = NElts; i != e; ++i) {
2315       // LLVM's BUILD_VECTOR operands are in Little Endian mode, whereas Hexagon
2316       // is Big Endian.
2317       unsigned OpIdx = NElts - i - 1;
2318       SDValue Operand = BVN->getOperand(OpIdx);
2319       if (isa<ConstantSDNode>(Operand))
2320         // This operand is already in ConstVal.
2321         continue;
2322
2323       if (VT.getSizeInBits() == 64 &&
2324           Operand.getValueType().getSizeInBits() == 32) {
2325         SDValue C = DAG.getConstant(0, dl, MVT::i32);
2326         Operand = DAG.getNode(HexagonISD::COMBINE, dl, VT, C, Operand);
2327       }
2328
2329       SDValue Idx = DAG.getConstant(OpIdx, dl, MVT::i64);
2330       SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i64, Idx, Width);
2331       SDValue Combined = DAG.getNode(ISD::OR, dl, MVT::i64, Shifted, Offset);
2332       const SDValue Ops[] = {ConstVal, Operand, Combined};
2333
2334       if (VT.getSizeInBits() == 32)
2335         ConstVal = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i32, Ops);
2336       else
2337         ConstVal = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i64, Ops);
2338     }
2339   }
2340
2341   return DAG.getNode(ISD::BITCAST, dl, VT, ConstVal);
2342 }
2343
2344 SDValue
2345 HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
2346                                            SelectionDAG &DAG) const {
2347   SDLoc dl(Op);
2348   bool UseHVX = Subtarget.useHVXOps();
2349   EVT VT = Op.getValueType();
2350   unsigned NElts = Op.getNumOperands();
2351   SDValue Vec0 = Op.getOperand(0);
2352   EVT VecVT = Vec0.getValueType();
2353   unsigned Width = VecVT.getSizeInBits();
2354
2355   if (NElts == 2) {
2356     MVT ST = VecVT.getSimpleVT();
2357     // We are trying to concat two v2i16 to a single v4i16, or two v4i8
2358     // into a single v8i8.
2359     if (ST == MVT::v2i16 || ST == MVT::v4i8)
2360       return DAG.getNode(HexagonISD::COMBINE, dl, VT, Op.getOperand(1), Vec0);
2361
2362     if (UseHVX) {
2363       assert((Width ==  64*8 && Subtarget.useHVXSglOps()) ||
2364              (Width == 128*8 && Subtarget.useHVXDblOps()));
2365       SDValue Vec1 = Op.getOperand(1);
2366       MVT OpTy = Subtarget.useHVXSglOps() ? MVT::v16i32 : MVT::v32i32;
2367       MVT ReTy = Subtarget.useHVXSglOps() ? MVT::v32i32 : MVT::v64i32;
2368       SDValue B0 = DAG.getNode(ISD::BITCAST, dl, OpTy, Vec0);
2369       SDValue B1 = DAG.getNode(ISD::BITCAST, dl, OpTy, Vec1);
2370       SDValue VC = DAG.getNode(HexagonISD::VCOMBINE, dl, ReTy, B1, B0);
2371       return DAG.getNode(ISD::BITCAST, dl, VT, VC);
2372     }
2373   }
2374
2375   if (VT.getSizeInBits() != 32 && VT.getSizeInBits() != 64)
2376     return SDValue();
2377
2378   SDValue C0 = DAG.getConstant(0, dl, MVT::i64);
2379   SDValue C32 = DAG.getConstant(32, dl, MVT::i64);
2380   SDValue W = DAG.getConstant(Width, dl, MVT::i64);
2381   // Create the "width" part of the argument to insert_rp/insertp_rp.
2382   SDValue S = DAG.getNode(ISD::SHL, dl, MVT::i64, W, C32);
2383   SDValue V = C0;
2384
2385   for (unsigned i = 0, e = NElts; i != e; ++i) {
2386     unsigned N = NElts-i-1;
2387     SDValue OpN = Op.getOperand(N);
2388
2389     if (VT.getSizeInBits() == 64 && OpN.getValueType().getSizeInBits() == 32) {
2390       SDValue C = DAG.getConstant(0, dl, MVT::i32);
2391       OpN = DAG.getNode(HexagonISD::COMBINE, dl, VT, C, OpN);
2392     }
2393     SDValue Idx = DAG.getConstant(N, dl, MVT::i64);
2394     SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i64, Idx, W);
2395     SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, S, Offset);
2396     if (VT.getSizeInBits() == 32)
2397       V = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i32, {V, OpN, Or});
2398     else
2399       V = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i64, {V, OpN, Or});
2400   }
2401
2402   return DAG.getNode(ISD::BITCAST, dl, VT, V);
2403 }
2404
2405 SDValue
2406 HexagonTargetLowering::LowerEXTRACT_VECTOR(SDValue Op,
2407                                            SelectionDAG &DAG) const {
2408   EVT VT = Op.getValueType();
2409   int VTN = VT.isVector() ? VT.getVectorNumElements() : 1;
2410   SDLoc dl(Op);
2411   SDValue Idx = Op.getOperand(1);
2412   SDValue Vec = Op.getOperand(0);
2413   EVT VecVT = Vec.getValueType();
2414   EVT EltVT = VecVT.getVectorElementType();
2415   int EltSize = EltVT.getSizeInBits();
2416   SDValue Width = DAG.getConstant(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT ?
2417                                   EltSize : VTN * EltSize, dl, MVT::i64);
2418
2419   // Constant element number.
2420   if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Idx)) {
2421     uint64_t X = CI->getZExtValue();
2422     SDValue Offset = DAG.getConstant(X * EltSize, dl, MVT::i32);
2423     const SDValue Ops[] = {Vec, Width, Offset};
2424
2425     ConstantSDNode *CW = dyn_cast<ConstantSDNode>(Width);
2426     assert(CW && "Non constant width in LowerEXTRACT_VECTOR");
2427
2428     SDValue N;
2429     MVT SVT = VecVT.getSimpleVT();
2430     uint64_t W = CW->getZExtValue();
2431
2432     if (W == 32) {
2433       // Translate this node into EXTRACT_SUBREG.
2434       unsigned Subreg = (X == 0) ? Hexagon::subreg_loreg : 0;
2435
2436       if (X == 0)
2437         Subreg = Hexagon::subreg_loreg;
2438       else if (SVT == MVT::v2i32 && X == 1)
2439         Subreg = Hexagon::subreg_hireg;
2440       else if (SVT == MVT::v4i16 && X == 2)
2441         Subreg = Hexagon::subreg_hireg;
2442       else if (SVT == MVT::v8i8 && X == 4)
2443         Subreg = Hexagon::subreg_hireg;
2444       else
2445         llvm_unreachable("Bad offset");
2446       N = DAG.getTargetExtractSubreg(Subreg, dl, MVT::i32, Vec);
2447
2448     } else if (VecVT.getSizeInBits() == 32) {
2449       N = DAG.getNode(HexagonISD::EXTRACTU, dl, MVT::i32, Ops);
2450     } else {
2451       N = DAG.getNode(HexagonISD::EXTRACTU, dl, MVT::i64, Ops);
2452       if (VT.getSizeInBits() == 32)
2453         N = DAG.getTargetExtractSubreg(Hexagon::subreg_loreg, dl, MVT::i32, N);
2454     }
2455
2456     return DAG.getNode(ISD::BITCAST, dl, VT, N);
2457   }
2458
2459   // Variable element number.
2460   SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i32, Idx,
2461                                DAG.getConstant(EltSize, dl, MVT::i32));
2462   SDValue Shifted = DAG.getNode(ISD::SHL, dl, MVT::i64, Width,
2463                                 DAG.getConstant(32, dl, MVT::i64));
2464   SDValue Combined = DAG.getNode(ISD::OR, dl, MVT::i64, Shifted, Offset);
2465
2466   const SDValue Ops[] = {Vec, Combined};
2467
2468   SDValue N;
2469   if (VecVT.getSizeInBits() == 32) {
2470     N = DAG.getNode(HexagonISD::EXTRACTURP, dl, MVT::i32, Ops);
2471   } else {
2472     N = DAG.getNode(HexagonISD::EXTRACTURP, dl, MVT::i64, Ops);
2473     if (VT.getSizeInBits() == 32)
2474       N = DAG.getTargetExtractSubreg(Hexagon::subreg_loreg, dl, MVT::i32, N);
2475   }
2476   return DAG.getNode(ISD::BITCAST, dl, VT, N);
2477 }
2478
2479 SDValue
2480 HexagonTargetLowering::LowerINSERT_VECTOR(SDValue Op,
2481                                           SelectionDAG &DAG) const {
2482   EVT VT = Op.getValueType();
2483   int VTN = VT.isVector() ? VT.getVectorNumElements() : 1;
2484   SDLoc dl(Op);
2485   SDValue Vec = Op.getOperand(0);
2486   SDValue Val = Op.getOperand(1);
2487   SDValue Idx = Op.getOperand(2);
2488   EVT VecVT = Vec.getValueType();
2489   EVT EltVT = VecVT.getVectorElementType();
2490   int EltSize = EltVT.getSizeInBits();
2491   SDValue Width = DAG.getConstant(Op.getOpcode() == ISD::INSERT_VECTOR_ELT ?
2492                                   EltSize : VTN * EltSize, dl, MVT::i64);
2493
2494   if (ConstantSDNode *C = cast<ConstantSDNode>(Idx)) {
2495     SDValue Offset = DAG.getConstant(C->getSExtValue() * EltSize, dl, MVT::i32);
2496     const SDValue Ops[] = {Vec, Val, Width, Offset};
2497
2498     SDValue N;
2499     if (VT.getSizeInBits() == 32)
2500       N = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32, Ops);
2501     else
2502       N = DAG.getNode(HexagonISD::INSERT, dl, MVT::i64, Ops);
2503
2504     return DAG.getNode(ISD::BITCAST, dl, VT, N);
2505   }
2506
2507   // Variable element number.
2508   SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i32, Idx,
2509                                DAG.getConstant(EltSize, dl, MVT::i32));
2510   SDValue Shifted = DAG.getNode(ISD::SHL, dl, MVT::i64, Width,
2511                                 DAG.getConstant(32, dl, MVT::i64));
2512   SDValue Combined = DAG.getNode(ISD::OR, dl, MVT::i64, Shifted, Offset);
2513
2514   if (VT.getSizeInBits() == 64 &&
2515       Val.getValueType().getSizeInBits() == 32) {
2516     SDValue C = DAG.getConstant(0, dl, MVT::i32);
2517     Val = DAG.getNode(HexagonISD::COMBINE, dl, VT, C, Val);
2518   }
2519
2520   const SDValue Ops[] = {Vec, Val, Combined};
2521
2522   SDValue N;
2523   if (VT.getSizeInBits() == 32)
2524     N = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i32, Ops);
2525   else
2526     N = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i64, Ops);
2527
2528   return DAG.getNode(ISD::BITCAST, dl, VT, N);
2529 }
2530
2531 bool
2532 HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
2533   // Assuming the caller does not have either a signext or zeroext modifier, and
2534   // only one value is accepted, any reasonable truncation is allowed.
2535   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
2536     return false;
2537
2538   // FIXME: in principle up to 64-bit could be made safe, but it would be very
2539   // fragile at the moment: any support for multiple value returns would be
2540   // liable to disallow tail calls involving i64 -> iN truncation in many cases.
2541   return Ty1->getPrimitiveSizeInBits() <= 32;
2542 }
2543
2544 SDValue
2545 HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
2546   SDValue Chain     = Op.getOperand(0);
2547   SDValue Offset    = Op.getOperand(1);
2548   SDValue Handler   = Op.getOperand(2);
2549   SDLoc dl(Op);
2550   auto PtrVT = getPointerTy(DAG.getDataLayout());
2551
2552   // Mark function as containing a call to EH_RETURN.
2553   HexagonMachineFunctionInfo *FuncInfo =
2554     DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>();
2555   FuncInfo->setHasEHReturn();
2556
2557   unsigned OffsetReg = Hexagon::R28;
2558
2559   SDValue StoreAddr =
2560       DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getRegister(Hexagon::R30, PtrVT),
2561                   DAG.getIntPtrConstant(4, dl));
2562   Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
2563                        false, false, 0);
2564   Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset);
2565
2566   // Not needed we already use it as explict input to EH_RETURN.
2567   // MF.getRegInfo().addLiveOut(OffsetReg);
2568
2569   return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain);
2570 }
2571
2572 SDValue
2573 HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
2574   unsigned Opc = Op.getOpcode();
2575   switch (Opc) {
2576     default:
2577 #ifndef NDEBUG
2578       Op.getNode()->dumpr(&DAG);
2579       if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END)
2580         errs() << "Check for a non-legal type in this operation\n";
2581 #endif
2582       llvm_unreachable("Should not custom lower this!");
2583     case ISD::CONCAT_VECTORS:       return LowerCONCAT_VECTORS(Op, DAG);
2584     case ISD::INSERT_SUBVECTOR:     return LowerINSERT_VECTOR(Op, DAG);
2585     case ISD::INSERT_VECTOR_ELT:    return LowerINSERT_VECTOR(Op, DAG);
2586     case ISD::EXTRACT_SUBVECTOR:    return LowerEXTRACT_VECTOR(Op, DAG);
2587     case ISD::EXTRACT_VECTOR_ELT:   return LowerEXTRACT_VECTOR(Op, DAG);
2588     case ISD::BUILD_VECTOR:         return LowerBUILD_VECTOR(Op, DAG);
2589     case ISD::VECTOR_SHUFFLE:       return LowerVECTOR_SHUFFLE(Op, DAG);
2590     case ISD::SRA:
2591     case ISD::SHL:
2592     case ISD::SRL:                  return LowerVECTOR_SHIFT(Op, DAG);
2593     case ISD::ConstantPool:         return LowerConstantPool(Op, DAG);
2594     case ISD::JumpTable:            return LowerJumpTable(Op, DAG);
2595     case ISD::EH_RETURN:            return LowerEH_RETURN(Op, DAG);
2596       // Frame & Return address. Currently unimplemented.
2597     case ISD::RETURNADDR:           return LowerRETURNADDR(Op, DAG);
2598     case ISD::FRAMEADDR:            return LowerFRAMEADDR(Op, DAG);
2599     case ISD::ATOMIC_FENCE:         return LowerATOMIC_FENCE(Op, DAG);
2600     case ISD::GlobalAddress:        return LowerGLOBALADDRESS(Op, DAG);
2601     case ISD::BlockAddress:         return LowerBlockAddress(Op, DAG);
2602     case ISD::GLOBAL_OFFSET_TABLE:  return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
2603     case ISD::VASTART:              return LowerVASTART(Op, DAG);
2604     // Custom lower some vector loads.
2605     case ISD::LOAD:                 return LowerLOAD(Op, DAG);
2606     case ISD::DYNAMIC_STACKALLOC:   return LowerDYNAMIC_STACKALLOC(Op, DAG);
2607     case ISD::SETCC:                return LowerSETCC(Op, DAG);
2608     case ISD::VSELECT:              return LowerVSELECT(Op, DAG);
2609     case ISD::CTPOP:                return LowerCTPOP(Op, DAG);
2610     case ISD::INTRINSIC_WO_CHAIN:   return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2611     case ISD::INLINEASM:            return LowerINLINEASM(Op, DAG);
2612   }
2613 }
2614
2615 /// Returns relocation base for the given PIC jumptable.
2616 SDValue
2617 HexagonTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2618                                                 SelectionDAG &DAG) const {
2619   int Idx = cast<JumpTableSDNode>(Table)->getIndex();
2620   EVT VT = Table.getValueType();
2621   SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
2622   return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Table), VT, T);
2623 }
2624
2625 MachineBasicBlock *
2626 HexagonTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
2627                                                    MachineBasicBlock *BB)
2628       const {
2629   switch (MI->getOpcode()) {
2630     case Hexagon::ALLOCA: {
2631       MachineFunction *MF = BB->getParent();
2632       auto *FuncInfo = MF->getInfo<HexagonMachineFunctionInfo>();
2633       FuncInfo->addAllocaAdjustInst(MI);
2634       return BB;
2635     }
2636     default: llvm_unreachable("Unexpected instr type to insert");
2637   } // switch
2638 }
2639
2640 //===----------------------------------------------------------------------===//
2641 // Inline Assembly Support
2642 //===----------------------------------------------------------------------===//
2643
2644 std::pair<unsigned, const TargetRegisterClass *>
2645 HexagonTargetLowering::getRegForInlineAsmConstraint(
2646     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
2647   bool UseHVX = Subtarget.useHVXOps(), UseHVXDbl = Subtarget.useHVXDblOps();
2648
2649   if (Constraint.size() == 1) {
2650     switch (Constraint[0]) {
2651     case 'r':   // R0-R31
2652        switch (VT.SimpleTy) {
2653        default:
2654          llvm_unreachable("getRegForInlineAsmConstraint Unhandled data type");
2655        case MVT::i32:
2656        case MVT::i16:
2657        case MVT::i8:
2658        case MVT::f32:
2659          return std::make_pair(0U, &Hexagon::IntRegsRegClass);
2660        case MVT::i64:
2661        case MVT::f64:
2662          return std::make_pair(0U, &Hexagon::DoubleRegsRegClass);
2663       }
2664     case 'q': // q0-q3
2665        switch (VT.SimpleTy) {
2666        default:
2667          llvm_unreachable("getRegForInlineAsmConstraint Unhandled data type");
2668        case MVT::v1024i1:
2669        case MVT::v512i1:
2670        case MVT::v32i16:
2671        case MVT::v16i32:
2672        case MVT::v64i8:
2673        case MVT::v8i64:
2674          return std::make_pair(0U, &Hexagon::VecPredRegsRegClass);
2675     }
2676     case 'v': // V0-V31
2677        switch (VT.SimpleTy) {
2678        default:
2679          llvm_unreachable("getRegForInlineAsmConstraint Unhandled data type");
2680        case MVT::v16i32:
2681        case MVT::v32i16:
2682        case MVT::v64i8:
2683        case MVT::v8i64:
2684          return std::make_pair(0U, &Hexagon::VectorRegsRegClass);
2685        case MVT::v32i32:
2686        case MVT::v64i16:
2687        case MVT::v16i64:
2688        case MVT::v128i8:
2689          if (Subtarget.hasV60TOps() && UseHVX && UseHVXDbl)
2690            return std::make_pair(0U, &Hexagon::VectorRegs128BRegClass);
2691          else
2692            return std::make_pair(0U, &Hexagon::VecDblRegsRegClass);
2693        case MVT::v256i8:
2694        case MVT::v128i16:
2695        case MVT::v64i32:
2696        case MVT::v32i64:
2697          return std::make_pair(0U, &Hexagon::VecDblRegs128BRegClass);
2698        }
2699
2700     default:
2701       llvm_unreachable("Unknown asm register class");
2702     }
2703   }
2704
2705   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
2706 }
2707
2708 /// isFPImmLegal - Returns true if the target can instruction select the
2709 /// specified FP immediate natively. If false, the legalizer will
2710 /// materialize the FP immediate as a load from a constant pool.
2711 bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2712   return Subtarget.hasV5TOps();
2713 }
2714
2715 /// isLegalAddressingMode - Return true if the addressing mode represented by
2716 /// AM is legal for this target, for a load/store of the specified type.
2717 bool HexagonTargetLowering::isLegalAddressingMode(const DataLayout &DL,
2718                                                   const AddrMode &AM, Type *Ty,
2719                                                   unsigned AS) const {
2720   // Allows a signed-extended 11-bit immediate field.
2721   if (AM.BaseOffs <= -(1LL << 13) || AM.BaseOffs >= (1LL << 13)-1)
2722     return false;
2723
2724   // No global is ever allowed as a base.
2725   if (AM.BaseGV)
2726     return false;
2727
2728   int Scale = AM.Scale;
2729   if (Scale < 0) Scale = -Scale;
2730   switch (Scale) {
2731   case 0:  // No scale reg, "r+i", "r", or just "i".
2732     break;
2733   default: // No scaled addressing mode.
2734     return false;
2735   }
2736   return true;
2737 }
2738
2739 /// Return true if folding a constant offset with the given GlobalAddress is
2740 /// legal.  It is frequently not legal in PIC relocation models.
2741 bool HexagonTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA)
2742       const {
2743   return HTM.getRelocationModel() == Reloc::Static;
2744 }
2745
2746
2747 /// isLegalICmpImmediate - Return true if the specified immediate is legal
2748 /// icmp immediate, that is the target has icmp instructions which can compare
2749 /// a register against the immediate without having to materialize the
2750 /// immediate into a register.
2751 bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
2752   return Imm >= -512 && Imm <= 511;
2753 }
2754
2755 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2756 /// for tail call optimization. Targets which want to do tail call
2757 /// optimization should implement this function.
2758 bool HexagonTargetLowering::IsEligibleForTailCallOptimization(
2759                                  SDValue Callee,
2760                                  CallingConv::ID CalleeCC,
2761                                  bool isVarArg,
2762                                  bool isCalleeStructRet,
2763                                  bool isCallerStructRet,
2764                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2765                                  const SmallVectorImpl<SDValue> &OutVals,
2766                                  const SmallVectorImpl<ISD::InputArg> &Ins,
2767                                  SelectionDAG& DAG) const {
2768   const Function *CallerF = DAG.getMachineFunction().getFunction();
2769   CallingConv::ID CallerCC = CallerF->getCallingConv();
2770   bool CCMatch = CallerCC == CalleeCC;
2771
2772   // ***************************************************************************
2773   //  Look for obvious safe cases to perform tail call optimization that do not
2774   //  require ABI changes.
2775   // ***************************************************************************
2776
2777   // If this is a tail call via a function pointer, then don't do it!
2778   if (!(isa<GlobalAddressSDNode>(Callee)) &&
2779       !(isa<ExternalSymbolSDNode>(Callee))) {
2780     return false;
2781   }
2782
2783   // Do not optimize if the calling conventions do not match.
2784   if (!CCMatch)
2785     return false;
2786
2787   // Do not tail call optimize vararg calls.
2788   if (isVarArg)
2789     return false;
2790
2791   // Also avoid tail call optimization if either caller or callee uses struct
2792   // return semantics.
2793   if (isCalleeStructRet || isCallerStructRet)
2794     return false;
2795
2796   // In addition to the cases above, we also disable Tail Call Optimization if
2797   // the calling convention code that at least one outgoing argument needs to
2798   // go on the stack. We cannot check that here because at this point that
2799   // information is not available.
2800   return true;
2801 }
2802
2803 // Return true when the given node fits in a positive half word.
2804 bool llvm::isPositiveHalfWord(SDNode *N) {
2805   ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2806   if (CN && CN->getSExtValue() > 0 && isInt<16>(CN->getSExtValue()))
2807     return true;
2808
2809   switch (N->getOpcode()) {
2810   default:
2811     return false;
2812   case ISD::SIGN_EXTEND_INREG:
2813     return true;
2814   }
2815 }
2816
2817 std::pair<const TargetRegisterClass*, uint8_t>
2818 HexagonTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
2819       MVT VT) const {
2820   const TargetRegisterClass *RRC = nullptr;
2821
2822   uint8_t Cost = 1;
2823   switch (VT.SimpleTy) {
2824   default:
2825     return TargetLowering::findRepresentativeClass(TRI, VT);
2826   case MVT::v64i8:
2827   case MVT::v32i16:
2828   case MVT::v16i32:
2829   case MVT::v8i64:
2830     RRC = &Hexagon::VectorRegsRegClass;
2831     break;
2832   case MVT::v128i8:
2833   case MVT::v64i16:
2834   case MVT::v32i32:
2835   case MVT::v16i64:
2836     if (Subtarget.hasV60TOps() && Subtarget.useHVXOps() &&
2837         Subtarget.useHVXDblOps())
2838       RRC = &Hexagon::VectorRegs128BRegClass;
2839     else
2840       RRC = &Hexagon::VecDblRegsRegClass;
2841     break;
2842   case MVT::v256i8:
2843   case MVT::v128i16:
2844   case MVT::v64i32:
2845   case MVT::v32i64:
2846     RRC = &Hexagon::VecDblRegs128BRegClass;
2847     break;
2848   }
2849   return std::make_pair(RRC, Cost);
2850 }
2851
2852 Value *HexagonTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
2853       AtomicOrdering Ord) const {
2854   BasicBlock *BB = Builder.GetInsertBlock();
2855   Module *M = BB->getParent()->getParent();
2856   Type *Ty = cast<PointerType>(Addr->getType())->getElementType();
2857   unsigned SZ = Ty->getPrimitiveSizeInBits();
2858   assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic loads supported");
2859   Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_L2_loadw_locked
2860                                    : Intrinsic::hexagon_L4_loadd_locked;
2861   Value *Fn = Intrinsic::getDeclaration(M, IntID);
2862   return Builder.CreateCall(Fn, Addr, "larx");
2863 }
2864
2865 /// Perform a store-conditional operation to Addr. Return the status of the
2866 /// store. This should be 0 if the store succeeded, non-zero otherwise.
2867 Value *HexagonTargetLowering::emitStoreConditional(IRBuilder<> &Builder,
2868       Value *Val, Value *Addr, AtomicOrdering Ord) const {
2869   BasicBlock *BB = Builder.GetInsertBlock();
2870   Module *M = BB->getParent()->getParent();
2871   Type *Ty = Val->getType();
2872   unsigned SZ = Ty->getPrimitiveSizeInBits();
2873   assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic stores supported");
2874   Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_S2_storew_locked
2875                                    : Intrinsic::hexagon_S4_stored_locked;
2876   Value *Fn = Intrinsic::getDeclaration(M, IntID);
2877   Value *Call = Builder.CreateCall(Fn, {Addr, Val}, "stcx");
2878   Value *Cmp = Builder.CreateICmpEQ(Call, Builder.getInt32(0), "");
2879   Value *Ext = Builder.CreateZExt(Cmp, Type::getInt32Ty(M->getContext()));
2880   return Ext;
2881 }
2882
2883 TargetLowering::AtomicExpansionKind
2884 HexagonTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
2885   // Do not expand loads and stores that don't exceed 64 bits.
2886   return LI->getType()->getPrimitiveSizeInBits() > 64
2887              ? AtomicExpansionKind::LLOnly
2888              : AtomicExpansionKind::None;
2889 }
2890
2891 bool HexagonTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
2892   // Do not expand loads and stores that don't exceed 64 bits.
2893   return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() > 64;
2894 }