Remove the remaining uses of abs64 and nuke it.
[oota-llvm.git] / lib / Target / Hexagon / HexagonHardwareLoops.cpp
1 //===-- HexagonHardwareLoops.cpp - Identify and generate hardware loops ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass identifies loops where we can generate the Hexagon hardware
11 // loop instruction.  The hardware loop can perform loop branches with a
12 // zero-cycle overhead.
13 //
14 // The pattern that defines the induction variable can changed depending on
15 // prior optimizations.  For example, the IndVarSimplify phase run by 'opt'
16 // normalizes induction variables, and the Loop Strength Reduction pass
17 // run by 'llc' may also make changes to the induction variable.
18 // The pattern detected by this phase is due to running Strength Reduction.
19 //
20 // Criteria for hardware loops:
21 //  - Countable loops (w/ ind. var for a trip count)
22 //  - Assumes loops are normalized by IndVarSimplify
23 //  - Try inner-most loops first
24 //  - No nested hardware loops.
25 //  - No function calls in loops.
26 //
27 //===----------------------------------------------------------------------===//
28
29 #include "llvm/ADT/SmallSet.h"
30 #include "Hexagon.h"
31 #include "HexagonSubtarget.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/CodeGen/MachineDominators.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineLoopInfo.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/PassSupport.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Target/TargetInstrInfo.h"
44 #include <algorithm>
45 #include <vector>
46
47 using namespace llvm;
48
49 #define DEBUG_TYPE "hwloops"
50
51 #ifndef NDEBUG
52 static cl::opt<int> HWLoopLimit("max-hwloop", cl::Hidden, cl::init(-1));
53 #endif
54
55 STATISTIC(NumHWLoops, "Number of loops converted to hardware loops");
56
57 namespace llvm {
58   void initializeHexagonHardwareLoopsPass(PassRegistry&);
59 }
60
61 namespace {
62   class CountValue;
63   struct HexagonHardwareLoops : public MachineFunctionPass {
64     MachineLoopInfo            *MLI;
65     MachineRegisterInfo        *MRI;
66     MachineDominatorTree       *MDT;
67     const HexagonInstrInfo     *TII;
68 #ifndef NDEBUG
69     static int Counter;
70 #endif
71
72   public:
73     static char ID;
74
75     HexagonHardwareLoops() : MachineFunctionPass(ID) {
76       initializeHexagonHardwareLoopsPass(*PassRegistry::getPassRegistry());
77     }
78
79     bool runOnMachineFunction(MachineFunction &MF) override;
80
81     const char *getPassName() const override { return "Hexagon Hardware Loops"; }
82
83     void getAnalysisUsage(AnalysisUsage &AU) const override {
84       AU.addRequired<MachineDominatorTree>();
85       AU.addRequired<MachineLoopInfo>();
86       MachineFunctionPass::getAnalysisUsage(AU);
87     }
88
89   private:
90     /// Kinds of comparisons in the compare instructions.
91     struct Comparison {
92       enum Kind {
93         EQ  = 0x01,
94         NE  = 0x02,
95         L   = 0x04, // Less-than property.
96         G   = 0x08, // Greater-than property.
97         U   = 0x40, // Unsigned property.
98         LTs = L,
99         LEs = L | EQ,
100         GTs = G,
101         GEs = G | EQ,
102         LTu = L      | U,
103         LEu = L | EQ | U,
104         GTu = G      | U,
105         GEu = G | EQ | U
106       };
107
108       static Kind getSwappedComparison(Kind Cmp) {
109         assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator");
110         if ((Cmp & L) || (Cmp & G))
111           return (Kind)(Cmp ^ (L|G));
112         return Cmp;
113       }
114     };
115
116     /// \brief Find the register that contains the loop controlling
117     /// induction variable.
118     /// If successful, it will return true and set the \p Reg, \p IVBump
119     /// and \p IVOp arguments.  Otherwise it will return false.
120     /// The returned induction register is the register R that follows the
121     /// following induction pattern:
122     /// loop:
123     ///   R = phi ..., [ R.next, LatchBlock ]
124     ///   R.next = R + #bump
125     ///   if (R.next < #N) goto loop
126     /// IVBump is the immediate value added to R, and IVOp is the instruction
127     /// "R.next = R + #bump".
128     bool findInductionRegister(MachineLoop *L, unsigned &Reg,
129                                int64_t &IVBump, MachineInstr *&IVOp) const;
130
131     /// \brief Analyze the statements in a loop to determine if the loop
132     /// has a computable trip count and, if so, return a value that represents
133     /// the trip count expression.
134     CountValue *getLoopTripCount(MachineLoop *L,
135                                  SmallVectorImpl<MachineInstr *> &OldInsts);
136
137     /// \brief Return the expression that represents the number of times
138     /// a loop iterates.  The function takes the operands that represent the
139     /// loop start value, loop end value, and induction value.  Based upon
140     /// these operands, the function attempts to compute the trip count.
141     /// If the trip count is not directly available (as an immediate value,
142     /// or a register), the function will attempt to insert computation of it
143     /// to the loop's preheader.
144     CountValue *computeCount(MachineLoop *Loop,
145                              const MachineOperand *Start,
146                              const MachineOperand *End,
147                              unsigned IVReg,
148                              int64_t IVBump,
149                              Comparison::Kind Cmp) const;
150
151     /// \brief Return true if the instruction is not valid within a hardware
152     /// loop.
153     bool isInvalidLoopOperation(const MachineInstr *MI) const;
154
155     /// \brief Return true if the loop contains an instruction that inhibits
156     /// using the hardware loop.
157     bool containsInvalidInstruction(MachineLoop *L) const;
158
159     /// \brief Given a loop, check if we can convert it to a hardware loop.
160     /// If so, then perform the conversion and return true.
161     bool convertToHardwareLoop(MachineLoop *L);
162
163     /// \brief Return true if the instruction is now dead.
164     bool isDead(const MachineInstr *MI,
165                 SmallVectorImpl<MachineInstr *> &DeadPhis) const;
166
167     /// \brief Remove the instruction if it is now dead.
168     void removeIfDead(MachineInstr *MI);
169
170     /// \brief Make sure that the "bump" instruction executes before the
171     /// compare.  We need that for the IV fixup, so that the compare
172     /// instruction would not use a bumped value that has not yet been
173     /// defined.  If the instructions are out of order, try to reorder them.
174     bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI);
175
176     /// \brief Get the instruction that loads an immediate value into \p R,
177     /// or 0 if such an instruction does not exist.
178     MachineInstr *defWithImmediate(unsigned R);
179
180     /// \brief Get the immediate value referenced to by \p MO, either for
181     /// immediate operands, or for register operands, where the register
182     /// was defined with an immediate value.
183     int64_t getImmediate(MachineOperand &MO);
184
185     /// \brief Reset the given machine operand to now refer to a new immediate
186     /// value.  Assumes that the operand was already referencing an immediate
187     /// value, either directly, or via a register.
188     void setImmediate(MachineOperand &MO, int64_t Val);
189
190     /// \brief Fix the data flow of the induction varible.
191     /// The desired flow is: phi ---> bump -+-> comparison-in-latch.
192     ///                                     |
193     ///                                     +-> back to phi
194     /// where "bump" is the increment of the induction variable:
195     ///   iv = iv + #const.
196     /// Due to some prior code transformations, the actual flow may look
197     /// like this:
198     ///   phi -+-> bump ---> back to phi
199     ///        |
200     ///        +-> comparison-in-latch (against upper_bound-bump),
201     /// i.e. the comparison that controls the loop execution may be using
202     /// the value of the induction variable from before the increment.
203     ///
204     /// Return true if the loop's flow is the desired one (i.e. it's
205     /// either been fixed, or no fixing was necessary).
206     /// Otherwise, return false.  This can happen if the induction variable
207     /// couldn't be identified, or if the value in the latch's comparison
208     /// cannot be adjusted to reflect the post-bump value.
209     bool fixupInductionVariable(MachineLoop *L);
210
211     /// \brief Given a loop, if it does not have a preheader, create one.
212     /// Return the block that is the preheader.
213     MachineBasicBlock *createPreheaderForLoop(MachineLoop *L);
214   };
215
216   char HexagonHardwareLoops::ID = 0;
217 #ifndef NDEBUG
218   int HexagonHardwareLoops::Counter = 0;
219 #endif
220
221   /// \brief Abstraction for a trip count of a loop. A smaller version
222   /// of the MachineOperand class without the concerns of changing the
223   /// operand representation.
224   class CountValue {
225   public:
226     enum CountValueType {
227       CV_Register,
228       CV_Immediate
229     };
230   private:
231     CountValueType Kind;
232     union Values {
233       struct {
234         unsigned Reg;
235         unsigned Sub;
236       } R;
237       unsigned ImmVal;
238     } Contents;
239
240   public:
241     explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) {
242       Kind = t;
243       if (Kind == CV_Register) {
244         Contents.R.Reg = v;
245         Contents.R.Sub = u;
246       } else {
247         Contents.ImmVal = v;
248       }
249     }
250     bool isReg() const { return Kind == CV_Register; }
251     bool isImm() const { return Kind == CV_Immediate; }
252
253     unsigned getReg() const {
254       assert(isReg() && "Wrong CountValue accessor");
255       return Contents.R.Reg;
256     }
257     unsigned getSubReg() const {
258       assert(isReg() && "Wrong CountValue accessor");
259       return Contents.R.Sub;
260     }
261     unsigned getImm() const {
262       assert(isImm() && "Wrong CountValue accessor");
263       return Contents.ImmVal;
264     }
265
266     void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const {
267       if (isReg()) { OS << PrintReg(Contents.R.Reg, TRI, Contents.R.Sub); }
268       if (isImm()) { OS << Contents.ImmVal; }
269     }
270   };
271 } // end anonymous namespace
272
273
274 INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops",
275                       "Hexagon Hardware Loops", false, false)
276 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
277 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
278 INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops",
279                     "Hexagon Hardware Loops", false, false)
280
281
282 /// \brief Returns true if the instruction is a hardware loop instruction.
283 static bool isHardwareLoop(const MachineInstr *MI) {
284   return MI->getOpcode() == Hexagon::J2_loop0r ||
285     MI->getOpcode() == Hexagon::J2_loop0i;
286 }
287
288 FunctionPass *llvm::createHexagonHardwareLoops() {
289   return new HexagonHardwareLoops();
290 }
291
292
293 bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) {
294   DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n");
295
296   bool Changed = false;
297
298   MLI = &getAnalysis<MachineLoopInfo>();
299   MRI = &MF.getRegInfo();
300   MDT = &getAnalysis<MachineDominatorTree>();
301   TII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
302
303   for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end();
304        I != E; ++I) {
305     MachineLoop *L = *I;
306     if (!L->getParentLoop())
307       Changed |= convertToHardwareLoop(L);
308   }
309
310   return Changed;
311 }
312
313
314 bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L,
315                                                  unsigned &Reg,
316                                                  int64_t &IVBump,
317                                                  MachineInstr *&IVOp
318                                                  ) const {
319   MachineBasicBlock *Header = L->getHeader();
320   MachineBasicBlock *Preheader = L->getLoopPreheader();
321   MachineBasicBlock *Latch = L->getLoopLatch();
322   if (!Header || !Preheader || !Latch)
323     return false;
324
325   // This pair represents an induction register together with an immediate
326   // value that will be added to it in each loop iteration.
327   typedef std::pair<unsigned,int64_t> RegisterBump;
328
329   // Mapping:  R.next -> (R, bump), where R, R.next and bump are derived
330   // from an induction operation
331   //   R.next = R + bump
332   // where bump is an immediate value.
333   typedef std::map<unsigned,RegisterBump> InductionMap;
334
335   InductionMap IndMap;
336
337   typedef MachineBasicBlock::instr_iterator instr_iterator;
338   for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
339        I != E && I->isPHI(); ++I) {
340     MachineInstr *Phi = &*I;
341
342     // Have a PHI instruction.  Get the operand that corresponds to the
343     // latch block, and see if is a result of an addition of form "reg+imm",
344     // where the "reg" is defined by the PHI node we are looking at.
345     for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
346       if (Phi->getOperand(i+1).getMBB() != Latch)
347         continue;
348
349       unsigned PhiOpReg = Phi->getOperand(i).getReg();
350       MachineInstr *DI = MRI->getVRegDef(PhiOpReg);
351       unsigned UpdOpc = DI->getOpcode();
352       bool isAdd = (UpdOpc == Hexagon::A2_addi);
353
354       if (isAdd) {
355         // If the register operand to the add is the PHI we're
356         // looking at, this meets the induction pattern.
357         unsigned IndReg = DI->getOperand(1).getReg();
358         if (MRI->getVRegDef(IndReg) == Phi) {
359           unsigned UpdReg = DI->getOperand(0).getReg();
360           int64_t V = DI->getOperand(2).getImm();
361           IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
362         }
363       }
364     }  // for (i)
365   }  // for (instr)
366
367   SmallVector<MachineOperand,2> Cond;
368   MachineBasicBlock *TB = nullptr, *FB = nullptr;
369   bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false);
370   if (NotAnalyzed)
371     return false;
372
373   unsigned CSz = Cond.size();
374   assert (CSz == 1 || CSz == 2);
375   unsigned PredR = Cond[CSz-1].getReg();
376
377   MachineInstr *PredI = MRI->getVRegDef(PredR);
378   if (!PredI->isCompare())
379     return false;
380
381   unsigned CmpReg1 = 0, CmpReg2 = 0;
382   int CmpImm = 0, CmpMask = 0;
383   bool CmpAnalyzed = TII->analyzeCompare(PredI, CmpReg1, CmpReg2,
384                                          CmpMask, CmpImm);
385   // Fail if the compare was not analyzed, or it's not comparing a register
386   // with an immediate value.  Not checking the mask here, since we handle
387   // the individual compare opcodes (including CMPb) later on.
388   if (!CmpAnalyzed)
389     return false;
390
391   // Exactly one of the input registers to the comparison should be among
392   // the induction registers.
393   InductionMap::iterator IndMapEnd = IndMap.end();
394   InductionMap::iterator F = IndMapEnd;
395   if (CmpReg1 != 0) {
396     InductionMap::iterator F1 = IndMap.find(CmpReg1);
397     if (F1 != IndMapEnd)
398       F = F1;
399   }
400   if (CmpReg2 != 0) {
401     InductionMap::iterator F2 = IndMap.find(CmpReg2);
402     if (F2 != IndMapEnd) {
403       if (F != IndMapEnd)
404         return false;
405       F = F2;
406     }
407   }
408   if (F == IndMapEnd)
409     return false;
410
411   Reg = F->second.first;
412   IVBump = F->second.second;
413   IVOp = MRI->getVRegDef(F->first);
414   return true;
415 }
416
417
418 /// \brief Analyze the statements in a loop to determine if the loop has
419 /// a computable trip count and, if so, return a value that represents
420 /// the trip count expression.
421 ///
422 /// This function iterates over the phi nodes in the loop to check for
423 /// induction variable patterns that are used in the calculation for
424 /// the number of time the loop is executed.
425 CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L,
426                                     SmallVectorImpl<MachineInstr *> &OldInsts) {
427   MachineBasicBlock *TopMBB = L->getTopBlock();
428   MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
429   assert(PI != TopMBB->pred_end() &&
430          "Loop must have more than one incoming edge!");
431   MachineBasicBlock *Backedge = *PI++;
432   if (PI == TopMBB->pred_end())  // dead loop?
433     return nullptr;
434   MachineBasicBlock *Incoming = *PI++;
435   if (PI != TopMBB->pred_end())  // multiple backedges?
436     return nullptr;
437
438   // Make sure there is one incoming and one backedge and determine which
439   // is which.
440   if (L->contains(Incoming)) {
441     if (L->contains(Backedge))
442       return nullptr;
443     std::swap(Incoming, Backedge);
444   } else if (!L->contains(Backedge))
445     return nullptr;
446
447   // Look for the cmp instruction to determine if we can get a useful trip
448   // count.  The trip count can be either a register or an immediate.  The
449   // location of the value depends upon the type (reg or imm).
450   MachineBasicBlock *Latch = L->getLoopLatch();
451   if (!Latch)
452     return nullptr;
453
454   unsigned IVReg = 0;
455   int64_t IVBump = 0;
456   MachineInstr *IVOp;
457   bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp);
458   if (!FoundIV)
459     return nullptr;
460
461   MachineBasicBlock *Preheader = L->getLoopPreheader();
462
463   MachineOperand *InitialValue = nullptr;
464   MachineInstr *IV_Phi = MRI->getVRegDef(IVReg);
465   for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) {
466     MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB();
467     if (MBB == Preheader)
468       InitialValue = &IV_Phi->getOperand(i);
469     else if (MBB == Latch)
470       IVReg = IV_Phi->getOperand(i).getReg();  // Want IV reg after bump.
471   }
472   if (!InitialValue)
473     return nullptr;
474
475   SmallVector<MachineOperand,2> Cond;
476   MachineBasicBlock *TB = nullptr, *FB = nullptr;
477   bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false);
478   if (NotAnalyzed)
479     return nullptr;
480
481   MachineBasicBlock *Header = L->getHeader();
482   // TB must be non-null.  If FB is also non-null, one of them must be
483   // the header.  Otherwise, branch to TB could be exiting the loop, and
484   // the fall through can go to the header.
485   assert (TB && "Latch block without a branch?");
486   assert ((!FB || TB == Header || FB == Header) && "Branches not to header?");
487   if (!TB || (FB && TB != Header && FB != Header))
488     return nullptr;
489
490   // Branches of form "if (!P) ..." cause HexagonInstrInfo::AnalyzeBranch
491   // to put imm(0), followed by P in the vector Cond.
492   // If TB is not the header, it means that the "not-taken" path must lead
493   // to the header.
494   bool Negated = (Cond.size() > 1) ^ (TB != Header);
495   unsigned PredReg = Cond[Cond.size()-1].getReg();
496   MachineInstr *CondI = MRI->getVRegDef(PredReg);
497   unsigned CondOpc = CondI->getOpcode();
498
499   unsigned CmpReg1 = 0, CmpReg2 = 0;
500   int Mask = 0, ImmValue = 0;
501   bool AnalyzedCmp = TII->analyzeCompare(CondI, CmpReg1, CmpReg2,
502                                          Mask, ImmValue);
503   if (!AnalyzedCmp)
504     return nullptr;
505
506   // The comparison operator type determines how we compute the loop
507   // trip count.
508   OldInsts.push_back(CondI);
509   OldInsts.push_back(IVOp);
510
511   // Sadly, the following code gets information based on the position
512   // of the operands in the compare instruction.  This has to be done
513   // this way, because the comparisons check for a specific relationship
514   // between the operands (e.g. is-less-than), rather than to find out
515   // what relationship the operands are in (as on PPC).
516   Comparison::Kind Cmp;
517   bool isSwapped = false;
518   const MachineOperand &Op1 = CondI->getOperand(1);
519   const MachineOperand &Op2 = CondI->getOperand(2);
520   const MachineOperand *EndValue = nullptr;
521
522   if (Op1.isReg()) {
523     if (Op2.isImm() || Op1.getReg() == IVReg)
524       EndValue = &Op2;
525     else {
526       EndValue = &Op1;
527       isSwapped = true;
528     }
529   }
530
531   if (!EndValue)
532     return nullptr;
533
534   switch (CondOpc) {
535     case Hexagon::C2_cmpeqi:
536     case Hexagon::C2_cmpeq:
537       Cmp = !Negated ? Comparison::EQ : Comparison::NE;
538       break;
539     case Hexagon::C2_cmpgtui:
540     case Hexagon::C2_cmpgtu:
541       Cmp = !Negated ? Comparison::GTu : Comparison::LEu;
542       break;
543     case Hexagon::C2_cmpgti:
544     case Hexagon::C2_cmpgt:
545       Cmp = !Negated ? Comparison::GTs : Comparison::LEs;
546       break;
547     // Very limited support for byte/halfword compares.
548     case Hexagon::A4_cmpbeqi:
549     case Hexagon::A4_cmpheqi: {
550       if (IVBump != 1)
551         return nullptr;
552
553       int64_t InitV, EndV;
554       // Since the comparisons are "ri", the EndValue should be an
555       // immediate.  Check it just in case.
556       assert(EndValue->isImm() && "Unrecognized latch comparison");
557       EndV = EndValue->getImm();
558       // Allow InitialValue to be a register defined with an immediate.
559       if (InitialValue->isReg()) {
560         if (!defWithImmediate(InitialValue->getReg()))
561           return nullptr;
562         InitV = getImmediate(*InitialValue);
563       } else {
564         assert(InitialValue->isImm());
565         InitV = InitialValue->getImm();
566       }
567       if (InitV >= EndV)
568         return nullptr;
569       if (CondOpc == Hexagon::A4_cmpbeqi) {
570         if (!isInt<8>(InitV) || !isInt<8>(EndV))
571           return nullptr;
572       } else {  // Hexagon::CMPhEQri_V4
573         if (!isInt<16>(InitV) || !isInt<16>(EndV))
574           return nullptr;
575       }
576       Cmp = !Negated ? Comparison::EQ : Comparison::NE;
577       break;
578     }
579     default:
580       return nullptr;
581   }
582
583   if (isSwapped)
584    Cmp = Comparison::getSwappedComparison(Cmp);
585
586   if (InitialValue->isReg()) {
587     unsigned R = InitialValue->getReg();
588     MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
589     if (!MDT->properlyDominates(DefBB, Header))
590       return nullptr;
591     OldInsts.push_back(MRI->getVRegDef(R));
592   }
593   if (EndValue->isReg()) {
594     unsigned R = EndValue->getReg();
595     MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
596     if (!MDT->properlyDominates(DefBB, Header))
597       return nullptr;
598   }
599
600   return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp);
601 }
602
603 /// \brief Helper function that returns the expression that represents the
604 /// number of times a loop iterates.  The function takes the operands that
605 /// represent the loop start value, loop end value, and induction value.
606 /// Based upon these operands, the function attempts to compute the trip count.
607 CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop,
608                                                const MachineOperand *Start,
609                                                const MachineOperand *End,
610                                                unsigned IVReg,
611                                                int64_t IVBump,
612                                                Comparison::Kind Cmp) const {
613   // Cannot handle comparison EQ, i.e. while (A == B).
614   if (Cmp == Comparison::EQ)
615     return nullptr;
616
617   // Check if either the start or end values are an assignment of an immediate.
618   // If so, use the immediate value rather than the register.
619   if (Start->isReg()) {
620     const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg());
621     if (StartValInstr && StartValInstr->getOpcode() == Hexagon::A2_tfrsi)
622       Start = &StartValInstr->getOperand(1);
623   }
624   if (End->isReg()) {
625     const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
626     if (EndValInstr && EndValInstr->getOpcode() == Hexagon::A2_tfrsi)
627       End = &EndValInstr->getOperand(1);
628   }
629
630   assert (Start->isReg() || Start->isImm());
631   assert (End->isReg() || End->isImm());
632
633   bool CmpLess =     Cmp & Comparison::L;
634   bool CmpGreater =  Cmp & Comparison::G;
635   bool CmpHasEqual = Cmp & Comparison::EQ;
636
637   // Avoid certain wrap-arounds.  This doesn't detect all wrap-arounds.
638   // If loop executes while iv is "less" with the iv value going down, then
639   // the iv must wrap.
640   if (CmpLess && IVBump < 0)
641     return nullptr;
642   // If loop executes while iv is "greater" with the iv value going up, then
643   // the iv must wrap.
644   if (CmpGreater && IVBump > 0)
645     return nullptr;
646
647   if (Start->isImm() && End->isImm()) {
648     // Both, start and end are immediates.
649     int64_t StartV = Start->getImm();
650     int64_t EndV = End->getImm();
651     int64_t Dist = EndV - StartV;
652     if (Dist == 0)
653       return nullptr;
654
655     bool Exact = (Dist % IVBump) == 0;
656
657     if (Cmp == Comparison::NE) {
658       if (!Exact)
659         return nullptr;
660       if ((Dist < 0) ^ (IVBump < 0))
661         return nullptr;
662     }
663
664     // For comparisons that include the final value (i.e. include equality
665     // with the final value), we need to increase the distance by 1.
666     if (CmpHasEqual)
667       Dist = Dist > 0 ? Dist+1 : Dist-1;
668
669     // assert (CmpLess => Dist > 0);
670     assert ((!CmpLess || Dist > 0) && "Loop should never iterate!");
671     // assert (CmpGreater => Dist < 0);
672     assert ((!CmpGreater || Dist < 0) && "Loop should never iterate!");
673
674     // "Normalized" distance, i.e. with the bump set to +-1.
675     int64_t Dist1 = (IVBump > 0) ? (Dist +  (IVBump-1)) /   IVBump
676                                :  (-Dist + (-IVBump-1)) / (-IVBump);
677     assert (Dist1 > 0 && "Fishy thing.  Both operands have the same sign.");
678
679     uint64_t Count = Dist1;
680
681     if (Count > 0xFFFFFFFFULL)
682       return nullptr;
683
684     return new CountValue(CountValue::CV_Immediate, Count);
685   }
686
687   // A general case: Start and End are some values, but the actual
688   // iteration count may not be available.  If it is not, insert
689   // a computation of it into the preheader.
690
691   // If the induction variable bump is not a power of 2, quit.
692   // Othwerise we'd need a general integer division.
693   if (!isPowerOf2_64(std::abs(IVBump)))
694     return nullptr;
695
696   MachineBasicBlock *PH = Loop->getLoopPreheader();
697   assert (PH && "Should have a preheader by now");
698   MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator();
699   DebugLoc DL = (InsertPos != PH->end()) ? InsertPos->getDebugLoc()
700                                          : DebugLoc();
701
702   // If Start is an immediate and End is a register, the trip count
703   // will be "reg - imm".  Hexagon's "subtract immediate" instruction
704   // is actually "reg + -imm".
705
706   // If the loop IV is going downwards, i.e. if the bump is negative,
707   // then the iteration count (computed as End-Start) will need to be
708   // negated.  To avoid the negation, just swap Start and End.
709   if (IVBump < 0) {
710     std::swap(Start, End);
711     IVBump = -IVBump;
712   }
713   // Cmp may now have a wrong direction, e.g.  LEs may now be GEs.
714   // Signedness, and "including equality" are preserved.
715
716   bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm)
717   bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg)
718
719   int64_t StartV = 0, EndV = 0;
720   if (Start->isImm())
721     StartV = Start->getImm();
722   if (End->isImm())
723     EndV = End->getImm();
724
725   int64_t AdjV = 0;
726   // To compute the iteration count, we would need this computation:
727   //   Count = (End - Start + (IVBump-1)) / IVBump
728   // or, when CmpHasEqual:
729   //   Count = (End - Start + (IVBump-1)+1) / IVBump
730   // The "IVBump-1" part is the adjustment (AdjV).  We can avoid
731   // generating an instruction specifically to add it if we can adjust
732   // the immediate values for Start or End.
733
734   if (CmpHasEqual) {
735     // Need to add 1 to the total iteration count.
736     if (Start->isImm())
737       StartV--;
738     else if (End->isImm())
739       EndV++;
740     else
741       AdjV += 1;
742   }
743
744   if (Cmp != Comparison::NE) {
745     if (Start->isImm())
746       StartV -= (IVBump-1);
747     else if (End->isImm())
748       EndV += (IVBump-1);
749     else
750       AdjV += (IVBump-1);
751   }
752
753   unsigned R = 0, SR = 0;
754   if (Start->isReg()) {
755     R = Start->getReg();
756     SR = Start->getSubReg();
757   } else {
758     R = End->getReg();
759     SR = End->getSubReg();
760   }
761   const TargetRegisterClass *RC = MRI->getRegClass(R);
762   // Hardware loops cannot handle 64-bit registers.  If it's a double
763   // register, it has to have a subregister.
764   if (!SR && RC == &Hexagon::DoubleRegsRegClass)
765     return nullptr;
766   const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;
767
768   // Compute DistR (register with the distance between Start and End).
769   unsigned DistR, DistSR;
770
771   // Avoid special case, where the start value is an imm(0).
772   if (Start->isImm() && StartV == 0) {
773     DistR = End->getReg();
774     DistSR = End->getSubReg();
775   } else {
776     const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) :
777                               (RegToImm ? TII->get(Hexagon::A2_subri) :
778                                           TII->get(Hexagon::A2_addi));
779     unsigned SubR = MRI->createVirtualRegister(IntRC);
780     MachineInstrBuilder SubIB =
781       BuildMI(*PH, InsertPos, DL, SubD, SubR);
782
783     if (RegToReg) {
784       SubIB.addReg(End->getReg(), 0, End->getSubReg())
785            .addReg(Start->getReg(), 0, Start->getSubReg());
786     } else if (RegToImm) {
787       SubIB.addImm(EndV)
788            .addReg(Start->getReg(), 0, Start->getSubReg());
789     } else { // ImmToReg
790       SubIB.addReg(End->getReg(), 0, End->getSubReg())
791            .addImm(-StartV);
792     }
793     DistR = SubR;
794     DistSR = 0;
795   }
796
797   // From DistR, compute AdjR (register with the adjusted distance).
798   unsigned AdjR, AdjSR;
799
800   if (AdjV == 0) {
801     AdjR = DistR;
802     AdjSR = DistSR;
803   } else {
804     // Generate CountR = ADD DistR, AdjVal
805     unsigned AddR = MRI->createVirtualRegister(IntRC);
806     MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi);
807     BuildMI(*PH, InsertPos, DL, AddD, AddR)
808       .addReg(DistR, 0, DistSR)
809       .addImm(AdjV);
810
811     AdjR = AddR;
812     AdjSR = 0;
813   }
814
815   // From AdjR, compute CountR (register with the final count).
816   unsigned CountR, CountSR;
817
818   if (IVBump == 1) {
819     CountR = AdjR;
820     CountSR = AdjSR;
821   } else {
822     // The IV bump is a power of two. Log_2(IV bump) is the shift amount.
823     unsigned Shift = Log2_32(IVBump);
824
825     // Generate NormR = LSR DistR, Shift.
826     unsigned LsrR = MRI->createVirtualRegister(IntRC);
827     const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r);
828     BuildMI(*PH, InsertPos, DL, LsrD, LsrR)
829       .addReg(AdjR, 0, AdjSR)
830       .addImm(Shift);
831
832     CountR = LsrR;
833     CountSR = 0;
834   }
835
836   return new CountValue(CountValue::CV_Register, CountR, CountSR);
837 }
838
839
840 /// \brief Return true if the operation is invalid within hardware loop.
841 bool HexagonHardwareLoops::isInvalidLoopOperation(
842       const MachineInstr *MI) const {
843
844   // call is not allowed because the callee may use a hardware loop
845   if (MI->getDesc().isCall())
846     return true;
847
848   // do not allow nested hardware loops
849   if (isHardwareLoop(MI))
850     return true;
851
852   // check if the instruction defines a hardware loop register
853   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
854     const MachineOperand &MO = MI->getOperand(i);
855     if (!MO.isReg() || !MO.isDef())
856       continue;
857     unsigned R = MO.getReg();
858     if (R == Hexagon::LC0 || R == Hexagon::LC1 ||
859         R == Hexagon::SA0 || R == Hexagon::SA1)
860       return true;
861   }
862   return false;
863 }
864
865
866 /// \brief - Return true if the loop contains an instruction that inhibits
867 /// the use of the hardware loop function.
868 bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L) const {
869   const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks();
870   for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
871     MachineBasicBlock *MBB = Blocks[i];
872     for (MachineBasicBlock::iterator
873            MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) {
874       const MachineInstr *MI = &*MII;
875       if (isInvalidLoopOperation(MI))
876         return true;
877     }
878   }
879   return false;
880 }
881
882
883 /// \brief Returns true if the instruction is dead.  This was essentially
884 /// copied from DeadMachineInstructionElim::isDead, but with special cases
885 /// for inline asm, physical registers and instructions with side effects
886 /// removed.
887 bool HexagonHardwareLoops::isDead(const MachineInstr *MI,
888                               SmallVectorImpl<MachineInstr *> &DeadPhis) const {
889   // Examine each operand.
890   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
891     const MachineOperand &MO = MI->getOperand(i);
892     if (!MO.isReg() || !MO.isDef())
893       continue;
894
895     unsigned Reg = MO.getReg();
896     if (MRI->use_nodbg_empty(Reg))
897       continue;
898
899     typedef MachineRegisterInfo::use_nodbg_iterator use_nodbg_iterator;
900
901     // This instruction has users, but if the only user is the phi node for the
902     // parent block, and the only use of that phi node is this instruction, then
903     // this instruction is dead: both it (and the phi node) can be removed.
904     use_nodbg_iterator I = MRI->use_nodbg_begin(Reg);
905     use_nodbg_iterator End = MRI->use_nodbg_end();
906     if (std::next(I) != End || !I->getParent()->isPHI())
907       return false;
908
909     MachineInstr *OnePhi = I->getParent();
910     for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) {
911       const MachineOperand &OPO = OnePhi->getOperand(j);
912       if (!OPO.isReg() || !OPO.isDef())
913         continue;
914
915       unsigned OPReg = OPO.getReg();
916       use_nodbg_iterator nextJ;
917       for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg);
918            J != End; J = nextJ) {
919         nextJ = std::next(J);
920         MachineOperand &Use = *J;
921         MachineInstr *UseMI = Use.getParent();
922
923         // If the phi node has a user that is not MI, bail...
924         if (MI != UseMI)
925           return false;
926       }
927     }
928     DeadPhis.push_back(OnePhi);
929   }
930
931   // If there are no defs with uses, the instruction is dead.
932   return true;
933 }
934
935 void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) {
936   // This procedure was essentially copied from DeadMachineInstructionElim.
937
938   SmallVector<MachineInstr*, 1> DeadPhis;
939   if (isDead(MI, DeadPhis)) {
940     DEBUG(dbgs() << "HW looping will remove: " << *MI);
941
942     // It is possible that some DBG_VALUE instructions refer to this
943     // instruction.  Examine each def operand for such references;
944     // if found, mark the DBG_VALUE as undef (but don't delete it).
945     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
946       const MachineOperand &MO = MI->getOperand(i);
947       if (!MO.isReg() || !MO.isDef())
948         continue;
949       unsigned Reg = MO.getReg();
950       MachineRegisterInfo::use_iterator nextI;
951       for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg),
952            E = MRI->use_end(); I != E; I = nextI) {
953         nextI = std::next(I);  // I is invalidated by the setReg
954         MachineOperand &Use = *I;
955         MachineInstr *UseMI = I->getParent();
956         if (UseMI == MI)
957           continue;
958         if (Use.isDebug())
959           UseMI->getOperand(0).setReg(0U);
960         // This may also be a "instr -> phi -> instr" case which can
961         // be removed too.
962       }
963     }
964
965     MI->eraseFromParent();
966     for (unsigned i = 0; i < DeadPhis.size(); ++i)
967       DeadPhis[i]->eraseFromParent();
968   }
969 }
970
971 /// \brief Check if the loop is a candidate for converting to a hardware
972 /// loop.  If so, then perform the transformation.
973 ///
974 /// This function works on innermost loops first.  A loop can be converted
975 /// if it is a counting loop; either a register value or an immediate.
976 ///
977 /// The code makes several assumptions about the representation of the loop
978 /// in llvm.
979 bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L) {
980   // This is just for sanity.
981   assert(L->getHeader() && "Loop without a header?");
982
983   bool Changed = false;
984   // Process nested loops first.
985   for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I)
986     Changed |= convertToHardwareLoop(*I);
987
988   // If a nested loop has been converted, then we can't convert this loop.
989   if (Changed)
990     return Changed;
991
992 #ifndef NDEBUG
993   // Stop trying after reaching the limit (if any).
994   int Limit = HWLoopLimit;
995   if (Limit >= 0) {
996     if (Counter >= HWLoopLimit)
997       return false;
998     Counter++;
999   }
1000 #endif
1001
1002   // Does the loop contain any invalid instructions?
1003   if (containsInvalidInstruction(L))
1004     return false;
1005
1006   // Is the induction variable bump feeding the latch condition?
1007   if (!fixupInductionVariable(L))
1008     return false;
1009
1010   MachineBasicBlock *LastMBB = L->getExitingBlock();
1011   // Don't generate hw loop if the loop has more than one exit.
1012   if (!LastMBB)
1013     return false;
1014
1015   MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
1016   if (LastI == LastMBB->end())
1017     return false;
1018
1019   // Ensure the loop has a preheader: the loop instruction will be
1020   // placed there.
1021   bool NewPreheader = false;
1022   MachineBasicBlock *Preheader = L->getLoopPreheader();
1023   if (!Preheader) {
1024     Preheader = createPreheaderForLoop(L);
1025     if (!Preheader)
1026       return false;
1027     NewPreheader = true;
1028   }
1029   MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator();
1030
1031   SmallVector<MachineInstr*, 2> OldInsts;
1032   // Are we able to determine the trip count for the loop?
1033   CountValue *TripCount = getLoopTripCount(L, OldInsts);
1034   if (!TripCount)
1035     return false;
1036
1037   // Is the trip count available in the preheader?
1038   if (TripCount->isReg()) {
1039     // There will be a use of the register inserted into the preheader,
1040     // so make sure that the register is actually defined at that point.
1041     MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg());
1042     MachineBasicBlock *BBDef = TCDef->getParent();
1043     if (!NewPreheader) {
1044       if (!MDT->dominates(BBDef, Preheader))
1045         return false;
1046     } else {
1047       // If we have just created a preheader, the dominator tree won't be
1048       // aware of it.  Check if the definition of the register dominates
1049       // the header, but is not the header itself.
1050       if (!MDT->properlyDominates(BBDef, L->getHeader()))
1051         return false;
1052     }
1053   }
1054
1055   // Determine the loop start.
1056   MachineBasicBlock *LoopStart = L->getTopBlock();
1057   if (L->getLoopLatch() != LastMBB) {
1058     // When the exit and latch are not the same, use the latch block as the
1059     // start.
1060     // The loop start address is used only after the 1st iteration, and the
1061     // loop latch may contains instrs. that need to be executed after the
1062     // first iteration.
1063     LoopStart = L->getLoopLatch();
1064     // Make sure the latch is a successor of the exit, otherwise it won't work.
1065     if (!LastMBB->isSuccessor(LoopStart))
1066       return false;
1067   }
1068
1069   // Convert the loop to a hardware loop.
1070   DEBUG(dbgs() << "Change to hardware loop at "; L->dump());
1071   DebugLoc DL;
1072   if (InsertPos != Preheader->end())
1073     DL = InsertPos->getDebugLoc();
1074
1075   if (TripCount->isReg()) {
1076     // Create a copy of the loop count register.
1077     unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
1078     BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg)
1079       .addReg(TripCount->getReg(), 0, TripCount->getSubReg());
1080     // Add the Loop instruction to the beginning of the loop.
1081     BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::J2_loop0r))
1082       .addMBB(LoopStart)
1083       .addReg(CountReg);
1084   } else {
1085     assert(TripCount->isImm() && "Expecting immediate value for trip count");
1086     // Add the Loop immediate instruction to the beginning of the loop,
1087     // if the immediate fits in the instructions.  Otherwise, we need to
1088     // create a new virtual register.
1089     int64_t CountImm = TripCount->getImm();
1090     if (!TII->isValidOffset(Hexagon::J2_loop0i, CountImm)) {
1091       unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
1092       BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg)
1093         .addImm(CountImm);
1094       BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::J2_loop0r))
1095         .addMBB(LoopStart).addReg(CountReg);
1096     } else
1097       BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::J2_loop0i))
1098         .addMBB(LoopStart).addImm(CountImm);
1099   }
1100
1101   // Make sure the loop start always has a reference in the CFG.  We need
1102   // to create a BlockAddress operand to get this mechanism to work both the
1103   // MachineBasicBlock and BasicBlock objects need the flag set.
1104   LoopStart->setHasAddressTaken();
1105   // This line is needed to set the hasAddressTaken flag on the BasicBlock
1106   // object.
1107   BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock()));
1108
1109   // Replace the loop branch with an endloop instruction.
1110   DebugLoc LastIDL = LastI->getDebugLoc();
1111   BuildMI(*LastMBB, LastI, LastIDL,
1112           TII->get(Hexagon::ENDLOOP0)).addMBB(LoopStart);
1113
1114   // The loop ends with either:
1115   //  - a conditional branch followed by an unconditional branch, or
1116   //  - a conditional branch to the loop start.
1117   if (LastI->getOpcode() == Hexagon::J2_jumpt ||
1118       LastI->getOpcode() == Hexagon::J2_jumpf) {
1119     // Delete one and change/add an uncond. branch to out of the loop.
1120     MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB();
1121     LastI = LastMBB->erase(LastI);
1122     if (!L->contains(BranchTarget)) {
1123       if (LastI != LastMBB->end())
1124         LastI = LastMBB->erase(LastI);
1125       SmallVector<MachineOperand, 0> Cond;
1126       TII->InsertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL);
1127     }
1128   } else {
1129     // Conditional branch to loop start; just delete it.
1130     LastMBB->erase(LastI);
1131   }
1132   delete TripCount;
1133
1134   // The induction operation and the comparison may now be
1135   // unneeded. If these are unneeded, then remove them.
1136   for (unsigned i = 0; i < OldInsts.size(); ++i)
1137     removeIfDead(OldInsts[i]);
1138
1139   ++NumHWLoops;
1140   return true;
1141 }
1142
1143
1144 bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI,
1145                                             MachineInstr *CmpI) {
1146   assert (BumpI != CmpI && "Bump and compare in the same instruction?");
1147
1148   MachineBasicBlock *BB = BumpI->getParent();
1149   if (CmpI->getParent() != BB)
1150     return false;
1151
1152   typedef MachineBasicBlock::instr_iterator instr_iterator;
1153   // Check if things are in order to begin with.
1154   for (instr_iterator I = BumpI, E = BB->instr_end(); I != E; ++I)
1155     if (&*I == CmpI)
1156       return true;
1157
1158   // Out of order.
1159   unsigned PredR = CmpI->getOperand(0).getReg();
1160   bool FoundBump = false;
1161   instr_iterator CmpIt = CmpI, NextIt = std::next(CmpIt);
1162   for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) {
1163     MachineInstr *In = &*I;
1164     for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) {
1165       MachineOperand &MO = In->getOperand(i);
1166       if (MO.isReg() && MO.isUse()) {
1167         if (MO.getReg() == PredR)  // Found an intervening use of PredR.
1168           return false;
1169       }
1170     }
1171
1172     if (In == BumpI) {
1173       instr_iterator After = BumpI;
1174       instr_iterator From = CmpI;
1175       BB->splice(std::next(After), BB, From);
1176       FoundBump = true;
1177       break;
1178     }
1179   }
1180   assert (FoundBump && "Cannot determine instruction order");
1181   return FoundBump;
1182 }
1183
1184
1185 MachineInstr *HexagonHardwareLoops::defWithImmediate(unsigned R) {
1186   MachineInstr *DI = MRI->getVRegDef(R);
1187   unsigned DOpc = DI->getOpcode();
1188   switch (DOpc) {
1189     case Hexagon::A2_tfrsi:
1190     case Hexagon::A2_tfrpi:
1191     case Hexagon::CONST32_Int_Real:
1192     case Hexagon::CONST64_Int_Real:
1193       return DI;
1194   }
1195   return nullptr;
1196 }
1197
1198
1199 int64_t HexagonHardwareLoops::getImmediate(MachineOperand &MO) {
1200   if (MO.isImm())
1201     return MO.getImm();
1202   assert(MO.isReg());
1203   unsigned R = MO.getReg();
1204   MachineInstr *DI = defWithImmediate(R);
1205   assert(DI && "Need an immediate operand");
1206   // All currently supported "define-with-immediate" instructions have the
1207   // actual immediate value in the operand(1).
1208   int64_t v = DI->getOperand(1).getImm();
1209   return v;
1210 }
1211
1212
1213 void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) {
1214   if (MO.isImm()) {
1215     MO.setImm(Val);
1216     return;
1217   }
1218
1219   assert(MO.isReg());
1220   unsigned R = MO.getReg();
1221   MachineInstr *DI = defWithImmediate(R);
1222   if (MRI->hasOneNonDBGUse(R)) {
1223     // If R has only one use, then just change its defining instruction to
1224     // the new immediate value.
1225     DI->getOperand(1).setImm(Val);
1226     return;
1227   }
1228
1229   const TargetRegisterClass *RC = MRI->getRegClass(R);
1230   unsigned NewR = MRI->createVirtualRegister(RC);
1231   MachineBasicBlock &B = *DI->getParent();
1232   DebugLoc DL = DI->getDebugLoc();
1233   BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR)
1234     .addImm(Val);
1235   MO.setReg(NewR);
1236 }
1237
1238
1239 bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) {
1240   MachineBasicBlock *Header = L->getHeader();
1241   MachineBasicBlock *Preheader = L->getLoopPreheader();
1242   MachineBasicBlock *Latch = L->getLoopLatch();
1243
1244   if (!Header || !Preheader || !Latch)
1245     return false;
1246
1247   // These data structures follow the same concept as the corresponding
1248   // ones in findInductionRegister (where some comments are).
1249   typedef std::pair<unsigned,int64_t> RegisterBump;
1250   typedef std::pair<unsigned,RegisterBump> RegisterInduction;
1251   typedef std::set<RegisterInduction> RegisterInductionSet;
1252
1253   // Register candidates for induction variables, with their associated bumps.
1254   RegisterInductionSet IndRegs;
1255
1256   // Look for induction patterns:
1257   //   vreg1 = PHI ..., [ latch, vreg2 ]
1258   //   vreg2 = ADD vreg1, imm
1259   typedef MachineBasicBlock::instr_iterator instr_iterator;
1260   for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
1261        I != E && I->isPHI(); ++I) {
1262     MachineInstr *Phi = &*I;
1263
1264     // Have a PHI instruction.
1265     for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
1266       if (Phi->getOperand(i+1).getMBB() != Latch)
1267         continue;
1268
1269       unsigned PhiReg = Phi->getOperand(i).getReg();
1270       MachineInstr *DI = MRI->getVRegDef(PhiReg);
1271       unsigned UpdOpc = DI->getOpcode();
1272       bool isAdd = (UpdOpc == Hexagon::A2_addi);
1273
1274       if (isAdd) {
1275         // If the register operand to the add/sub is the PHI we are looking
1276         // at, this meets the induction pattern.
1277         unsigned IndReg = DI->getOperand(1).getReg();
1278         if (MRI->getVRegDef(IndReg) == Phi) {
1279           unsigned UpdReg = DI->getOperand(0).getReg();
1280           int64_t V = DI->getOperand(2).getImm();
1281           IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
1282         }
1283       }
1284     }  // for (i)
1285   }  // for (instr)
1286
1287   if (IndRegs.empty())
1288     return false;
1289
1290   MachineBasicBlock *TB = nullptr, *FB = nullptr;
1291   SmallVector<MachineOperand,2> Cond;
1292   // AnalyzeBranch returns true if it fails to analyze branch.
1293   bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false);
1294   if (NotAnalyzed)
1295     return false;
1296
1297   // Check if the latch branch is unconditional.
1298   if (Cond.empty())
1299     return false;
1300
1301   if (TB != Header && FB != Header)
1302     // The latch does not go back to the header.  Not a latch we know and love.
1303     return false;
1304
1305   // Expecting a predicate register as a condition.  It won't be a hardware
1306   // predicate register at this point yet, just a vreg.
1307   // HexagonInstrInfo::AnalyzeBranch for negated branches inserts imm(0)
1308   // into Cond, followed by the predicate register.  For non-negated branches
1309   // it's just the register.
1310   unsigned CSz = Cond.size();
1311   if (CSz != 1 && CSz != 2)
1312     return false;
1313
1314   unsigned P = Cond[CSz-1].getReg();
1315   MachineInstr *PredDef = MRI->getVRegDef(P);
1316
1317   if (!PredDef->isCompare())
1318     return false;
1319
1320   SmallSet<unsigned,2> CmpRegs;
1321   MachineOperand *CmpImmOp = nullptr;
1322
1323   // Go over all operands to the compare and look for immediate and register
1324   // operands.  Assume that if the compare has a single register use and a
1325   // single immediate operand, then the register is being compared with the
1326   // immediate value.
1327   for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) {
1328     MachineOperand &MO = PredDef->getOperand(i);
1329     if (MO.isReg()) {
1330       // Skip all implicit references.  In one case there was:
1331       //   %vreg140<def> = FCMPUGT32_rr %vreg138, %vreg139, %USR<imp-use>
1332       if (MO.isImplicit())
1333         continue;
1334       if (MO.isUse()) {
1335         unsigned R = MO.getReg();
1336         if (!defWithImmediate(R)) {
1337           CmpRegs.insert(MO.getReg());
1338           continue;
1339         }
1340         // Consider the register to be the "immediate" operand.
1341         if (CmpImmOp)
1342           return false;
1343         CmpImmOp = &MO;
1344       }
1345     } else if (MO.isImm()) {
1346       if (CmpImmOp)    // A second immediate argument?  Confusing.  Bail out.
1347         return false;
1348       CmpImmOp = &MO;
1349     }
1350   }
1351
1352   if (CmpRegs.empty())
1353     return false;
1354
1355   // Check if the compared register follows the order we want.  Fix if needed.
1356   for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end();
1357        I != E; ++I) {
1358     // This is a success.  If the register used in the comparison is one that
1359     // we have identified as a bumped (updated) induction register, there is
1360     // nothing to do.
1361     if (CmpRegs.count(I->first))
1362       return true;
1363
1364     // Otherwise, if the register being compared comes out of a PHI node,
1365     // and has been recognized as following the induction pattern, and is
1366     // compared against an immediate, we can fix it.
1367     const RegisterBump &RB = I->second;
1368     if (CmpRegs.count(RB.first)) {
1369       if (!CmpImmOp)
1370         return false;
1371
1372       int64_t CmpImm = getImmediate(*CmpImmOp);
1373       int64_t V = RB.second;
1374       if (V > 0 && CmpImm+V < CmpImm)  // Overflow (64-bit).
1375         return false;
1376       if (V < 0 && CmpImm+V > CmpImm)  // Overflow (64-bit).
1377         return false;
1378       CmpImm += V;
1379       // Some forms of cmp-immediate allow u9 and s10.  Assume the worst case
1380       // scenario, i.e. an 8-bit value.
1381       if (CmpImmOp->isImm() && !isInt<8>(CmpImm))
1382         return false;
1383
1384       // Make sure that the compare happens after the bump.  Otherwise,
1385       // after the fixup, the compare would use a yet-undefined register.
1386       MachineInstr *BumpI = MRI->getVRegDef(I->first);
1387       bool Order = orderBumpCompare(BumpI, PredDef);
1388       if (!Order)
1389         return false;
1390
1391       // Finally, fix the compare instruction.
1392       setImmediate(*CmpImmOp, CmpImm);
1393       for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) {
1394         MachineOperand &MO = PredDef->getOperand(i);
1395         if (MO.isReg() && MO.getReg() == RB.first) {
1396           MO.setReg(I->first);
1397           return true;
1398         }
1399       }
1400     }
1401   }
1402
1403   return false;
1404 }
1405
1406
1407 /// \brief Create a preheader for a given loop.
1408 MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop(
1409       MachineLoop *L) {
1410   if (MachineBasicBlock *TmpPH = L->getLoopPreheader())
1411     return TmpPH;
1412
1413   MachineBasicBlock *Header = L->getHeader();
1414   MachineBasicBlock *Latch = L->getLoopLatch();
1415   MachineFunction *MF = Header->getParent();
1416   DebugLoc DL;
1417
1418   if (!Latch || Header->hasAddressTaken())
1419     return nullptr;
1420
1421   typedef MachineBasicBlock::instr_iterator instr_iterator;
1422
1423   // Verify that all existing predecessors have analyzable branches
1424   // (or no branches at all).
1425   typedef std::vector<MachineBasicBlock*> MBBVector;
1426   MBBVector Preds(Header->pred_begin(), Header->pred_end());
1427   SmallVector<MachineOperand,2> Tmp1;
1428   MachineBasicBlock *TB = nullptr, *FB = nullptr;
1429
1430   if (TII->AnalyzeBranch(*Latch, TB, FB, Tmp1, false))
1431     return nullptr;
1432
1433   for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) {
1434     MachineBasicBlock *PB = *I;
1435     if (PB != Latch) {
1436       bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp1, false);
1437       if (NotAnalyzed)
1438         return nullptr;
1439     }
1440   }
1441
1442   MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock();
1443   MF->insert(Header, NewPH);
1444
1445   if (Header->pred_size() > 2) {
1446     // Ensure that the header has only two predecessors: the preheader and
1447     // the loop latch.  Any additional predecessors of the header should
1448     // join at the newly created preheader.  Inspect all PHI nodes from the
1449     // header and create appropriate corresponding PHI nodes in the preheader.
1450
1451     for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
1452          I != E && I->isPHI(); ++I) {
1453       MachineInstr *PN = &*I;
1454
1455       const MCInstrDesc &PD = TII->get(TargetOpcode::PHI);
1456       MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL);
1457       NewPH->insert(NewPH->end(), NewPN);
1458
1459       unsigned PR = PN->getOperand(0).getReg();
1460       const TargetRegisterClass *RC = MRI->getRegClass(PR);
1461       unsigned NewPR = MRI->createVirtualRegister(RC);
1462       NewPN->addOperand(MachineOperand::CreateReg(NewPR, true));
1463
1464       // Copy all non-latch operands of a header's PHI node to the newly
1465       // created PHI node in the preheader.
1466       for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
1467         unsigned PredR = PN->getOperand(i).getReg();
1468         MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
1469         if (PredB == Latch)
1470           continue;
1471
1472         NewPN->addOperand(MachineOperand::CreateReg(PredR, false));
1473         NewPN->addOperand(MachineOperand::CreateMBB(PredB));
1474       }
1475
1476       // Remove copied operands from the old PHI node and add the value
1477       // coming from the preheader's PHI.
1478       for (int i = PN->getNumOperands()-2; i > 0; i -= 2) {
1479         MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
1480         if (PredB != Latch) {
1481           PN->RemoveOperand(i+1);
1482           PN->RemoveOperand(i);
1483         }
1484       }
1485       PN->addOperand(MachineOperand::CreateReg(NewPR, false));
1486       PN->addOperand(MachineOperand::CreateMBB(NewPH));
1487     }
1488
1489   } else {
1490     assert(Header->pred_size() == 2);
1491
1492     // The header has only two predecessors, but the non-latch predecessor
1493     // is not a preheader (e.g. it has other successors, etc.)
1494     // In such a case we don't need any extra PHI nodes in the new preheader,
1495     // all we need is to adjust existing PHIs in the header to now refer to
1496     // the new preheader.
1497     for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
1498          I != E && I->isPHI(); ++I) {
1499       MachineInstr *PN = &*I;
1500       for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
1501         MachineOperand &MO = PN->getOperand(i+1);
1502         if (MO.getMBB() != Latch)
1503           MO.setMBB(NewPH);
1504       }
1505     }
1506   }
1507
1508   // "Reroute" the CFG edges to link in the new preheader.
1509   // If any of the predecessors falls through to the header, insert a branch
1510   // to the new preheader in that place.
1511   SmallVector<MachineOperand,1> Tmp2;
1512   SmallVector<MachineOperand,1> EmptyCond;
1513
1514   TB = FB = nullptr;
1515
1516   for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) {
1517     MachineBasicBlock *PB = *I;
1518     if (PB != Latch) {
1519       Tmp2.clear();
1520       bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp2, false);
1521       (void)NotAnalyzed; // suppress compiler warning
1522       assert (!NotAnalyzed && "Should be analyzable!");
1523       if (TB != Header && (Tmp2.empty() || FB != Header))
1524         TII->InsertBranch(*PB, NewPH, nullptr, EmptyCond, DL);
1525       PB->ReplaceUsesOfBlockWith(Header, NewPH);
1526     }
1527   }
1528
1529   // It can happen that the latch block will fall through into the header.
1530   // Insert an unconditional branch to the header.
1531   TB = FB = nullptr;
1532   bool LatchNotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Tmp2, false);
1533   (void)LatchNotAnalyzed; // suppress compiler warning
1534   assert (!LatchNotAnalyzed && "Should be analyzable!");
1535   if (!TB && !FB)
1536     TII->InsertBranch(*Latch, Header, nullptr, EmptyCond, DL);
1537
1538   // Finally, the branch from the preheader to the header.
1539   TII->InsertBranch(*NewPH, Header, nullptr, EmptyCond, DL);
1540   NewPH->addSuccessor(Header);
1541
1542   return NewPH;
1543 }