Taints the non-acquire RMW's store address with the load part
[oota-llvm.git] / lib / Target / Hexagon / HexagonFrameLowering.cpp
1 //===-- HexagonFrameLowering.cpp - Define frame lowering ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //
9 //===----------------------------------------------------------------------===//
10
11 #define DEBUG_TYPE "hexagon-pei"
12
13 #include "HexagonFrameLowering.h"
14 #include "Hexagon.h"
15 #include "HexagonInstrInfo.h"
16 #include "HexagonMachineFunctionInfo.h"
17 #include "HexagonRegisterInfo.h"
18 #include "HexagonSubtarget.h"
19 #include "HexagonTargetMachine.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/PostOrderIterator.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/CodeGen/MachineDominators.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachinePostDominators.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/RegisterScavenging.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Target/TargetInstrInfo.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include "llvm/Target/TargetOptions.h"
40
41 // Hexagon stack frame layout as defined by the ABI:
42 //
43 //                                                       Incoming arguments
44 //                                                       passed via stack
45 //                                                                      |
46 //                                                                      |
47 //        SP during function's                 FP during function's     |
48 //    +-- runtime (top of stack)               runtime (bottom) --+     |
49 //    |                                                           |     |
50 // --++---------------------+------------------+-----------------++-+-------
51 //   |  parameter area for  |  variable-size   |   fixed-size    |LR|  arg
52 //   |   called functions   |  local objects   |  local objects  |FP|
53 // --+----------------------+------------------+-----------------+--+-------
54 //    <-    size known    -> <- size unknown -> <- size known  ->
55 //
56 // Low address                                                 High address
57 //
58 // <--- stack growth
59 //
60 //
61 // - In any circumstances, the outgoing function arguments are always accessi-
62 //   ble using the SP, and the incoming arguments are accessible using the FP.
63 // - If the local objects are not aligned, they can always be accessed using
64 //   the FP.
65 // - If there are no variable-sized objects, the local objects can always be
66 //   accessed using the SP, regardless whether they are aligned or not. (The
67 //   alignment padding will be at the bottom of the stack (highest address),
68 //   and so the offset with respect to the SP will be known at the compile-
69 //   -time.)
70 //
71 // The only complication occurs if there are both, local aligned objects, and
72 // dynamically allocated (variable-sized) objects. The alignment pad will be
73 // placed between the FP and the local objects, thus preventing the use of the
74 // FP to access the local objects. At the same time, the variable-sized objects
75 // will be between the SP and the local objects, thus introducing an unknown
76 // distance from the SP to the locals.
77 //
78 // To avoid this problem, a new register is created that holds the aligned
79 // address of the bottom of the stack, referred in the sources as AP (aligned
80 // pointer). The AP will be equal to "FP-p", where "p" is the smallest pad
81 // that aligns AP to the required boundary (a maximum of the alignments of
82 // all stack objects, fixed- and variable-sized). All local objects[1] will
83 // then use AP as the base pointer.
84 // [1] The exception is with "fixed" stack objects. "Fixed" stack objects get
85 // their name from being allocated at fixed locations on the stack, relative
86 // to the FP. In the presence of dynamic allocation and local alignment, such
87 // objects can only be accessed through the FP.
88 //
89 // Illustration of the AP:
90 //                                                                FP --+
91 //                                                                     |
92 // ---------------+---------------------+-----+-----------------------++-+--
93 //   Rest of the  | Local stack objects | Pad |  Fixed stack objects  |LR|
94 //   stack frame  | (aligned)           |     |  (CSR, spills, etc.)  |FP|
95 // ---------------+---------------------+-----+-----------------+-----+--+--
96 //                                      |<-- Multiple of the -->|
97 //                                           stack alignment    +-- AP
98 //
99 // The AP is set up at the beginning of the function. Since it is not a dedi-
100 // cated (reserved) register, it needs to be kept live throughout the function
101 // to be available as the base register for local object accesses.
102 // Normally, an address of a stack objects is obtained by a pseudo-instruction
103 // TFR_FI. To access local objects with the AP register present, a different
104 // pseudo-instruction needs to be used: TFR_FIA. The TFR_FIA takes one extra
105 // argument compared to TFR_FI: the first input register is the AP register.
106 // This keeps the register live between its definition and its uses.
107
108 // The AP register is originally set up using pseudo-instruction ALIGNA:
109 //   AP = ALIGNA A
110 // where
111 //   A  - required stack alignment
112 // The alignment value must be the maximum of all alignments required by
113 // any stack object.
114
115 // The dynamic allocation uses a pseudo-instruction ALLOCA:
116 //   Rd = ALLOCA Rs, A
117 // where
118 //   Rd - address of the allocated space
119 //   Rs - minimum size (the actual allocated can be larger to accommodate
120 //        alignment)
121 //   A  - required alignment
122
123
124 using namespace llvm;
125
126 static cl::opt<bool> DisableDeallocRet("disable-hexagon-dealloc-ret",
127     cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target"));
128
129
130 static cl::opt<int> NumberScavengerSlots("number-scavenger-slots",
131     cl::Hidden, cl::desc("Set the number of scavenger slots"), cl::init(2),
132     cl::ZeroOrMore);
133
134 static cl::opt<int> SpillFuncThreshold("spill-func-threshold",
135     cl::Hidden, cl::desc("Specify O2(not Os) spill func threshold"),
136     cl::init(6), cl::ZeroOrMore);
137
138 static cl::opt<int> SpillFuncThresholdOs("spill-func-threshold-Os",
139     cl::Hidden, cl::desc("Specify Os spill func threshold"),
140     cl::init(1), cl::ZeroOrMore);
141
142 static cl::opt<bool> EnableShrinkWrapping("hexagon-shrink-frame",
143     cl::init(true), cl::Hidden, cl::ZeroOrMore,
144     cl::desc("Enable stack frame shrink wrapping"));
145
146 static cl::opt<unsigned> ShrinkLimit("shrink-frame-limit", cl::init(UINT_MAX),
147     cl::Hidden, cl::ZeroOrMore, cl::desc("Max count of stack frame "
148     "shrink-wraps"));
149
150 static cl::opt<bool> UseAllocframe("use-allocframe", cl::init(true),
151     cl::Hidden, cl::desc("Use allocframe more conservatively"));
152
153
154 namespace llvm {
155   void initializeHexagonCallFrameInformationPass(PassRegistry&);
156   FunctionPass *createHexagonCallFrameInformation();
157 }
158
159 namespace {
160   class HexagonCallFrameInformation : public MachineFunctionPass {
161   public:
162     static char ID;
163     HexagonCallFrameInformation() : MachineFunctionPass(ID) {
164       PassRegistry &PR = *PassRegistry::getPassRegistry();
165       initializeHexagonCallFrameInformationPass(PR);
166     }
167     bool runOnMachineFunction(MachineFunction &MF) override;
168   };
169
170   char HexagonCallFrameInformation::ID = 0;
171 }
172
173 bool HexagonCallFrameInformation::runOnMachineFunction(MachineFunction &MF) {
174   auto &HFI = *MF.getSubtarget<HexagonSubtarget>().getFrameLowering();
175   bool NeedCFI = MF.getMMI().hasDebugInfo() ||
176                  MF.getFunction()->needsUnwindTableEntry();
177
178   if (!NeedCFI)
179     return false;
180   HFI.insertCFIInstructions(MF);
181   return true;
182 }
183
184 INITIALIZE_PASS(HexagonCallFrameInformation, "hexagon-cfi",
185                 "Hexagon call frame information", false, false)
186
187 FunctionPass *llvm::createHexagonCallFrameInformation() {
188   return new HexagonCallFrameInformation();
189 }
190
191
192 namespace {
193   /// Map a register pair Reg to the subregister that has the greater "number",
194   /// i.e. D3 (aka R7:6) will be mapped to R7, etc.
195   unsigned getMax32BitSubRegister(unsigned Reg, const TargetRegisterInfo &TRI,
196                                   bool hireg = true) {
197     if (Reg < Hexagon::D0 || Reg > Hexagon::D15)
198       return Reg;
199
200     unsigned RegNo = 0;
201     for (MCSubRegIterator SubRegs(Reg, &TRI); SubRegs.isValid(); ++SubRegs) {
202       if (hireg) {
203         if (*SubRegs > RegNo)
204           RegNo = *SubRegs;
205       } else {
206         if (!RegNo || *SubRegs < RegNo)
207           RegNo = *SubRegs;
208       }
209     }
210     return RegNo;
211   }
212
213   /// Returns the callee saved register with the largest id in the vector.
214   unsigned getMaxCalleeSavedReg(const std::vector<CalleeSavedInfo> &CSI,
215                                 const TargetRegisterInfo &TRI) {
216     assert(Hexagon::R1 > 0 &&
217            "Assume physical registers are encoded as positive integers");
218     if (CSI.empty())
219       return 0;
220
221     unsigned Max = getMax32BitSubRegister(CSI[0].getReg(), TRI);
222     for (unsigned I = 1, E = CSI.size(); I < E; ++I) {
223       unsigned Reg = getMax32BitSubRegister(CSI[I].getReg(), TRI);
224       if (Reg > Max)
225         Max = Reg;
226     }
227     return Max;
228   }
229
230   /// Checks if the basic block contains any instruction that needs a stack
231   /// frame to be already in place.
232   bool needsStackFrame(const MachineBasicBlock &MBB, const BitVector &CSR) {
233     for (auto &I : MBB) {
234       const MachineInstr *MI = &I;
235       if (MI->isCall())
236         return true;
237       unsigned Opc = MI->getOpcode();
238       switch (Opc) {
239         case Hexagon::ALLOCA:
240         case Hexagon::ALIGNA:
241           return true;
242         default:
243           break;
244       }
245       // Check individual operands.
246       for (const MachineOperand &MO : MI->operands()) {
247         // While the presence of a frame index does not prove that a stack
248         // frame will be required, all frame indexes should be within alloc-
249         // frame/deallocframe. Otherwise, the code that translates a frame
250         // index into an offset would have to be aware of the placement of
251         // the frame creation/destruction instructions.
252         if (MO.isFI())
253           return true;
254         if (!MO.isReg())
255           continue;
256         unsigned R = MO.getReg();
257         // Virtual registers will need scavenging, which then may require
258         // a stack slot.
259         if (TargetRegisterInfo::isVirtualRegister(R))
260           return true;
261         if (CSR[R])
262           return true;
263       }
264     }
265     return false;
266   }
267
268   /// Returns true if MBB has a machine instructions that indicates a tail call
269   /// in the block.
270   bool hasTailCall(const MachineBasicBlock &MBB) {
271     MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
272     unsigned RetOpc = I->getOpcode();
273     return RetOpc == Hexagon::TCRETURNi || RetOpc == Hexagon::TCRETURNr;
274   }
275
276   /// Returns true if MBB contains an instruction that returns.
277   bool hasReturn(const MachineBasicBlock &MBB) {
278     for (auto I = MBB.getFirstTerminator(), E = MBB.end(); I != E; ++I)
279       if (I->isReturn())
280         return true;
281     return false;
282   }
283 }
284
285
286 /// Implements shrink-wrapping of the stack frame. By default, stack frame
287 /// is created in the function entry block, and is cleaned up in every block
288 /// that returns. This function finds alternate blocks: one for the frame
289 /// setup (prolog) and one for the cleanup (epilog).
290 void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction &MF,
291       MachineBasicBlock *&PrologB, MachineBasicBlock *&EpilogB) const {
292   static unsigned ShrinkCounter = 0;
293
294   if (ShrinkLimit.getPosition()) {
295     if (ShrinkCounter >= ShrinkLimit)
296       return;
297     ShrinkCounter++;
298   }
299
300   auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
301   auto &HRI = *HST.getRegisterInfo();
302
303   MachineDominatorTree MDT;
304   MDT.runOnMachineFunction(MF);
305   MachinePostDominatorTree MPT;
306   MPT.runOnMachineFunction(MF);
307
308   typedef DenseMap<unsigned,unsigned> UnsignedMap;
309   UnsignedMap RPO;
310   typedef ReversePostOrderTraversal<const MachineFunction*> RPOTType;
311   RPOTType RPOT(&MF);
312   unsigned RPON = 0;
313   for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
314     RPO[(*I)->getNumber()] = RPON++;
315
316   // Don't process functions that have loops, at least for now. Placement
317   // of prolog and epilog must take loop structure into account. For simpli-
318   // city don't do it right now.
319   for (auto &I : MF) {
320     unsigned BN = RPO[I.getNumber()];
321     for (auto SI = I.succ_begin(), SE = I.succ_end(); SI != SE; ++SI) {
322       // If found a back-edge, return.
323       if (RPO[(*SI)->getNumber()] <= BN)
324         return;
325     }
326   }
327
328   // Collect the set of blocks that need a stack frame to execute. Scan
329   // each block for uses/defs of callee-saved registers, calls, etc.
330   SmallVector<MachineBasicBlock*,16> SFBlocks;
331   BitVector CSR(Hexagon::NUM_TARGET_REGS);
332   for (const MCPhysReg *P = HRI.getCalleeSavedRegs(&MF); *P; ++P)
333     CSR[*P] = true;
334
335   for (auto &I : MF)
336     if (needsStackFrame(I, CSR))
337       SFBlocks.push_back(&I);
338
339   DEBUG({
340     dbgs() << "Blocks needing SF: {";
341     for (auto &B : SFBlocks)
342       dbgs() << " BB#" << B->getNumber();
343     dbgs() << " }\n";
344   });
345   // No frame needed?
346   if (SFBlocks.empty())
347     return;
348
349   // Pick a common dominator and a common post-dominator.
350   MachineBasicBlock *DomB = SFBlocks[0];
351   for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
352     DomB = MDT.findNearestCommonDominator(DomB, SFBlocks[i]);
353     if (!DomB)
354       break;
355   }
356   MachineBasicBlock *PDomB = SFBlocks[0];
357   for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
358     PDomB = MPT.findNearestCommonDominator(PDomB, SFBlocks[i]);
359     if (!PDomB)
360       break;
361   }
362   DEBUG({
363     dbgs() << "Computed dom block: BB#";
364     if (DomB) dbgs() << DomB->getNumber();
365     else      dbgs() << "<null>";
366     dbgs() << ", computed pdom block: BB#";
367     if (PDomB) dbgs() << PDomB->getNumber();
368     else       dbgs() << "<null>";
369     dbgs() << "\n";
370   });
371   if (!DomB || !PDomB)
372     return;
373
374   // Make sure that DomB dominates PDomB and PDomB post-dominates DomB.
375   if (!MDT.dominates(DomB, PDomB)) {
376     DEBUG(dbgs() << "Dom block does not dominate pdom block\n");
377     return;
378   }
379   if (!MPT.dominates(PDomB, DomB)) {
380     DEBUG(dbgs() << "PDom block does not post-dominate dom block\n");
381     return;
382   }
383
384   // Finally, everything seems right.
385   PrologB = DomB;
386   EpilogB = PDomB;
387 }
388
389 /// Perform most of the PEI work here:
390 /// - saving/restoring of the callee-saved registers,
391 /// - stack frame creation and destruction.
392 /// Normally, this work is distributed among various functions, but doing it
393 /// in one place allows shrink-wrapping of the stack frame.
394 void HexagonFrameLowering::emitPrologue(MachineFunction &MF,
395                                         MachineBasicBlock &MBB) const {
396   auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
397   auto &HRI = *HST.getRegisterInfo();
398
399   assert(&MF.front() == &MBB && "Shrink-wrapping not yet supported");
400   MachineFrameInfo *MFI = MF.getFrameInfo();
401   const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
402
403   MachineBasicBlock *PrologB = &MF.front(), *EpilogB = nullptr;
404   if (EnableShrinkWrapping)
405     findShrunkPrologEpilog(MF, PrologB, EpilogB);
406
407   insertCSRSpillsInBlock(*PrologB, CSI, HRI);
408   insertPrologueInBlock(*PrologB);
409
410   if (EpilogB) {
411     insertCSRRestoresInBlock(*EpilogB, CSI, HRI);
412     insertEpilogueInBlock(*EpilogB);
413   } else {
414     for (auto &B : MF)
415       if (B.isReturnBlock())
416         insertCSRRestoresInBlock(B, CSI, HRI);
417
418     for (auto &B : MF)
419       if (B.isReturnBlock())
420         insertEpilogueInBlock(B);
421   }
422 }
423
424
425 void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock &MBB) const {
426   MachineFunction &MF = *MBB.getParent();
427   MachineFrameInfo *MFI = MF.getFrameInfo();
428   auto &HST = MF.getSubtarget<HexagonSubtarget>();
429   auto &HII = *HST.getInstrInfo();
430   auto &HRI = *HST.getRegisterInfo();
431   DebugLoc dl;
432
433   unsigned MaxAlign = std::max(MFI->getMaxAlignment(), getStackAlignment());
434
435   // Calculate the total stack frame size.
436   // Get the number of bytes to allocate from the FrameInfo.
437   unsigned FrameSize = MFI->getStackSize();
438   // Round up the max call frame size to the max alignment on the stack.
439   unsigned MaxCFA = RoundUpToAlignment(MFI->getMaxCallFrameSize(), MaxAlign);
440   MFI->setMaxCallFrameSize(MaxCFA);
441
442   FrameSize = MaxCFA + RoundUpToAlignment(FrameSize, MaxAlign);
443   MFI->setStackSize(FrameSize);
444
445   bool AlignStack = (MaxAlign > getStackAlignment());
446
447   // Get the number of bytes to allocate from the FrameInfo.
448   unsigned NumBytes = MFI->getStackSize();
449   unsigned SP = HRI.getStackRegister();
450   unsigned MaxCF = MFI->getMaxCallFrameSize();
451   MachineBasicBlock::iterator InsertPt = MBB.begin();
452
453   auto *FuncInfo = MF.getInfo<HexagonMachineFunctionInfo>();
454   auto &AdjustRegs = FuncInfo->getAllocaAdjustInsts();
455
456   for (auto MI : AdjustRegs) {
457     assert((MI->getOpcode() == Hexagon::ALLOCA) && "Expected alloca");
458     expandAlloca(MI, HII, SP, MaxCF);
459     MI->eraseFromParent();
460   }
461
462   if (!hasFP(MF))
463     return;
464
465   // Check for overflow.
466   // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used?
467   const unsigned int ALLOCFRAME_MAX = 16384;
468
469   // Create a dummy memory operand to avoid allocframe from being treated as
470   // a volatile memory reference.
471   MachineMemOperand *MMO =
472     MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOStore,
473                             4, 4);
474
475   if (NumBytes >= ALLOCFRAME_MAX) {
476     // Emit allocframe(#0).
477     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
478       .addImm(0)
479       .addMemOperand(MMO);
480
481     // Subtract offset from frame pointer.
482     // We use a caller-saved non-parameter register for that.
483     unsigned CallerSavedReg = HRI.getFirstCallerSavedNonParamReg();
484     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::CONST32_Int_Real),
485             CallerSavedReg).addImm(NumBytes);
486     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_sub), SP)
487       .addReg(SP)
488       .addReg(CallerSavedReg);
489   } else {
490     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
491       .addImm(NumBytes)
492       .addMemOperand(MMO);
493   }
494
495   if (AlignStack) {
496     BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_andir), SP)
497         .addReg(SP)
498         .addImm(-int64_t(MaxAlign));
499   }
500 }
501
502 void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock &MBB) const {
503   MachineFunction &MF = *MBB.getParent();
504   if (!hasFP(MF))
505     return;
506
507   auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
508   auto &HII = *HST.getInstrInfo();
509   auto &HRI = *HST.getRegisterInfo();
510   unsigned SP = HRI.getStackRegister();
511
512   MachineInstr *RetI = nullptr;
513   for (auto &I : MBB) {
514     if (!I.isReturn())
515       continue;
516     RetI = &I;
517     break;
518   }
519   unsigned RetOpc = RetI ? RetI->getOpcode() : 0;
520
521   MachineBasicBlock::iterator InsertPt = MBB.getFirstTerminator();
522   DebugLoc DL;
523   if (InsertPt != MBB.end())
524     DL = InsertPt->getDebugLoc();
525   else if (!MBB.empty())
526     DL = std::prev(MBB.end())->getDebugLoc();
527
528   // Handle EH_RETURN.
529   if (RetOpc == Hexagon::EH_RETURN_JMPR) {
530     BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::L2_deallocframe));
531     BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::A2_add), SP)
532         .addReg(SP)
533         .addReg(Hexagon::R28);
534     return;
535   }
536
537   // Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc-
538   // frame instruction if we encounter it.
539   if (RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4) {
540     MachineBasicBlock::iterator It = RetI;
541     ++It;
542     // Delete all instructions after the RESTORE (except labels).
543     while (It != MBB.end()) {
544       if (!It->isLabel())
545         It = MBB.erase(It);
546       else
547         ++It;
548     }
549     return;
550   }
551
552   // It is possible that the restoring code is a call to a library function.
553   // All of the restore* functions include "deallocframe", so we need to make
554   // sure that we don't add an extra one.
555   bool NeedsDeallocframe = true;
556   if (!MBB.empty() && InsertPt != MBB.begin()) {
557     MachineBasicBlock::iterator PrevIt = std::prev(InsertPt);
558     unsigned COpc = PrevIt->getOpcode();
559     if (COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4)
560       NeedsDeallocframe = false;
561   }
562
563   if (!NeedsDeallocframe)
564     return;
565   // If the returning instruction is JMPret, replace it with dealloc_return,
566   // otherwise just add deallocframe. The function could be returning via a
567   // tail call.
568   if (RetOpc != Hexagon::JMPret || DisableDeallocRet) {
569     BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::L2_deallocframe));
570     return;
571   }
572   unsigned NewOpc = Hexagon::L4_return;
573   MachineInstr *NewI = BuildMI(MBB, RetI, DL, HII.get(NewOpc));
574   // Transfer the function live-out registers.
575   NewI->copyImplicitOps(MF, RetI);
576   MBB.erase(RetI);
577 }
578
579
580 namespace {
581   bool IsAllocFrame(MachineBasicBlock::const_iterator It) {
582     if (!It->isBundle())
583       return It->getOpcode() == Hexagon::S2_allocframe;
584     auto End = It->getParent()->instr_end();
585     MachineBasicBlock::const_instr_iterator I = It.getInstrIterator();
586     while (++I != End && I->isBundled())
587       if (I->getOpcode() == Hexagon::S2_allocframe)
588         return true;
589     return false;
590   }
591
592   MachineBasicBlock::iterator FindAllocFrame(MachineBasicBlock &B) {
593     for (auto &I : B)
594       if (IsAllocFrame(I))
595         return I;
596     return B.end();
597   }
598 }
599
600
601 void HexagonFrameLowering::insertCFIInstructions(MachineFunction &MF) const {
602   for (auto &B : MF) {
603     auto AF = FindAllocFrame(B);
604     if (AF == B.end())
605       continue;
606     insertCFIInstructionsAt(B, ++AF);
607   }
608 }
609
610
611 void HexagonFrameLowering::insertCFIInstructionsAt(MachineBasicBlock &MBB,
612       MachineBasicBlock::iterator At) const {
613   MachineFunction &MF = *MBB.getParent();
614   MachineFrameInfo *MFI = MF.getFrameInfo();
615   MachineModuleInfo &MMI = MF.getMMI();
616   auto &HST = MF.getSubtarget<HexagonSubtarget>();
617   auto &HII = *HST.getInstrInfo();
618   auto &HRI = *HST.getRegisterInfo();
619
620   // If CFI instructions have debug information attached, something goes
621   // wrong with the final assembly generation: the prolog_end is placed
622   // in a wrong location.
623   DebugLoc DL;
624   const MCInstrDesc &CFID = HII.get(TargetOpcode::CFI_INSTRUCTION);
625
626   MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
627
628   if (hasFP(MF)) {
629     unsigned DwFPReg = HRI.getDwarfRegNum(HRI.getFrameRegister(), true);
630     unsigned DwRAReg = HRI.getDwarfRegNum(HRI.getRARegister(), true);
631
632     // Define CFA via an offset from the value of FP.
633     //
634     //  -8   -4    0 (SP)
635     // --+----+----+---------------------
636     //   | FP | LR |          increasing addresses -->
637     // --+----+----+---------------------
638     //   |         +-- Old SP (before allocframe)
639     //   +-- New FP (after allocframe)
640     //
641     // MCCFIInstruction::createDefCfa subtracts the offset from the register.
642     // MCCFIInstruction::createOffset takes the offset without sign change.
643     auto DefCfa = MCCFIInstruction::createDefCfa(FrameLabel, DwFPReg, -8);
644     BuildMI(MBB, At, DL, CFID)
645         .addCFIIndex(MMI.addFrameInst(DefCfa));
646     // R31 (return addr) = CFA - 4
647     auto OffR31 = MCCFIInstruction::createOffset(FrameLabel, DwRAReg, -4);
648     BuildMI(MBB, At, DL, CFID)
649         .addCFIIndex(MMI.addFrameInst(OffR31));
650     // R30 (frame ptr) = CFA - 8
651     auto OffR30 = MCCFIInstruction::createOffset(FrameLabel, DwFPReg, -8);
652     BuildMI(MBB, At, DL, CFID)
653         .addCFIIndex(MMI.addFrameInst(OffR30));
654   }
655
656   static unsigned int RegsToMove[] = {
657     Hexagon::R1,  Hexagon::R0,  Hexagon::R3,  Hexagon::R2,
658     Hexagon::R17, Hexagon::R16, Hexagon::R19, Hexagon::R18,
659     Hexagon::R21, Hexagon::R20, Hexagon::R23, Hexagon::R22,
660     Hexagon::R25, Hexagon::R24, Hexagon::R27, Hexagon::R26,
661     Hexagon::D0,  Hexagon::D1,  Hexagon::D8,  Hexagon::D9,
662     Hexagon::D10, Hexagon::D11, Hexagon::D12, Hexagon::D13,
663     Hexagon::NoRegister
664   };
665
666   const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
667
668   for (unsigned i = 0; RegsToMove[i] != Hexagon::NoRegister; ++i) {
669     unsigned Reg = RegsToMove[i];
670     auto IfR = [Reg] (const CalleeSavedInfo &C) -> bool {
671       return C.getReg() == Reg;
672     };
673     auto F = std::find_if(CSI.begin(), CSI.end(), IfR);
674     if (F == CSI.end())
675       continue;
676
677     // Subtract 8 to make room for R30 and R31, which are added above.
678     unsigned FrameReg;
679     int64_t Offset = getFrameIndexReference(MF, F->getFrameIdx(), FrameReg) - 8;
680
681     if (Reg < Hexagon::D0 || Reg > Hexagon::D15) {
682       unsigned DwarfReg = HRI.getDwarfRegNum(Reg, true);
683       auto OffReg = MCCFIInstruction::createOffset(FrameLabel, DwarfReg,
684                                                    Offset);
685       BuildMI(MBB, At, DL, CFID)
686           .addCFIIndex(MMI.addFrameInst(OffReg));
687     } else {
688       // Split the double regs into subregs, and generate appropriate
689       // cfi_offsets.
690       // The only reason, we are split double regs is, llvm-mc does not
691       // understand paired registers for cfi_offset.
692       // Eg .cfi_offset r1:0, -64
693
694       unsigned HiReg = HRI.getSubReg(Reg, Hexagon::subreg_hireg);
695       unsigned LoReg = HRI.getSubReg(Reg, Hexagon::subreg_loreg);
696       unsigned HiDwarfReg = HRI.getDwarfRegNum(HiReg, true);
697       unsigned LoDwarfReg = HRI.getDwarfRegNum(LoReg, true);
698       auto OffHi = MCCFIInstruction::createOffset(FrameLabel, HiDwarfReg,
699                                                   Offset+4);
700       BuildMI(MBB, At, DL, CFID)
701           .addCFIIndex(MMI.addFrameInst(OffHi));
702       auto OffLo = MCCFIInstruction::createOffset(FrameLabel, LoDwarfReg,
703                                                   Offset);
704       BuildMI(MBB, At, DL, CFID)
705           .addCFIIndex(MMI.addFrameInst(OffLo));
706     }
707   }
708 }
709
710
711 bool HexagonFrameLowering::hasFP(const MachineFunction &MF) const {
712   auto &MFI = *MF.getFrameInfo();
713   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
714
715   bool HasFixed = MFI.getNumFixedObjects();
716   bool HasPrealloc = const_cast<MachineFrameInfo&>(MFI)
717                         .getLocalFrameObjectCount();
718   bool HasExtraAlign = HRI.needsStackRealignment(MF);
719   bool HasAlloca = MFI.hasVarSizedObjects();
720
721   // Insert ALLOCFRAME if we need to or at -O0 for the debugger.  Think
722   // that this shouldn't be required, but doing so now because gcc does and
723   // gdb can't break at the start of the function without it.  Will remove if
724   // this turns out to be a gdb bug.
725   //
726   if (MF.getTarget().getOptLevel() == CodeGenOpt::None)
727     return true;
728
729   // By default we want to use SP (since it's always there). FP requires
730   // some setup (i.e. ALLOCFRAME).
731   // Fixed and preallocated objects need FP if the distance from them to
732   // the SP is unknown (as is with alloca or aligna).
733   if ((HasFixed || HasPrealloc) && (HasAlloca || HasExtraAlign))
734     return true;
735
736   if (MFI.getStackSize() > 0) {
737     if (UseAllocframe)
738       return true;
739   }
740
741   if (MFI.hasCalls() ||
742       MF.getInfo<HexagonMachineFunctionInfo>()->hasClobberLR())
743     return true;
744
745   return false;
746 }
747
748
749 enum SpillKind {
750   SK_ToMem,
751   SK_FromMem,
752   SK_FromMemTailcall
753 };
754
755 static const char *
756 getSpillFunctionFor(unsigned MaxReg, SpillKind SpillType) {
757   const char * V4SpillToMemoryFunctions[] = {
758     "__save_r16_through_r17",
759     "__save_r16_through_r19",
760     "__save_r16_through_r21",
761     "__save_r16_through_r23",
762     "__save_r16_through_r25",
763     "__save_r16_through_r27" };
764
765   const char * V4SpillFromMemoryFunctions[] = {
766     "__restore_r16_through_r17_and_deallocframe",
767     "__restore_r16_through_r19_and_deallocframe",
768     "__restore_r16_through_r21_and_deallocframe",
769     "__restore_r16_through_r23_and_deallocframe",
770     "__restore_r16_through_r25_and_deallocframe",
771     "__restore_r16_through_r27_and_deallocframe" };
772
773   const char * V4SpillFromMemoryTailcallFunctions[] = {
774     "__restore_r16_through_r17_and_deallocframe_before_tailcall",
775     "__restore_r16_through_r19_and_deallocframe_before_tailcall",
776     "__restore_r16_through_r21_and_deallocframe_before_tailcall",
777     "__restore_r16_through_r23_and_deallocframe_before_tailcall",
778     "__restore_r16_through_r25_and_deallocframe_before_tailcall",
779     "__restore_r16_through_r27_and_deallocframe_before_tailcall"
780   };
781
782   const char **SpillFunc = nullptr;
783
784   switch(SpillType) {
785   case SK_ToMem:
786     SpillFunc = V4SpillToMemoryFunctions;
787     break;
788   case SK_FromMem:
789     SpillFunc = V4SpillFromMemoryFunctions;
790     break;
791   case SK_FromMemTailcall:
792     SpillFunc = V4SpillFromMemoryTailcallFunctions;
793     break;
794   }
795   assert(SpillFunc && "Unknown spill kind");
796
797   // Spill all callee-saved registers up to the highest register used.
798   switch (MaxReg) {
799   case Hexagon::R17:
800     return SpillFunc[0];
801   case Hexagon::R19:
802     return SpillFunc[1];
803   case Hexagon::R21:
804     return SpillFunc[2];
805   case Hexagon::R23:
806     return SpillFunc[3];
807   case Hexagon::R25:
808     return SpillFunc[4];
809   case Hexagon::R27:
810     return SpillFunc[5];
811   default:
812     llvm_unreachable("Unhandled maximum callee save register");
813   }
814   return 0;
815 }
816
817 /// Adds all callee-saved registers up to MaxReg to the instruction.
818 static void addCalleeSaveRegistersAsImpOperand(MachineInstr *Inst,
819                                            unsigned MaxReg, bool IsDef) {
820   // Add the callee-saved registers as implicit uses.
821   for (unsigned R = Hexagon::R16; R <= MaxReg; ++R) {
822     MachineOperand ImpUse = MachineOperand::CreateReg(R, IsDef, true);
823     Inst->addOperand(ImpUse);
824   }
825 }
826
827
828 int HexagonFrameLowering::getFrameIndexReference(const MachineFunction &MF,
829       int FI, unsigned &FrameReg) const {
830   auto &MFI = *MF.getFrameInfo();
831   auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
832
833   // Large parts of this code are shared with HRI::eliminateFrameIndex.
834   int Offset = MFI.getObjectOffset(FI);
835   bool HasAlloca = MFI.hasVarSizedObjects();
836   bool HasExtraAlign = HRI.needsStackRealignment(MF);
837   bool NoOpt = MF.getTarget().getOptLevel() == CodeGenOpt::None;
838
839   unsigned SP = HRI.getStackRegister(), FP = HRI.getFrameRegister();
840   unsigned AP = 0;
841   if (const MachineInstr *AI = getAlignaInstr(MF))
842     AP = AI->getOperand(0).getReg();
843   unsigned FrameSize = MFI.getStackSize();
844
845   bool UseFP = false, UseAP = false;  // Default: use SP (except at -O0).
846   // Use FP at -O0, except when there are objects with extra alignment.
847   // That additional alignment requirement may cause a pad to be inserted,
848   // which will make it impossible to use FP to access objects located
849   // past the pad.
850   if (NoOpt && !HasExtraAlign)
851     UseFP = true;
852   if (MFI.isFixedObjectIndex(FI) || MFI.isObjectPreAllocated(FI)) {
853     // Fixed and preallocated objects will be located before any padding
854     // so FP must be used to access them.
855     UseFP |= (HasAlloca || HasExtraAlign);
856   } else {
857     if (HasAlloca) {
858       if (HasExtraAlign)
859         UseAP = true;
860       else
861         UseFP = true;
862     }
863   }
864
865   // If FP was picked, then there had better be FP.
866   bool HasFP = hasFP(MF);
867   assert((HasFP || !UseFP) && "This function must have frame pointer");
868
869   // Having FP implies allocframe. Allocframe will store extra 8 bytes:
870   // FP/LR. If the base register is used to access an object across these
871   // 8 bytes, then the offset will need to be adjusted by 8.
872   //
873   // After allocframe:
874   //                    HexagonISelLowering adds 8 to ---+
875   //                    the offsets of all stack-based   |
876   //                    arguments (*)                    |
877   //                                                     |
878   //   getObjectOffset < 0   0     8  getObjectOffset >= 8
879   // ------------------------+-----+------------------------> increasing
880   //     <local objects>     |FP/LR|    <input arguments>     addresses
881   // -----------------+------+-----+------------------------>
882   //                  |      |
883   //    SP/AP point --+      +-- FP points here (**)
884   //    somewhere on
885   //    this side of FP/LR
886   //
887   // (*) See LowerFormalArguments. The FP/LR is assumed to be present.
888   // (**) *FP == old-FP. FP+0..7 are the bytes of FP/LR.
889
890   // The lowering assumes that FP/LR is present, and so the offsets of
891   // the formal arguments start at 8. If FP/LR is not there we need to
892   // reduce the offset by 8.
893   if (Offset > 0 && !HasFP)
894     Offset -= 8;
895
896   if (UseFP)
897     FrameReg = FP;
898   else if (UseAP)
899     FrameReg = AP;
900   else
901     FrameReg = SP;
902
903   // Calculate the actual offset in the instruction. If there is no FP
904   // (in other words, no allocframe), then SP will not be adjusted (i.e.
905   // there will be no SP -= FrameSize), so the frame size should not be
906   // added to the calculated offset.
907   int RealOffset = Offset;
908   if (!UseFP && !UseAP && HasFP)
909     RealOffset = FrameSize+Offset;
910   return RealOffset;
911 }
912
913
914 bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock &MBB,
915       const CSIVect &CSI, const HexagonRegisterInfo &HRI) const {
916   if (CSI.empty())
917     return true;
918
919   MachineBasicBlock::iterator MI = MBB.begin();
920   MachineFunction &MF = *MBB.getParent();
921   auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
922
923   if (useSpillFunction(MF, CSI)) {
924     unsigned MaxReg = getMaxCalleeSavedReg(CSI, HRI);
925     const char *SpillFun = getSpillFunctionFor(MaxReg, SK_ToMem);
926     // Call spill function.
927     DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
928     MachineInstr *SaveRegsCall =
929         BuildMI(MBB, MI, DL, HII.get(Hexagon::SAVE_REGISTERS_CALL_V4))
930           .addExternalSymbol(SpillFun);
931     // Add callee-saved registers as use.
932     addCalleeSaveRegistersAsImpOperand(SaveRegsCall, MaxReg, false);
933     // Add live in registers.
934     for (unsigned I = 0; I < CSI.size(); ++I)
935       MBB.addLiveIn(CSI[I].getReg());
936     return true;
937   }
938
939   for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
940     unsigned Reg = CSI[i].getReg();
941     // Add live in registers. We treat eh_return callee saved register r0 - r3
942     // specially. They are not really callee saved registers as they are not
943     // supposed to be killed.
944     bool IsKill = !HRI.isEHReturnCalleeSaveReg(Reg);
945     int FI = CSI[i].getFrameIdx();
946     const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
947     HII.storeRegToStackSlot(MBB, MI, Reg, IsKill, FI, RC, &HRI);
948     if (IsKill)
949       MBB.addLiveIn(Reg);
950   }
951   return true;
952 }
953
954
955 bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock &MBB,
956       const CSIVect &CSI, const HexagonRegisterInfo &HRI) const {
957   if (CSI.empty())
958     return false;
959
960   MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
961   MachineFunction &MF = *MBB.getParent();
962   auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
963
964   if (useRestoreFunction(MF, CSI)) {
965     bool HasTC = hasTailCall(MBB) || !hasReturn(MBB);
966     unsigned MaxR = getMaxCalleeSavedReg(CSI, HRI);
967     SpillKind Kind = HasTC ? SK_FromMemTailcall : SK_FromMem;
968     const char *RestoreFn = getSpillFunctionFor(MaxR, Kind);
969
970     // Call spill function.
971     DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc()
972                                   : MBB.getLastNonDebugInstr()->getDebugLoc();
973     MachineInstr *DeallocCall = nullptr;
974
975     if (HasTC) {
976       unsigned ROpc = Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4;
977       DeallocCall = BuildMI(MBB, MI, DL, HII.get(ROpc))
978           .addExternalSymbol(RestoreFn);
979     } else {
980       // The block has a return.
981       MachineBasicBlock::iterator It = MBB.getFirstTerminator();
982       assert(It->isReturn() && std::next(It) == MBB.end());
983       unsigned ROpc = Hexagon::RESTORE_DEALLOC_RET_JMP_V4;
984       DeallocCall = BuildMI(MBB, It, DL, HII.get(ROpc))
985           .addExternalSymbol(RestoreFn);
986       // Transfer the function live-out registers.
987       DeallocCall->copyImplicitOps(MF, It);
988     }
989     addCalleeSaveRegistersAsImpOperand(DeallocCall, MaxR, true);
990     return true;
991   }
992
993   for (unsigned i = 0; i < CSI.size(); ++i) {
994     unsigned Reg = CSI[i].getReg();
995     const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
996     int FI = CSI[i].getFrameIdx();
997     HII.loadRegFromStackSlot(MBB, MI, Reg, FI, RC, &HRI);
998   }
999   return true;
1000 }
1001
1002
1003 void HexagonFrameLowering::eliminateCallFramePseudoInstr(MachineFunction &MF,
1004       MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const {
1005   MachineInstr &MI = *I;
1006   unsigned Opc = MI.getOpcode();
1007   (void)Opc; // Silence compiler warning.
1008   assert((Opc == Hexagon::ADJCALLSTACKDOWN || Opc == Hexagon::ADJCALLSTACKUP) &&
1009          "Cannot handle this call frame pseudo instruction");
1010   MBB.erase(I);
1011 }
1012
1013
1014 void HexagonFrameLowering::processFunctionBeforeFrameFinalized(
1015     MachineFunction &MF, RegScavenger *RS) const {
1016   // If this function has uses aligned stack and also has variable sized stack
1017   // objects, then we need to map all spill slots to fixed positions, so that
1018   // they can be accessed through FP. Otherwise they would have to be accessed
1019   // via AP, which may not be available at the particular place in the program.
1020   MachineFrameInfo *MFI = MF.getFrameInfo();
1021   bool HasAlloca = MFI->hasVarSizedObjects();
1022   bool NeedsAlign = (MFI->getMaxAlignment() > getStackAlignment());
1023
1024   if (!HasAlloca || !NeedsAlign)
1025     return;
1026
1027   unsigned LFS = MFI->getLocalFrameSize();
1028   int Offset = -LFS;
1029   for (int i = 0, e = MFI->getObjectIndexEnd(); i != e; ++i) {
1030     if (!MFI->isSpillSlotObjectIndex(i) || MFI->isDeadObjectIndex(i))
1031       continue;
1032     int S = MFI->getObjectSize(i);
1033     LFS += S;
1034     Offset -= S;
1035     MFI->mapLocalFrameObject(i, Offset);
1036   }
1037
1038   MFI->setLocalFrameSize(LFS);
1039   unsigned A = MFI->getLocalFrameMaxAlign();
1040   assert(A <= 8 && "Unexpected local frame alignment");
1041   if (A == 0)
1042     MFI->setLocalFrameMaxAlign(8);
1043   MFI->setUseLocalStackAllocationBlock(true);
1044 }
1045
1046 /// Returns true if there is no caller saved registers available.
1047 static bool needToReserveScavengingSpillSlots(MachineFunction &MF,
1048                                               const HexagonRegisterInfo &HRI) {
1049   MachineRegisterInfo &MRI = MF.getRegInfo();
1050   const MCPhysReg *CallerSavedRegs = HRI.getCallerSavedRegs(&MF);
1051   // Check for an unused caller-saved register.
1052   for ( ; *CallerSavedRegs; ++CallerSavedRegs) {
1053     MCPhysReg FreeReg = *CallerSavedRegs;
1054     if (!MRI.reg_nodbg_empty(FreeReg))
1055       continue;
1056
1057     // Check aliased register usage.
1058     bool IsCurrentRegUsed = false;
1059     for (MCRegAliasIterator AI(FreeReg, &HRI, false); AI.isValid(); ++AI)
1060       if (!MRI.reg_nodbg_empty(*AI)) {
1061         IsCurrentRegUsed = true;
1062         break;
1063       }
1064     if (IsCurrentRegUsed)
1065       continue;
1066
1067     // Neither directly used nor used through an aliased register.
1068     return false;
1069   }
1070   // All caller-saved registers are used.
1071   return true;
1072 }
1073
1074
1075 /// Replaces the predicate spill code pseudo instructions by valid instructions.
1076 bool HexagonFrameLowering::replacePredRegPseudoSpillCode(MachineFunction &MF)
1077       const {
1078   auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
1079   auto &HII = *HST.getInstrInfo();
1080   MachineRegisterInfo &MRI = MF.getRegInfo();
1081   bool HasReplacedPseudoInst = false;
1082   // Replace predicate spill pseudo instructions by real code.
1083   // Loop over all of the basic blocks.
1084   for (MachineFunction::iterator MBBb = MF.begin(), MBBe = MF.end();
1085        MBBb != MBBe; ++MBBb) {
1086     MachineBasicBlock *MBB = &*MBBb;
1087     // Traverse the basic block.
1088     MachineBasicBlock::iterator NextII;
1089     for (MachineBasicBlock::iterator MII = MBB->begin(); MII != MBB->end();
1090          MII = NextII) {
1091       MachineInstr *MI = MII;
1092       NextII = std::next(MII);
1093       int Opc = MI->getOpcode();
1094       if (Opc == Hexagon::STriw_pred) {
1095         HasReplacedPseudoInst = true;
1096         // STriw_pred FI, 0, SrcReg;
1097         unsigned VirtReg = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1098         unsigned SrcReg = MI->getOperand(2).getReg();
1099         bool IsOrigSrcRegKilled = MI->getOperand(2).isKill();
1100
1101         assert(MI->getOperand(0).isFI() && "Expect a frame index");
1102         assert(Hexagon::PredRegsRegClass.contains(SrcReg) &&
1103                "Not a predicate register");
1104
1105         // Insert transfer to general purpose register.
1106         //   VirtReg = C2_tfrpr SrcPredReg
1107         BuildMI(*MBB, MII, MI->getDebugLoc(), HII.get(Hexagon::C2_tfrpr),
1108                 VirtReg).addReg(SrcReg, getKillRegState(IsOrigSrcRegKilled));
1109
1110         // Change instruction to S2_storeri_io.
1111         //   S2_storeri_io FI, 0, VirtReg
1112         MI->setDesc(HII.get(Hexagon::S2_storeri_io));
1113         MI->getOperand(2).setReg(VirtReg);
1114         MI->getOperand(2).setIsKill();
1115
1116       } else if (Opc == Hexagon::LDriw_pred) {
1117         // DstReg = LDriw_pred FI, 0
1118         MachineOperand &M0 = MI->getOperand(0);
1119         if (M0.isDead()) {
1120           MBB->erase(MII);
1121           continue;
1122         }
1123
1124         unsigned VirtReg = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1125         unsigned DestReg = MI->getOperand(0).getReg();
1126
1127         assert(MI->getOperand(1).isFI() && "Expect a frame index");
1128         assert(Hexagon::PredRegsRegClass.contains(DestReg) &&
1129                "Not a predicate register");
1130
1131         // Change instruction to L2_loadri_io.
1132         //   VirtReg = L2_loadri_io FI, 0
1133         MI->setDesc(HII.get(Hexagon::L2_loadri_io));
1134         MI->getOperand(0).setReg(VirtReg);
1135
1136         // Insert transfer to general purpose register.
1137         //   DestReg = C2_tfrrp VirtReg
1138         const MCInstrDesc &D = HII.get(Hexagon::C2_tfrrp);
1139         BuildMI(*MBB, std::next(MII), MI->getDebugLoc(), D, DestReg)
1140           .addReg(VirtReg, getKillRegState(true));
1141         HasReplacedPseudoInst = true;
1142       }
1143     }
1144   }
1145   return HasReplacedPseudoInst;
1146 }
1147
1148
1149 void HexagonFrameLowering::determineCalleeSaves(MachineFunction &MF,
1150                                                 BitVector &SavedRegs,
1151                                                 RegScavenger *RS) const {
1152   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
1153
1154   auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
1155   auto &HRI = *HST.getRegisterInfo();
1156
1157   bool HasEHReturn = MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn();
1158
1159   // If we have a function containing __builtin_eh_return we want to spill and
1160   // restore all callee saved registers. Pretend that they are used.
1161   if (HasEHReturn) {
1162     for (const MCPhysReg *CSRegs = HRI.getCalleeSavedRegs(&MF); *CSRegs;
1163          ++CSRegs)
1164       SavedRegs.set(*CSRegs);
1165   }
1166
1167   const TargetRegisterClass &RC = Hexagon::IntRegsRegClass;
1168
1169   // Replace predicate register pseudo spill code.
1170   bool HasReplacedPseudoInst = replacePredRegPseudoSpillCode(MF);
1171
1172   // We need to reserve a a spill slot if scavenging could potentially require
1173   // spilling a scavenged register.
1174   if (HasReplacedPseudoInst && needToReserveScavengingSpillSlots(MF, HRI)) {
1175     MachineFrameInfo *MFI = MF.getFrameInfo();
1176     for (int i=0; i < NumberScavengerSlots; i++)
1177       RS->addScavengingFrameIndex(
1178         MFI->CreateSpillStackObject(RC.getSize(), RC.getAlignment()));
1179   }
1180 }
1181
1182
1183 #ifndef NDEBUG
1184 static void dump_registers(BitVector &Regs, const TargetRegisterInfo &TRI) {
1185   dbgs() << '{';
1186   for (int x = Regs.find_first(); x >= 0; x = Regs.find_next(x)) {
1187     unsigned R = x;
1188     dbgs() << ' ' << PrintReg(R, &TRI);
1189   }
1190   dbgs() << " }";
1191 }
1192 #endif
1193
1194
1195 bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction &MF,
1196       const TargetRegisterInfo *TRI, std::vector<CalleeSavedInfo> &CSI) const {
1197   DEBUG(dbgs() << LLVM_FUNCTION_NAME << " on "
1198                << MF.getFunction()->getName() << '\n');
1199   MachineFrameInfo *MFI = MF.getFrameInfo();
1200   BitVector SRegs(Hexagon::NUM_TARGET_REGS);
1201
1202   // Generate a set of unique, callee-saved registers (SRegs), where each
1203   // register in the set is maximal in terms of sub-/super-register relation,
1204   // i.e. for each R in SRegs, no proper super-register of R is also in SRegs.
1205
1206   // (1) For each callee-saved register, add that register and all of its
1207   // sub-registers to SRegs.
1208   DEBUG(dbgs() << "Initial CS registers: {");
1209   for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
1210     unsigned R = CSI[i].getReg();
1211     DEBUG(dbgs() << ' ' << PrintReg(R, TRI));
1212     for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
1213       SRegs[*SR] = true;
1214   }
1215   DEBUG(dbgs() << " }\n");
1216   DEBUG(dbgs() << "SRegs.1: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
1217
1218   // (2) For each reserved register, remove that register and all of its
1219   // sub- and super-registers from SRegs.
1220   BitVector Reserved = TRI->getReservedRegs(MF);
1221   for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(x)) {
1222     unsigned R = x;
1223     for (MCSuperRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
1224       SRegs[*SR] = false;
1225   }
1226   DEBUG(dbgs() << "Res:     "; dump_registers(Reserved, *TRI); dbgs() << "\n");
1227   DEBUG(dbgs() << "SRegs.2: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
1228
1229   // (3) Collect all registers that have at least one sub-register in SRegs,
1230   // and also have no sub-registers that are reserved. These will be the can-
1231   // didates for saving as a whole instead of their individual sub-registers.
1232   // (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.)
1233   BitVector TmpSup(Hexagon::NUM_TARGET_REGS);
1234   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1235     unsigned R = x;
1236     for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR)
1237       TmpSup[*SR] = true;
1238   }
1239   for (int x = TmpSup.find_first(); x >= 0; x = TmpSup.find_next(x)) {
1240     unsigned R = x;
1241     for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) {
1242       if (!Reserved[*SR])
1243         continue;
1244       TmpSup[R] = false;
1245       break;
1246     }
1247   }
1248   DEBUG(dbgs() << "TmpSup:  "; dump_registers(TmpSup, *TRI); dbgs() << "\n");
1249
1250   // (4) Include all super-registers found in (3) into SRegs.
1251   SRegs |= TmpSup;
1252   DEBUG(dbgs() << "SRegs.4: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
1253
1254   // (5) For each register R in SRegs, if any super-register of R is in SRegs,
1255   // remove R from SRegs.
1256   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1257     unsigned R = x;
1258     for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) {
1259       if (!SRegs[*SR])
1260         continue;
1261       SRegs[R] = false;
1262       break;
1263     }
1264   }
1265   DEBUG(dbgs() << "SRegs.5: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
1266
1267   // Now, for each register that has a fixed stack slot, create the stack
1268   // object for it.
1269   CSI.clear();
1270
1271   typedef TargetFrameLowering::SpillSlot SpillSlot;
1272   unsigned NumFixed;
1273   int MinOffset = 0;  // CS offsets are negative.
1274   const SpillSlot *FixedSlots = getCalleeSavedSpillSlots(NumFixed);
1275   for (const SpillSlot *S = FixedSlots; S != FixedSlots+NumFixed; ++S) {
1276     if (!SRegs[S->Reg])
1277       continue;
1278     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(S->Reg);
1279     int FI = MFI->CreateFixedSpillStackObject(RC->getSize(), S->Offset);
1280     MinOffset = std::min(MinOffset, S->Offset);
1281     CSI.push_back(CalleeSavedInfo(S->Reg, FI));
1282     SRegs[S->Reg] = false;
1283   }
1284
1285   // There can be some registers that don't have fixed slots. For example,
1286   // we need to store R0-R3 in functions with exception handling. For each
1287   // such register, create a non-fixed stack object.
1288   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1289     unsigned R = x;
1290     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(R);
1291     int Off = MinOffset - RC->getSize();
1292     unsigned Align = std::min(RC->getAlignment(), getStackAlignment());
1293     assert(isPowerOf2_32(Align));
1294     Off &= -Align;
1295     int FI = MFI->CreateFixedSpillStackObject(RC->getSize(), Off);
1296     MinOffset = std::min(MinOffset, Off);
1297     CSI.push_back(CalleeSavedInfo(R, FI));
1298     SRegs[R] = false;
1299   }
1300
1301   DEBUG({
1302     dbgs() << "CS information: {";
1303     for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
1304       int FI = CSI[i].getFrameIdx();
1305       int Off = MFI->getObjectOffset(FI);
1306       dbgs() << ' ' << PrintReg(CSI[i].getReg(), TRI) << ":fi#" << FI << ":sp";
1307       if (Off >= 0)
1308         dbgs() << '+';
1309       dbgs() << Off;
1310     }
1311     dbgs() << " }\n";
1312   });
1313
1314 #ifndef NDEBUG
1315   // Verify that all registers were handled.
1316   bool MissedReg = false;
1317   for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1318     unsigned R = x;
1319     dbgs() << PrintReg(R, TRI) << ' ';
1320     MissedReg = true;
1321   }
1322   if (MissedReg)
1323     llvm_unreachable("...there are unhandled callee-saved registers!");
1324 #endif
1325
1326   return true;
1327 }
1328
1329
1330 void HexagonFrameLowering::expandAlloca(MachineInstr *AI,
1331       const HexagonInstrInfo &HII, unsigned SP, unsigned CF) const {
1332   MachineBasicBlock &MB = *AI->getParent();
1333   DebugLoc DL = AI->getDebugLoc();
1334   unsigned A = AI->getOperand(2).getImm();
1335
1336   // Have
1337   //    Rd  = alloca Rs, #A
1338   //
1339   // If Rs and Rd are different registers, use this sequence:
1340   //    Rd  = sub(r29, Rs)
1341   //    r29 = sub(r29, Rs)
1342   //    Rd  = and(Rd, #-A)    ; if necessary
1343   //    r29 = and(r29, #-A)   ; if necessary
1344   //    Rd  = add(Rd, #CF)    ; CF size aligned to at most A
1345   // otherwise, do
1346   //    Rd  = sub(r29, Rs)
1347   //    Rd  = and(Rd, #-A)    ; if necessary
1348   //    r29 = Rd
1349   //    Rd  = add(Rd, #CF)    ; CF size aligned to at most A
1350
1351   MachineOperand &RdOp = AI->getOperand(0);
1352   MachineOperand &RsOp = AI->getOperand(1);
1353   unsigned Rd = RdOp.getReg(), Rs = RsOp.getReg();
1354
1355   // Rd = sub(r29, Rs)
1356   BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), Rd)
1357       .addReg(SP)
1358       .addReg(Rs);
1359   if (Rs != Rd) {
1360     // r29 = sub(r29, Rs)
1361     BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), SP)
1362         .addReg(SP)
1363         .addReg(Rs);
1364   }
1365   if (A > 8) {
1366     // Rd  = and(Rd, #-A)
1367     BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), Rd)
1368         .addReg(Rd)
1369         .addImm(-int64_t(A));
1370     if (Rs != Rd)
1371       BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), SP)
1372           .addReg(SP)
1373           .addImm(-int64_t(A));
1374   }
1375   if (Rs == Rd) {
1376     // r29 = Rd
1377     BuildMI(MB, AI, DL, HII.get(TargetOpcode::COPY), SP)
1378         .addReg(Rd);
1379   }
1380   if (CF > 0) {
1381     // Rd = add(Rd, #CF)
1382     BuildMI(MB, AI, DL, HII.get(Hexagon::A2_addi), Rd)
1383         .addReg(Rd)
1384         .addImm(CF);
1385   }
1386 }
1387
1388
1389 bool HexagonFrameLowering::needsAligna(const MachineFunction &MF) const {
1390   const MachineFrameInfo *MFI = MF.getFrameInfo();
1391   if (!MFI->hasVarSizedObjects())
1392     return false;
1393   unsigned MaxA = MFI->getMaxAlignment();
1394   if (MaxA <= getStackAlignment())
1395     return false;
1396   return true;
1397 }
1398
1399
1400 const MachineInstr *HexagonFrameLowering::getAlignaInstr(
1401       const MachineFunction &MF) const {
1402   for (auto &B : MF)
1403     for (auto &I : B)
1404       if (I.getOpcode() == Hexagon::ALIGNA)
1405         return &I;
1406   return nullptr;
1407 }
1408
1409
1410 // FIXME: Use Function::optForSize().
1411 inline static bool isOptSize(const MachineFunction &MF) {
1412   AttributeSet AF = MF.getFunction()->getAttributes();
1413   return AF.hasAttribute(AttributeSet::FunctionIndex,
1414                          Attribute::OptimizeForSize);
1415 }
1416
1417 inline static bool isMinSize(const MachineFunction &MF) {
1418   return MF.getFunction()->optForMinSize();
1419 }
1420
1421
1422 /// Determine whether the callee-saved register saves and restores should
1423 /// be generated via inline code. If this function returns "true", inline
1424 /// code will be generated. If this function returns "false", additional
1425 /// checks are performed, which may still lead to the inline code.
1426 bool HexagonFrameLowering::shouldInlineCSR(MachineFunction &MF,
1427       const CSIVect &CSI) const {
1428   if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
1429     return true;
1430   if (!isOptSize(MF) && !isMinSize(MF))
1431     if (MF.getTarget().getOptLevel() > CodeGenOpt::Default)
1432       return true;
1433
1434   // Check if CSI only has double registers, and if the registers form
1435   // a contiguous block starting from D8.
1436   BitVector Regs(Hexagon::NUM_TARGET_REGS);
1437   for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
1438     unsigned R = CSI[i].getReg();
1439     if (!Hexagon::DoubleRegsRegClass.contains(R))
1440       return true;
1441     Regs[R] = true;
1442   }
1443   int F = Regs.find_first();
1444   if (F != Hexagon::D8)
1445     return true;
1446   while (F >= 0) {
1447     int N = Regs.find_next(F);
1448     if (N >= 0 && N != F+1)
1449       return true;
1450     F = N;
1451   }
1452
1453   return false;
1454 }
1455
1456
1457 bool HexagonFrameLowering::useSpillFunction(MachineFunction &MF,
1458       const CSIVect &CSI) const {
1459   if (shouldInlineCSR(MF, CSI))
1460     return false;
1461   unsigned NumCSI = CSI.size();
1462   if (NumCSI <= 1)
1463     return false;
1464
1465   unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs
1466                                      : SpillFuncThreshold;
1467   return Threshold < NumCSI;
1468 }
1469
1470
1471 bool HexagonFrameLowering::useRestoreFunction(MachineFunction &MF,
1472       const CSIVect &CSI) const {
1473   if (shouldInlineCSR(MF, CSI))
1474     return false;
1475   unsigned NumCSI = CSI.size();
1476   unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs-1
1477                                      : SpillFuncThreshold;
1478   return Threshold < NumCSI;
1479 }