ADT: Remove last implicit ilist iterator conversions, NFC
[oota-llvm.git] / lib / Target / Hexagon / HexagonExpandCondsets.cpp
1 //===--- HexagonExpandCondsets.cpp ----------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 // Replace mux instructions with the corresponding legal instructions.
11 // It is meant to work post-SSA, but still on virtual registers. It was
12 // originally placed between register coalescing and machine instruction
13 // scheduler.
14 // In this place in the optimization sequence, live interval analysis had
15 // been performed, and the live intervals should be preserved. A large part
16 // of the code deals with preserving the liveness information.
17 //
18 // Liveness tracking aside, the main functionality of this pass is divided
19 // into two steps. The first step is to replace an instruction
20 //   vreg0 = C2_mux vreg0, vreg1, vreg2
21 // with a pair of conditional transfers
22 //   vreg0 = A2_tfrt vreg0, vreg1
23 //   vreg0 = A2_tfrf vreg0, vreg2
24 // It is the intention that the execution of this pass could be terminated
25 // after this step, and the code generated would be functionally correct.
26 //
27 // If the uses of the source values vreg1 and vreg2 are kills, and their
28 // definitions are predicable, then in the second step, the conditional
29 // transfers will then be rewritten as predicated instructions. E.g.
30 //   vreg0 = A2_or vreg1, vreg2
31 //   vreg3 = A2_tfrt vreg99, vreg0<kill>
32 // will be rewritten as
33 //   vreg3 = A2_port vreg99, vreg1, vreg2
34 //
35 // This replacement has two variants: "up" and "down". Consider this case:
36 //   vreg0 = A2_or vreg1, vreg2
37 //   ... [intervening instructions] ...
38 //   vreg3 = A2_tfrt vreg99, vreg0<kill>
39 // variant "up":
40 //   vreg3 = A2_port vreg99, vreg1, vreg2
41 //   ... [intervening instructions, vreg0->vreg3] ...
42 //   [deleted]
43 // variant "down":
44 //   [deleted]
45 //   ... [intervening instructions] ...
46 //   vreg3 = A2_port vreg99, vreg1, vreg2
47 //
48 // Both, one or none of these variants may be valid, and checks are made
49 // to rule out inapplicable variants.
50 //
51 // As an additional optimization, before either of the two steps above is
52 // executed, the pass attempts to coalesce the target register with one of
53 // the source registers, e.g. given an instruction
54 //   vreg3 = C2_mux vreg0, vreg1, vreg2
55 // vreg3 will be coalesced with either vreg1 or vreg2. If this succeeds,
56 // the instruction would then be (for example)
57 //   vreg3 = C2_mux vreg0, vreg3, vreg2
58 // and, under certain circumstances, this could result in only one predicated
59 // instruction:
60 //   vreg3 = A2_tfrf vreg0, vreg2
61 //
62
63 #define DEBUG_TYPE "expand-condsets"
64 #include "HexagonTargetMachine.h"
65
66 #include "llvm/CodeGen/Passes.h"
67 #include "llvm/CodeGen/LiveInterval.h"
68 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
69 #include "llvm/CodeGen/MachineFunction.h"
70 #include "llvm/CodeGen/MachineInstrBuilder.h"
71 #include "llvm/CodeGen/MachineRegisterInfo.h"
72 #include "llvm/Target/TargetInstrInfo.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include "llvm/Target/TargetRegisterInfo.h"
75 #include "llvm/Support/CommandLine.h"
76 #include "llvm/Support/Debug.h"
77 #include "llvm/Support/raw_ostream.h"
78
79 using namespace llvm;
80
81 static cl::opt<unsigned> OptTfrLimit("expand-condsets-tfr-limit",
82   cl::init(~0U), cl::Hidden, cl::desc("Max number of mux expansions"));
83 static cl::opt<unsigned> OptCoaLimit("expand-condsets-coa-limit",
84   cl::init(~0U), cl::Hidden, cl::desc("Max number of segment coalescings"));
85
86 namespace llvm {
87   void initializeHexagonExpandCondsetsPass(PassRegistry&);
88   FunctionPass *createHexagonExpandCondsets();
89 }
90
91 namespace {
92   class HexagonExpandCondsets : public MachineFunctionPass {
93   public:
94     static char ID;
95     HexagonExpandCondsets() :
96         MachineFunctionPass(ID), HII(0), TRI(0), MRI(0),
97         LIS(0), CoaLimitActive(false),
98         TfrLimitActive(false), CoaCounter(0), TfrCounter(0) {
99       if (OptCoaLimit.getPosition())
100         CoaLimitActive = true, CoaLimit = OptCoaLimit;
101       if (OptTfrLimit.getPosition())
102         TfrLimitActive = true, TfrLimit = OptTfrLimit;
103       initializeHexagonExpandCondsetsPass(*PassRegistry::getPassRegistry());
104     }
105
106     virtual const char *getPassName() const {
107       return "Hexagon Expand Condsets";
108     }
109     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
110       AU.addRequired<LiveIntervals>();
111       AU.addPreserved<LiveIntervals>();
112       AU.addPreserved<SlotIndexes>();
113       MachineFunctionPass::getAnalysisUsage(AU);
114     }
115     virtual bool runOnMachineFunction(MachineFunction &MF);
116
117   private:
118     const HexagonInstrInfo *HII;
119     const TargetRegisterInfo *TRI;
120     MachineRegisterInfo *MRI;
121     LiveIntervals *LIS;
122
123     bool CoaLimitActive, TfrLimitActive;
124     unsigned CoaLimit, TfrLimit, CoaCounter, TfrCounter;
125
126     struct RegisterRef {
127       RegisterRef(const MachineOperand &Op) : Reg(Op.getReg()),
128           Sub(Op.getSubReg()) {}
129       RegisterRef(unsigned R = 0, unsigned S = 0) : Reg(R), Sub(S) {}
130       bool operator== (RegisterRef RR) const {
131         return Reg == RR.Reg && Sub == RR.Sub;
132       }
133       bool operator!= (RegisterRef RR) const { return !operator==(RR); }
134       unsigned Reg, Sub;
135     };
136
137     typedef DenseMap<unsigned,unsigned> ReferenceMap;
138     enum { Sub_Low = 0x1, Sub_High = 0x2, Sub_None = (Sub_Low | Sub_High) };
139     enum { Exec_Then = 0x10, Exec_Else = 0x20 };
140     unsigned getMaskForSub(unsigned Sub);
141     bool isCondset(const MachineInstr *MI);
142
143     void addRefToMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec);
144     bool isRefInMap(RegisterRef, ReferenceMap &Map, unsigned Exec);
145
146     LiveInterval::iterator nextSegment(LiveInterval &LI, SlotIndex S);
147     LiveInterval::iterator prevSegment(LiveInterval &LI, SlotIndex S);
148     void makeDefined(unsigned Reg, SlotIndex S, bool SetDef);
149     void makeUndead(unsigned Reg, SlotIndex S);
150     void shrinkToUses(unsigned Reg, LiveInterval &LI);
151     void updateKillFlags(unsigned Reg, LiveInterval &LI);
152     void terminateSegment(LiveInterval::iterator LT, SlotIndex S,
153         LiveInterval &LI);
154     void addInstrToLiveness(MachineInstr *MI);
155     void removeInstrFromLiveness(MachineInstr *MI);
156
157     unsigned getCondTfrOpcode(const MachineOperand &SO, bool Cond);
158     MachineInstr *genTfrFor(MachineOperand &SrcOp, unsigned DstR,
159         unsigned DstSR, const MachineOperand &PredOp, bool Cond);
160     bool split(MachineInstr *MI);
161     bool splitInBlock(MachineBasicBlock &B);
162
163     bool isPredicable(MachineInstr *MI);
164     MachineInstr *getReachingDefForPred(RegisterRef RD,
165         MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond);
166     bool canMoveOver(MachineInstr *MI, ReferenceMap &Defs, ReferenceMap &Uses);
167     bool canMoveMemTo(MachineInstr *MI, MachineInstr *ToI, bool IsDown);
168     void predicateAt(RegisterRef RD, MachineInstr *MI,
169         MachineBasicBlock::iterator Where, unsigned PredR, bool Cond);
170     void renameInRange(RegisterRef RO, RegisterRef RN, unsigned PredR,
171         bool Cond, MachineBasicBlock::iterator First,
172         MachineBasicBlock::iterator Last);
173     bool predicate(MachineInstr *TfrI, bool Cond);
174     bool predicateInBlock(MachineBasicBlock &B);
175
176     void postprocessUndefImplicitUses(MachineBasicBlock &B);
177     void removeImplicitUses(MachineInstr *MI);
178     void removeImplicitUses(MachineBasicBlock &B);
179
180     bool isIntReg(RegisterRef RR, unsigned &BW);
181     bool isIntraBlocks(LiveInterval &LI);
182     bool coalesceRegisters(RegisterRef R1, RegisterRef R2);
183     bool coalesceSegments(MachineFunction &MF);
184   };
185 }
186
187 char HexagonExpandCondsets::ID = 0;
188
189
190 unsigned HexagonExpandCondsets::getMaskForSub(unsigned Sub) {
191   switch (Sub) {
192     case Hexagon::subreg_loreg:
193       return Sub_Low;
194     case Hexagon::subreg_hireg:
195       return Sub_High;
196     case Hexagon::NoSubRegister:
197       return Sub_None;
198   }
199   llvm_unreachable("Invalid subregister");
200 }
201
202
203 bool HexagonExpandCondsets::isCondset(const MachineInstr *MI) {
204   unsigned Opc = MI->getOpcode();
205   switch (Opc) {
206     case Hexagon::C2_mux:
207     case Hexagon::C2_muxii:
208     case Hexagon::C2_muxir:
209     case Hexagon::C2_muxri:
210     case Hexagon::MUX64_rr:
211         return true;
212       break;
213   }
214   return false;
215 }
216
217
218 void HexagonExpandCondsets::addRefToMap(RegisterRef RR, ReferenceMap &Map,
219       unsigned Exec) {
220   unsigned Mask = getMaskForSub(RR.Sub) | Exec;
221   ReferenceMap::iterator F = Map.find(RR.Reg);
222   if (F == Map.end())
223     Map.insert(std::make_pair(RR.Reg, Mask));
224   else
225     F->second |= Mask;
226 }
227
228
229 bool HexagonExpandCondsets::isRefInMap(RegisterRef RR, ReferenceMap &Map,
230       unsigned Exec) {
231   ReferenceMap::iterator F = Map.find(RR.Reg);
232   if (F == Map.end())
233     return false;
234   unsigned Mask = getMaskForSub(RR.Sub) | Exec;
235   if (Mask & F->second)
236     return true;
237   return false;
238 }
239
240
241 LiveInterval::iterator HexagonExpandCondsets::nextSegment(LiveInterval &LI,
242       SlotIndex S) {
243   for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
244     if (I->start >= S)
245       return I;
246   }
247   return LI.end();
248 }
249
250
251 LiveInterval::iterator HexagonExpandCondsets::prevSegment(LiveInterval &LI,
252       SlotIndex S) {
253   LiveInterval::iterator P = LI.end();
254   for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
255     if (I->end > S)
256       return P;
257     P = I;
258   }
259   return P;
260 }
261
262
263 /// Find the implicit use of register Reg in slot index S, and make sure
264 /// that the "defined" flag is set to SetDef. While the mux expansion is
265 /// going on, predicated instructions will have implicit uses of the
266 /// registers that are being defined. This is to keep any preceding
267 /// definitions live. If there is no preceding definition, the implicit
268 /// use will be marked as "undef", otherwise it will be "defined". This
269 /// function is used to update the flag.
270 void HexagonExpandCondsets::makeDefined(unsigned Reg, SlotIndex S,
271       bool SetDef) {
272   if (!S.isRegister())
273     return;
274   MachineInstr *MI = LIS->getInstructionFromIndex(S);
275   assert(MI && "Expecting instruction");
276   for (auto &Op : MI->operands()) {
277     if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg)
278       continue;
279     bool IsDef = !Op.isUndef();
280     if (Op.isImplicit() && IsDef != SetDef)
281       Op.setIsUndef(!SetDef);
282   }
283 }
284
285
286 void HexagonExpandCondsets::makeUndead(unsigned Reg, SlotIndex S) {
287   // If S is a block boundary, then there can still be a dead def reaching
288   // this point. Instead of traversing the CFG, queue start points of all
289   // live segments that begin with a register, and end at a block boundary.
290   // This may "resurrect" some truly dead definitions, but doing so is
291   // harmless.
292   SmallVector<MachineInstr*,8> Defs;
293   if (S.isBlock()) {
294     LiveInterval &LI = LIS->getInterval(Reg);
295     for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
296       if (!I->start.isRegister() || !I->end.isBlock())
297         continue;
298       MachineInstr *MI = LIS->getInstructionFromIndex(I->start);
299       Defs.push_back(MI);
300     }
301   } else if (S.isRegister()) {
302     MachineInstr *MI = LIS->getInstructionFromIndex(S);
303     Defs.push_back(MI);
304   }
305
306   for (unsigned i = 0, n = Defs.size(); i < n; ++i) {
307     MachineInstr *MI = Defs[i];
308     for (auto &Op : MI->operands()) {
309       if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
310         continue;
311       Op.setIsDead(false);
312     }
313   }
314 }
315
316
317 /// Shrink the segments in the live interval for a given register to the last
318 /// use before each subsequent def. Unlike LiveIntervals::shrinkToUses, this
319 /// function will not mark any definitions of Reg as dead. The reason for this
320 /// is that this function is used while a MUX instruction is being expanded,
321 /// or while a conditional copy is undergoing predication. During these
322 /// processes, there may be defs present in the instruction sequence that have
323 /// not yet been removed, or there may be missing uses that have not yet been
324 /// added. We want to utilize LiveIntervals::shrinkToUses as much as possible,
325 /// but since it does not extend any intervals that are too short, we need to
326 /// pre-emptively extend them here in anticipation of further changes.
327 void HexagonExpandCondsets::shrinkToUses(unsigned Reg, LiveInterval &LI) {
328   SmallVector<MachineInstr*,4> Deads;
329   LIS->shrinkToUses(&LI, &Deads);
330   // Need to undo the deadification made by "shrinkToUses". It's easier to
331   // do it here, since we have a list of all instructions that were just
332   // marked as dead.
333   for (unsigned i = 0, n = Deads.size(); i < n; ++i) {
334     MachineInstr *MI = Deads[i];
335     // Clear the "dead" flag.
336     for (auto &Op : MI->operands()) {
337       if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
338         continue;
339       Op.setIsDead(false);
340     }
341     // Extend the live segment to the beginning of the next one.
342     LiveInterval::iterator End = LI.end();
343     SlotIndex S = LIS->getInstructionIndex(MI).getRegSlot();
344     LiveInterval::iterator T = LI.FindSegmentContaining(S);
345     assert(T != End);
346     LiveInterval::iterator N = std::next(T);
347     if (N != End)
348       T->end = N->start;
349     else
350       T->end = LIS->getMBBEndIdx(MI->getParent());
351   }
352   updateKillFlags(Reg, LI);
353 }
354
355
356 /// Given an updated live interval LI for register Reg, update the kill flags
357 /// in instructions using Reg to reflect the liveness changes.
358 void HexagonExpandCondsets::updateKillFlags(unsigned Reg, LiveInterval &LI) {
359   MRI->clearKillFlags(Reg);
360   for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
361     SlotIndex EX = I->end;
362     if (!EX.isRegister())
363       continue;
364     MachineInstr *MI = LIS->getInstructionFromIndex(EX);
365     for (auto &Op : MI->operands()) {
366       if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg)
367         continue;
368       // Only set the kill flag on the first encountered use of Reg in this
369       // instruction.
370       Op.setIsKill(true);
371       break;
372     }
373   }
374 }
375
376
377 /// When adding a new instruction to liveness, the newly added definition
378 /// will start a new live segment. This may happen at a position that falls
379 /// within an existing live segment. In such case that live segment needs to
380 /// be truncated to make room for the new segment. Ultimately, the truncation
381 /// will occur at the last use, but for now the segment can be terminated
382 /// right at the place where the new segment will start. The segments will be
383 /// shrunk-to-uses later.
384 void HexagonExpandCondsets::terminateSegment(LiveInterval::iterator LT,
385       SlotIndex S, LiveInterval &LI) {
386   // Terminate the live segment pointed to by LT within a live interval LI.
387   if (LT == LI.end())
388     return;
389
390   VNInfo *OldVN = LT->valno;
391   SlotIndex EX = LT->end;
392   LT->end = S;
393   // If LT does not end at a block boundary, the termination is done.
394   if (!EX.isBlock())
395     return;
396
397   // If LT ended at a block boundary, it's possible that its value number
398   // is picked up at the beginning other blocks. Create a new value number
399   // and change such blocks to use it instead.
400   VNInfo *NewVN = 0;
401   for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
402     if (!I->start.isBlock() || I->valno != OldVN)
403       continue;
404     // Generate on-demand a new value number that is defined by the
405     // block beginning (i.e. -phi).
406     if (!NewVN)
407       NewVN = LI.getNextValue(I->start, LIS->getVNInfoAllocator());
408     I->valno = NewVN;
409   }
410 }
411
412
413 /// Add the specified instruction to live intervals. This function is used
414 /// to update the live intervals while the program code is being changed.
415 /// Neither the expansion of a MUX, nor the predication are atomic, and this
416 /// function is used to update the live intervals while these transformations
417 /// are being done.
418 void HexagonExpandCondsets::addInstrToLiveness(MachineInstr *MI) {
419   SlotIndex MX = LIS->isNotInMIMap(MI) ? LIS->InsertMachineInstrInMaps(MI)
420                                        : LIS->getInstructionIndex(MI);
421   DEBUG(dbgs() << "adding liveness info for instr\n  " << MX << "  " << *MI);
422
423   MX = MX.getRegSlot();
424   bool Predicated = HII->isPredicated(MI);
425   MachineBasicBlock *MB = MI->getParent();
426
427   // Strip all implicit uses from predicated instructions. They will be
428   // added again, according to the updated information.
429   if (Predicated)
430     removeImplicitUses(MI);
431
432   // For each def in MI we need to insert a new live segment starting at MX
433   // into the interval. If there already exists a live segment in the interval
434   // that contains MX, we need to terminate it at MX.
435   SmallVector<RegisterRef,2> Defs;
436   for (auto &Op : MI->operands())
437     if (Op.isReg() && Op.isDef())
438       Defs.push_back(RegisterRef(Op));
439
440   for (unsigned i = 0, n = Defs.size(); i < n; ++i) {
441     unsigned DefR = Defs[i].Reg;
442     LiveInterval &LID = LIS->getInterval(DefR);
443     DEBUG(dbgs() << "adding def " << PrintReg(DefR, TRI)
444                  << " with interval\n  " << LID << "\n");
445     // If MX falls inside of an existing live segment, terminate it.
446     LiveInterval::iterator LT = LID.FindSegmentContaining(MX);
447     if (LT != LID.end())
448       terminateSegment(LT, MX, LID);
449     DEBUG(dbgs() << "after terminating segment\n  " << LID << "\n");
450
451     // Create a new segment starting from MX.
452     LiveInterval::iterator P = prevSegment(LID, MX), N = nextSegment(LID, MX);
453     SlotIndex EX;
454     VNInfo *VN = LID.getNextValue(MX, LIS->getVNInfoAllocator());
455     if (N == LID.end()) {
456       // There is no live segment after MX. End this segment at the end of
457       // the block.
458       EX = LIS->getMBBEndIdx(MB);
459     } else {
460       // If the next segment starts at the block boundary, end the new segment
461       // at the boundary of the preceding block (i.e. the previous index).
462       // Otherwise, end the segment at the beginning of the next segment. In
463       // either case it will be "shrunk-to-uses" later.
464       EX = N->start.isBlock() ? N->start.getPrevIndex() : N->start;
465     }
466     if (Predicated) {
467       // Predicated instruction will have an implicit use of the defined
468       // register. This is necessary so that this definition will not make
469       // any previous definitions dead. If there are no previous live
470       // segments, still add the implicit use, but make it "undef".
471       // Because of the implicit use, the preceding definition is not
472       // dead. Mark is as such (if necessary).
473       MachineOperand ImpUse = MachineOperand::CreateReg(DefR, false, true);
474       ImpUse.setSubReg(Defs[i].Sub);
475       bool Undef = false;
476       if (P == LID.end())
477         Undef = true;
478       else {
479         // If the previous segment extends to the end of the previous block,
480         // the end index may actually be the beginning of this block. If
481         // the previous segment ends at a block boundary, move it back by one,
482         // to get the proper block for it.
483         SlotIndex PE = P->end.isBlock() ? P->end.getPrevIndex() : P->end;
484         MachineBasicBlock *PB = LIS->getMBBFromIndex(PE);
485         if (PB != MB && !LIS->isLiveInToMBB(LID, MB))
486           Undef = true;
487       }
488       if (!Undef) {
489         makeUndead(DefR, P->valno->def);
490         // We are adding a live use, so extend the previous segment to
491         // include it.
492         P->end = MX;
493       } else {
494         ImpUse.setIsUndef(true);
495       }
496
497       if (!MI->readsRegister(DefR))
498         MI->addOperand(ImpUse);
499       if (N != LID.end())
500         makeDefined(DefR, N->start, true);
501     }
502     LiveRange::Segment NR = LiveRange::Segment(MX, EX, VN);
503     LID.addSegment(NR);
504     DEBUG(dbgs() << "added a new segment " << NR << "\n  " << LID << "\n");
505     shrinkToUses(DefR, LID);
506     DEBUG(dbgs() << "updated imp-uses: " << *MI);
507     LID.verify();
508   }
509
510   // For each use in MI:
511   // - If there is no live segment that contains MX for the used register,
512   //   extend the previous one. Ignore implicit uses.
513   for (auto &Op : MI->operands()) {
514     if (!Op.isReg() || !Op.isUse() || Op.isImplicit() || Op.isUndef())
515       continue;
516     unsigned UseR = Op.getReg();
517     LiveInterval &LIU = LIS->getInterval(UseR);
518     // Find the last segment P that starts before MX.
519     LiveInterval::iterator P = LIU.FindSegmentContaining(MX);
520     if (P == LIU.end())
521       P = prevSegment(LIU, MX);
522
523     assert(P != LIU.end() && "MI uses undefined register?");
524     SlotIndex EX = P->end;
525     // If P contains MX, there is not much to do.
526     if (EX > MX) {
527       Op.setIsKill(false);
528       continue;
529     }
530     // Otherwise, extend P to "next(MX)".
531     P->end = MX.getNextIndex();
532     Op.setIsKill(true);
533     // Get the old "kill" instruction, and remove the kill flag.
534     if (MachineInstr *KI = LIS->getInstructionFromIndex(MX))
535       KI->clearRegisterKills(UseR, nullptr);
536     shrinkToUses(UseR, LIU);
537     LIU.verify();
538   }
539 }
540
541
542 /// Update the live interval information to reflect the removal of the given
543 /// instruction from the program. As with "addInstrToLiveness", this function
544 /// is called while the program code is being changed.
545 void HexagonExpandCondsets::removeInstrFromLiveness(MachineInstr *MI) {
546   SlotIndex MX = LIS->getInstructionIndex(MI).getRegSlot();
547   DEBUG(dbgs() << "removing instr\n  " << MX << "  " << *MI);
548
549   // For each def in MI:
550   // If MI starts a live segment, merge this segment with the previous segment.
551   //
552   for (auto &Op : MI->operands()) {
553     if (!Op.isReg() || !Op.isDef())
554       continue;
555     unsigned DefR = Op.getReg();
556     LiveInterval &LID = LIS->getInterval(DefR);
557     LiveInterval::iterator LT = LID.FindSegmentContaining(MX);
558     assert(LT != LID.end() && "Expecting live segments");
559     DEBUG(dbgs() << "removing def at " << MX << " of " << PrintReg(DefR, TRI)
560                  << " with interval\n  " << LID << "\n");
561     if (LT->start != MX)
562       continue;
563
564     VNInfo *MVN = LT->valno;
565     if (LT != LID.begin()) {
566       // If the current live segment is not the first, the task is easy. If
567       // the previous segment continues into the current block, extend it to
568       // the end of the current one, and merge the value numbers.
569       // Otherwise, remove the current segment, and make the end of it "undef".
570       LiveInterval::iterator P = std::prev(LT);
571       SlotIndex PE = P->end.isBlock() ? P->end.getPrevIndex() : P->end;
572       MachineBasicBlock *MB = MI->getParent();
573       MachineBasicBlock *PB = LIS->getMBBFromIndex(PE);
574       if (PB != MB && !LIS->isLiveInToMBB(LID, MB)) {
575         makeDefined(DefR, LT->end, false);
576         LID.removeSegment(*LT);
577       } else {
578         // Make the segments adjacent, so that merge-vn can also merge the
579         // segments.
580         P->end = LT->start;
581         makeUndead(DefR, P->valno->def);
582         LID.MergeValueNumberInto(MVN, P->valno);
583       }
584     } else {
585       LiveInterval::iterator N = std::next(LT);
586       LiveInterval::iterator RmB = LT, RmE = N;
587       while (N != LID.end()) {
588         // Iterate until the first register-based definition is found
589         // (i.e. skip all block-boundary entries).
590         LiveInterval::iterator Next = std::next(N);
591         if (N->start.isRegister()) {
592           makeDefined(DefR, N->start, false);
593           break;
594         }
595         if (N->end.isRegister()) {
596           makeDefined(DefR, N->end, false);
597           RmE = Next;
598           break;
599         }
600         RmE = Next;
601         N = Next;
602       }
603       // Erase the segments in one shot to avoid invalidating iterators.
604       LID.segments.erase(RmB, RmE);
605     }
606
607     bool VNUsed = false;
608     for (LiveInterval::iterator I = LID.begin(), E = LID.end(); I != E; ++I) {
609       if (I->valno != MVN)
610         continue;
611       VNUsed = true;
612       break;
613     }
614     if (!VNUsed)
615       MVN->markUnused();
616
617     DEBUG(dbgs() << "new interval: ");
618     if (!LID.empty()) {
619       DEBUG(dbgs() << LID << "\n");
620       LID.verify();
621     } else {
622       DEBUG(dbgs() << "<empty>\n");
623       LIS->removeInterval(DefR);
624     }
625   }
626
627   // For uses there is nothing to do. The intervals will be updated via
628   // shrinkToUses.
629   SmallVector<unsigned,4> Uses;
630   for (auto &Op : MI->operands()) {
631     if (!Op.isReg() || !Op.isUse())
632       continue;
633     unsigned R = Op.getReg();
634     if (!TargetRegisterInfo::isVirtualRegister(R))
635       continue;
636     Uses.push_back(R);
637   }
638   LIS->RemoveMachineInstrFromMaps(MI);
639   MI->eraseFromParent();
640   for (unsigned i = 0, n = Uses.size(); i < n; ++i) {
641     LiveInterval &LI = LIS->getInterval(Uses[i]);
642     shrinkToUses(Uses[i], LI);
643   }
644 }
645
646
647 /// Get the opcode for a conditional transfer of the value in SO (source
648 /// operand). The condition (true/false) is given in Cond.
649 unsigned HexagonExpandCondsets::getCondTfrOpcode(const MachineOperand &SO,
650       bool Cond) {
651   using namespace Hexagon;
652   if (SO.isReg()) {
653     unsigned PhysR;
654     RegisterRef RS = SO;
655     if (TargetRegisterInfo::isVirtualRegister(RS.Reg)) {
656       const TargetRegisterClass *VC = MRI->getRegClass(RS.Reg);
657       assert(VC->begin() != VC->end() && "Empty register class");
658       PhysR = *VC->begin();
659     } else {
660       assert(TargetRegisterInfo::isPhysicalRegister(RS.Reg));
661       PhysR = RS.Reg;
662     }
663     unsigned PhysS = (RS.Sub == 0) ? PhysR : TRI->getSubReg(PhysR, RS.Sub);
664     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysS);
665     switch (RC->getSize()) {
666       case 4:
667         return Cond ? A2_tfrt : A2_tfrf;
668       case 8:
669         return Cond ? A2_tfrpt : A2_tfrpf;
670     }
671     llvm_unreachable("Invalid register operand");
672   }
673   if (SO.isImm() || SO.isFPImm())
674     return Cond ? C2_cmoveit : C2_cmoveif;
675   llvm_unreachable("Unexpected source operand");
676 }
677
678
679 /// Generate a conditional transfer, copying the value SrcOp to the
680 /// destination register DstR:DstSR, and using the predicate register from
681 /// PredOp. The Cond argument specifies whether the predicate is to be
682 /// if(PredOp), or if(!PredOp).
683 MachineInstr *HexagonExpandCondsets::genTfrFor(MachineOperand &SrcOp,
684       unsigned DstR, unsigned DstSR, const MachineOperand &PredOp, bool Cond) {
685   MachineInstr *MI = SrcOp.getParent();
686   MachineBasicBlock &B = *MI->getParent();
687   MachineBasicBlock::iterator At = MI;
688   DebugLoc DL = MI->getDebugLoc();
689
690   // Don't avoid identity copies here (i.e. if the source and the destination
691   // are the same registers). It is actually better to generate them here,
692   // since this would cause the copy to potentially be predicated in the next
693   // step. The predication will remove such a copy if it is unable to
694   /// predicate.
695
696   unsigned Opc = getCondTfrOpcode(SrcOp, Cond);
697   MachineInstr *TfrI = BuildMI(B, At, DL, HII->get(Opc))
698         .addReg(DstR, RegState::Define, DstSR)
699         .addOperand(PredOp)
700         .addOperand(SrcOp);
701   // We don't want any kills yet.
702   TfrI->clearKillInfo();
703   DEBUG(dbgs() << "created an initial copy: " << *TfrI);
704   return TfrI;
705 }
706
707
708 /// Replace a MUX instruction MI with a pair A2_tfrt/A2_tfrf. This function
709 /// performs all necessary changes to complete the replacement.
710 bool HexagonExpandCondsets::split(MachineInstr *MI) {
711   if (TfrLimitActive) {
712     if (TfrCounter >= TfrLimit)
713       return false;
714     TfrCounter++;
715   }
716   DEBUG(dbgs() << "\nsplitting BB#" << MI->getParent()->getNumber()
717                << ": " << *MI);
718   MachineOperand &MD = MI->getOperand(0); // Definition
719   MachineOperand &MP = MI->getOperand(1); // Predicate register
720   assert(MD.isDef());
721   unsigned DR = MD.getReg(), DSR = MD.getSubReg();
722
723   // First, create the two invididual conditional transfers, and add each
724   // of them to the live intervals information. Do that first and then remove
725   // the old instruction from live intervals.
726   if (MachineInstr *TfrT = genTfrFor(MI->getOperand(2), DR, DSR, MP, true))
727     addInstrToLiveness(TfrT);
728   if (MachineInstr *TfrF = genTfrFor(MI->getOperand(3), DR, DSR, MP, false))
729     addInstrToLiveness(TfrF);
730   removeInstrFromLiveness(MI);
731
732   return true;
733 }
734
735
736 /// Split all MUX instructions in the given block into pairs of contitional
737 /// transfers.
738 bool HexagonExpandCondsets::splitInBlock(MachineBasicBlock &B) {
739   bool Changed = false;
740   MachineBasicBlock::iterator I, E, NextI;
741   for (I = B.begin(), E = B.end(); I != E; I = NextI) {
742     NextI = std::next(I);
743     if (isCondset(I))
744       Changed |= split(I);
745   }
746   return Changed;
747 }
748
749
750 bool HexagonExpandCondsets::isPredicable(MachineInstr *MI) {
751   if (HII->isPredicated(MI) || !HII->isPredicable(MI))
752     return false;
753   if (MI->hasUnmodeledSideEffects() || MI->mayStore())
754     return false;
755   // Reject instructions with multiple defs (e.g. post-increment loads).
756   bool HasDef = false;
757   for (auto &Op : MI->operands()) {
758     if (!Op.isReg() || !Op.isDef())
759       continue;
760     if (HasDef)
761       return false;
762     HasDef = true;
763   }
764   for (auto &Mo : MI->memoperands())
765     if (Mo->isVolatile())
766       return false;
767   return true;
768 }
769
770
771 /// Find the reaching definition for a predicated use of RD. The RD is used
772 /// under the conditions given by PredR and Cond, and this function will ignore
773 /// definitions that set RD under the opposite conditions.
774 MachineInstr *HexagonExpandCondsets::getReachingDefForPred(RegisterRef RD,
775       MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond) {
776   MachineBasicBlock &B = *UseIt->getParent();
777   MachineBasicBlock::iterator I = UseIt, S = B.begin();
778   if (I == S)
779     return 0;
780
781   bool PredValid = true;
782   do {
783     --I;
784     MachineInstr *MI = &*I;
785     // Check if this instruction can be ignored, i.e. if it is predicated
786     // on the complementary condition.
787     if (PredValid && HII->isPredicated(MI)) {
788       if (MI->readsRegister(PredR) && (Cond != HII->isPredicatedTrue(MI)))
789         continue;
790     }
791
792     // Check the defs. If the PredR is defined, invalidate it. If RD is
793     // defined, return the instruction or 0, depending on the circumstances.
794     for (auto &Op : MI->operands()) {
795       if (!Op.isReg() || !Op.isDef())
796         continue;
797       RegisterRef RR = Op;
798       if (RR.Reg == PredR) {
799         PredValid = false;
800         continue;
801       }
802       if (RR.Reg != RD.Reg)
803         continue;
804       // If the "Reg" part agrees, there is still the subregister to check.
805       // If we are looking for vreg1:loreg, we can skip vreg1:hireg, but
806       // not vreg1 (w/o subregisters).
807       if (RR.Sub == RD.Sub)
808         return MI;
809       if (RR.Sub == 0 || RD.Sub == 0)
810         return 0;
811       // We have different subregisters, so we can continue looking.
812     }
813   } while (I != S);
814
815   return 0;
816 }
817
818
819 /// Check if the instruction MI can be safely moved over a set of instructions
820 /// whose side-effects (in terms of register defs and uses) are expressed in
821 /// the maps Defs and Uses. These maps reflect the conditional defs and uses
822 /// that depend on the same predicate register to allow moving instructions
823 /// over instructions predicated on the opposite condition.
824 bool HexagonExpandCondsets::canMoveOver(MachineInstr *MI, ReferenceMap &Defs,
825       ReferenceMap &Uses) {
826   // In order to be able to safely move MI over instructions that define
827   // "Defs" and use "Uses", no def operand from MI can be defined or used
828   // and no use operand can be defined.
829   for (auto &Op : MI->operands()) {
830     if (!Op.isReg())
831       continue;
832     RegisterRef RR = Op;
833     // For physical register we would need to check register aliases, etc.
834     // and we don't want to bother with that. It would be of little value
835     // before the actual register rewriting (from virtual to physical).
836     if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
837       return false;
838     // No redefs for any operand.
839     if (isRefInMap(RR, Defs, Exec_Then))
840       return false;
841     // For defs, there cannot be uses.
842     if (Op.isDef() && isRefInMap(RR, Uses, Exec_Then))
843       return false;
844   }
845   return true;
846 }
847
848
849 /// Check if the instruction accessing memory (TheI) can be moved to the
850 /// location ToI.
851 bool HexagonExpandCondsets::canMoveMemTo(MachineInstr *TheI, MachineInstr *ToI,
852       bool IsDown) {
853   bool IsLoad = TheI->mayLoad(), IsStore = TheI->mayStore();
854   if (!IsLoad && !IsStore)
855     return true;
856   if (HII->areMemAccessesTriviallyDisjoint(TheI, ToI))
857     return true;
858   if (TheI->hasUnmodeledSideEffects())
859     return false;
860
861   MachineBasicBlock::iterator StartI = IsDown ? TheI : ToI;
862   MachineBasicBlock::iterator EndI = IsDown ? ToI : TheI;
863   bool Ordered = TheI->hasOrderedMemoryRef();
864
865   // Search for aliased memory reference in (StartI, EndI).
866   for (MachineBasicBlock::iterator I = std::next(StartI); I != EndI; ++I) {
867     MachineInstr *MI = &*I;
868     if (MI->hasUnmodeledSideEffects())
869       return false;
870     bool L = MI->mayLoad(), S = MI->mayStore();
871     if (!L && !S)
872       continue;
873     if (Ordered && MI->hasOrderedMemoryRef())
874       return false;
875
876     bool Conflict = (L && IsStore) || S;
877     if (Conflict)
878       return false;
879   }
880   return true;
881 }
882
883
884 /// Generate a predicated version of MI (where the condition is given via
885 /// PredR and Cond) at the point indicated by Where.
886 void HexagonExpandCondsets::predicateAt(RegisterRef RD, MachineInstr *MI,
887       MachineBasicBlock::iterator Where, unsigned PredR, bool Cond) {
888   // The problem with updating live intervals is that we can move one def
889   // past another def. In particular, this can happen when moving an A2_tfrt
890   // over an A2_tfrf defining the same register. From the point of view of
891   // live intervals, these two instructions are two separate definitions,
892   // and each one starts another live segment. LiveIntervals's "handleMove"
893   // does not allow such moves, so we need to handle it ourselves. To avoid
894   // invalidating liveness data while we are using it, the move will be
895   // implemented in 4 steps: (1) add a clone of the instruction MI at the
896   // target location, (2) update liveness, (3) delete the old instruction,
897   // and (4) update liveness again.
898
899   MachineBasicBlock &B = *MI->getParent();
900   DebugLoc DL = Where->getDebugLoc();  // "Where" points to an instruction.
901   unsigned Opc = MI->getOpcode();
902   unsigned PredOpc = HII->getCondOpcode(Opc, !Cond);
903   MachineInstrBuilder MB = BuildMI(B, Where, DL, HII->get(PredOpc));
904   unsigned Ox = 0, NP = MI->getNumOperands();
905   // Skip all defs from MI first.
906   while (Ox < NP) {
907     MachineOperand &MO = MI->getOperand(Ox);
908     if (!MO.isReg() || !MO.isDef())
909       break;
910     Ox++;
911   }
912   // Add the new def, then the predicate register, then the rest of the
913   // operands.
914   MB.addReg(RD.Reg, RegState::Define, RD.Sub);
915   MB.addReg(PredR);
916   while (Ox < NP) {
917     MachineOperand &MO = MI->getOperand(Ox);
918     if (!MO.isReg() || !MO.isImplicit())
919       MB.addOperand(MO);
920     Ox++;
921   }
922
923   MachineFunction &MF = *B.getParent();
924   MachineInstr::mmo_iterator I = MI->memoperands_begin();
925   unsigned NR = std::distance(I, MI->memoperands_end());
926   MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(NR);
927   for (unsigned i = 0; i < NR; ++i)
928     MemRefs[i] = *I++;
929   MB.setMemRefs(MemRefs, MemRefs+NR);
930
931   MachineInstr *NewI = MB;
932   NewI->clearKillInfo();
933   addInstrToLiveness(NewI);
934 }
935
936
937 /// In the range [First, Last], rename all references to the "old" register RO
938 /// to the "new" register RN, but only in instructions predicated on the given
939 /// condition.
940 void HexagonExpandCondsets::renameInRange(RegisterRef RO, RegisterRef RN,
941       unsigned PredR, bool Cond, MachineBasicBlock::iterator First,
942       MachineBasicBlock::iterator Last) {
943   MachineBasicBlock::iterator End = std::next(Last);
944   for (MachineBasicBlock::iterator I = First; I != End; ++I) {
945     MachineInstr *MI = &*I;
946     // Do not touch instructions that are not predicated, or are predicated
947     // on the opposite condition.
948     if (!HII->isPredicated(MI))
949       continue;
950     if (!MI->readsRegister(PredR) || (Cond != HII->isPredicatedTrue(MI)))
951       continue;
952
953     for (auto &Op : MI->operands()) {
954       if (!Op.isReg() || RO != RegisterRef(Op))
955         continue;
956       Op.setReg(RN.Reg);
957       Op.setSubReg(RN.Sub);
958       // In practice, this isn't supposed to see any defs.
959       assert(!Op.isDef() && "Not expecting a def");
960     }
961   }
962 }
963
964
965 /// For a given conditional copy, predicate the definition of the source of
966 /// the copy under the given condition (using the same predicate register as
967 /// the copy).
968 bool HexagonExpandCondsets::predicate(MachineInstr *TfrI, bool Cond) {
969   // TfrI - A2_tfr[tf] Instruction (not A2_tfrsi).
970   unsigned Opc = TfrI->getOpcode();
971   (void)Opc;
972   assert(Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf);
973   DEBUG(dbgs() << "\nattempt to predicate if-" << (Cond ? "true" : "false")
974                << ": " << *TfrI);
975
976   MachineOperand &MD = TfrI->getOperand(0);
977   MachineOperand &MP = TfrI->getOperand(1);
978   MachineOperand &MS = TfrI->getOperand(2);
979   // The source operand should be a <kill>. This is not strictly necessary,
980   // but it makes things a lot simpler. Otherwise, we would need to rename
981   // some registers, which would complicate the transformation considerably.
982   if (!MS.isKill())
983     return false;
984
985   RegisterRef RT(MS);
986   unsigned PredR = MP.getReg();
987   MachineInstr *DefI = getReachingDefForPred(RT, TfrI, PredR, Cond);
988   if (!DefI || !isPredicable(DefI))
989     return false;
990
991   DEBUG(dbgs() << "Source def: " << *DefI);
992
993   // Collect the information about registers defined and used between the
994   // DefI and the TfrI.
995   // Map: reg -> bitmask of subregs
996   ReferenceMap Uses, Defs;
997   MachineBasicBlock::iterator DefIt = DefI, TfrIt = TfrI;
998
999   // Check if the predicate register is valid between DefI and TfrI.
1000   // If it is, we can then ignore instructions predicated on the negated
1001   // conditions when collecting def and use information.
1002   bool PredValid = true;
1003   for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
1004     if (!I->modifiesRegister(PredR, 0))
1005       continue;
1006     PredValid = false;
1007     break;
1008   }
1009
1010   for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
1011     MachineInstr *MI = &*I;
1012     // If this instruction is predicated on the same register, it could
1013     // potentially be ignored.
1014     // By default assume that the instruction executes on the same condition
1015     // as TfrI (Exec_Then), and also on the opposite one (Exec_Else).
1016     unsigned Exec = Exec_Then | Exec_Else;
1017     if (PredValid && HII->isPredicated(MI) && MI->readsRegister(PredR))
1018       Exec = (Cond == HII->isPredicatedTrue(MI)) ? Exec_Then : Exec_Else;
1019
1020     for (auto &Op : MI->operands()) {
1021       if (!Op.isReg())
1022         continue;
1023       // We don't want to deal with physical registers. The reason is that
1024       // they can be aliased with other physical registers. Aliased virtual
1025       // registers must share the same register number, and can only differ
1026       // in the subregisters, which we are keeping track of. Physical
1027       // registers ters no longer have subregisters---their super- and
1028       // subregisters are other physical registers, and we are not checking
1029       // that.
1030       RegisterRef RR = Op;
1031       if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
1032         return false;
1033
1034       ReferenceMap &Map = Op.isDef() ? Defs : Uses;
1035       addRefToMap(RR, Map, Exec);
1036     }
1037   }
1038
1039   // The situation:
1040   //   RT = DefI
1041   //   ...
1042   //   RD = TfrI ..., RT
1043
1044   // If the register-in-the-middle (RT) is used or redefined between
1045   // DefI and TfrI, we may not be able proceed with this transformation.
1046   // We can ignore a def that will not execute together with TfrI, and a
1047   // use that will. If there is such a use (that does execute together with
1048   // TfrI), we will not be able to move DefI down. If there is a use that
1049   // executed if TfrI's condition is false, then RT must be available
1050   // unconditionally (cannot be predicated).
1051   // Essentially, we need to be able to rename RT to RD in this segment.
1052   if (isRefInMap(RT, Defs, Exec_Then) || isRefInMap(RT, Uses, Exec_Else))
1053     return false;
1054   RegisterRef RD = MD;
1055   // If the predicate register is defined between DefI and TfrI, the only
1056   // potential thing to do would be to move the DefI down to TfrI, and then
1057   // predicate. The reaching def (DefI) must be movable down to the location
1058   // of the TfrI.
1059   // If the target register of the TfrI (RD) is not used or defined between
1060   // DefI and TfrI, consider moving TfrI up to DefI.
1061   bool CanUp =   canMoveOver(TfrI, Defs, Uses);
1062   bool CanDown = canMoveOver(DefI, Defs, Uses);
1063   // The TfrI does not access memory, but DefI could. Check if it's safe
1064   // to move DefI down to TfrI.
1065   if (DefI->mayLoad() || DefI->mayStore())
1066     if (!canMoveMemTo(DefI, TfrI, true))
1067       CanDown = false;
1068
1069   DEBUG(dbgs() << "Can move up: " << (CanUp ? "yes" : "no")
1070                << ", can move down: " << (CanDown ? "yes\n" : "no\n"));
1071   MachineBasicBlock::iterator PastDefIt = std::next(DefIt);
1072   if (CanUp)
1073     predicateAt(RD, DefI, PastDefIt, PredR, Cond);
1074   else if (CanDown)
1075     predicateAt(RD, DefI, TfrIt, PredR, Cond);
1076   else
1077     return false;
1078
1079   if (RT != RD)
1080     renameInRange(RT, RD, PredR, Cond, PastDefIt, TfrIt);
1081
1082   // Delete the user of RT first (it should work either way, but this order
1083   // of deleting is more natural).
1084   removeInstrFromLiveness(TfrI);
1085   removeInstrFromLiveness(DefI);
1086   return true;
1087 }
1088
1089
1090 /// Predicate all cases of conditional copies in the specified block.
1091 bool HexagonExpandCondsets::predicateInBlock(MachineBasicBlock &B) {
1092   bool Changed = false;
1093   MachineBasicBlock::iterator I, E, NextI;
1094   for (I = B.begin(), E = B.end(); I != E; I = NextI) {
1095     NextI = std::next(I);
1096     unsigned Opc = I->getOpcode();
1097     if (Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf) {
1098       bool Done = predicate(I, (Opc == Hexagon::A2_tfrt));
1099       if (!Done) {
1100         // If we didn't predicate I, we may need to remove it in case it is
1101         // an "identity" copy, e.g.  vreg1 = A2_tfrt vreg2, vreg1.
1102         if (RegisterRef(I->getOperand(0)) == RegisterRef(I->getOperand(2)))
1103           removeInstrFromLiveness(I);
1104       }
1105       Changed |= Done;
1106     }
1107   }
1108   return Changed;
1109 }
1110
1111
1112 void HexagonExpandCondsets::removeImplicitUses(MachineInstr *MI) {
1113   for (unsigned i = MI->getNumOperands(); i > 0; --i) {
1114     MachineOperand &MO = MI->getOperand(i-1);
1115     if (MO.isReg() && MO.isUse() && MO.isImplicit())
1116       MI->RemoveOperand(i-1);
1117   }
1118 }
1119
1120
1121 void HexagonExpandCondsets::removeImplicitUses(MachineBasicBlock &B) {
1122   for (MachineBasicBlock::iterator I = B.begin(), E = B.end(); I != E; ++I) {
1123     MachineInstr *MI = &*I;
1124     if (HII->isPredicated(MI))
1125       removeImplicitUses(MI);
1126   }
1127 }
1128
1129
1130 void HexagonExpandCondsets::postprocessUndefImplicitUses(MachineBasicBlock &B) {
1131   // Implicit uses that are "undef" are only meaningful (outside of the
1132   // internals of this pass) when the instruction defines a subregister,
1133   // and the implicit-undef use applies to the defined register. In such
1134   // cases, the proper way to record the information in the IR is to mark
1135   // the definition as "undef", which will be interpreted as "read-undef".
1136   typedef SmallSet<unsigned,2> RegisterSet;
1137   for (MachineBasicBlock::iterator I = B.begin(), E = B.end(); I != E; ++I) {
1138     MachineInstr *MI = &*I;
1139     RegisterSet Undefs;
1140     for (unsigned i = MI->getNumOperands(); i > 0; --i) {
1141       MachineOperand &MO = MI->getOperand(i-1);
1142       if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.isUndef()) {
1143         MI->RemoveOperand(i-1);
1144         Undefs.insert(MO.getReg());
1145       }
1146     }
1147     for (auto &Op : MI->operands()) {
1148       if (!Op.isReg() || !Op.isDef() || !Op.getSubReg())
1149         continue;
1150       if (Undefs.count(Op.getReg()))
1151         Op.setIsUndef(true);
1152     }
1153   }
1154 }
1155
1156
1157 bool HexagonExpandCondsets::isIntReg(RegisterRef RR, unsigned &BW) {
1158   if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
1159     return false;
1160   const TargetRegisterClass *RC = MRI->getRegClass(RR.Reg);
1161   if (RC == &Hexagon::IntRegsRegClass) {
1162     BW = 32;
1163     return true;
1164   }
1165   if (RC == &Hexagon::DoubleRegsRegClass) {
1166     BW = (RR.Sub != 0) ? 32 : 64;
1167     return true;
1168   }
1169   return false;
1170 }
1171
1172
1173 bool HexagonExpandCondsets::isIntraBlocks(LiveInterval &LI) {
1174   for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
1175     LiveRange::Segment &LR = *I;
1176     // Range must start at a register...
1177     if (!LR.start.isRegister())
1178       return false;
1179     // ...and end in a register or in a dead slot.
1180     if (!LR.end.isRegister() && !LR.end.isDead())
1181       return false;
1182   }
1183   return true;
1184 }
1185
1186
1187 bool HexagonExpandCondsets::coalesceRegisters(RegisterRef R1, RegisterRef R2) {
1188   if (CoaLimitActive) {
1189     if (CoaCounter >= CoaLimit)
1190       return false;
1191     CoaCounter++;
1192   }
1193   unsigned BW1, BW2;
1194   if (!isIntReg(R1, BW1) || !isIntReg(R2, BW2) || BW1 != BW2)
1195     return false;
1196   if (MRI->isLiveIn(R1.Reg))
1197     return false;
1198   if (MRI->isLiveIn(R2.Reg))
1199     return false;
1200
1201   LiveInterval &L1 = LIS->getInterval(R1.Reg);
1202   LiveInterval &L2 = LIS->getInterval(R2.Reg);
1203   bool Overlap = L1.overlaps(L2);
1204
1205   DEBUG(dbgs() << "compatible registers: ("
1206                << (Overlap ? "overlap" : "disjoint") << ")\n  "
1207                << PrintReg(R1.Reg, TRI, R1.Sub) << "  " << L1 << "\n  "
1208                << PrintReg(R2.Reg, TRI, R2.Sub) << "  " << L2 << "\n");
1209   if (R1.Sub || R2.Sub)
1210     return false;
1211   if (Overlap)
1212     return false;
1213
1214   // Coalescing could have a negative impact on scheduling, so try to limit
1215   // to some reasonable extent. Only consider coalescing segments, when one
1216   // of them does not cross basic block boundaries.
1217   if (!isIntraBlocks(L1) && !isIntraBlocks(L2))
1218     return false;
1219
1220   MRI->replaceRegWith(R2.Reg, R1.Reg);
1221
1222   // Move all live segments from L2 to L1.
1223   typedef DenseMap<VNInfo*,VNInfo*> ValueInfoMap;
1224   ValueInfoMap VM;
1225   for (LiveInterval::iterator I = L2.begin(), E = L2.end(); I != E; ++I) {
1226     VNInfo *NewVN, *OldVN = I->valno;
1227     ValueInfoMap::iterator F = VM.find(OldVN);
1228     if (F == VM.end()) {
1229       NewVN = L1.getNextValue(I->valno->def, LIS->getVNInfoAllocator());
1230       VM.insert(std::make_pair(OldVN, NewVN));
1231     } else {
1232       NewVN = F->second;
1233     }
1234     L1.addSegment(LiveRange::Segment(I->start, I->end, NewVN));
1235   }
1236   while (L2.begin() != L2.end())
1237     L2.removeSegment(*L2.begin());
1238
1239   updateKillFlags(R1.Reg, L1);
1240   DEBUG(dbgs() << "coalesced: " << L1 << "\n");
1241   L1.verify();
1242
1243   return true;
1244 }
1245
1246
1247 /// Attempt to coalesce one of the source registers to a MUX intruction with
1248 /// the destination register. This could lead to having only one predicated
1249 /// instruction in the end instead of two.
1250 bool HexagonExpandCondsets::coalesceSegments(MachineFunction &MF) {
1251   SmallVector<MachineInstr*,16> Condsets;
1252   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
1253     MachineBasicBlock &B = *I;
1254     for (MachineBasicBlock::iterator J = B.begin(), F = B.end(); J != F; ++J) {
1255       MachineInstr *MI = &*J;
1256       if (!isCondset(MI))
1257         continue;
1258       MachineOperand &S1 = MI->getOperand(2), &S2 = MI->getOperand(3);
1259       if (!S1.isReg() && !S2.isReg())
1260         continue;
1261       Condsets.push_back(MI);
1262     }
1263   }
1264
1265   bool Changed = false;
1266   for (unsigned i = 0, n = Condsets.size(); i < n; ++i) {
1267     MachineInstr *CI = Condsets[i];
1268     RegisterRef RD = CI->getOperand(0);
1269     RegisterRef RP = CI->getOperand(1);
1270     MachineOperand &S1 = CI->getOperand(2), &S2 = CI->getOperand(3);
1271     bool Done = false;
1272     // Consider this case:
1273     //   vreg1 = instr1 ...
1274     //   vreg2 = instr2 ...
1275     //   vreg0 = C2_mux ..., vreg1, vreg2
1276     // If vreg0 was coalesced with vreg1, we could end up with the following
1277     // code:
1278     //   vreg0 = instr1 ...
1279     //   vreg2 = instr2 ...
1280     //   vreg0 = A2_tfrf ..., vreg2
1281     // which will later become:
1282     //   vreg0 = instr1 ...
1283     //   vreg0 = instr2_cNotPt ...
1284     // i.e. there will be an unconditional definition (instr1) of vreg0
1285     // followed by a conditional one. The output dependency was there before
1286     // and it unavoidable, but if instr1 is predicable, we will no longer be
1287     // able to predicate it here.
1288     // To avoid this scenario, don't coalesce the destination register with
1289     // a source register that is defined by a predicable instruction.
1290     if (S1.isReg()) {
1291       RegisterRef RS = S1;
1292       MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, true);
1293       if (!RDef || !HII->isPredicable(RDef))
1294         Done = coalesceRegisters(RD, RegisterRef(S1));
1295     }
1296     if (!Done && S2.isReg()) {
1297       RegisterRef RS = S2;
1298       MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, false);
1299       if (!RDef || !HII->isPredicable(RDef))
1300         Done = coalesceRegisters(RD, RegisterRef(S2));
1301     }
1302     Changed |= Done;
1303   }
1304   return Changed;
1305 }
1306
1307
1308 bool HexagonExpandCondsets::runOnMachineFunction(MachineFunction &MF) {
1309   HII = static_cast<const HexagonInstrInfo*>(MF.getSubtarget().getInstrInfo());
1310   TRI = MF.getSubtarget().getRegisterInfo();
1311   LIS = &getAnalysis<LiveIntervals>();
1312   MRI = &MF.getRegInfo();
1313
1314   bool Changed = false;
1315
1316   // Try to coalesce the target of a mux with one of its sources.
1317   // This could eliminate a register copy in some circumstances.
1318   Changed |= coalesceSegments(MF);
1319
1320   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
1321     // First, simply split all muxes into a pair of conditional transfers
1322     // and update the live intervals to reflect the new arrangement.
1323     // This is done mainly to make the live interval update simpler, than it
1324     // would be while trying to predicate instructions at the same time.
1325     Changed |= splitInBlock(*I);
1326     // Traverse all blocks and collapse predicable instructions feeding
1327     // conditional transfers into predicated instructions.
1328     // Walk over all the instructions again, so we may catch pre-existing
1329     // cases that were not created in the previous step.
1330     Changed |= predicateInBlock(*I);
1331   }
1332
1333   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
1334     postprocessUndefImplicitUses(*I);
1335   return Changed;
1336 }
1337
1338
1339 //===----------------------------------------------------------------------===//
1340 //                         Public Constructor Functions
1341 //===----------------------------------------------------------------------===//
1342
1343 static void initializePassOnce(PassRegistry &Registry) {
1344   const char *Name = "Hexagon Expand Condsets";
1345   PassInfo *PI = new PassInfo(Name, "expand-condsets",
1346         &HexagonExpandCondsets::ID, 0, false, false);
1347   Registry.registerPass(*PI, true);
1348 }
1349
1350 void llvm::initializeHexagonExpandCondsetsPass(PassRegistry &Registry) {
1351   CALL_ONCE_INITIALIZATION(initializePassOnce)
1352 }
1353
1354
1355 FunctionPass *llvm::createHexagonExpandCondsets() {
1356   return new HexagonExpandCondsets();
1357 }