Hexagon backend support
[oota-llvm.git] / lib / Target / Hexagon / HexagonCFGOptimizer.cpp
1 //===---- HexagonCFGOptimizer.cpp - CFG optimizations ---------------------===//
2 //                     The LLVM Compiler Infrastructure
3 //
4 // This file is distributed under the University of Illinois Open Source
5 // License. See LICENSE.TXT for details.
6 //
7 //===----------------------------------------------------------------------===//
8
9
10 #define DEBUG_TYPE "hexagon_cfg"
11 #include "llvm/CodeGen/Passes.h"
12 #include "llvm/CodeGen/MachineDominators.h"
13 #include "llvm/CodeGen/MachineFunctionPass.h"
14 #include "llvm/CodeGen/MachineLoopInfo.h"
15 #include "llvm/CodeGen/MachineRegisterInfo.h"
16 #include "llvm/Target/TargetMachine.h"
17 #include "llvm/Target/TargetInstrInfo.h"
18 #include "llvm/Target/TargetRegisterInfo.h"
19 #include "llvm/Support/Compiler.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Support/MathExtras.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "HexagonTargetMachine.h"
25 #include "HexagonSubtarget.h"
26 #include "HexagonMachineFunctionInfo.h"
27 #include <iostream>
28
29 #include "llvm/Support/CommandLine.h"
30
31 using namespace llvm;
32
33 namespace {
34
35 class HexagonCFGOptimizer : public MachineFunctionPass {
36
37 private:
38   HexagonTargetMachine& QTM;
39   const HexagonSubtarget &QST;
40
41   void InvertAndChangeJumpTarget(MachineInstr*, MachineBasicBlock*);
42
43  public:
44   static char ID;
45   HexagonCFGOptimizer(HexagonTargetMachine& TM) : MachineFunctionPass(ID),
46                                                   QTM(TM),
47                                                   QST(*TM.getSubtargetImpl()) {}
48
49   const char *getPassName() const {
50     return "Hexagon CFG Optimizer";
51   }
52   bool runOnMachineFunction(MachineFunction &Fn);
53 };
54
55
56 char HexagonCFGOptimizer::ID = 0;
57
58 static bool IsConditionalBranch(int Opc) {
59   return (Opc == Hexagon::JMP_Pred) || (Opc == Hexagon::JMP_PredNot)
60     || (Opc == Hexagon::JMP_PredPt) || (Opc == Hexagon::JMP_PredNotPt);
61 }
62
63
64 static bool IsUnconditionalJump(int Opc) {
65   return (Opc == Hexagon::JMP);
66 }
67
68
69 void
70 HexagonCFGOptimizer::InvertAndChangeJumpTarget(MachineInstr* MI,
71                                                MachineBasicBlock* NewTarget) {
72   const HexagonInstrInfo *QII = QTM.getInstrInfo();
73   int NewOpcode = 0;
74   switch(MI->getOpcode()) {
75   case Hexagon::JMP_Pred:
76     NewOpcode = Hexagon::JMP_PredNot;
77     break;
78
79   case Hexagon::JMP_PredNot:
80     NewOpcode = Hexagon::JMP_Pred;
81     break;
82
83   case Hexagon::JMP_PredPt:
84     NewOpcode = Hexagon::JMP_PredNotPt;
85     break;
86
87   case Hexagon::JMP_PredNotPt:
88     NewOpcode = Hexagon::JMP_PredPt;
89     break;
90
91   default:
92     assert(0 && "Cannot handle this case");
93   }
94
95   MI->setDesc(QII->get(NewOpcode));
96   MI->getOperand(1).setMBB(NewTarget);
97 }
98
99
100 bool HexagonCFGOptimizer::runOnMachineFunction(MachineFunction &Fn) {
101
102   // Loop over all of the basic blocks.
103   for (MachineFunction::iterator MBBb = Fn.begin(), MBBe = Fn.end();
104        MBBb != MBBe; ++MBBb) {
105     MachineBasicBlock* MBB = MBBb;
106
107     // Traverse the basic block.
108     MachineBasicBlock::iterator MII = MBB->getFirstTerminator();
109     if (MII != MBB->end()) {
110       MachineInstr *MI = MII;
111       int Opc = MI->getOpcode();
112       if (IsConditionalBranch(Opc)) {
113
114         //
115         // (Case 1) Transform the code if the following condition occurs:
116         //   BB1: if (p0) jump BB3
117         //   ...falls-through to BB2 ...
118         //   BB2: jump BB4
119         //   ...next block in layout is BB3...
120         //   BB3: ...
121         //
122         //  Transform this to:
123         //  BB1: if (!p0) jump BB4
124         //  Remove BB2
125         //  BB3: ...
126         //
127         // (Case 2) A variation occurs when BB3 contains a JMP to BB4:
128         //   BB1: if (p0) jump BB3
129         //   ...falls-through to BB2 ...
130         //   BB2: jump BB4
131         //   ...other basic blocks ...
132         //   BB4:
133         //   ...not a fall-thru
134         //   BB3: ...
135         //     jump BB4
136         //
137         // Transform this to:
138         //   BB1: if (!p0) jump BB4
139         //   Remove BB2
140         //   BB3: ...
141         //   BB4: ...
142         //
143         unsigned NumSuccs = MBB->succ_size();
144         MachineBasicBlock::succ_iterator SI = MBB->succ_begin();
145         MachineBasicBlock* FirstSucc = *SI;
146         MachineBasicBlock* SecondSucc = *(++SI);
147         MachineBasicBlock* LayoutSucc = NULL;
148         MachineBasicBlock* JumpAroundTarget = NULL;
149
150         if (MBB->isLayoutSuccessor(FirstSucc)) {
151           LayoutSucc = FirstSucc;
152           JumpAroundTarget = SecondSucc;
153         } else if (MBB->isLayoutSuccessor(SecondSucc)) {
154           LayoutSucc = SecondSucc;
155           JumpAroundTarget = FirstSucc;
156         } else {
157           // Odd case...cannot handle.
158         }
159
160         // The target of the unconditional branch must be JumpAroundTarget.
161         // TODO: If not, we should not invert the unconditional branch.
162         MachineBasicBlock* CondBranchTarget = NULL;
163         if ((MI->getOpcode() == Hexagon::JMP_Pred) ||
164             (MI->getOpcode() == Hexagon::JMP_PredNot)) {
165           CondBranchTarget = MI->getOperand(1).getMBB();
166         }
167
168         if (!LayoutSucc || (CondBranchTarget != JumpAroundTarget)) {
169           continue;
170         }
171
172         if ((NumSuccs == 2) && LayoutSucc && (LayoutSucc->pred_size() == 1)) {
173
174           // Ensure that BB2 has one instruction -- an unconditional jump.
175           if ((LayoutSucc->size() == 1) &&
176               IsUnconditionalJump(LayoutSucc->front().getOpcode())) {
177             MachineBasicBlock* UncondTarget =
178               LayoutSucc->front().getOperand(0).getMBB();
179             // Check if the layout successor of BB2 is BB3.
180             bool case1 = LayoutSucc->isLayoutSuccessor(JumpAroundTarget);
181             bool case2 = JumpAroundTarget->isSuccessor(UncondTarget) &&
182               JumpAroundTarget->size() >= 1 &&
183               IsUnconditionalJump(JumpAroundTarget->back().getOpcode()) &&
184               JumpAroundTarget->pred_size() == 1 &&
185               JumpAroundTarget->succ_size() == 1;
186
187             if (case1 || case2) {
188               InvertAndChangeJumpTarget(MI, UncondTarget);
189               MBB->removeSuccessor(JumpAroundTarget);
190               MBB->addSuccessor(UncondTarget);
191
192               // Remove the unconditional branch in LayoutSucc.
193               LayoutSucc->erase(LayoutSucc->begin());
194               LayoutSucc->removeSuccessor(UncondTarget);
195               LayoutSucc->addSuccessor(JumpAroundTarget);
196
197               // This code performs the conversion for case 2, which moves
198               // the block to the fall-thru case (BB3 in the code above).
199               if (case2 && !case1) {
200                 JumpAroundTarget->moveAfter(LayoutSucc);
201                 // only move a block if it doesn't have a fall-thru. otherwise
202                 // the CFG will be incorrect.
203                 if (!UncondTarget->canFallThrough()) {
204                   UncondTarget->moveAfter(JumpAroundTarget);
205                 }
206               }
207
208               //
209               // Correct live-in information. Is used by post-RA scheduler
210               // The live-in to LayoutSucc is now all values live-in to
211               // JumpAroundTarget.
212               //
213               std::vector<unsigned> OrigLiveIn(LayoutSucc->livein_begin(),
214                                                LayoutSucc->livein_end());
215               std::vector<unsigned> NewLiveIn(JumpAroundTarget->livein_begin(),
216                                               JumpAroundTarget->livein_end());
217               for (unsigned i = 0; i < OrigLiveIn.size(); ++i) {
218                 LayoutSucc->removeLiveIn(OrigLiveIn[i]);
219               }
220               for (unsigned i = 0; i < NewLiveIn.size(); ++i) {
221                 LayoutSucc->addLiveIn(NewLiveIn[i]);
222               }
223             }
224           }
225         }
226       }
227     }
228   }
229   return true;
230 }
231 }
232
233
234 //===----------------------------------------------------------------------===//
235 //                         Public Constructor Functions
236 //===----------------------------------------------------------------------===//
237
238 FunctionPass *llvm::createHexagonCFGOptimizer(HexagonTargetMachine &TM) {
239   return new HexagonCFGOptimizer(TM);
240 }