Add support for new atomics to cpp backend. Misc other fixes while I'm here. PR11268.
[oota-llvm.git] / lib / Target / CppBackend / CPPBackend.cpp
1 //===-- CPPBackend.cpp - Library for converting LLVM code to C++ code -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the writing of the LLVM IR as a set of C++ calls to the
11 // LLVM IR interface. The input module is assumed to be verified.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "CPPTargetMachine.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/InlineAsm.h"
20 #include "llvm/Instruction.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/Pass.h"
24 #include "llvm/PassManager.h"
25 #include "llvm/MC/MCAsmInfo.h"
26 #include "llvm/MC/MCInstrInfo.h"
27 #include "llvm/MC/MCSubtargetInfo.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/FormattedStream.h"
32 #include "llvm/Support/TargetRegistry.h"
33 #include "llvm/ADT/StringExtras.h"
34 #include "llvm/Config/config.h"
35 #include <algorithm>
36 #include <set>
37 #include <map>
38 using namespace llvm;
39
40 static cl::opt<std::string>
41 FuncName("cppfname", cl::desc("Specify the name of the generated function"),
42          cl::value_desc("function name"));
43
44 enum WhatToGenerate {
45   GenProgram,
46   GenModule,
47   GenContents,
48   GenFunction,
49   GenFunctions,
50   GenInline,
51   GenVariable,
52   GenType
53 };
54
55 static cl::opt<WhatToGenerate> GenerationType("cppgen", cl::Optional,
56   cl::desc("Choose what kind of output to generate"),
57   cl::init(GenProgram),
58   cl::values(
59     clEnumValN(GenProgram,  "program",   "Generate a complete program"),
60     clEnumValN(GenModule,   "module",    "Generate a module definition"),
61     clEnumValN(GenContents, "contents",  "Generate contents of a module"),
62     clEnumValN(GenFunction, "function",  "Generate a function definition"),
63     clEnumValN(GenFunctions,"functions", "Generate all function definitions"),
64     clEnumValN(GenInline,   "inline",    "Generate an inline function"),
65     clEnumValN(GenVariable, "variable",  "Generate a variable definition"),
66     clEnumValN(GenType,     "type",      "Generate a type definition"),
67     clEnumValEnd
68   )
69 );
70
71 static cl::opt<std::string> NameToGenerate("cppfor", cl::Optional,
72   cl::desc("Specify the name of the thing to generate"),
73   cl::init("!bad!"));
74
75 extern "C" void LLVMInitializeCppBackendTarget() {
76   // Register the target.
77   RegisterTargetMachine<CPPTargetMachine> X(TheCppBackendTarget);
78 }
79
80 namespace {
81   typedef std::vector<Type*> TypeList;
82   typedef std::map<Type*,std::string> TypeMap;
83   typedef std::map<const Value*,std::string> ValueMap;
84   typedef std::set<std::string> NameSet;
85   typedef std::set<Type*> TypeSet;
86   typedef std::set<const Value*> ValueSet;
87   typedef std::map<const Value*,std::string> ForwardRefMap;
88
89   /// CppWriter - This class is the main chunk of code that converts an LLVM
90   /// module to a C++ translation unit.
91   class CppWriter : public ModulePass {
92     formatted_raw_ostream &Out;
93     const Module *TheModule;
94     uint64_t uniqueNum;
95     TypeMap TypeNames;
96     ValueMap ValueNames;
97     NameSet UsedNames;
98     TypeSet DefinedTypes;
99     ValueSet DefinedValues;
100     ForwardRefMap ForwardRefs;
101     bool is_inline;
102     unsigned indent_level;
103
104   public:
105     static char ID;
106     explicit CppWriter(formatted_raw_ostream &o) :
107       ModulePass(ID), Out(o), uniqueNum(0), is_inline(false), indent_level(0){}
108
109     virtual const char *getPassName() const { return "C++ backend"; }
110
111     bool runOnModule(Module &M);
112
113     void printProgram(const std::string& fname, const std::string& modName );
114     void printModule(const std::string& fname, const std::string& modName );
115     void printContents(const std::string& fname, const std::string& modName );
116     void printFunction(const std::string& fname, const std::string& funcName );
117     void printFunctions();
118     void printInline(const std::string& fname, const std::string& funcName );
119     void printVariable(const std::string& fname, const std::string& varName );
120     void printType(const std::string& fname, const std::string& typeName );
121
122     void error(const std::string& msg);
123
124     
125     formatted_raw_ostream& nl(formatted_raw_ostream &Out, int delta = 0);
126     inline void in() { indent_level++; }
127     inline void out() { if (indent_level >0) indent_level--; }
128     
129   private:
130     void printLinkageType(GlobalValue::LinkageTypes LT);
131     void printVisibilityType(GlobalValue::VisibilityTypes VisTypes);
132     void printCallingConv(CallingConv::ID cc);
133     void printEscapedString(const std::string& str);
134     void printCFP(const ConstantFP* CFP);
135
136     std::string getCppName(Type* val);
137     inline void printCppName(Type* val);
138
139     std::string getCppName(const Value* val);
140     inline void printCppName(const Value* val);
141
142     void printAttributes(const AttrListPtr &PAL, const std::string &name);
143     void printType(Type* Ty);
144     void printTypes(const Module* M);
145
146     void printConstant(const Constant *CPV);
147     void printConstants(const Module* M);
148
149     void printVariableUses(const GlobalVariable *GV);
150     void printVariableHead(const GlobalVariable *GV);
151     void printVariableBody(const GlobalVariable *GV);
152
153     void printFunctionUses(const Function *F);
154     void printFunctionHead(const Function *F);
155     void printFunctionBody(const Function *F);
156     void printInstruction(const Instruction *I, const std::string& bbname);
157     std::string getOpName(const Value*);
158
159     void printModuleBody();
160   };
161 } // end anonymous namespace.
162
163 formatted_raw_ostream &CppWriter::nl(formatted_raw_ostream &Out, int delta) {
164   Out << '\n';
165   if (delta >= 0 || indent_level >= unsigned(-delta))
166     indent_level += delta;
167   Out.indent(indent_level);
168   return Out;
169 }
170
171 static inline void sanitize(std::string &str) {
172   for (size_t i = 0; i < str.length(); ++i)
173     if (!isalnum(str[i]) && str[i] != '_')
174       str[i] = '_';
175 }
176
177 static std::string getTypePrefix(Type *Ty) {
178   switch (Ty->getTypeID()) {
179   case Type::VoidTyID:     return "void_";
180   case Type::IntegerTyID:
181     return "int" + utostr(cast<IntegerType>(Ty)->getBitWidth()) + "_";
182   case Type::FloatTyID:    return "float_";
183   case Type::DoubleTyID:   return "double_";
184   case Type::LabelTyID:    return "label_";
185   case Type::FunctionTyID: return "func_";
186   case Type::StructTyID:   return "struct_";
187   case Type::ArrayTyID:    return "array_";
188   case Type::PointerTyID:  return "ptr_";
189   case Type::VectorTyID:   return "packed_";
190   default:                 return "other_";
191   }
192   return "unknown_";
193 }
194
195 void CppWriter::error(const std::string& msg) {
196   report_fatal_error(msg);
197 }
198
199 // printCFP - Print a floating point constant .. very carefully :)
200 // This makes sure that conversion to/from floating yields the same binary
201 // result so that we don't lose precision.
202 void CppWriter::printCFP(const ConstantFP *CFP) {
203   bool ignored;
204   APFloat APF = APFloat(CFP->getValueAPF());  // copy
205   if (CFP->getType() == Type::getFloatTy(CFP->getContext()))
206     APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
207   Out << "ConstantFP::get(mod->getContext(), ";
208   Out << "APFloat(";
209 #if HAVE_PRINTF_A
210   char Buffer[100];
211   sprintf(Buffer, "%A", APF.convertToDouble());
212   if ((!strncmp(Buffer, "0x", 2) ||
213        !strncmp(Buffer, "-0x", 3) ||
214        !strncmp(Buffer, "+0x", 3)) &&
215       APF.bitwiseIsEqual(APFloat(atof(Buffer)))) {
216     if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
217       Out << "BitsToDouble(" << Buffer << ")";
218     else
219       Out << "BitsToFloat((float)" << Buffer << ")";
220     Out << ")";
221   } else {
222 #endif
223     std::string StrVal = ftostr(CFP->getValueAPF());
224
225     while (StrVal[0] == ' ')
226       StrVal.erase(StrVal.begin());
227
228     // Check to make sure that the stringized number is not some string like
229     // "Inf" or NaN.  Check that the string matches the "[-+]?[0-9]" regex.
230     if (((StrVal[0] >= '0' && StrVal[0] <= '9') ||
231          ((StrVal[0] == '-' || StrVal[0] == '+') &&
232           (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
233         (CFP->isExactlyValue(atof(StrVal.c_str())))) {
234       if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
235         Out <<  StrVal;
236       else
237         Out << StrVal << "f";
238     } else if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
239       Out << "BitsToDouble(0x"
240           << utohexstr(CFP->getValueAPF().bitcastToAPInt().getZExtValue())
241           << "ULL) /* " << StrVal << " */";
242     else
243       Out << "BitsToFloat(0x"
244           << utohexstr((uint32_t)CFP->getValueAPF().
245                                       bitcastToAPInt().getZExtValue())
246           << "U) /* " << StrVal << " */";
247     Out << ")";
248 #if HAVE_PRINTF_A
249   }
250 #endif
251   Out << ")";
252 }
253
254 void CppWriter::printCallingConv(CallingConv::ID cc){
255   // Print the calling convention.
256   switch (cc) {
257   case CallingConv::C:     Out << "CallingConv::C"; break;
258   case CallingConv::Fast:  Out << "CallingConv::Fast"; break;
259   case CallingConv::Cold:  Out << "CallingConv::Cold"; break;
260   case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
261   default:                 Out << cc; break;
262   }
263 }
264
265 void CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
266   switch (LT) {
267   case GlobalValue::InternalLinkage:
268     Out << "GlobalValue::InternalLinkage"; break;
269   case GlobalValue::PrivateLinkage:
270     Out << "GlobalValue::PrivateLinkage"; break;
271   case GlobalValue::LinkerPrivateLinkage:
272     Out << "GlobalValue::LinkerPrivateLinkage"; break;
273   case GlobalValue::LinkerPrivateWeakLinkage:
274     Out << "GlobalValue::LinkerPrivateWeakLinkage"; break;
275   case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
276     Out << "GlobalValue::LinkerPrivateWeakDefAutoLinkage"; break;
277   case GlobalValue::AvailableExternallyLinkage:
278     Out << "GlobalValue::AvailableExternallyLinkage "; break;
279   case GlobalValue::LinkOnceAnyLinkage:
280     Out << "GlobalValue::LinkOnceAnyLinkage "; break;
281   case GlobalValue::LinkOnceODRLinkage:
282     Out << "GlobalValue::LinkOnceODRLinkage "; break;
283   case GlobalValue::WeakAnyLinkage:
284     Out << "GlobalValue::WeakAnyLinkage"; break;
285   case GlobalValue::WeakODRLinkage:
286     Out << "GlobalValue::WeakODRLinkage"; break;
287   case GlobalValue::AppendingLinkage:
288     Out << "GlobalValue::AppendingLinkage"; break;
289   case GlobalValue::ExternalLinkage:
290     Out << "GlobalValue::ExternalLinkage"; break;
291   case GlobalValue::DLLImportLinkage:
292     Out << "GlobalValue::DLLImportLinkage"; break;
293   case GlobalValue::DLLExportLinkage:
294     Out << "GlobalValue::DLLExportLinkage"; break;
295   case GlobalValue::ExternalWeakLinkage:
296     Out << "GlobalValue::ExternalWeakLinkage"; break;
297   case GlobalValue::CommonLinkage:
298     Out << "GlobalValue::CommonLinkage"; break;
299   }
300 }
301
302 void CppWriter::printVisibilityType(GlobalValue::VisibilityTypes VisType) {
303   switch (VisType) {
304   default: llvm_unreachable("Unknown GVar visibility");
305   case GlobalValue::DefaultVisibility:
306     Out << "GlobalValue::DefaultVisibility";
307     break;
308   case GlobalValue::HiddenVisibility:
309     Out << "GlobalValue::HiddenVisibility";
310     break;
311   case GlobalValue::ProtectedVisibility:
312     Out << "GlobalValue::ProtectedVisibility";
313     break;
314   }
315 }
316
317 // printEscapedString - Print each character of the specified string, escaping
318 // it if it is not printable or if it is an escape char.
319 void CppWriter::printEscapedString(const std::string &Str) {
320   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
321     unsigned char C = Str[i];
322     if (isprint(C) && C != '"' && C != '\\') {
323       Out << C;
324     } else {
325       Out << "\\x"
326           << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
327           << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
328     }
329   }
330 }
331
332 std::string CppWriter::getCppName(Type* Ty) {
333   // First, handle the primitive types .. easy
334   if (Ty->isPrimitiveType() || Ty->isIntegerTy()) {
335     switch (Ty->getTypeID()) {
336     case Type::VoidTyID:   return "Type::getVoidTy(mod->getContext())";
337     case Type::IntegerTyID: {
338       unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
339       return "IntegerType::get(mod->getContext(), " + utostr(BitWidth) + ")";
340     }
341     case Type::X86_FP80TyID: return "Type::getX86_FP80Ty(mod->getContext())";
342     case Type::FloatTyID:    return "Type::getFloatTy(mod->getContext())";
343     case Type::DoubleTyID:   return "Type::getDoubleTy(mod->getContext())";
344     case Type::LabelTyID:    return "Type::getLabelTy(mod->getContext())";
345     case Type::X86_MMXTyID:  return "Type::getX86_MMXTy(mod->getContext())";
346     default:
347       error("Invalid primitive type");
348       break;
349     }
350     // shouldn't be returned, but make it sensible
351     return "Type::getVoidTy(mod->getContext())";
352   }
353
354   // Now, see if we've seen the type before and return that
355   TypeMap::iterator I = TypeNames.find(Ty);
356   if (I != TypeNames.end())
357     return I->second;
358
359   // Okay, let's build a new name for this type. Start with a prefix
360   const char* prefix = 0;
361   switch (Ty->getTypeID()) {
362   case Type::FunctionTyID:    prefix = "FuncTy_"; break;
363   case Type::StructTyID:      prefix = "StructTy_"; break;
364   case Type::ArrayTyID:       prefix = "ArrayTy_"; break;
365   case Type::PointerTyID:     prefix = "PointerTy_"; break;
366   case Type::VectorTyID:      prefix = "VectorTy_"; break;
367   default:                    prefix = "OtherTy_"; break; // prevent breakage
368   }
369
370   // See if the type has a name in the symboltable and build accordingly
371   std::string name;
372   if (StructType *STy = dyn_cast<StructType>(Ty))
373     if (STy->hasName())
374       name = STy->getName();
375   
376   if (name.empty())
377     name = utostr(uniqueNum++);
378   
379   name = std::string(prefix) + name;
380   sanitize(name);
381
382   // Save the name
383   return TypeNames[Ty] = name;
384 }
385
386 void CppWriter::printCppName(Type* Ty) {
387   printEscapedString(getCppName(Ty));
388 }
389
390 std::string CppWriter::getCppName(const Value* val) {
391   std::string name;
392   ValueMap::iterator I = ValueNames.find(val);
393   if (I != ValueNames.end() && I->first == val)
394     return  I->second;
395
396   if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) {
397     name = std::string("gvar_") +
398       getTypePrefix(GV->getType()->getElementType());
399   } else if (isa<Function>(val)) {
400     name = std::string("func_");
401   } else if (const Constant* C = dyn_cast<Constant>(val)) {
402     name = std::string("const_") + getTypePrefix(C->getType());
403   } else if (const Argument* Arg = dyn_cast<Argument>(val)) {
404     if (is_inline) {
405       unsigned argNum = std::distance(Arg->getParent()->arg_begin(),
406                                       Function::const_arg_iterator(Arg)) + 1;
407       name = std::string("arg_") + utostr(argNum);
408       NameSet::iterator NI = UsedNames.find(name);
409       if (NI != UsedNames.end())
410         name += std::string("_") + utostr(uniqueNum++);
411       UsedNames.insert(name);
412       return ValueNames[val] = name;
413     } else {
414       name = getTypePrefix(val->getType());
415     }
416   } else {
417     name = getTypePrefix(val->getType());
418   }
419   if (val->hasName())
420     name += val->getName();
421   else
422     name += utostr(uniqueNum++);
423   sanitize(name);
424   NameSet::iterator NI = UsedNames.find(name);
425   if (NI != UsedNames.end())
426     name += std::string("_") + utostr(uniqueNum++);
427   UsedNames.insert(name);
428   return ValueNames[val] = name;
429 }
430
431 void CppWriter::printCppName(const Value* val) {
432   printEscapedString(getCppName(val));
433 }
434
435 void CppWriter::printAttributes(const AttrListPtr &PAL,
436                                 const std::string &name) {
437   Out << "AttrListPtr " << name << "_PAL;";
438   nl(Out);
439   if (!PAL.isEmpty()) {
440     Out << '{'; in(); nl(Out);
441     Out << "SmallVector<AttributeWithIndex, 4> Attrs;"; nl(Out);
442     Out << "AttributeWithIndex PAWI;"; nl(Out);
443     for (unsigned i = 0; i < PAL.getNumSlots(); ++i) {
444       unsigned index = PAL.getSlot(i).Index;
445       Attributes attrs = PAL.getSlot(i).Attrs;
446       Out << "PAWI.Index = " << index << "U; PAWI.Attrs = 0 ";
447 #define HANDLE_ATTR(X)                 \
448       if (attrs & Attribute::X)      \
449         Out << " | Attribute::" #X;  \
450       attrs &= ~Attribute::X;
451       
452       HANDLE_ATTR(SExt);
453       HANDLE_ATTR(ZExt);
454       HANDLE_ATTR(NoReturn);
455       HANDLE_ATTR(InReg);
456       HANDLE_ATTR(StructRet);
457       HANDLE_ATTR(NoUnwind);
458       HANDLE_ATTR(NoAlias);
459       HANDLE_ATTR(ByVal);
460       HANDLE_ATTR(Nest);
461       HANDLE_ATTR(ReadNone);
462       HANDLE_ATTR(ReadOnly);
463       HANDLE_ATTR(NoInline);
464       HANDLE_ATTR(AlwaysInline);
465       HANDLE_ATTR(OptimizeForSize);
466       HANDLE_ATTR(StackProtect);
467       HANDLE_ATTR(StackProtectReq);
468       HANDLE_ATTR(NoCapture);
469       HANDLE_ATTR(NoRedZone);
470       HANDLE_ATTR(NoImplicitFloat);
471       HANDLE_ATTR(Naked);
472       HANDLE_ATTR(InlineHint);
473       HANDLE_ATTR(ReturnsTwice);
474       HANDLE_ATTR(UWTable);
475       HANDLE_ATTR(NonLazyBind);
476 #undef HANDLE_ATTR
477       if (attrs & Attribute::StackAlignment)
478         Out << " | Attribute::constructStackAlignmentFromInt("
479             << Attribute::getStackAlignmentFromAttrs(attrs)
480             << ")"; 
481       attrs &= ~Attribute::StackAlignment;
482       assert(attrs == 0 && "Unhandled attribute!");
483       Out << ";";
484       nl(Out);
485       Out << "Attrs.push_back(PAWI);";
486       nl(Out);
487     }
488     Out << name << "_PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());";
489     nl(Out);
490     out(); nl(Out);
491     Out << '}'; nl(Out);
492   }
493 }
494
495 void CppWriter::printType(Type* Ty) {
496   // We don't print definitions for primitive types
497   if (Ty->isPrimitiveType() || Ty->isIntegerTy())
498     return;
499
500   // If we already defined this type, we don't need to define it again.
501   if (DefinedTypes.find(Ty) != DefinedTypes.end())
502     return;
503
504   // Everything below needs the name for the type so get it now.
505   std::string typeName(getCppName(Ty));
506
507   // Print the type definition
508   switch (Ty->getTypeID()) {
509   case Type::FunctionTyID:  {
510     FunctionType* FT = cast<FunctionType>(Ty);
511     Out << "std::vector<Type*>" << typeName << "_args;";
512     nl(Out);
513     FunctionType::param_iterator PI = FT->param_begin();
514     FunctionType::param_iterator PE = FT->param_end();
515     for (; PI != PE; ++PI) {
516       Type* argTy = static_cast<Type*>(*PI);
517       printType(argTy);
518       std::string argName(getCppName(argTy));
519       Out << typeName << "_args.push_back(" << argName;
520       Out << ");";
521       nl(Out);
522     }
523     printType(FT->getReturnType());
524     std::string retTypeName(getCppName(FT->getReturnType()));
525     Out << "FunctionType* " << typeName << " = FunctionType::get(";
526     in(); nl(Out) << "/*Result=*/" << retTypeName;
527     Out << ",";
528     nl(Out) << "/*Params=*/" << typeName << "_args,";
529     nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true" : "false") << ");";
530     out();
531     nl(Out);
532     break;
533   }
534   case Type::StructTyID: {
535     StructType* ST = cast<StructType>(Ty);
536     if (!ST->isLiteral()) {
537       Out << "StructType *" << typeName << " = mod->getTypeByName(\"";
538       printEscapedString(ST->getName());
539       Out << "\");";
540       nl(Out);
541       Out << "if (!" << typeName << ") {";
542       nl(Out);
543       Out << typeName << " = ";
544       Out << "StructType::create(mod->getContext(), \"";
545       printEscapedString(ST->getName());
546       Out << "\");";
547       nl(Out);
548       Out << "}";
549       nl(Out);
550       // Indicate that this type is now defined.
551       DefinedTypes.insert(Ty);
552     }
553
554     Out << "std::vector<Type*>" << typeName << "_fields;";
555     nl(Out);
556     StructType::element_iterator EI = ST->element_begin();
557     StructType::element_iterator EE = ST->element_end();
558     for (; EI != EE; ++EI) {
559       Type* fieldTy = static_cast<Type*>(*EI);
560       printType(fieldTy);
561       std::string fieldName(getCppName(fieldTy));
562       Out << typeName << "_fields.push_back(" << fieldName;
563       Out << ");";
564       nl(Out);
565     }
566
567     if (ST->isLiteral()) {
568       Out << "StructType *" << typeName << " = ";
569       Out << "StructType::get(" << "mod->getContext(), ";
570     } else {
571       Out << "if (" << typeName << "->isOpaque()) {";
572       nl(Out);
573       Out << typeName << "->setBody(";
574     }
575
576     Out << typeName << "_fields, /*isPacked=*/"
577         << (ST->isPacked() ? "true" : "false") << ");";
578     nl(Out);
579     if (!ST->isLiteral()) {
580       Out << "}";
581       nl(Out);
582     }
583     break;
584   }
585   case Type::ArrayTyID: {
586     ArrayType* AT = cast<ArrayType>(Ty);
587     Type* ET = AT->getElementType();
588     printType(ET);
589     if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
590       std::string elemName(getCppName(ET));
591       Out << "ArrayType* " << typeName << " = ArrayType::get("
592           << elemName
593           << ", " << utostr(AT->getNumElements()) << ");";
594       nl(Out);
595     }
596     break;
597   }
598   case Type::PointerTyID: {
599     PointerType* PT = cast<PointerType>(Ty);
600     Type* ET = PT->getElementType();
601     printType(ET);
602     if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
603       std::string elemName(getCppName(ET));
604       Out << "PointerType* " << typeName << " = PointerType::get("
605           << elemName
606           << ", " << utostr(PT->getAddressSpace()) << ");";
607       nl(Out);
608     }
609     break;
610   }
611   case Type::VectorTyID: {
612     VectorType* PT = cast<VectorType>(Ty);
613     Type* ET = PT->getElementType();
614     printType(ET);
615     if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
616       std::string elemName(getCppName(ET));
617       Out << "VectorType* " << typeName << " = VectorType::get("
618           << elemName
619           << ", " << utostr(PT->getNumElements()) << ");";
620       nl(Out);
621     }
622     break;
623   }
624   default:
625     error("Invalid TypeID");
626   }
627
628   // Indicate that this type is now defined.
629   DefinedTypes.insert(Ty);
630
631   // Finally, separate the type definition from other with a newline.
632   nl(Out);
633 }
634
635 void CppWriter::printTypes(const Module* M) {
636   // Add all of the global variables to the value table.
637   for (Module::const_global_iterator I = TheModule->global_begin(),
638          E = TheModule->global_end(); I != E; ++I) {
639     if (I->hasInitializer())
640       printType(I->getInitializer()->getType());
641     printType(I->getType());
642   }
643
644   // Add all the functions to the table
645   for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
646        FI != FE; ++FI) {
647     printType(FI->getReturnType());
648     printType(FI->getFunctionType());
649     // Add all the function arguments
650     for (Function::const_arg_iterator AI = FI->arg_begin(),
651            AE = FI->arg_end(); AI != AE; ++AI) {
652       printType(AI->getType());
653     }
654
655     // Add all of the basic blocks and instructions
656     for (Function::const_iterator BB = FI->begin(),
657            E = FI->end(); BB != E; ++BB) {
658       printType(BB->getType());
659       for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
660            ++I) {
661         printType(I->getType());
662         for (unsigned i = 0; i < I->getNumOperands(); ++i)
663           printType(I->getOperand(i)->getType());
664       }
665     }
666   }
667 }
668
669
670 // printConstant - Print out a constant pool entry...
671 void CppWriter::printConstant(const Constant *CV) {
672   // First, if the constant is actually a GlobalValue (variable or function)
673   // or its already in the constant list then we've printed it already and we
674   // can just return.
675   if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end())
676     return;
677
678   std::string constName(getCppName(CV));
679   std::string typeName(getCppName(CV->getType()));
680
681   if (isa<GlobalValue>(CV)) {
682     // Skip variables and functions, we emit them elsewhere
683     return;
684   }
685
686   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
687     std::string constValue = CI->getValue().toString(10, true);
688     Out << "ConstantInt* " << constName
689         << " = ConstantInt::get(mod->getContext(), APInt("
690         << cast<IntegerType>(CI->getType())->getBitWidth()
691         << ", StringRef(\"" <<  constValue << "\"), 10));";
692   } else if (isa<ConstantAggregateZero>(CV)) {
693     Out << "ConstantAggregateZero* " << constName
694         << " = ConstantAggregateZero::get(" << typeName << ");";
695   } else if (isa<ConstantPointerNull>(CV)) {
696     Out << "ConstantPointerNull* " << constName
697         << " = ConstantPointerNull::get(" << typeName << ");";
698   } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
699     Out << "ConstantFP* " << constName << " = ";
700     printCFP(CFP);
701     Out << ";";
702   } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
703     if (CA->isString() &&
704         CA->getType()->getElementType() ==
705             Type::getInt8Ty(CA->getContext())) {
706       Out << "Constant* " << constName <<
707              " = ConstantArray::get(mod->getContext(), \"";
708       std::string tmp = CA->getAsString();
709       bool nullTerminate = false;
710       if (tmp[tmp.length()-1] == 0) {
711         tmp.erase(tmp.length()-1);
712         nullTerminate = true;
713       }
714       printEscapedString(tmp);
715       // Determine if we want null termination or not.
716       if (nullTerminate)
717         Out << "\", true"; // Indicate that the null terminator should be
718                            // added.
719       else
720         Out << "\", false";// No null terminator
721       Out << ");";
722     } else {
723       Out << "std::vector<Constant*> " << constName << "_elems;";
724       nl(Out);
725       unsigned N = CA->getNumOperands();
726       for (unsigned i = 0; i < N; ++i) {
727         printConstant(CA->getOperand(i)); // recurse to print operands
728         Out << constName << "_elems.push_back("
729             << getCppName(CA->getOperand(i)) << ");";
730         nl(Out);
731       }
732       Out << "Constant* " << constName << " = ConstantArray::get("
733           << typeName << ", " << constName << "_elems);";
734     }
735   } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
736     Out << "std::vector<Constant*> " << constName << "_fields;";
737     nl(Out);
738     unsigned N = CS->getNumOperands();
739     for (unsigned i = 0; i < N; i++) {
740       printConstant(CS->getOperand(i));
741       Out << constName << "_fields.push_back("
742           << getCppName(CS->getOperand(i)) << ");";
743       nl(Out);
744     }
745     Out << "Constant* " << constName << " = ConstantStruct::get("
746         << typeName << ", " << constName << "_fields);";
747   } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
748     Out << "std::vector<Constant*> " << constName << "_elems;";
749     nl(Out);
750     unsigned N = CP->getNumOperands();
751     for (unsigned i = 0; i < N; ++i) {
752       printConstant(CP->getOperand(i));
753       Out << constName << "_elems.push_back("
754           << getCppName(CP->getOperand(i)) << ");";
755       nl(Out);
756     }
757     Out << "Constant* " << constName << " = ConstantVector::get("
758         << typeName << ", " << constName << "_elems);";
759   } else if (isa<UndefValue>(CV)) {
760     Out << "UndefValue* " << constName << " = UndefValue::get("
761         << typeName << ");";
762   } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
763     if (CE->getOpcode() == Instruction::GetElementPtr) {
764       Out << "std::vector<Constant*> " << constName << "_indices;";
765       nl(Out);
766       printConstant(CE->getOperand(0));
767       for (unsigned i = 1; i < CE->getNumOperands(); ++i ) {
768         printConstant(CE->getOperand(i));
769         Out << constName << "_indices.push_back("
770             << getCppName(CE->getOperand(i)) << ");";
771         nl(Out);
772       }
773       Out << "Constant* " << constName
774           << " = ConstantExpr::getGetElementPtr("
775           << getCppName(CE->getOperand(0)) << ", "
776           << constName << "_indices);";
777     } else if (CE->isCast()) {
778       printConstant(CE->getOperand(0));
779       Out << "Constant* " << constName << " = ConstantExpr::getCast(";
780       switch (CE->getOpcode()) {
781       default: llvm_unreachable("Invalid cast opcode");
782       case Instruction::Trunc: Out << "Instruction::Trunc"; break;
783       case Instruction::ZExt:  Out << "Instruction::ZExt"; break;
784       case Instruction::SExt:  Out << "Instruction::SExt"; break;
785       case Instruction::FPTrunc:  Out << "Instruction::FPTrunc"; break;
786       case Instruction::FPExt:  Out << "Instruction::FPExt"; break;
787       case Instruction::FPToUI:  Out << "Instruction::FPToUI"; break;
788       case Instruction::FPToSI:  Out << "Instruction::FPToSI"; break;
789       case Instruction::UIToFP:  Out << "Instruction::UIToFP"; break;
790       case Instruction::SIToFP:  Out << "Instruction::SIToFP"; break;
791       case Instruction::PtrToInt:  Out << "Instruction::PtrToInt"; break;
792       case Instruction::IntToPtr:  Out << "Instruction::IntToPtr"; break;
793       case Instruction::BitCast:  Out << "Instruction::BitCast"; break;
794       }
795       Out << ", " << getCppName(CE->getOperand(0)) << ", "
796           << getCppName(CE->getType()) << ");";
797     } else {
798       unsigned N = CE->getNumOperands();
799       for (unsigned i = 0; i < N; ++i ) {
800         printConstant(CE->getOperand(i));
801       }
802       Out << "Constant* " << constName << " = ConstantExpr::";
803       switch (CE->getOpcode()) {
804       case Instruction::Add:    Out << "getAdd(";  break;
805       case Instruction::FAdd:   Out << "getFAdd(";  break;
806       case Instruction::Sub:    Out << "getSub("; break;
807       case Instruction::FSub:   Out << "getFSub("; break;
808       case Instruction::Mul:    Out << "getMul("; break;
809       case Instruction::FMul:   Out << "getFMul("; break;
810       case Instruction::UDiv:   Out << "getUDiv("; break;
811       case Instruction::SDiv:   Out << "getSDiv("; break;
812       case Instruction::FDiv:   Out << "getFDiv("; break;
813       case Instruction::URem:   Out << "getURem("; break;
814       case Instruction::SRem:   Out << "getSRem("; break;
815       case Instruction::FRem:   Out << "getFRem("; break;
816       case Instruction::And:    Out << "getAnd("; break;
817       case Instruction::Or:     Out << "getOr("; break;
818       case Instruction::Xor:    Out << "getXor("; break;
819       case Instruction::ICmp:
820         Out << "getICmp(ICmpInst::ICMP_";
821         switch (CE->getPredicate()) {
822         case ICmpInst::ICMP_EQ:  Out << "EQ"; break;
823         case ICmpInst::ICMP_NE:  Out << "NE"; break;
824         case ICmpInst::ICMP_SLT: Out << "SLT"; break;
825         case ICmpInst::ICMP_ULT: Out << "ULT"; break;
826         case ICmpInst::ICMP_SGT: Out << "SGT"; break;
827         case ICmpInst::ICMP_UGT: Out << "UGT"; break;
828         case ICmpInst::ICMP_SLE: Out << "SLE"; break;
829         case ICmpInst::ICMP_ULE: Out << "ULE"; break;
830         case ICmpInst::ICMP_SGE: Out << "SGE"; break;
831         case ICmpInst::ICMP_UGE: Out << "UGE"; break;
832         default: error("Invalid ICmp Predicate");
833         }
834         break;
835       case Instruction::FCmp:
836         Out << "getFCmp(FCmpInst::FCMP_";
837         switch (CE->getPredicate()) {
838         case FCmpInst::FCMP_FALSE: Out << "FALSE"; break;
839         case FCmpInst::FCMP_ORD:   Out << "ORD"; break;
840         case FCmpInst::FCMP_UNO:   Out << "UNO"; break;
841         case FCmpInst::FCMP_OEQ:   Out << "OEQ"; break;
842         case FCmpInst::FCMP_UEQ:   Out << "UEQ"; break;
843         case FCmpInst::FCMP_ONE:   Out << "ONE"; break;
844         case FCmpInst::FCMP_UNE:   Out << "UNE"; break;
845         case FCmpInst::FCMP_OLT:   Out << "OLT"; break;
846         case FCmpInst::FCMP_ULT:   Out << "ULT"; break;
847         case FCmpInst::FCMP_OGT:   Out << "OGT"; break;
848         case FCmpInst::FCMP_UGT:   Out << "UGT"; break;
849         case FCmpInst::FCMP_OLE:   Out << "OLE"; break;
850         case FCmpInst::FCMP_ULE:   Out << "ULE"; break;
851         case FCmpInst::FCMP_OGE:   Out << "OGE"; break;
852         case FCmpInst::FCMP_UGE:   Out << "UGE"; break;
853         case FCmpInst::FCMP_TRUE:  Out << "TRUE"; break;
854         default: error("Invalid FCmp Predicate");
855         }
856         break;
857       case Instruction::Shl:     Out << "getShl("; break;
858       case Instruction::LShr:    Out << "getLShr("; break;
859       case Instruction::AShr:    Out << "getAShr("; break;
860       case Instruction::Select:  Out << "getSelect("; break;
861       case Instruction::ExtractElement: Out << "getExtractElement("; break;
862       case Instruction::InsertElement:  Out << "getInsertElement("; break;
863       case Instruction::ShuffleVector:  Out << "getShuffleVector("; break;
864       default:
865         error("Invalid constant expression");
866         break;
867       }
868       Out << getCppName(CE->getOperand(0));
869       for (unsigned i = 1; i < CE->getNumOperands(); ++i)
870         Out << ", " << getCppName(CE->getOperand(i));
871       Out << ");";
872     }
873   } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
874     Out << "Constant* " << constName << " = ";
875     Out << "BlockAddress::get(" << getOpName(BA->getBasicBlock()) << ");";
876   } else {
877     error("Bad Constant");
878     Out << "Constant* " << constName << " = 0; ";
879   }
880   nl(Out);
881 }
882
883 void CppWriter::printConstants(const Module* M) {
884   // Traverse all the global variables looking for constant initializers
885   for (Module::const_global_iterator I = TheModule->global_begin(),
886          E = TheModule->global_end(); I != E; ++I)
887     if (I->hasInitializer())
888       printConstant(I->getInitializer());
889
890   // Traverse the LLVM functions looking for constants
891   for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
892        FI != FE; ++FI) {
893     // Add all of the basic blocks and instructions
894     for (Function::const_iterator BB = FI->begin(),
895            E = FI->end(); BB != E; ++BB) {
896       for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
897            ++I) {
898         for (unsigned i = 0; i < I->getNumOperands(); ++i) {
899           if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) {
900             printConstant(C);
901           }
902         }
903       }
904     }
905   }
906 }
907
908 void CppWriter::printVariableUses(const GlobalVariable *GV) {
909   nl(Out) << "// Type Definitions";
910   nl(Out);
911   printType(GV->getType());
912   if (GV->hasInitializer()) {
913     const Constant *Init = GV->getInitializer();
914     printType(Init->getType());
915     if (const Function *F = dyn_cast<Function>(Init)) {
916       nl(Out)<< "/ Function Declarations"; nl(Out);
917       printFunctionHead(F);
918     } else if (const GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
919       nl(Out) << "// Global Variable Declarations"; nl(Out);
920       printVariableHead(gv);
921       
922       nl(Out) << "// Global Variable Definitions"; nl(Out);
923       printVariableBody(gv);
924     } else  {
925       nl(Out) << "// Constant Definitions"; nl(Out);
926       printConstant(Init);
927     }
928   }
929 }
930
931 void CppWriter::printVariableHead(const GlobalVariable *GV) {
932   nl(Out) << "GlobalVariable* " << getCppName(GV);
933   if (is_inline) {
934     Out << " = mod->getGlobalVariable(mod->getContext(), ";
935     printEscapedString(GV->getName());
936     Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)";
937     nl(Out) << "if (!" << getCppName(GV) << ") {";
938     in(); nl(Out) << getCppName(GV);
939   }
940   Out << " = new GlobalVariable(/*Module=*/*mod, ";
941   nl(Out) << "/*Type=*/";
942   printCppName(GV->getType()->getElementType());
943   Out << ",";
944   nl(Out) << "/*isConstant=*/" << (GV->isConstant()?"true":"false");
945   Out << ",";
946   nl(Out) << "/*Linkage=*/";
947   printLinkageType(GV->getLinkage());
948   Out << ",";
949   nl(Out) << "/*Initializer=*/0, ";
950   if (GV->hasInitializer()) {
951     Out << "// has initializer, specified below";
952   }
953   nl(Out) << "/*Name=*/\"";
954   printEscapedString(GV->getName());
955   Out << "\");";
956   nl(Out);
957
958   if (GV->hasSection()) {
959     printCppName(GV);
960     Out << "->setSection(\"";
961     printEscapedString(GV->getSection());
962     Out << "\");";
963     nl(Out);
964   }
965   if (GV->getAlignment()) {
966     printCppName(GV);
967     Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");";
968     nl(Out);
969   }
970   if (GV->getVisibility() != GlobalValue::DefaultVisibility) {
971     printCppName(GV);
972     Out << "->setVisibility(";
973     printVisibilityType(GV->getVisibility());
974     Out << ");";
975     nl(Out);
976   }
977   if (GV->isThreadLocal()) {
978     printCppName(GV);
979     Out << "->setThreadLocal(true);";
980     nl(Out);
981   }
982   if (is_inline) {
983     out(); Out << "}"; nl(Out);
984   }
985 }
986
987 void CppWriter::printVariableBody(const GlobalVariable *GV) {
988   if (GV->hasInitializer()) {
989     printCppName(GV);
990     Out << "->setInitializer(";
991     Out << getCppName(GV->getInitializer()) << ");";
992     nl(Out);
993   }
994 }
995
996 std::string CppWriter::getOpName(const Value* V) {
997   if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end())
998     return getCppName(V);
999
1000   // See if its alread in the map of forward references, if so just return the
1001   // name we already set up for it
1002   ForwardRefMap::const_iterator I = ForwardRefs.find(V);
1003   if (I != ForwardRefs.end())
1004     return I->second;
1005
1006   // This is a new forward reference. Generate a unique name for it
1007   std::string result(std::string("fwdref_") + utostr(uniqueNum++));
1008
1009   // Yes, this is a hack. An Argument is the smallest instantiable value that
1010   // we can make as a placeholder for the real value. We'll replace these
1011   // Argument instances later.
1012   Out << "Argument* " << result << " = new Argument("
1013       << getCppName(V->getType()) << ");";
1014   nl(Out);
1015   ForwardRefs[V] = result;
1016   return result;
1017 }
1018
1019 static StringRef ConvertAtomicOrdering(AtomicOrdering Ordering) {
1020   switch (Ordering) {
1021     case NotAtomic: return "NotAtomic";
1022     case Unordered: return "Unordered";
1023     case Monotonic: return "Monotonic";
1024     case Acquire: return "Acquire";
1025     case Release: return "Release";
1026     case AcquireRelease: return "AcquireRelease";
1027     case SequentiallyConsistent: return "SequentiallyConsistent";
1028   }
1029   llvm_unreachable("Unknown ordering");
1030 }
1031
1032 static StringRef ConvertAtomicSynchScope(SynchronizationScope SynchScope) {
1033   switch (SynchScope) {
1034     case SingleThread: return "SingleThread";
1035     case CrossThread: return "CrossThread";
1036   }
1037   llvm_unreachable("Unknown synch scope");
1038 }
1039
1040 // printInstruction - This member is called for each Instruction in a function.
1041 void CppWriter::printInstruction(const Instruction *I,
1042                                  const std::string& bbname) {
1043   std::string iName(getCppName(I));
1044
1045   // Before we emit this instruction, we need to take care of generating any
1046   // forward references. So, we get the names of all the operands in advance
1047   const unsigned Ops(I->getNumOperands());
1048   std::string* opNames = new std::string[Ops];
1049   for (unsigned i = 0; i < Ops; i++)
1050     opNames[i] = getOpName(I->getOperand(i));
1051
1052   switch (I->getOpcode()) {
1053   default:
1054     error("Invalid instruction");
1055     break;
1056
1057   case Instruction::Ret: {
1058     const ReturnInst* ret =  cast<ReturnInst>(I);
1059     Out << "ReturnInst::Create(mod->getContext(), "
1060         << (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");";
1061     break;
1062   }
1063   case Instruction::Br: {
1064     const BranchInst* br = cast<BranchInst>(I);
1065     Out << "BranchInst::Create(" ;
1066     if (br->getNumOperands() == 3) {
1067       Out << opNames[2] << ", "
1068           << opNames[1] << ", "
1069           << opNames[0] << ", ";
1070
1071     } else if (br->getNumOperands() == 1) {
1072       Out << opNames[0] << ", ";
1073     } else {
1074       error("Branch with 2 operands?");
1075     }
1076     Out << bbname << ");";
1077     break;
1078   }
1079   case Instruction::Switch: {
1080     const SwitchInst *SI = cast<SwitchInst>(I);
1081     Out << "SwitchInst* " << iName << " = SwitchInst::Create("
1082         << getOpName(SI->getCondition()) << ", "
1083         << getOpName(SI->getDefaultDest()) << ", "
1084         << SI->getNumCases() << ", " << bbname << ");";
1085     nl(Out);
1086     unsigned NumCases = SI->getNumCases();
1087     for (unsigned i = 1; i < NumCases; ++i) {
1088       const ConstantInt* CaseVal = SI->getCaseValue(i);
1089       const BasicBlock* BB = SI->getSuccessor(i);
1090       Out << iName << "->addCase("
1091           << getOpName(CaseVal) << ", "
1092           << getOpName(BB) << ");";
1093       nl(Out);
1094     }
1095     break;
1096   }
1097   case Instruction::IndirectBr: {
1098     const IndirectBrInst *IBI = cast<IndirectBrInst>(I);
1099     Out << "IndirectBrInst *" << iName << " = IndirectBrInst::Create("
1100         << opNames[0] << ", " << IBI->getNumDestinations() << ");";
1101     nl(Out);
1102     for (unsigned i = 1; i != IBI->getNumOperands(); ++i) {
1103       Out << iName << "->addDestination(" << opNames[i] << ");";
1104       nl(Out);
1105     }
1106     break;
1107   }
1108   case Instruction::Resume: {
1109     Out << "ResumeInst::Create(mod->getContext(), " << opNames[0]
1110         << ", " << bbname << ");";
1111     break;
1112   }
1113   case Instruction::Invoke: {
1114     const InvokeInst* inv = cast<InvokeInst>(I);
1115     Out << "std::vector<Value*> " << iName << "_params;";
1116     nl(Out);
1117     for (unsigned i = 0; i < inv->getNumArgOperands(); ++i) {
1118       Out << iName << "_params.push_back("
1119           << getOpName(inv->getArgOperand(i)) << ");";
1120       nl(Out);
1121     }
1122     // FIXME: This shouldn't use magic numbers -3, -2, and -1.
1123     Out << "InvokeInst *" << iName << " = InvokeInst::Create("
1124         << getOpName(inv->getCalledFunction()) << ", "
1125         << getOpName(inv->getNormalDest()) << ", "
1126         << getOpName(inv->getUnwindDest()) << ", "
1127         << iName << "_params, \"";
1128     printEscapedString(inv->getName());
1129     Out << "\", " << bbname << ");";
1130     nl(Out) << iName << "->setCallingConv(";
1131     printCallingConv(inv->getCallingConv());
1132     Out << ");";
1133     printAttributes(inv->getAttributes(), iName);
1134     Out << iName << "->setAttributes(" << iName << "_PAL);";
1135     nl(Out);
1136     break;
1137   }
1138   case Instruction::Unwind: {
1139     Out << "new UnwindInst("
1140         << bbname << ");";
1141     break;
1142   }
1143   case Instruction::Unreachable: {
1144     Out << "new UnreachableInst("
1145         << "mod->getContext(), "
1146         << bbname << ");";
1147     break;
1148   }
1149   case Instruction::Add:
1150   case Instruction::FAdd:
1151   case Instruction::Sub:
1152   case Instruction::FSub:
1153   case Instruction::Mul:
1154   case Instruction::FMul:
1155   case Instruction::UDiv:
1156   case Instruction::SDiv:
1157   case Instruction::FDiv:
1158   case Instruction::URem:
1159   case Instruction::SRem:
1160   case Instruction::FRem:
1161   case Instruction::And:
1162   case Instruction::Or:
1163   case Instruction::Xor:
1164   case Instruction::Shl:
1165   case Instruction::LShr:
1166   case Instruction::AShr:{
1167     Out << "BinaryOperator* " << iName << " = BinaryOperator::Create(";
1168     switch (I->getOpcode()) {
1169     case Instruction::Add: Out << "Instruction::Add"; break;
1170     case Instruction::FAdd: Out << "Instruction::FAdd"; break;
1171     case Instruction::Sub: Out << "Instruction::Sub"; break;
1172     case Instruction::FSub: Out << "Instruction::FSub"; break;
1173     case Instruction::Mul: Out << "Instruction::Mul"; break;
1174     case Instruction::FMul: Out << "Instruction::FMul"; break;
1175     case Instruction::UDiv:Out << "Instruction::UDiv"; break;
1176     case Instruction::SDiv:Out << "Instruction::SDiv"; break;
1177     case Instruction::FDiv:Out << "Instruction::FDiv"; break;
1178     case Instruction::URem:Out << "Instruction::URem"; break;
1179     case Instruction::SRem:Out << "Instruction::SRem"; break;
1180     case Instruction::FRem:Out << "Instruction::FRem"; break;
1181     case Instruction::And: Out << "Instruction::And"; break;
1182     case Instruction::Or:  Out << "Instruction::Or";  break;
1183     case Instruction::Xor: Out << "Instruction::Xor"; break;
1184     case Instruction::Shl: Out << "Instruction::Shl"; break;
1185     case Instruction::LShr:Out << "Instruction::LShr"; break;
1186     case Instruction::AShr:Out << "Instruction::AShr"; break;
1187     default: Out << "Instruction::BadOpCode"; break;
1188     }
1189     Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1190     printEscapedString(I->getName());
1191     Out << "\", " << bbname << ");";
1192     break;
1193   }
1194   case Instruction::FCmp: {
1195     Out << "FCmpInst* " << iName << " = new FCmpInst(*" << bbname << ", ";
1196     switch (cast<FCmpInst>(I)->getPredicate()) {
1197     case FCmpInst::FCMP_FALSE: Out << "FCmpInst::FCMP_FALSE"; break;
1198     case FCmpInst::FCMP_OEQ  : Out << "FCmpInst::FCMP_OEQ"; break;
1199     case FCmpInst::FCMP_OGT  : Out << "FCmpInst::FCMP_OGT"; break;
1200     case FCmpInst::FCMP_OGE  : Out << "FCmpInst::FCMP_OGE"; break;
1201     case FCmpInst::FCMP_OLT  : Out << "FCmpInst::FCMP_OLT"; break;
1202     case FCmpInst::FCMP_OLE  : Out << "FCmpInst::FCMP_OLE"; break;
1203     case FCmpInst::FCMP_ONE  : Out << "FCmpInst::FCMP_ONE"; break;
1204     case FCmpInst::FCMP_ORD  : Out << "FCmpInst::FCMP_ORD"; break;
1205     case FCmpInst::FCMP_UNO  : Out << "FCmpInst::FCMP_UNO"; break;
1206     case FCmpInst::FCMP_UEQ  : Out << "FCmpInst::FCMP_UEQ"; break;
1207     case FCmpInst::FCMP_UGT  : Out << "FCmpInst::FCMP_UGT"; break;
1208     case FCmpInst::FCMP_UGE  : Out << "FCmpInst::FCMP_UGE"; break;
1209     case FCmpInst::FCMP_ULT  : Out << "FCmpInst::FCMP_ULT"; break;
1210     case FCmpInst::FCMP_ULE  : Out << "FCmpInst::FCMP_ULE"; break;
1211     case FCmpInst::FCMP_UNE  : Out << "FCmpInst::FCMP_UNE"; break;
1212     case FCmpInst::FCMP_TRUE : Out << "FCmpInst::FCMP_TRUE"; break;
1213     default: Out << "FCmpInst::BAD_ICMP_PREDICATE"; break;
1214     }
1215     Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1216     printEscapedString(I->getName());
1217     Out << "\");";
1218     break;
1219   }
1220   case Instruction::ICmp: {
1221     Out << "ICmpInst* " << iName << " = new ICmpInst(*" << bbname << ", ";
1222     switch (cast<ICmpInst>(I)->getPredicate()) {
1223     case ICmpInst::ICMP_EQ:  Out << "ICmpInst::ICMP_EQ";  break;
1224     case ICmpInst::ICMP_NE:  Out << "ICmpInst::ICMP_NE";  break;
1225     case ICmpInst::ICMP_ULE: Out << "ICmpInst::ICMP_ULE"; break;
1226     case ICmpInst::ICMP_SLE: Out << "ICmpInst::ICMP_SLE"; break;
1227     case ICmpInst::ICMP_UGE: Out << "ICmpInst::ICMP_UGE"; break;
1228     case ICmpInst::ICMP_SGE: Out << "ICmpInst::ICMP_SGE"; break;
1229     case ICmpInst::ICMP_ULT: Out << "ICmpInst::ICMP_ULT"; break;
1230     case ICmpInst::ICMP_SLT: Out << "ICmpInst::ICMP_SLT"; break;
1231     case ICmpInst::ICMP_UGT: Out << "ICmpInst::ICMP_UGT"; break;
1232     case ICmpInst::ICMP_SGT: Out << "ICmpInst::ICMP_SGT"; break;
1233     default: Out << "ICmpInst::BAD_ICMP_PREDICATE"; break;
1234     }
1235     Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1236     printEscapedString(I->getName());
1237     Out << "\");";
1238     break;
1239   }
1240   case Instruction::Alloca: {
1241     const AllocaInst* allocaI = cast<AllocaInst>(I);
1242     Out << "AllocaInst* " << iName << " = new AllocaInst("
1243         << getCppName(allocaI->getAllocatedType()) << ", ";
1244     if (allocaI->isArrayAllocation())
1245       Out << opNames[0] << ", ";
1246     Out << "\"";
1247     printEscapedString(allocaI->getName());
1248     Out << "\", " << bbname << ");";
1249     if (allocaI->getAlignment())
1250       nl(Out) << iName << "->setAlignment("
1251           << allocaI->getAlignment() << ");";
1252     break;
1253   }
1254   case Instruction::Load: {
1255     const LoadInst* load = cast<LoadInst>(I);
1256     Out << "LoadInst* " << iName << " = new LoadInst("
1257         << opNames[0] << ", \"";
1258     printEscapedString(load->getName());
1259     Out << "\", " << (load->isVolatile() ? "true" : "false" )
1260         << ", " << bbname << ");";
1261     if (load->getAlignment())
1262       nl(Out) << iName << "->setAlignment("
1263               << load->getAlignment() << ");";
1264     if (load->isAtomic()) {
1265       StringRef Ordering = ConvertAtomicOrdering(load->getOrdering());
1266       StringRef CrossThread = ConvertAtomicSynchScope(load->getSynchScope());
1267       nl(Out) << iName << "->setAtomic("
1268               << Ordering << ", " << CrossThread << ");";
1269     }
1270     break;
1271   }
1272   case Instruction::Store: {
1273     const StoreInst* store = cast<StoreInst>(I);
1274     Out << "StoreInst* " << iName << " = new StoreInst("
1275         << opNames[0] << ", "
1276         << opNames[1] << ", "
1277         << (store->isVolatile() ? "true" : "false")
1278         << ", " << bbname << ");";
1279     if (store->getAlignment())
1280       nl(Out) << iName << "->setAlignment("
1281               << store->getAlignment() << ");";
1282     if (store->isAtomic()) {
1283       StringRef Ordering = ConvertAtomicOrdering(store->getOrdering());
1284       StringRef CrossThread = ConvertAtomicSynchScope(store->getSynchScope());
1285       nl(Out) << iName << "->setAtomic("
1286               << Ordering << ", " << CrossThread << ");";
1287     }
1288     break;
1289   }
1290   case Instruction::GetElementPtr: {
1291     const GetElementPtrInst* gep = cast<GetElementPtrInst>(I);
1292     if (gep->getNumOperands() <= 2) {
1293       Out << "GetElementPtrInst* " << iName << " = GetElementPtrInst::Create("
1294           << opNames[0];
1295       if (gep->getNumOperands() == 2)
1296         Out << ", " << opNames[1];
1297     } else {
1298       Out << "std::vector<Value*> " << iName << "_indices;";
1299       nl(Out);
1300       for (unsigned i = 1; i < gep->getNumOperands(); ++i ) {
1301         Out << iName << "_indices.push_back("
1302             << opNames[i] << ");";
1303         nl(Out);
1304       }
1305       Out << "Instruction* " << iName << " = GetElementPtrInst::Create("
1306           << opNames[0] << ", " << iName << "_indices";
1307     }
1308     Out << ", \"";
1309     printEscapedString(gep->getName());
1310     Out << "\", " << bbname << ");";
1311     break;
1312   }
1313   case Instruction::PHI: {
1314     const PHINode* phi = cast<PHINode>(I);
1315
1316     Out << "PHINode* " << iName << " = PHINode::Create("
1317         << getCppName(phi->getType()) << ", "
1318         << phi->getNumIncomingValues() << ", \"";
1319     printEscapedString(phi->getName());
1320     Out << "\", " << bbname << ");";
1321     nl(Out);
1322     for (unsigned i = 0; i < phi->getNumIncomingValues(); ++i) {
1323       Out << iName << "->addIncoming("
1324           << opNames[PHINode::getOperandNumForIncomingValue(i)] << ", "
1325           << getOpName(phi->getIncomingBlock(i)) << ");";
1326       nl(Out);
1327     }
1328     break;
1329   }
1330   case Instruction::Trunc:
1331   case Instruction::ZExt:
1332   case Instruction::SExt:
1333   case Instruction::FPTrunc:
1334   case Instruction::FPExt:
1335   case Instruction::FPToUI:
1336   case Instruction::FPToSI:
1337   case Instruction::UIToFP:
1338   case Instruction::SIToFP:
1339   case Instruction::PtrToInt:
1340   case Instruction::IntToPtr:
1341   case Instruction::BitCast: {
1342     const CastInst* cst = cast<CastInst>(I);
1343     Out << "CastInst* " << iName << " = new ";
1344     switch (I->getOpcode()) {
1345     case Instruction::Trunc:    Out << "TruncInst"; break;
1346     case Instruction::ZExt:     Out << "ZExtInst"; break;
1347     case Instruction::SExt:     Out << "SExtInst"; break;
1348     case Instruction::FPTrunc:  Out << "FPTruncInst"; break;
1349     case Instruction::FPExt:    Out << "FPExtInst"; break;
1350     case Instruction::FPToUI:   Out << "FPToUIInst"; break;
1351     case Instruction::FPToSI:   Out << "FPToSIInst"; break;
1352     case Instruction::UIToFP:   Out << "UIToFPInst"; break;
1353     case Instruction::SIToFP:   Out << "SIToFPInst"; break;
1354     case Instruction::PtrToInt: Out << "PtrToIntInst"; break;
1355     case Instruction::IntToPtr: Out << "IntToPtrInst"; break;
1356     case Instruction::BitCast:  Out << "BitCastInst"; break;
1357     default: assert(0 && "Unreachable"); break;
1358     }
1359     Out << "(" << opNames[0] << ", "
1360         << getCppName(cst->getType()) << ", \"";
1361     printEscapedString(cst->getName());
1362     Out << "\", " << bbname << ");";
1363     break;
1364   }
1365   case Instruction::Call: {
1366     const CallInst* call = cast<CallInst>(I);
1367     if (const InlineAsm* ila = dyn_cast<InlineAsm>(call->getCalledValue())) {
1368       Out << "InlineAsm* " << getCppName(ila) << " = InlineAsm::get("
1369           << getCppName(ila->getFunctionType()) << ", \""
1370           << ila->getAsmString() << "\", \""
1371           << ila->getConstraintString() << "\","
1372           << (ila->hasSideEffects() ? "true" : "false") << ");";
1373       nl(Out);
1374     }
1375     if (call->getNumArgOperands() > 1) {
1376       Out << "std::vector<Value*> " << iName << "_params;";
1377       nl(Out);
1378       for (unsigned i = 0; i < call->getNumArgOperands(); ++i) {
1379         Out << iName << "_params.push_back(" << opNames[i] << ");";
1380         nl(Out);
1381       }
1382       Out << "CallInst* " << iName << " = CallInst::Create("
1383           << opNames[call->getNumArgOperands()] << ", "
1384           << iName << "_params, \"";
1385     } else if (call->getNumArgOperands() == 1) {
1386       Out << "CallInst* " << iName << " = CallInst::Create("
1387           << opNames[call->getNumArgOperands()] << ", " << opNames[0] << ", \"";
1388     } else {
1389       Out << "CallInst* " << iName << " = CallInst::Create("
1390           << opNames[call->getNumArgOperands()] << ", \"";
1391     }
1392     printEscapedString(call->getName());
1393     Out << "\", " << bbname << ");";
1394     nl(Out) << iName << "->setCallingConv(";
1395     printCallingConv(call->getCallingConv());
1396     Out << ");";
1397     nl(Out) << iName << "->setTailCall("
1398         << (call->isTailCall() ? "true" : "false");
1399     Out << ");";
1400     nl(Out);
1401     printAttributes(call->getAttributes(), iName);
1402     Out << iName << "->setAttributes(" << iName << "_PAL);";
1403     nl(Out);
1404     break;
1405   }
1406   case Instruction::Select: {
1407     const SelectInst* sel = cast<SelectInst>(I);
1408     Out << "SelectInst* " << getCppName(sel) << " = SelectInst::Create(";
1409     Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1410     printEscapedString(sel->getName());
1411     Out << "\", " << bbname << ");";
1412     break;
1413   }
1414   case Instruction::UserOp1:
1415     /// FALL THROUGH
1416   case Instruction::UserOp2: {
1417     /// FIXME: What should be done here?
1418     break;
1419   }
1420   case Instruction::VAArg: {
1421     const VAArgInst* va = cast<VAArgInst>(I);
1422     Out << "VAArgInst* " << getCppName(va) << " = new VAArgInst("
1423         << opNames[0] << ", " << getCppName(va->getType()) << ", \"";
1424     printEscapedString(va->getName());
1425     Out << "\", " << bbname << ");";
1426     break;
1427   }
1428   case Instruction::ExtractElement: {
1429     const ExtractElementInst* eei = cast<ExtractElementInst>(I);
1430     Out << "ExtractElementInst* " << getCppName(eei)
1431         << " = new ExtractElementInst(" << opNames[0]
1432         << ", " << opNames[1] << ", \"";
1433     printEscapedString(eei->getName());
1434     Out << "\", " << bbname << ");";
1435     break;
1436   }
1437   case Instruction::InsertElement: {
1438     const InsertElementInst* iei = cast<InsertElementInst>(I);
1439     Out << "InsertElementInst* " << getCppName(iei)
1440         << " = InsertElementInst::Create(" << opNames[0]
1441         << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1442     printEscapedString(iei->getName());
1443     Out << "\", " << bbname << ");";
1444     break;
1445   }
1446   case Instruction::ShuffleVector: {
1447     const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I);
1448     Out << "ShuffleVectorInst* " << getCppName(svi)
1449         << " = new ShuffleVectorInst(" << opNames[0]
1450         << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1451     printEscapedString(svi->getName());
1452     Out << "\", " << bbname << ");";
1453     break;
1454   }
1455   case Instruction::ExtractValue: {
1456     const ExtractValueInst *evi = cast<ExtractValueInst>(I);
1457     Out << "std::vector<unsigned> " << iName << "_indices;";
1458     nl(Out);
1459     for (unsigned i = 0; i < evi->getNumIndices(); ++i) {
1460       Out << iName << "_indices.push_back("
1461           << evi->idx_begin()[i] << ");";
1462       nl(Out);
1463     }
1464     Out << "ExtractValueInst* " << getCppName(evi)
1465         << " = ExtractValueInst::Create(" << opNames[0]
1466         << ", "
1467         << iName << "_indices, \"";
1468     printEscapedString(evi->getName());
1469     Out << "\", " << bbname << ");";
1470     break;
1471   }
1472   case Instruction::InsertValue: {
1473     const InsertValueInst *ivi = cast<InsertValueInst>(I);
1474     Out << "std::vector<unsigned> " << iName << "_indices;";
1475     nl(Out);
1476     for (unsigned i = 0; i < ivi->getNumIndices(); ++i) {
1477       Out << iName << "_indices.push_back("
1478           << ivi->idx_begin()[i] << ");";
1479       nl(Out);
1480     }
1481     Out << "InsertValueInst* " << getCppName(ivi)
1482         << " = InsertValueInst::Create(" << opNames[0]
1483         << ", " << opNames[1] << ", "
1484         << iName << "_indices, \"";
1485     printEscapedString(ivi->getName());
1486     Out << "\", " << bbname << ");";
1487     break;
1488   }
1489   case Instruction::Fence: {
1490     const FenceInst *fi = cast<FenceInst>(I);
1491     StringRef Ordering = ConvertAtomicOrdering(fi->getOrdering());
1492     StringRef CrossThread = ConvertAtomicSynchScope(fi->getSynchScope());
1493     Out << "FenceInst* " << iName
1494         << " = new FenceInst(mod->getContext(), "
1495         << Ordering << ", " << CrossThread
1496         << ");";
1497     break;
1498   }
1499   case Instruction::AtomicCmpXchg: {
1500     const AtomicCmpXchgInst *cxi = cast<AtomicCmpXchgInst>(I);
1501     StringRef Ordering = ConvertAtomicOrdering(cxi->getOrdering());
1502     StringRef CrossThread = ConvertAtomicSynchScope(cxi->getSynchScope());
1503     Out << "AtomicCmpXchgInst* " << iName
1504         << " = new AtomicCmpXchgInst("
1505         << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", "
1506         << Ordering << ", " << CrossThread
1507         << ");";
1508     nl(Out) << iName << "->setName(\"";
1509     printEscapedString(cxi->getName());
1510     Out << "\");";
1511     break;
1512   }
1513   case Instruction::AtomicRMW: {
1514     const AtomicRMWInst *rmwi = cast<AtomicRMWInst>(I);
1515     StringRef Ordering = ConvertAtomicOrdering(rmwi->getOrdering());
1516     StringRef CrossThread = ConvertAtomicSynchScope(rmwi->getSynchScope());
1517     StringRef Operation;
1518     switch (rmwi->getOperation()) {
1519       case AtomicRMWInst::Xchg: Operation = "AtomicRMWInst::Xchg"; break;
1520       case AtomicRMWInst::Add:  Operation = "AtomicRMWInst::Add"; break;
1521       case AtomicRMWInst::Sub:  Operation = "AtomicRMWInst::Sub"; break;
1522       case AtomicRMWInst::And:  Operation = "AtomicRMWInst::And"; break;
1523       case AtomicRMWInst::Nand: Operation = "AtomicRMWInst::Nand"; break;
1524       case AtomicRMWInst::Or:   Operation = "AtomicRMWInst::Or"; break;
1525       case AtomicRMWInst::Xor:  Operation = "AtomicRMWInst::Xor"; break;
1526       case AtomicRMWInst::Max:  Operation = "AtomicRMWInst::Max"; break;
1527       case AtomicRMWInst::Min:  Operation = "AtomicRMWInst::Min"; break;
1528       case AtomicRMWInst::UMax: Operation = "AtomicRMWInst::UMax"; break;
1529       case AtomicRMWInst::UMin: Operation = "AtomicRMWInst::UMin"; break;
1530       case AtomicRMWInst::BAD_BINOP: llvm_unreachable("Bad atomic operation");
1531     }
1532     Out << "AtomicRMWInst* " << iName
1533         << " = new AtomicRMWInst("
1534         << Operation << ", "
1535         << opNames[0] << ", " << opNames[1] << ", "
1536         << Ordering << ", " << CrossThread
1537         << ");";
1538     nl(Out) << iName << "->setName(\"";
1539     printEscapedString(rmwi->getName());
1540     Out << "\");";
1541     break;
1542   }
1543   }
1544   DefinedValues.insert(I);
1545   nl(Out);
1546   delete [] opNames;
1547 }
1548
1549 // Print out the types, constants and declarations needed by one function
1550 void CppWriter::printFunctionUses(const Function* F) {
1551   nl(Out) << "// Type Definitions"; nl(Out);
1552   if (!is_inline) {
1553     // Print the function's return type
1554     printType(F->getReturnType());
1555
1556     // Print the function's function type
1557     printType(F->getFunctionType());
1558
1559     // Print the types of each of the function's arguments
1560     for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1561          AI != AE; ++AI) {
1562       printType(AI->getType());
1563     }
1564   }
1565
1566   // Print type definitions for every type referenced by an instruction and
1567   // make a note of any global values or constants that are referenced
1568   SmallPtrSet<GlobalValue*,64> gvs;
1569   SmallPtrSet<Constant*,64> consts;
1570   for (Function::const_iterator BB = F->begin(), BE = F->end();
1571        BB != BE; ++BB){
1572     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1573          I != E; ++I) {
1574       // Print the type of the instruction itself
1575       printType(I->getType());
1576
1577       // Print the type of each of the instruction's operands
1578       for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1579         Value* operand = I->getOperand(i);
1580         printType(operand->getType());
1581
1582         // If the operand references a GVal or Constant, make a note of it
1583         if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
1584           gvs.insert(GV);
1585           if (GenerationType != GenFunction)
1586             if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1587               if (GVar->hasInitializer())
1588                 consts.insert(GVar->getInitializer());
1589         } else if (Constant* C = dyn_cast<Constant>(operand)) {
1590           consts.insert(C);
1591           for (unsigned j = 0; j < C->getNumOperands(); ++j) {
1592             // If the operand references a GVal or Constant, make a note of it
1593             Value* operand = C->getOperand(j);
1594             printType(operand->getType());
1595             if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
1596               gvs.insert(GV);
1597               if (GenerationType != GenFunction)
1598                 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1599                   if (GVar->hasInitializer())
1600                     consts.insert(GVar->getInitializer());
1601             }
1602           }
1603         }
1604       }
1605     }
1606   }
1607
1608   // Print the function declarations for any functions encountered
1609   nl(Out) << "// Function Declarations"; nl(Out);
1610   for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1611        I != E; ++I) {
1612     if (Function* Fun = dyn_cast<Function>(*I)) {
1613       if (!is_inline || Fun != F)
1614         printFunctionHead(Fun);
1615     }
1616   }
1617
1618   // Print the global variable declarations for any variables encountered
1619   nl(Out) << "// Global Variable Declarations"; nl(Out);
1620   for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1621        I != E; ++I) {
1622     if (GlobalVariable* F = dyn_cast<GlobalVariable>(*I))
1623       printVariableHead(F);
1624   }
1625
1626   // Print the constants found
1627   nl(Out) << "// Constant Definitions"; nl(Out);
1628   for (SmallPtrSet<Constant*,64>::iterator I = consts.begin(),
1629          E = consts.end(); I != E; ++I) {
1630     printConstant(*I);
1631   }
1632
1633   // Process the global variables definitions now that all the constants have
1634   // been emitted. These definitions just couple the gvars with their constant
1635   // initializers.
1636   if (GenerationType != GenFunction) {
1637     nl(Out) << "// Global Variable Definitions"; nl(Out);
1638     for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1639          I != E; ++I) {
1640       if (GlobalVariable* GV = dyn_cast<GlobalVariable>(*I))
1641         printVariableBody(GV);
1642     }
1643   }
1644 }
1645
1646 void CppWriter::printFunctionHead(const Function* F) {
1647   nl(Out) << "Function* " << getCppName(F);
1648   Out << " = mod->getFunction(\"";
1649   printEscapedString(F->getName());
1650   Out << "\");";
1651   nl(Out) << "if (!" << getCppName(F) << ") {";
1652   nl(Out) << getCppName(F);
1653
1654   Out<< " = Function::Create(";
1655   nl(Out,1) << "/*Type=*/" << getCppName(F->getFunctionType()) << ",";
1656   nl(Out) << "/*Linkage=*/";
1657   printLinkageType(F->getLinkage());
1658   Out << ",";
1659   nl(Out) << "/*Name=*/\"";
1660   printEscapedString(F->getName());
1661   Out << "\", mod); " << (F->isDeclaration()? "// (external, no body)" : "");
1662   nl(Out,-1);
1663   printCppName(F);
1664   Out << "->setCallingConv(";
1665   printCallingConv(F->getCallingConv());
1666   Out << ");";
1667   nl(Out);
1668   if (F->hasSection()) {
1669     printCppName(F);
1670     Out << "->setSection(\"" << F->getSection() << "\");";
1671     nl(Out);
1672   }
1673   if (F->getAlignment()) {
1674     printCppName(F);
1675     Out << "->setAlignment(" << F->getAlignment() << ");";
1676     nl(Out);
1677   }
1678   if (F->getVisibility() != GlobalValue::DefaultVisibility) {
1679     printCppName(F);
1680     Out << "->setVisibility(";
1681     printVisibilityType(F->getVisibility());
1682     Out << ");";
1683     nl(Out);
1684   }
1685   if (F->hasGC()) {
1686     printCppName(F);
1687     Out << "->setGC(\"" << F->getGC() << "\");";
1688     nl(Out);
1689   }
1690   Out << "}";
1691   nl(Out);
1692   printAttributes(F->getAttributes(), getCppName(F));
1693   printCppName(F);
1694   Out << "->setAttributes(" << getCppName(F) << "_PAL);";
1695   nl(Out);
1696 }
1697
1698 void CppWriter::printFunctionBody(const Function *F) {
1699   if (F->isDeclaration())
1700     return; // external functions have no bodies.
1701
1702   // Clear the DefinedValues and ForwardRefs maps because we can't have
1703   // cross-function forward refs
1704   ForwardRefs.clear();
1705   DefinedValues.clear();
1706
1707   // Create all the argument values
1708   if (!is_inline) {
1709     if (!F->arg_empty()) {
1710       Out << "Function::arg_iterator args = " << getCppName(F)
1711           << "->arg_begin();";
1712       nl(Out);
1713     }
1714     for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1715          AI != AE; ++AI) {
1716       Out << "Value* " << getCppName(AI) << " = args++;";
1717       nl(Out);
1718       if (AI->hasName()) {
1719         Out << getCppName(AI) << "->setName(\"";
1720         printEscapedString(AI->getName());
1721         Out << "\");";
1722         nl(Out);
1723       }
1724     }
1725   }
1726
1727   // Create all the basic blocks
1728   nl(Out);
1729   for (Function::const_iterator BI = F->begin(), BE = F->end();
1730        BI != BE; ++BI) {
1731     std::string bbname(getCppName(BI));
1732     Out << "BasicBlock* " << bbname <<
1733            " = BasicBlock::Create(mod->getContext(), \"";
1734     if (BI->hasName())
1735       printEscapedString(BI->getName());
1736     Out << "\"," << getCppName(BI->getParent()) << ",0);";
1737     nl(Out);
1738   }
1739
1740   // Output all of its basic blocks... for the function
1741   for (Function::const_iterator BI = F->begin(), BE = F->end();
1742        BI != BE; ++BI) {
1743     std::string bbname(getCppName(BI));
1744     nl(Out) << "// Block " << BI->getName() << " (" << bbname << ")";
1745     nl(Out);
1746
1747     // Output all of the instructions in the basic block...
1748     for (BasicBlock::const_iterator I = BI->begin(), E = BI->end();
1749          I != E; ++I) {
1750       printInstruction(I,bbname);
1751     }
1752   }
1753
1754   // Loop over the ForwardRefs and resolve them now that all instructions
1755   // are generated.
1756   if (!ForwardRefs.empty()) {
1757     nl(Out) << "// Resolve Forward References";
1758     nl(Out);
1759   }
1760
1761   while (!ForwardRefs.empty()) {
1762     ForwardRefMap::iterator I = ForwardRefs.begin();
1763     Out << I->second << "->replaceAllUsesWith("
1764         << getCppName(I->first) << "); delete " << I->second << ";";
1765     nl(Out);
1766     ForwardRefs.erase(I);
1767   }
1768 }
1769
1770 void CppWriter::printInline(const std::string& fname,
1771                             const std::string& func) {
1772   const Function* F = TheModule->getFunction(func);
1773   if (!F) {
1774     error(std::string("Function '") + func + "' not found in input module");
1775     return;
1776   }
1777   if (F->isDeclaration()) {
1778     error(std::string("Function '") + func + "' is external!");
1779     return;
1780   }
1781   nl(Out) << "BasicBlock* " << fname << "(Module* mod, Function *"
1782           << getCppName(F);
1783   unsigned arg_count = 1;
1784   for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1785        AI != AE; ++AI) {
1786     Out << ", Value* arg_" << arg_count;
1787   }
1788   Out << ") {";
1789   nl(Out);
1790   is_inline = true;
1791   printFunctionUses(F);
1792   printFunctionBody(F);
1793   is_inline = false;
1794   Out << "return " << getCppName(F->begin()) << ";";
1795   nl(Out) << "}";
1796   nl(Out);
1797 }
1798
1799 void CppWriter::printModuleBody() {
1800   // Print out all the type definitions
1801   nl(Out) << "// Type Definitions"; nl(Out);
1802   printTypes(TheModule);
1803
1804   // Functions can call each other and global variables can reference them so
1805   // define all the functions first before emitting their function bodies.
1806   nl(Out) << "// Function Declarations"; nl(Out);
1807   for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1808        I != E; ++I)
1809     printFunctionHead(I);
1810
1811   // Process the global variables declarations. We can't initialze them until
1812   // after the constants are printed so just print a header for each global
1813   nl(Out) << "// Global Variable Declarations\n"; nl(Out);
1814   for (Module::const_global_iterator I = TheModule->global_begin(),
1815          E = TheModule->global_end(); I != E; ++I) {
1816     printVariableHead(I);
1817   }
1818
1819   // Print out all the constants definitions. Constants don't recurse except
1820   // through GlobalValues. All GlobalValues have been declared at this point
1821   // so we can proceed to generate the constants.
1822   nl(Out) << "// Constant Definitions"; nl(Out);
1823   printConstants(TheModule);
1824
1825   // Process the global variables definitions now that all the constants have
1826   // been emitted. These definitions just couple the gvars with their constant
1827   // initializers.
1828   nl(Out) << "// Global Variable Definitions"; nl(Out);
1829   for (Module::const_global_iterator I = TheModule->global_begin(),
1830          E = TheModule->global_end(); I != E; ++I) {
1831     printVariableBody(I);
1832   }
1833
1834   // Finally, we can safely put out all of the function bodies.
1835   nl(Out) << "// Function Definitions"; nl(Out);
1836   for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1837        I != E; ++I) {
1838     if (!I->isDeclaration()) {
1839       nl(Out) << "// Function: " << I->getName() << " (" << getCppName(I)
1840               << ")";
1841       nl(Out) << "{";
1842       nl(Out,1);
1843       printFunctionBody(I);
1844       nl(Out,-1) << "}";
1845       nl(Out);
1846     }
1847   }
1848 }
1849
1850 void CppWriter::printProgram(const std::string& fname,
1851                              const std::string& mName) {
1852   Out << "#include <llvm/LLVMContext.h>\n";
1853   Out << "#include <llvm/Module.h>\n";
1854   Out << "#include <llvm/DerivedTypes.h>\n";
1855   Out << "#include <llvm/Constants.h>\n";
1856   Out << "#include <llvm/GlobalVariable.h>\n";
1857   Out << "#include <llvm/Function.h>\n";
1858   Out << "#include <llvm/CallingConv.h>\n";
1859   Out << "#include <llvm/BasicBlock.h>\n";
1860   Out << "#include <llvm/Instructions.h>\n";
1861   Out << "#include <llvm/InlineAsm.h>\n";
1862   Out << "#include <llvm/Support/FormattedStream.h>\n";
1863   Out << "#include <llvm/Support/MathExtras.h>\n";
1864   Out << "#include <llvm/Pass.h>\n";
1865   Out << "#include <llvm/PassManager.h>\n";
1866   Out << "#include <llvm/ADT/SmallVector.h>\n";
1867   Out << "#include <llvm/Analysis/Verifier.h>\n";
1868   Out << "#include <llvm/Assembly/PrintModulePass.h>\n";
1869   Out << "#include <algorithm>\n";
1870   Out << "using namespace llvm;\n\n";
1871   Out << "Module* " << fname << "();\n\n";
1872   Out << "int main(int argc, char**argv) {\n";
1873   Out << "  Module* Mod = " << fname << "();\n";
1874   Out << "  verifyModule(*Mod, PrintMessageAction);\n";
1875   Out << "  PassManager PM;\n";
1876   Out << "  PM.add(createPrintModulePass(&outs()));\n";
1877   Out << "  PM.run(*Mod);\n";
1878   Out << "  return 0;\n";
1879   Out << "}\n\n";
1880   printModule(fname,mName);
1881 }
1882
1883 void CppWriter::printModule(const std::string& fname,
1884                             const std::string& mName) {
1885   nl(Out) << "Module* " << fname << "() {";
1886   nl(Out,1) << "// Module Construction";
1887   nl(Out) << "Module* mod = new Module(\"";
1888   printEscapedString(mName);
1889   Out << "\", getGlobalContext());";
1890   if (!TheModule->getTargetTriple().empty()) {
1891     nl(Out) << "mod->setDataLayout(\"" << TheModule->getDataLayout() << "\");";
1892   }
1893   if (!TheModule->getTargetTriple().empty()) {
1894     nl(Out) << "mod->setTargetTriple(\"" << TheModule->getTargetTriple()
1895             << "\");";
1896   }
1897
1898   if (!TheModule->getModuleInlineAsm().empty()) {
1899     nl(Out) << "mod->setModuleInlineAsm(\"";
1900     printEscapedString(TheModule->getModuleInlineAsm());
1901     Out << "\");";
1902   }
1903   nl(Out);
1904
1905   // Loop over the dependent libraries and emit them.
1906   Module::lib_iterator LI = TheModule->lib_begin();
1907   Module::lib_iterator LE = TheModule->lib_end();
1908   while (LI != LE) {
1909     Out << "mod->addLibrary(\"" << *LI << "\");";
1910     nl(Out);
1911     ++LI;
1912   }
1913   printModuleBody();
1914   nl(Out) << "return mod;";
1915   nl(Out,-1) << "}";
1916   nl(Out);
1917 }
1918
1919 void CppWriter::printContents(const std::string& fname,
1920                               const std::string& mName) {
1921   Out << "\nModule* " << fname << "(Module *mod) {\n";
1922   Out << "\nmod->setModuleIdentifier(\"";
1923   printEscapedString(mName);
1924   Out << "\");\n";
1925   printModuleBody();
1926   Out << "\nreturn mod;\n";
1927   Out << "\n}\n";
1928 }
1929
1930 void CppWriter::printFunction(const std::string& fname,
1931                               const std::string& funcName) {
1932   const Function* F = TheModule->getFunction(funcName);
1933   if (!F) {
1934     error(std::string("Function '") + funcName + "' not found in input module");
1935     return;
1936   }
1937   Out << "\nFunction* " << fname << "(Module *mod) {\n";
1938   printFunctionUses(F);
1939   printFunctionHead(F);
1940   printFunctionBody(F);
1941   Out << "return " << getCppName(F) << ";\n";
1942   Out << "}\n";
1943 }
1944
1945 void CppWriter::printFunctions() {
1946   const Module::FunctionListType &funcs = TheModule->getFunctionList();
1947   Module::const_iterator I  = funcs.begin();
1948   Module::const_iterator IE = funcs.end();
1949
1950   for (; I != IE; ++I) {
1951     const Function &func = *I;
1952     if (!func.isDeclaration()) {
1953       std::string name("define_");
1954       name += func.getName();
1955       printFunction(name, func.getName());
1956     }
1957   }
1958 }
1959
1960 void CppWriter::printVariable(const std::string& fname,
1961                               const std::string& varName) {
1962   const GlobalVariable* GV = TheModule->getNamedGlobal(varName);
1963
1964   if (!GV) {
1965     error(std::string("Variable '") + varName + "' not found in input module");
1966     return;
1967   }
1968   Out << "\nGlobalVariable* " << fname << "(Module *mod) {\n";
1969   printVariableUses(GV);
1970   printVariableHead(GV);
1971   printVariableBody(GV);
1972   Out << "return " << getCppName(GV) << ";\n";
1973   Out << "}\n";
1974 }
1975
1976 void CppWriter::printType(const std::string &fname,
1977                           const std::string &typeName) {
1978   Type* Ty = TheModule->getTypeByName(typeName);
1979   if (!Ty) {
1980     error(std::string("Type '") + typeName + "' not found in input module");
1981     return;
1982   }
1983   Out << "\nType* " << fname << "(Module *mod) {\n";
1984   printType(Ty);
1985   Out << "return " << getCppName(Ty) << ";\n";
1986   Out << "}\n";
1987 }
1988
1989 bool CppWriter::runOnModule(Module &M) {
1990   TheModule = &M;
1991
1992   // Emit a header
1993   Out << "// Generated by llvm2cpp - DO NOT MODIFY!\n\n";
1994
1995   // Get the name of the function we're supposed to generate
1996   std::string fname = FuncName.getValue();
1997
1998   // Get the name of the thing we are to generate
1999   std::string tgtname = NameToGenerate.getValue();
2000   if (GenerationType == GenModule ||
2001       GenerationType == GenContents ||
2002       GenerationType == GenProgram ||
2003       GenerationType == GenFunctions) {
2004     if (tgtname == "!bad!") {
2005       if (M.getModuleIdentifier() == "-")
2006         tgtname = "<stdin>";
2007       else
2008         tgtname = M.getModuleIdentifier();
2009     }
2010   } else if (tgtname == "!bad!")
2011     error("You must use the -for option with -gen-{function,variable,type}");
2012
2013   switch (WhatToGenerate(GenerationType)) {
2014    case GenProgram:
2015     if (fname.empty())
2016       fname = "makeLLVMModule";
2017     printProgram(fname,tgtname);
2018     break;
2019    case GenModule:
2020     if (fname.empty())
2021       fname = "makeLLVMModule";
2022     printModule(fname,tgtname);
2023     break;
2024    case GenContents:
2025     if (fname.empty())
2026       fname = "makeLLVMModuleContents";
2027     printContents(fname,tgtname);
2028     break;
2029    case GenFunction:
2030     if (fname.empty())
2031       fname = "makeLLVMFunction";
2032     printFunction(fname,tgtname);
2033     break;
2034    case GenFunctions:
2035     printFunctions();
2036     break;
2037    case GenInline:
2038     if (fname.empty())
2039       fname = "makeLLVMInline";
2040     printInline(fname,tgtname);
2041     break;
2042    case GenVariable:
2043     if (fname.empty())
2044       fname = "makeLLVMVariable";
2045     printVariable(fname,tgtname);
2046     break;
2047    case GenType:
2048     if (fname.empty())
2049       fname = "makeLLVMType";
2050     printType(fname,tgtname);
2051     break;
2052    default:
2053     error("Invalid generation option");
2054   }
2055
2056   return false;
2057 }
2058
2059 char CppWriter::ID = 0;
2060
2061 //===----------------------------------------------------------------------===//
2062 //                       External Interface declaration
2063 //===----------------------------------------------------------------------===//
2064
2065 bool CPPTargetMachine::addPassesToEmitFile(PassManagerBase &PM,
2066                                            formatted_raw_ostream &o,
2067                                            CodeGenFileType FileType,
2068                                            CodeGenOpt::Level OptLevel,
2069                                            bool DisableVerify) {
2070   if (FileType != TargetMachine::CGFT_AssemblyFile) return true;
2071   PM.add(new CppWriter(o));
2072   return false;
2073 }