Use std::bitset for SubtargetFeatures
[oota-llvm.git] / lib / Target / ARM / MCTargetDesc / ARMAsmBackend.cpp
1 //===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "MCTargetDesc/ARMMCTargetDesc.h"
11 #include "MCTargetDesc/ARMAddressingModes.h"
12 #include "MCTargetDesc/ARMAsmBackend.h"
13 #include "MCTargetDesc/ARMAsmBackendDarwin.h"
14 #include "MCTargetDesc/ARMAsmBackendELF.h"
15 #include "MCTargetDesc/ARMAsmBackendWinCOFF.h"
16 #include "MCTargetDesc/ARMBaseInfo.h"
17 #include "MCTargetDesc/ARMFixupKinds.h"
18 #include "llvm/ADT/StringSwitch.h"
19 #include "llvm/MC/MCAsmBackend.h"
20 #include "llvm/MC/MCAssembler.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCDirectives.h"
23 #include "llvm/MC/MCELFObjectWriter.h"
24 #include "llvm/MC/MCExpr.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCMachObjectWriter.h"
27 #include "llvm/MC/MCObjectWriter.h"
28 #include "llvm/MC/MCSectionELF.h"
29 #include "llvm/MC/MCSectionMachO.h"
30 #include "llvm/MC/MCSubtargetInfo.h"
31 #include "llvm/MC/MCValue.h"
32 #include "llvm/Support/ELF.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/MachO.h"
35 #include "llvm/Support/raw_ostream.h"
36 using namespace llvm;
37
38 namespace {
39 class ARMELFObjectWriter : public MCELFObjectTargetWriter {
40 public:
41   ARMELFObjectWriter(uint8_t OSABI)
42       : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM,
43                                 /*HasRelocationAddend*/ false) {}
44 };
45
46 const MCFixupKindInfo &ARMAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
47   const static MCFixupKindInfo InfosLE[ARM::NumTargetFixupKinds] = {
48       // This table *must* be in the order that the fixup_* kinds are defined in
49       // ARMFixupKinds.h.
50       //
51       // Name                      Offset (bits) Size (bits)     Flags
52       {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
53       {"fixup_t2_ldst_pcrel_12", 0, 32,
54        MCFixupKindInfo::FKF_IsPCRel |
55            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
56       {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
57       {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
58       {"fixup_t2_pcrel_10", 0, 32,
59        MCFixupKindInfo::FKF_IsPCRel |
60            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
61       {"fixup_thumb_adr_pcrel_10", 0, 8,
62        MCFixupKindInfo::FKF_IsPCRel |
63            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
64       {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
65       {"fixup_t2_adr_pcrel_12", 0, 32,
66        MCFixupKindInfo::FKF_IsPCRel |
67            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
68       {"fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
69       {"fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
70       {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
71       {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
72       {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
73       {"fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
74       {"fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
75       {"fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
76       {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
77       {"fixup_arm_thumb_blx", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
78       {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
79       {"fixup_arm_thumb_cp", 0, 8,
80        MCFixupKindInfo::FKF_IsPCRel |
81            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
82       {"fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel},
83       // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
84       // - 19.
85       {"fixup_arm_movt_hi16", 0, 20, 0},
86       {"fixup_arm_movw_lo16", 0, 20, 0},
87       {"fixup_t2_movt_hi16", 0, 20, 0},
88       {"fixup_t2_movw_lo16", 0, 20, 0},
89   };
90   const static MCFixupKindInfo InfosBE[ARM::NumTargetFixupKinds] = {
91       // This table *must* be in the order that the fixup_* kinds are defined in
92       // ARMFixupKinds.h.
93       //
94       // Name                      Offset (bits) Size (bits)     Flags
95       {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
96       {"fixup_t2_ldst_pcrel_12", 0, 32,
97        MCFixupKindInfo::FKF_IsPCRel |
98            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
99       {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
100       {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
101       {"fixup_t2_pcrel_10", 0, 32,
102        MCFixupKindInfo::FKF_IsPCRel |
103            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
104       {"fixup_thumb_adr_pcrel_10", 8, 8,
105        MCFixupKindInfo::FKF_IsPCRel |
106            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
107       {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
108       {"fixup_t2_adr_pcrel_12", 0, 32,
109        MCFixupKindInfo::FKF_IsPCRel |
110            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
111       {"fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
112       {"fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
113       {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
114       {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
115       {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
116       {"fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
117       {"fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
118       {"fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
119       {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
120       {"fixup_arm_thumb_blx", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
121       {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
122       {"fixup_arm_thumb_cp", 8, 8,
123        MCFixupKindInfo::FKF_IsPCRel |
124            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
125       {"fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel},
126       // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
127       // - 19.
128       {"fixup_arm_movt_hi16", 12, 20, 0},
129       {"fixup_arm_movw_lo16", 12, 20, 0},
130       {"fixup_t2_movt_hi16", 12, 20, 0},
131       {"fixup_t2_movw_lo16", 12, 20, 0},
132   };
133
134   if (Kind < FirstTargetFixupKind)
135     return MCAsmBackend::getFixupKindInfo(Kind);
136
137   assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
138          "Invalid kind!");
139   return (IsLittleEndian ? InfosLE : InfosBE)[Kind - FirstTargetFixupKind];
140 }
141
142 void ARMAsmBackend::handleAssemblerFlag(MCAssemblerFlag Flag) {
143   switch (Flag) {
144   default:
145     break;
146   case MCAF_Code16:
147     setIsThumb(true);
148     break;
149   case MCAF_Code32:
150     setIsThumb(false);
151     break;
152   }
153 }
154 } // end anonymous namespace
155
156 unsigned ARMAsmBackend::getRelaxedOpcode(unsigned Op) const {
157   bool HasThumb2 = STI->getFeatureBits()[ARM::FeatureThumb2];
158
159   switch (Op) {
160   default:
161     return Op;
162   case ARM::tBcc:
163     return HasThumb2 ? (unsigned)ARM::t2Bcc : Op;
164   case ARM::tLDRpci:
165     return HasThumb2 ? (unsigned)ARM::t2LDRpci : Op;
166   case ARM::tADR:
167     return HasThumb2 ? (unsigned)ARM::t2ADR : Op;
168   case ARM::tB:
169     return HasThumb2 ? (unsigned)ARM::t2B : Op;
170   case ARM::tCBZ:
171     return ARM::tHINT;
172   case ARM::tCBNZ:
173     return ARM::tHINT;
174   }
175 }
176
177 bool ARMAsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
178   if (getRelaxedOpcode(Inst.getOpcode()) != Inst.getOpcode())
179     return true;
180   return false;
181 }
182
183 bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
184                                          const MCRelaxableFragment *DF,
185                                          const MCAsmLayout &Layout) const {
186   switch ((unsigned)Fixup.getKind()) {
187   case ARM::fixup_arm_thumb_br: {
188     // Relaxing tB to t2B. tB has a signed 12-bit displacement with the
189     // low bit being an implied zero. There's an implied +4 offset for the
190     // branch, so we adjust the other way here to determine what's
191     // encodable.
192     //
193     // Relax if the value is too big for a (signed) i8.
194     int64_t Offset = int64_t(Value) - 4;
195     return Offset > 2046 || Offset < -2048;
196   }
197   case ARM::fixup_arm_thumb_bcc: {
198     // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the
199     // low bit being an implied zero. There's an implied +4 offset for the
200     // branch, so we adjust the other way here to determine what's
201     // encodable.
202     //
203     // Relax if the value is too big for a (signed) i8.
204     int64_t Offset = int64_t(Value) - 4;
205     return Offset > 254 || Offset < -256;
206   }
207   case ARM::fixup_thumb_adr_pcrel_10:
208   case ARM::fixup_arm_thumb_cp: {
209     // If the immediate is negative, greater than 1020, or not a multiple
210     // of four, the wide version of the instruction must be used.
211     int64_t Offset = int64_t(Value) - 4;
212     return Offset > 1020 || Offset < 0 || Offset & 3;
213   }
214   case ARM::fixup_arm_thumb_cb:
215     // If we have a Thumb CBZ or CBNZ instruction and its target is the next
216     // instruction it is is actually out of range for the instruction.
217     // It will be changed to a NOP.
218     int64_t Offset = (Value & ~1);
219     return Offset == 2;
220   }
221   llvm_unreachable("Unexpected fixup kind in fixupNeedsRelaxation()!");
222 }
223
224 void ARMAsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const {
225   unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
226
227   // Sanity check w/ diagnostic if we get here w/ a bogus instruction.
228   if (RelaxedOp == Inst.getOpcode()) {
229     SmallString<256> Tmp;
230     raw_svector_ostream OS(Tmp);
231     Inst.dump_pretty(OS);
232     OS << "\n";
233     report_fatal_error("unexpected instruction to relax: " + OS.str());
234   }
235
236   // If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we
237   // have to change the operands too.
238   if ((Inst.getOpcode() == ARM::tCBZ || Inst.getOpcode() == ARM::tCBNZ) &&
239       RelaxedOp == ARM::tHINT) {
240     Res.setOpcode(RelaxedOp);
241     Res.addOperand(MCOperand::CreateImm(0));
242     Res.addOperand(MCOperand::CreateImm(14));
243     Res.addOperand(MCOperand::CreateReg(0));
244     return;
245   }
246
247   // The rest of instructions we're relaxing have the same operands.
248   // We just need to update to the proper opcode.
249   Res = Inst;
250   Res.setOpcode(RelaxedOp);
251 }
252
253 bool ARMAsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
254   const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8
255   const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP
256   const uint32_t ARMv4_NopEncoding = 0xe1a00000;   // using MOV r0,r0
257   const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP
258   if (isThumb()) {
259     const uint16_t nopEncoding =
260         hasNOP() ? Thumb2_16bitNopEncoding : Thumb1_16bitNopEncoding;
261     uint64_t NumNops = Count / 2;
262     for (uint64_t i = 0; i != NumNops; ++i)
263       OW->Write16(nopEncoding);
264     if (Count & 1)
265       OW->Write8(0);
266     return true;
267   }
268   // ARM mode
269   const uint32_t nopEncoding =
270       hasNOP() ? ARMv6T2_NopEncoding : ARMv4_NopEncoding;
271   uint64_t NumNops = Count / 4;
272   for (uint64_t i = 0; i != NumNops; ++i)
273     OW->Write32(nopEncoding);
274   // FIXME: should this function return false when unable to write exactly
275   // 'Count' bytes with NOP encodings?
276   switch (Count % 4) {
277   default:
278     break; // No leftover bytes to write
279   case 1:
280     OW->Write8(0);
281     break;
282   case 2:
283     OW->Write16(0);
284     break;
285   case 3:
286     OW->Write16(0);
287     OW->Write8(0xa0);
288     break;
289   }
290
291   return true;
292 }
293
294 static uint32_t swapHalfWords(uint32_t Value, bool IsLittleEndian) {
295   if (IsLittleEndian) {
296     // Note that the halfwords are stored high first and low second in thumb;
297     // so we need to swap the fixup value here to map properly.
298     uint32_t Swapped = (Value & 0xFFFF0000) >> 16;
299     Swapped |= (Value & 0x0000FFFF) << 16;
300     return Swapped;
301   } else
302     return Value;
303 }
304
305 static uint32_t joinHalfWords(uint32_t FirstHalf, uint32_t SecondHalf,
306                               bool IsLittleEndian) {
307   uint32_t Value;
308
309   if (IsLittleEndian) {
310     Value = (SecondHalf & 0xFFFF) << 16;
311     Value |= (FirstHalf & 0xFFFF);
312   } else {
313     Value = (SecondHalf & 0xFFFF);
314     Value |= (FirstHalf & 0xFFFF) << 16;
315   }
316
317   return Value;
318 }
319
320 static unsigned adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
321                                  bool IsPCRel, MCContext *Ctx,
322                                  bool IsLittleEndian) {
323   unsigned Kind = Fixup.getKind();
324   switch (Kind) {
325   default:
326     llvm_unreachable("Unknown fixup kind!");
327   case FK_Data_1:
328   case FK_Data_2:
329   case FK_Data_4:
330     return Value;
331   case FK_SecRel_2:
332     return Value;
333   case FK_SecRel_4:
334     return Value;
335   case ARM::fixup_arm_movt_hi16:
336     if (!IsPCRel)
337       Value >>= 16;
338   // Fallthrough
339   case ARM::fixup_arm_movw_lo16: {
340     unsigned Hi4 = (Value & 0xF000) >> 12;
341     unsigned Lo12 = Value & 0x0FFF;
342     // inst{19-16} = Hi4;
343     // inst{11-0} = Lo12;
344     Value = (Hi4 << 16) | (Lo12);
345     return Value;
346   }
347   case ARM::fixup_t2_movt_hi16:
348     if (!IsPCRel)
349       Value >>= 16;
350   // Fallthrough
351   case ARM::fixup_t2_movw_lo16: {
352     unsigned Hi4 = (Value & 0xF000) >> 12;
353     unsigned i = (Value & 0x800) >> 11;
354     unsigned Mid3 = (Value & 0x700) >> 8;
355     unsigned Lo8 = Value & 0x0FF;
356     // inst{19-16} = Hi4;
357     // inst{26} = i;
358     // inst{14-12} = Mid3;
359     // inst{7-0} = Lo8;
360     Value = (Hi4 << 16) | (i << 26) | (Mid3 << 12) | (Lo8);
361     return swapHalfWords(Value, IsLittleEndian);
362   }
363   case ARM::fixup_arm_ldst_pcrel_12:
364     // ARM PC-relative values are offset by 8.
365     Value -= 4;
366   // FALLTHROUGH
367   case ARM::fixup_t2_ldst_pcrel_12: {
368     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
369     Value -= 4;
370     bool isAdd = true;
371     if ((int64_t)Value < 0) {
372       Value = -Value;
373       isAdd = false;
374     }
375     if (Ctx && Value >= 4096)
376       Ctx->FatalError(Fixup.getLoc(), "out of range pc-relative fixup value");
377     Value |= isAdd << 23;
378
379     // Same addressing mode as fixup_arm_pcrel_10,
380     // but with 16-bit halfwords swapped.
381     if (Kind == ARM::fixup_t2_ldst_pcrel_12)
382       return swapHalfWords(Value, IsLittleEndian);
383
384     return Value;
385   }
386   case ARM::fixup_thumb_adr_pcrel_10:
387     return ((Value - 4) >> 2) & 0xff;
388   case ARM::fixup_arm_adr_pcrel_12: {
389     // ARM PC-relative values are offset by 8.
390     Value -= 8;
391     unsigned opc = 4; // bits {24-21}. Default to add: 0b0100
392     if ((int64_t)Value < 0) {
393       Value = -Value;
394       opc = 2; // 0b0010
395     }
396     if (Ctx && ARM_AM::getSOImmVal(Value) == -1)
397       Ctx->FatalError(Fixup.getLoc(), "out of range pc-relative fixup value");
398     // Encode the immediate and shift the opcode into place.
399     return ARM_AM::getSOImmVal(Value) | (opc << 21);
400   }
401
402   case ARM::fixup_t2_adr_pcrel_12: {
403     Value -= 4;
404     unsigned opc = 0;
405     if ((int64_t)Value < 0) {
406       Value = -Value;
407       opc = 5;
408     }
409
410     uint32_t out = (opc << 21);
411     out |= (Value & 0x800) << 15;
412     out |= (Value & 0x700) << 4;
413     out |= (Value & 0x0FF);
414
415     return swapHalfWords(out, IsLittleEndian);
416   }
417
418   case ARM::fixup_arm_condbranch:
419   case ARM::fixup_arm_uncondbranch:
420   case ARM::fixup_arm_uncondbl:
421   case ARM::fixup_arm_condbl:
422   case ARM::fixup_arm_blx:
423     // These values don't encode the low two bits since they're always zero.
424     // Offset by 8 just as above.
425     if (const MCSymbolRefExpr *SRE =
426             dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
427       if (SRE->getKind() == MCSymbolRefExpr::VK_ARM_TLSCALL)
428         return 0;
429     return 0xffffff & ((Value - 8) >> 2);
430   case ARM::fixup_t2_uncondbranch: {
431     Value = Value - 4;
432     Value >>= 1; // Low bit is not encoded.
433
434     uint32_t out = 0;
435     bool I = Value & 0x800000;
436     bool J1 = Value & 0x400000;
437     bool J2 = Value & 0x200000;
438     J1 ^= I;
439     J2 ^= I;
440
441     out |= I << 26;                 // S bit
442     out |= !J1 << 13;               // J1 bit
443     out |= !J2 << 11;               // J2 bit
444     out |= (Value & 0x1FF800) << 5; // imm6 field
445     out |= (Value & 0x0007FF);      // imm11 field
446
447     return swapHalfWords(out, IsLittleEndian);
448   }
449   case ARM::fixup_t2_condbranch: {
450     Value = Value - 4;
451     Value >>= 1; // Low bit is not encoded.
452
453     uint64_t out = 0;
454     out |= (Value & 0x80000) << 7; // S bit
455     out |= (Value & 0x40000) >> 7; // J2 bit
456     out |= (Value & 0x20000) >> 4; // J1 bit
457     out |= (Value & 0x1F800) << 5; // imm6 field
458     out |= (Value & 0x007FF);      // imm11 field
459
460     return swapHalfWords(out, IsLittleEndian);
461   }
462   case ARM::fixup_arm_thumb_bl: {
463     // The value doesn't encode the low bit (always zero) and is offset by
464     // four. The 32-bit immediate value is encoded as
465     //   imm32 = SignExtend(S:I1:I2:imm10:imm11:0)
466     // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
467     // The value is encoded into disjoint bit positions in the destination
468     // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
469     // J = either J1 or J2 bit
470     //
471     //   BL:  xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII
472     //
473     // Note that the halfwords are stored high first, low second; so we need
474     // to transpose the fixup value here to map properly.
475     uint32_t offset = (Value - 4) >> 1;
476     uint32_t signBit = (offset & 0x800000) >> 23;
477     uint32_t I1Bit = (offset & 0x400000) >> 22;
478     uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
479     uint32_t I2Bit = (offset & 0x200000) >> 21;
480     uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
481     uint32_t imm10Bits = (offset & 0x1FF800) >> 11;
482     uint32_t imm11Bits = (offset & 0x000007FF);
483
484     uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits);
485     uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
486                            (uint16_t)imm11Bits);
487     return joinHalfWords(FirstHalf, SecondHalf, IsLittleEndian);
488   }
489   case ARM::fixup_arm_thumb_blx: {
490     // The value doesn't encode the low two bits (always zero) and is offset by
491     // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as
492     //   imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00)
493     // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
494     // The value is encoded into disjoint bit positions in the destination
495     // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
496     // J = either J1 or J2 bit, 0 = zero.
497     //
498     //   BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0
499     //
500     // Note that the halfwords are stored high first, low second; so we need
501     // to transpose the fixup value here to map properly.
502     uint32_t offset = (Value - 2) >> 2;
503     if (const MCSymbolRefExpr *SRE =
504             dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
505       if (SRE->getKind() == MCSymbolRefExpr::VK_ARM_TLSCALL)
506         offset = 0;
507     uint32_t signBit = (offset & 0x400000) >> 22;
508     uint32_t I1Bit = (offset & 0x200000) >> 21;
509     uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
510     uint32_t I2Bit = (offset & 0x100000) >> 20;
511     uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
512     uint32_t imm10HBits = (offset & 0xFFC00) >> 10;
513     uint32_t imm10LBits = (offset & 0x3FF);
514
515     uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits);
516     uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
517                            ((uint16_t)imm10LBits) << 1);
518     return joinHalfWords(FirstHalf, SecondHalf, IsLittleEndian);
519   }
520   case ARM::fixup_arm_thumb_cp:
521     // Offset by 4, and don't encode the low two bits. Two bytes of that
522     // 'off by 4' is implicitly handled by the half-word ordering of the
523     // Thumb encoding, so we only need to adjust by 2 here.
524     return ((Value - 2) >> 2) & 0xff;
525   case ARM::fixup_arm_thumb_cb: {
526     // Offset by 4 and don't encode the lower bit, which is always 0.
527     uint32_t Binary = (Value - 4) >> 1;
528     return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3);
529   }
530   case ARM::fixup_arm_thumb_br:
531     // Offset by 4 and don't encode the lower bit, which is always 0.
532     return ((Value - 4) >> 1) & 0x7ff;
533   case ARM::fixup_arm_thumb_bcc:
534     // Offset by 4 and don't encode the lower bit, which is always 0.
535     return ((Value - 4) >> 1) & 0xff;
536   case ARM::fixup_arm_pcrel_10_unscaled: {
537     Value = Value - 8; // ARM fixups offset by an additional word and don't
538                        // need to adjust for the half-word ordering.
539     bool isAdd = true;
540     if ((int64_t)Value < 0) {
541       Value = -Value;
542       isAdd = false;
543     }
544     // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8].
545     if (Ctx && Value >= 256)
546       Ctx->FatalError(Fixup.getLoc(), "out of range pc-relative fixup value");
547     Value = (Value & 0xf) | ((Value & 0xf0) << 4);
548     return Value | (isAdd << 23);
549   }
550   case ARM::fixup_arm_pcrel_10:
551     Value = Value - 4; // ARM fixups offset by an additional word and don't
552                        // need to adjust for the half-word ordering.
553                        // Fall through.
554   case ARM::fixup_t2_pcrel_10: {
555     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
556     Value = Value - 4;
557     bool isAdd = true;
558     if ((int64_t)Value < 0) {
559       Value = -Value;
560       isAdd = false;
561     }
562     // These values don't encode the low two bits since they're always zero.
563     Value >>= 2;
564     if (Ctx && Value >= 256)
565       Ctx->FatalError(Fixup.getLoc(), "out of range pc-relative fixup value");
566     Value |= isAdd << 23;
567
568     // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords
569     // swapped.
570     if (Kind == ARM::fixup_t2_pcrel_10)
571       return swapHalfWords(Value, IsLittleEndian);
572
573     return Value;
574   }
575   }
576 }
577
578 void ARMAsmBackend::processFixupValue(const MCAssembler &Asm,
579                                       const MCAsmLayout &Layout,
580                                       const MCFixup &Fixup,
581                                       const MCFragment *DF,
582                                       const MCValue &Target, uint64_t &Value,
583                                       bool &IsResolved) {
584   const MCSymbolRefExpr *A = Target.getSymA();
585   // Some fixups to thumb function symbols need the low bit (thumb bit)
586   // twiddled.
587   if ((unsigned)Fixup.getKind() != ARM::fixup_arm_ldst_pcrel_12 &&
588       (unsigned)Fixup.getKind() != ARM::fixup_t2_ldst_pcrel_12 &&
589       (unsigned)Fixup.getKind() != ARM::fixup_arm_adr_pcrel_12 &&
590       (unsigned)Fixup.getKind() != ARM::fixup_thumb_adr_pcrel_10 &&
591       (unsigned)Fixup.getKind() != ARM::fixup_t2_adr_pcrel_12 &&
592       (unsigned)Fixup.getKind() != ARM::fixup_arm_thumb_cp) {
593     if (A) {
594       const MCSymbol &Sym = A->getSymbol();
595       if (Asm.isThumbFunc(&Sym))
596         Value |= 1;
597     }
598   }
599   // For Thumb1 BL instruction, it is possible to be a long jump between
600   // the basic blocks of the same function.  Thus, we would like to resolve
601   // the offset when the destination has the same MCFragment.
602   if (A && (unsigned)Fixup.getKind() == ARM::fixup_arm_thumb_bl) {
603     const MCSymbol &Sym = A->getSymbol();
604     const MCSymbolData &SymData = Asm.getSymbolData(Sym);
605     IsResolved = (SymData.getFragment() == DF);
606   }
607   // We must always generate a relocation for BL/BLX instructions if we have
608   // a symbol to reference, as the linker relies on knowing the destination
609   // symbol's thumb-ness to get interworking right.
610   if (A && ((unsigned)Fixup.getKind() == ARM::fixup_arm_thumb_blx ||
611             (unsigned)Fixup.getKind() == ARM::fixup_arm_blx ||
612             (unsigned)Fixup.getKind() == ARM::fixup_arm_uncondbl ||
613             (unsigned)Fixup.getKind() == ARM::fixup_arm_condbl))
614     IsResolved = false;
615
616   // Try to get the encoded value for the fixup as-if we're mapping it into
617   // the instruction. This allows adjustFixupValue() to issue a diagnostic
618   // if the value aren't invalid.
619   (void)adjustFixupValue(Fixup, Value, false, &Asm.getContext(),
620                          IsLittleEndian);
621 }
622
623 /// getFixupKindNumBytes - The number of bytes the fixup may change.
624 static unsigned getFixupKindNumBytes(unsigned Kind) {
625   switch (Kind) {
626   default:
627     llvm_unreachable("Unknown fixup kind!");
628
629   case FK_Data_1:
630   case ARM::fixup_arm_thumb_bcc:
631   case ARM::fixup_arm_thumb_cp:
632   case ARM::fixup_thumb_adr_pcrel_10:
633     return 1;
634
635   case FK_Data_2:
636   case ARM::fixup_arm_thumb_br:
637   case ARM::fixup_arm_thumb_cb:
638     return 2;
639
640   case ARM::fixup_arm_pcrel_10_unscaled:
641   case ARM::fixup_arm_ldst_pcrel_12:
642   case ARM::fixup_arm_pcrel_10:
643   case ARM::fixup_arm_adr_pcrel_12:
644   case ARM::fixup_arm_uncondbl:
645   case ARM::fixup_arm_condbl:
646   case ARM::fixup_arm_blx:
647   case ARM::fixup_arm_condbranch:
648   case ARM::fixup_arm_uncondbranch:
649     return 3;
650
651   case FK_Data_4:
652   case ARM::fixup_t2_ldst_pcrel_12:
653   case ARM::fixup_t2_condbranch:
654   case ARM::fixup_t2_uncondbranch:
655   case ARM::fixup_t2_pcrel_10:
656   case ARM::fixup_t2_adr_pcrel_12:
657   case ARM::fixup_arm_thumb_bl:
658   case ARM::fixup_arm_thumb_blx:
659   case ARM::fixup_arm_movt_hi16:
660   case ARM::fixup_arm_movw_lo16:
661   case ARM::fixup_t2_movt_hi16:
662   case ARM::fixup_t2_movw_lo16:
663     return 4;
664
665   case FK_SecRel_2:
666     return 2;
667   case FK_SecRel_4:
668     return 4;
669   }
670 }
671
672 /// getFixupKindContainerSizeBytes - The number of bytes of the
673 /// container involved in big endian.
674 static unsigned getFixupKindContainerSizeBytes(unsigned Kind) {
675   switch (Kind) {
676   default:
677     llvm_unreachable("Unknown fixup kind!");
678
679   case FK_Data_1:
680     return 1;
681   case FK_Data_2:
682     return 2;
683   case FK_Data_4:
684     return 4;
685
686   case ARM::fixup_arm_thumb_bcc:
687   case ARM::fixup_arm_thumb_cp:
688   case ARM::fixup_thumb_adr_pcrel_10:
689   case ARM::fixup_arm_thumb_br:
690   case ARM::fixup_arm_thumb_cb:
691     // Instruction size is 2 bytes.
692     return 2;
693
694   case ARM::fixup_arm_pcrel_10_unscaled:
695   case ARM::fixup_arm_ldst_pcrel_12:
696   case ARM::fixup_arm_pcrel_10:
697   case ARM::fixup_arm_adr_pcrel_12:
698   case ARM::fixup_arm_uncondbl:
699   case ARM::fixup_arm_condbl:
700   case ARM::fixup_arm_blx:
701   case ARM::fixup_arm_condbranch:
702   case ARM::fixup_arm_uncondbranch:
703   case ARM::fixup_t2_ldst_pcrel_12:
704   case ARM::fixup_t2_condbranch:
705   case ARM::fixup_t2_uncondbranch:
706   case ARM::fixup_t2_pcrel_10:
707   case ARM::fixup_t2_adr_pcrel_12:
708   case ARM::fixup_arm_thumb_bl:
709   case ARM::fixup_arm_thumb_blx:
710   case ARM::fixup_arm_movt_hi16:
711   case ARM::fixup_arm_movw_lo16:
712   case ARM::fixup_t2_movt_hi16:
713   case ARM::fixup_t2_movw_lo16:
714     // Instruction size is 4 bytes.
715     return 4;
716   }
717 }
718
719 void ARMAsmBackend::applyFixup(const MCFixup &Fixup, char *Data,
720                                unsigned DataSize, uint64_t Value,
721                                bool IsPCRel) const {
722   unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
723   Value = adjustFixupValue(Fixup, Value, IsPCRel, nullptr, IsLittleEndian);
724   if (!Value)
725     return; // Doesn't change encoding.
726
727   unsigned Offset = Fixup.getOffset();
728   assert(Offset + NumBytes <= DataSize && "Invalid fixup offset!");
729
730   // Used to point to big endian bytes.
731   unsigned FullSizeBytes;
732   if (!IsLittleEndian) {
733     FullSizeBytes = getFixupKindContainerSizeBytes(Fixup.getKind());
734     assert((Offset + FullSizeBytes) <= DataSize && "Invalid fixup size!");
735     assert(NumBytes <= FullSizeBytes && "Invalid fixup size!");
736   }
737
738   // For each byte of the fragment that the fixup touches, mask in the bits from
739   // the fixup value. The Value has been "split up" into the appropriate
740   // bitfields above.
741   for (unsigned i = 0; i != NumBytes; ++i) {
742     unsigned Idx = IsLittleEndian ? i : (FullSizeBytes - 1 - i);
743     Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff);
744   }
745 }
746
747 MCAsmBackend *llvm::createARMAsmBackend(const Target &T,
748                                         const MCRegisterInfo &MRI, StringRef TT,
749                                         StringRef CPU, bool isLittle) {
750   Triple TheTriple(TT);
751
752   switch (TheTriple.getObjectFormat()) {
753   default:
754     llvm_unreachable("unsupported object format");
755   case Triple::MachO: {
756     MachO::CPUSubTypeARM CS =
757         StringSwitch<MachO::CPUSubTypeARM>(TheTriple.getArchName())
758             .Cases("armv4t", "thumbv4t", MachO::CPU_SUBTYPE_ARM_V4T)
759             .Cases("armv5e", "thumbv5e", MachO::CPU_SUBTYPE_ARM_V5TEJ)
760             .Cases("armv6", "thumbv6", MachO::CPU_SUBTYPE_ARM_V6)
761             .Cases("armv6m", "thumbv6m", MachO::CPU_SUBTYPE_ARM_V6M)
762             .Cases("armv7em", "thumbv7em", MachO::CPU_SUBTYPE_ARM_V7EM)
763             .Cases("armv7k", "thumbv7k", MachO::CPU_SUBTYPE_ARM_V7K)
764             .Cases("armv7m", "thumbv7m", MachO::CPU_SUBTYPE_ARM_V7M)
765             .Cases("armv7s", "thumbv7s", MachO::CPU_SUBTYPE_ARM_V7S)
766             .Default(MachO::CPU_SUBTYPE_ARM_V7);
767
768     return new ARMAsmBackendDarwin(T, TT, CS);
769   }
770   case Triple::COFF:
771     assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported");
772     return new ARMAsmBackendWinCOFF(T, TT);
773   case Triple::ELF:
774     assert(TheTriple.isOSBinFormatELF() && "using ELF for non-ELF target");
775     uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(Triple(TT).getOS());
776     return new ARMAsmBackendELF(T, TT, OSABI, isLittle);
777   }
778 }
779
780 MCAsmBackend *llvm::createARMLEAsmBackend(const Target &T,
781                                           const MCRegisterInfo &MRI,
782                                           StringRef TT, StringRef CPU) {
783   return createARMAsmBackend(T, MRI, TT, CPU, true);
784 }
785
786 MCAsmBackend *llvm::createARMBEAsmBackend(const Target &T,
787                                           const MCRegisterInfo &MRI,
788                                           StringRef TT, StringRef CPU) {
789   return createARMAsmBackend(T, MRI, TT, CPU, false);
790 }
791
792 MCAsmBackend *llvm::createThumbLEAsmBackend(const Target &T,
793                                             const MCRegisterInfo &MRI,
794                                             StringRef TT, StringRef CPU) {
795   return createARMAsmBackend(T, MRI, TT, CPU, true);
796 }
797
798 MCAsmBackend *llvm::createThumbBEAsmBackend(const Target &T,
799                                             const MCRegisterInfo &MRI,
800                                             StringRef TT, StringRef CPU) {
801   return createARMAsmBackend(T, MRI, TT, CPU, false);
802 }