Remove alignment from deserted constant islands.
[oota-llvm.git] / lib / Target / ARM / ARMConstantIslandPass.cpp
1 //===-- ARMConstantIslandPass.cpp - ARM constant islands ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a pass that splits the constant pool up into 'islands'
11 // which are scattered through-out the function.  This is required due to the
12 // limited pc-relative displacements that ARM has.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #define DEBUG_TYPE "arm-cp-islands"
17 #include "ARM.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMInstrInfo.h"
20 #include "Thumb2InstrInfo.h"
21 #include "MCTargetDesc/ARMAddressingModes.h"
22 #include "llvm/CodeGen/MachineConstantPool.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineJumpTableInfo.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/Target/TargetMachine.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/Support/CommandLine.h"
35 #include <algorithm>
36 using namespace llvm;
37
38 STATISTIC(NumCPEs,       "Number of constpool entries");
39 STATISTIC(NumSplit,      "Number of uncond branches inserted");
40 STATISTIC(NumCBrFixed,   "Number of cond branches fixed");
41 STATISTIC(NumUBrFixed,   "Number of uncond branches fixed");
42 STATISTIC(NumTBs,        "Number of table branches generated");
43 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
44 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
45 STATISTIC(NumCBZ,        "Number of CBZ / CBNZ formed");
46 STATISTIC(NumJTMoved,    "Number of jump table destination blocks moved");
47 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted");
48
49
50 static cl::opt<bool>
51 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true),
52           cl::desc("Adjust basic block layout to better use TB[BH]"));
53
54 namespace {
55   /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
56   /// requires constant pool entries to be scattered among the instructions
57   /// inside a function.  To do this, it completely ignores the normal LLVM
58   /// constant pool; instead, it places constants wherever it feels like with
59   /// special instructions.
60   ///
61   /// The terminology used in this pass includes:
62   ///   Islands - Clumps of constants placed in the function.
63   ///   Water   - Potential places where an island could be formed.
64   ///   CPE     - A constant pool entry that has been placed somewhere, which
65   ///             tracks a list of users.
66   class ARMConstantIslands : public MachineFunctionPass {
67     /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed
68     /// by MBB Number.  The two-byte pads required for Thumb alignment are
69     /// counted as part of the following block (i.e., the offset and size for
70     /// a padded block will both be ==2 mod 4).
71     std::vector<unsigned> BBSizes;
72
73     /// BBOffsets - the offset of each MBB in bytes, starting from 0.
74     /// The two-byte pads required for Thumb alignment are counted as part of
75     /// the following block.
76     std::vector<unsigned> BBOffsets;
77
78     /// WaterList - A sorted list of basic blocks where islands could be placed
79     /// (i.e. blocks that don't fall through to the following block, due
80     /// to a return, unreachable, or unconditional branch).
81     std::vector<MachineBasicBlock*> WaterList;
82
83     /// NewWaterList - The subset of WaterList that was created since the
84     /// previous iteration by inserting unconditional branches.
85     SmallSet<MachineBasicBlock*, 4> NewWaterList;
86
87     typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
88
89     /// CPUser - One user of a constant pool, keeping the machine instruction
90     /// pointer, the constant pool being referenced, and the max displacement
91     /// allowed from the instruction to the CP.  The HighWaterMark records the
92     /// highest basic block where a new CPEntry can be placed.  To ensure this
93     /// pass terminates, the CP entries are initially placed at the end of the
94     /// function and then move monotonically to lower addresses.  The
95     /// exception to this rule is when the current CP entry for a particular
96     /// CPUser is out of range, but there is another CP entry for the same
97     /// constant value in range.  We want to use the existing in-range CP
98     /// entry, but if it later moves out of range, the search for new water
99     /// should resume where it left off.  The HighWaterMark is used to record
100     /// that point.
101     struct CPUser {
102       MachineInstr *MI;
103       MachineInstr *CPEMI;
104       MachineBasicBlock *HighWaterMark;
105       unsigned MaxDisp;
106       bool NegOk;
107       bool IsSoImm;
108       CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
109              bool neg, bool soimm)
110         : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) {
111         HighWaterMark = CPEMI->getParent();
112       }
113     };
114
115     /// CPUsers - Keep track of all of the machine instructions that use various
116     /// constant pools and their max displacement.
117     std::vector<CPUser> CPUsers;
118
119     /// CPEntry - One per constant pool entry, keeping the machine instruction
120     /// pointer, the constpool index, and the number of CPUser's which
121     /// reference this entry.
122     struct CPEntry {
123       MachineInstr *CPEMI;
124       unsigned CPI;
125       unsigned RefCount;
126       CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
127         : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
128     };
129
130     /// CPEntries - Keep track of all of the constant pool entry machine
131     /// instructions. For each original constpool index (i.e. those that
132     /// existed upon entry to this pass), it keeps a vector of entries.
133     /// Original elements are cloned as we go along; the clones are
134     /// put in the vector of the original element, but have distinct CPIs.
135     std::vector<std::vector<CPEntry> > CPEntries;
136
137     /// ImmBranch - One per immediate branch, keeping the machine instruction
138     /// pointer, conditional or unconditional, the max displacement,
139     /// and (if isCond is true) the corresponding unconditional branch
140     /// opcode.
141     struct ImmBranch {
142       MachineInstr *MI;
143       unsigned MaxDisp : 31;
144       bool isCond : 1;
145       int UncondBr;
146       ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
147         : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
148     };
149
150     /// ImmBranches - Keep track of all the immediate branch instructions.
151     ///
152     std::vector<ImmBranch> ImmBranches;
153
154     /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
155     ///
156     SmallVector<MachineInstr*, 4> PushPopMIs;
157
158     /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
159     SmallVector<MachineInstr*, 4> T2JumpTables;
160
161     /// HasFarJump - True if any far jump instruction has been emitted during
162     /// the branch fix up pass.
163     bool HasFarJump;
164
165     /// HasInlineAsm - True if the function contains inline assembly.
166     bool HasInlineAsm;
167
168     const ARMInstrInfo *TII;
169     const ARMSubtarget *STI;
170     ARMFunctionInfo *AFI;
171     bool isThumb;
172     bool isThumb1;
173     bool isThumb2;
174   public:
175     static char ID;
176     ARMConstantIslands() : MachineFunctionPass(ID) {}
177
178     virtual bool runOnMachineFunction(MachineFunction &MF);
179
180     virtual const char *getPassName() const {
181       return "ARM constant island placement and branch shortening pass";
182     }
183
184   private:
185     void DoInitialPlacement(MachineFunction &MF,
186                             std::vector<MachineInstr*> &CPEMIs);
187     CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
188     void JumpTableFunctionScan(MachineFunction &MF);
189     void InitialFunctionScan(MachineFunction &MF,
190                              const std::vector<MachineInstr*> &CPEMIs);
191     MachineBasicBlock *SplitBlockBeforeInstr(MachineInstr *MI);
192     void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB);
193     void AdjustBBOffsetsAfter(MachineBasicBlock *BB, int delta);
194     bool DecrementOldEntry(unsigned CPI, MachineInstr* CPEMI);
195     int LookForExistingCPEntry(CPUser& U, unsigned UserOffset);
196     bool LookForWater(CPUser&U, unsigned UserOffset, water_iterator &WaterIter);
197     void CreateNewWater(unsigned CPUserIndex, unsigned UserOffset,
198                         MachineBasicBlock *&NewMBB);
199     bool HandleConstantPoolUser(MachineFunction &MF, unsigned CPUserIndex);
200     void RemoveDeadCPEMI(MachineInstr *CPEMI);
201     bool RemoveUnusedCPEntries();
202     bool CPEIsInRange(MachineInstr *MI, unsigned UserOffset,
203                       MachineInstr *CPEMI, unsigned Disp, bool NegOk,
204                       bool DoDump = false);
205     bool WaterIsInRange(unsigned UserOffset, MachineBasicBlock *Water,
206                         CPUser &U);
207     bool OffsetIsInRange(unsigned UserOffset, unsigned TrialOffset,
208                          unsigned Disp, bool NegativeOK, bool IsSoImm = false);
209     bool BBIsInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
210     bool FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br);
211     bool FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br);
212     bool FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br);
213     bool UndoLRSpillRestore();
214     bool OptimizeThumb2Instructions(MachineFunction &MF);
215     bool OptimizeThumb2Branches(MachineFunction &MF);
216     bool ReorderThumb2JumpTables(MachineFunction &MF);
217     bool OptimizeThumb2JumpTables(MachineFunction &MF);
218     MachineBasicBlock *AdjustJTTargetBlockForward(MachineBasicBlock *BB,
219                                                   MachineBasicBlock *JTBB);
220
221     unsigned GetOffsetOf(MachineInstr *MI) const;
222     void dumpBBs();
223     void verify(MachineFunction &MF);
224   };
225   char ARMConstantIslands::ID = 0;
226 }
227
228 /// verify - check BBOffsets, BBSizes, alignment of islands
229 void ARMConstantIslands::verify(MachineFunction &MF) {
230   assert(BBOffsets.size() == BBSizes.size());
231   for (unsigned i = 1, e = BBOffsets.size(); i != e; ++i)
232     assert(BBOffsets[i-1]+BBSizes[i-1] == BBOffsets[i]);
233   if (!isThumb)
234     return;
235 #ifndef NDEBUG
236   for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
237        MBBI != E; ++MBBI) {
238     MachineBasicBlock *MBB = MBBI;
239     if (!MBB->empty() &&
240         MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) {
241       unsigned MBBId = MBB->getNumber();
242       assert(HasInlineAsm ||
243              (BBOffsets[MBBId]%4 == 0 && BBSizes[MBBId]%4 == 0) ||
244              (BBOffsets[MBBId]%4 != 0 && BBSizes[MBBId]%4 != 0));
245     }
246   }
247   for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
248     CPUser &U = CPUsers[i];
249     unsigned UserOffset = GetOffsetOf(U.MI) + (isThumb ? 4 : 8);
250     unsigned CPEOffset  = GetOffsetOf(U.CPEMI);
251     unsigned Disp = UserOffset < CPEOffset ? CPEOffset - UserOffset :
252       UserOffset - CPEOffset;
253     assert(Disp <= U.MaxDisp || "Constant pool entry out of range!");
254   }
255 #endif
256 }
257
258 /// print block size and offset information - debugging
259 void ARMConstantIslands::dumpBBs() {
260   for (unsigned J = 0, E = BBOffsets.size(); J !=E; ++J) {
261     DEBUG(errs() << "block " << J << " offset " << BBOffsets[J]
262                  << " size " << BBSizes[J] << "\n");
263   }
264 }
265
266 /// createARMConstantIslandPass - returns an instance of the constpool
267 /// island pass.
268 FunctionPass *llvm::createARMConstantIslandPass() {
269   return new ARMConstantIslands();
270 }
271
272 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &MF) {
273   MachineConstantPool &MCP = *MF.getConstantPool();
274
275   TII = (const ARMInstrInfo*)MF.getTarget().getInstrInfo();
276   AFI = MF.getInfo<ARMFunctionInfo>();
277   STI = &MF.getTarget().getSubtarget<ARMSubtarget>();
278
279   isThumb = AFI->isThumbFunction();
280   isThumb1 = AFI->isThumb1OnlyFunction();
281   isThumb2 = AFI->isThumb2Function();
282
283   HasFarJump = false;
284   HasInlineAsm = false;
285
286   // Renumber all of the machine basic blocks in the function, guaranteeing that
287   // the numbers agree with the position of the block in the function.
288   MF.RenumberBlocks();
289
290   // Try to reorder and otherwise adjust the block layout to make good use
291   // of the TB[BH] instructions.
292   bool MadeChange = false;
293   if (isThumb2 && AdjustJumpTableBlocks) {
294     JumpTableFunctionScan(MF);
295     MadeChange |= ReorderThumb2JumpTables(MF);
296     // Data is out of date, so clear it. It'll be re-computed later.
297     T2JumpTables.clear();
298     // Blocks may have shifted around. Keep the numbering up to date.
299     MF.RenumberBlocks();
300   }
301
302   // Thumb1 functions containing constant pools get 4-byte alignment.
303   // This is so we can keep exact track of where the alignment padding goes.
304
305   // ARM and Thumb2 functions need to be 4-byte aligned.
306   if (!isThumb1)
307     MF.EnsureAlignment(2);  // 2 = log2(4)
308
309   // Perform the initial placement of the constant pool entries.  To start with,
310   // we put them all at the end of the function.
311   std::vector<MachineInstr*> CPEMIs;
312   if (!MCP.isEmpty()) {
313     DoInitialPlacement(MF, CPEMIs);
314     if (isThumb1)
315       MF.EnsureAlignment(2);  // 2 = log2(4)
316   }
317
318   /// The next UID to take is the first unused one.
319   AFI->initPICLabelUId(CPEMIs.size());
320
321   // Do the initial scan of the function, building up information about the
322   // sizes of each block, the location of all the water, and finding all of the
323   // constant pool users.
324   InitialFunctionScan(MF, CPEMIs);
325   CPEMIs.clear();
326   DEBUG(dumpBBs());
327
328
329   /// Remove dead constant pool entries.
330   MadeChange |= RemoveUnusedCPEntries();
331
332   // Iteratively place constant pool entries and fix up branches until there
333   // is no change.
334   unsigned NoCPIters = 0, NoBRIters = 0;
335   while (true) {
336     bool CPChange = false;
337     for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
338       CPChange |= HandleConstantPoolUser(MF, i);
339     if (CPChange && ++NoCPIters > 30)
340       llvm_unreachable("Constant Island pass failed to converge!");
341     DEBUG(dumpBBs());
342
343     // Clear NewWaterList now.  If we split a block for branches, it should
344     // appear as "new water" for the next iteration of constant pool placement.
345     NewWaterList.clear();
346
347     bool BRChange = false;
348     for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
349       BRChange |= FixUpImmediateBr(MF, ImmBranches[i]);
350     if (BRChange && ++NoBRIters > 30)
351       llvm_unreachable("Branch Fix Up pass failed to converge!");
352     DEBUG(dumpBBs());
353
354     if (!CPChange && !BRChange)
355       break;
356     MadeChange = true;
357   }
358
359   // Shrink 32-bit Thumb2 branch, load, and store instructions.
360   if (isThumb2 && !STI->prefers32BitThumb())
361     MadeChange |= OptimizeThumb2Instructions(MF);
362
363   // After a while, this might be made debug-only, but it is not expensive.
364   verify(MF);
365
366   // If LR has been forced spilled and no far jump (i.e. BL) has been issued,
367   // undo the spill / restore of LR if possible.
368   if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump())
369     MadeChange |= UndoLRSpillRestore();
370
371   // Save the mapping between original and cloned constpool entries.
372   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
373     for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) {
374       const CPEntry & CPE = CPEntries[i][j];
375       AFI->recordCPEClone(i, CPE.CPI);
376     }
377   }
378
379   DEBUG(errs() << '\n'; dumpBBs());
380
381   BBSizes.clear();
382   BBOffsets.clear();
383   WaterList.clear();
384   CPUsers.clear();
385   CPEntries.clear();
386   ImmBranches.clear();
387   PushPopMIs.clear();
388   T2JumpTables.clear();
389
390   return MadeChange;
391 }
392
393 /// DoInitialPlacement - Perform the initial placement of the constant pool
394 /// entries.  To start with, we put them all at the end of the function.
395 void ARMConstantIslands::DoInitialPlacement(MachineFunction &MF,
396                                         std::vector<MachineInstr*> &CPEMIs) {
397   // Create the basic block to hold the CPE's.
398   MachineBasicBlock *BB = MF.CreateMachineBasicBlock();
399   MF.push_back(BB);
400
401   // Mark the basic block as 4-byte aligned as required by the const-pool.
402   BB->setAlignment(2);
403
404   // Add all of the constants from the constant pool to the end block, use an
405   // identity mapping of CPI's to CPE's.
406   const std::vector<MachineConstantPoolEntry> &CPs =
407     MF.getConstantPool()->getConstants();
408
409   const TargetData &TD = *MF.getTarget().getTargetData();
410   for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
411     unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
412     // Verify that all constant pool entries are a multiple of 4 bytes.  If not,
413     // we would have to pad them out or something so that instructions stay
414     // aligned.
415     assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!");
416     MachineInstr *CPEMI =
417       BuildMI(BB, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
418         .addImm(i).addConstantPoolIndex(i).addImm(Size);
419     CPEMIs.push_back(CPEMI);
420
421     // Add a new CPEntry, but no corresponding CPUser yet.
422     std::vector<CPEntry> CPEs;
423     CPEs.push_back(CPEntry(CPEMI, i));
424     CPEntries.push_back(CPEs);
425     ++NumCPEs;
426     DEBUG(errs() << "Moved CPI#" << i << " to end of function as #" << i
427                  << "\n");
428   }
429 }
430
431 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
432 /// into the block immediately after it.
433 static bool BBHasFallthrough(MachineBasicBlock *MBB) {
434   // Get the next machine basic block in the function.
435   MachineFunction::iterator MBBI = MBB;
436   // Can't fall off end of function.
437   if (llvm::next(MBBI) == MBB->getParent()->end())
438     return false;
439
440   MachineBasicBlock *NextBB = llvm::next(MBBI);
441   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
442        E = MBB->succ_end(); I != E; ++I)
443     if (*I == NextBB)
444       return true;
445
446   return false;
447 }
448
449 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
450 /// look up the corresponding CPEntry.
451 ARMConstantIslands::CPEntry
452 *ARMConstantIslands::findConstPoolEntry(unsigned CPI,
453                                         const MachineInstr *CPEMI) {
454   std::vector<CPEntry> &CPEs = CPEntries[CPI];
455   // Number of entries per constpool index should be small, just do a
456   // linear search.
457   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
458     if (CPEs[i].CPEMI == CPEMI)
459       return &CPEs[i];
460   }
461   return NULL;
462 }
463
464 /// JumpTableFunctionScan - Do a scan of the function, building up
465 /// information about the sizes of each block and the locations of all
466 /// the jump tables.
467 void ARMConstantIslands::JumpTableFunctionScan(MachineFunction &MF) {
468   for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
469        MBBI != E; ++MBBI) {
470     MachineBasicBlock &MBB = *MBBI;
471
472     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
473          I != E; ++I)
474       if (I->getDesc().isBranch() && I->getOpcode() == ARM::t2BR_JT)
475         T2JumpTables.push_back(I);
476   }
477 }
478
479 /// InitialFunctionScan - Do the initial scan of the function, building up
480 /// information about the sizes of each block, the location of all the water,
481 /// and finding all of the constant pool users.
482 void ARMConstantIslands::InitialFunctionScan(MachineFunction &MF,
483                                  const std::vector<MachineInstr*> &CPEMIs) {
484   // First thing, see if the function has any inline assembly in it. If so,
485   // we have to be conservative about alignment assumptions, as we don't
486   // know for sure the size of any instructions in the inline assembly.
487   for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
488        MBBI != E; ++MBBI) {
489     MachineBasicBlock &MBB = *MBBI;
490     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
491          I != E; ++I)
492       if (I->getOpcode() == ARM::INLINEASM)
493         HasInlineAsm = true;
494   }
495
496   // Now go back through the instructions and build up our data structures.
497   unsigned Offset = 0;
498   for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
499        MBBI != E; ++MBBI) {
500     MachineBasicBlock &MBB = *MBBI;
501
502     // If this block doesn't fall through into the next MBB, then this is
503     // 'water' that a constant pool island could be placed.
504     if (!BBHasFallthrough(&MBB))
505       WaterList.push_back(&MBB);
506
507     unsigned MBBSize = 0;
508     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
509          I != E; ++I) {
510       if (I->isDebugValue())
511         continue;
512       // Add instruction size to MBBSize.
513       MBBSize += TII->GetInstSizeInBytes(I);
514
515       int Opc = I->getOpcode();
516       if (I->getDesc().isBranch()) {
517         bool isCond = false;
518         unsigned Bits = 0;
519         unsigned Scale = 1;
520         int UOpc = Opc;
521         switch (Opc) {
522         default:
523           continue;  // Ignore other JT branches
524         case ARM::tBR_JTr:
525           // A Thumb1 table jump may involve padding; for the offsets to
526           // be right, functions containing these must be 4-byte aligned.
527           // tBR_JTr expands to a mov pc followed by .align 2 and then the jump
528           // table entries. So this code checks whether offset of tBR_JTr + 2
529           // is aligned.  That is held in Offset+MBBSize, which already has
530           // 2 added in for the size of the mov pc instruction.
531           MF.EnsureAlignment(2U);
532           if ((Offset+MBBSize)%4 != 0 || HasInlineAsm)
533             // FIXME: Add a pseudo ALIGN instruction instead.
534             MBBSize += 2;           // padding
535           continue;   // Does not get an entry in ImmBranches
536         case ARM::t2BR_JT:
537           T2JumpTables.push_back(I);
538           continue;   // Does not get an entry in ImmBranches
539         case ARM::Bcc:
540           isCond = true;
541           UOpc = ARM::B;
542           // Fallthrough
543         case ARM::B:
544           Bits = 24;
545           Scale = 4;
546           break;
547         case ARM::tBcc:
548           isCond = true;
549           UOpc = ARM::tB;
550           Bits = 8;
551           Scale = 2;
552           break;
553         case ARM::tB:
554           Bits = 11;
555           Scale = 2;
556           break;
557         case ARM::t2Bcc:
558           isCond = true;
559           UOpc = ARM::t2B;
560           Bits = 20;
561           Scale = 2;
562           break;
563         case ARM::t2B:
564           Bits = 24;
565           Scale = 2;
566           break;
567         }
568
569         // Record this immediate branch.
570         unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
571         ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc));
572       }
573
574       if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
575         PushPopMIs.push_back(I);
576
577       if (Opc == ARM::CONSTPOOL_ENTRY)
578         continue;
579
580       // Scan the instructions for constant pool operands.
581       for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
582         if (I->getOperand(op).isCPI()) {
583           // We found one.  The addressing mode tells us the max displacement
584           // from the PC that this instruction permits.
585
586           // Basic size info comes from the TSFlags field.
587           unsigned Bits = 0;
588           unsigned Scale = 1;
589           bool NegOk = false;
590           bool IsSoImm = false;
591
592           switch (Opc) {
593           default:
594             llvm_unreachable("Unknown addressing mode for CP reference!");
595             break;
596
597           // Taking the address of a CP entry.
598           case ARM::LEApcrel:
599             // This takes a SoImm, which is 8 bit immediate rotated. We'll
600             // pretend the maximum offset is 255 * 4. Since each instruction
601             // 4 byte wide, this is always correct. We'll check for other
602             // displacements that fits in a SoImm as well.
603             Bits = 8;
604             Scale = 4;
605             NegOk = true;
606             IsSoImm = true;
607             break;
608           case ARM::t2LEApcrel:
609             Bits = 12;
610             NegOk = true;
611             break;
612           case ARM::tLEApcrel:
613             Bits = 8;
614             Scale = 4;
615             break;
616
617           case ARM::LDRi12:
618           case ARM::LDRcp:
619           case ARM::t2LDRpci:
620             Bits = 12;  // +-offset_12
621             NegOk = true;
622             break;
623
624           case ARM::tLDRpci:
625             Bits = 8;
626             Scale = 4;  // +(offset_8*4)
627             break;
628
629           case ARM::VLDRD:
630           case ARM::VLDRS:
631             Bits = 8;
632             Scale = 4;  // +-(offset_8*4)
633             NegOk = true;
634             break;
635           }
636
637           // Remember that this is a user of a CP entry.
638           unsigned CPI = I->getOperand(op).getIndex();
639           MachineInstr *CPEMI = CPEMIs[CPI];
640           unsigned MaxOffs = ((1 << Bits)-1) * Scale;
641           CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm));
642
643           // Increment corresponding CPEntry reference count.
644           CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
645           assert(CPE && "Cannot find a corresponding CPEntry!");
646           CPE->RefCount++;
647
648           // Instructions can only use one CP entry, don't bother scanning the
649           // rest of the operands.
650           break;
651         }
652     }
653
654     // In thumb mode, if this block is a constpool island, we may need padding
655     // so it's aligned on 4 byte boundary.
656     if (isThumb &&
657         !MBB.empty() &&
658         MBB.begin()->getOpcode() == ARM::CONSTPOOL_ENTRY &&
659         ((Offset%4) != 0 || HasInlineAsm))
660       MBBSize += 2;
661
662     BBSizes.push_back(MBBSize);
663     BBOffsets.push_back(Offset);
664     Offset += MBBSize;
665   }
666 }
667
668 /// GetOffsetOf - Return the current offset of the specified machine instruction
669 /// from the start of the function.  This offset changes as stuff is moved
670 /// around inside the function.
671 unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const {
672   MachineBasicBlock *MBB = MI->getParent();
673
674   // The offset is composed of two things: the sum of the sizes of all MBB's
675   // before this instruction's block, and the offset from the start of the block
676   // it is in.
677   unsigned Offset = BBOffsets[MBB->getNumber()];
678
679   // If we're looking for a CONSTPOOL_ENTRY in Thumb, see if this block has
680   // alignment padding, and compensate if so.
681   if (isThumb &&
682       MI->getOpcode() == ARM::CONSTPOOL_ENTRY &&
683       (Offset%4 != 0 || HasInlineAsm))
684     Offset += 2;
685
686   // Sum instructions before MI in MBB.
687   for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) {
688     assert(I != MBB->end() && "Didn't find MI in its own basic block?");
689     if (&*I == MI) return Offset;
690     Offset += TII->GetInstSizeInBytes(I);
691   }
692 }
693
694 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
695 /// ID.
696 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
697                               const MachineBasicBlock *RHS) {
698   return LHS->getNumber() < RHS->getNumber();
699 }
700
701 /// UpdateForInsertedWaterBlock - When a block is newly inserted into the
702 /// machine function, it upsets all of the block numbers.  Renumber the blocks
703 /// and update the arrays that parallel this numbering.
704 void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
705   // Renumber the MBB's to keep them consecutive.
706   NewBB->getParent()->RenumberBlocks(NewBB);
707
708   // Insert a size into BBSizes to align it properly with the (newly
709   // renumbered) block numbers.
710   BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0);
711
712   // Likewise for BBOffsets.
713   BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0);
714
715   // Next, update WaterList.  Specifically, we need to add NewMBB as having
716   // available water after it.
717   water_iterator IP =
718     std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
719                      CompareMBBNumbers);
720   WaterList.insert(IP, NewBB);
721 }
722
723
724 /// Split the basic block containing MI into two blocks, which are joined by
725 /// an unconditional branch.  Update data structures and renumber blocks to
726 /// account for this change and returns the newly created block.
727 MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) {
728   MachineBasicBlock *OrigBB = MI->getParent();
729   MachineFunction &MF = *OrigBB->getParent();
730
731   // Create a new MBB for the code after the OrigBB.
732   MachineBasicBlock *NewBB =
733     MF.CreateMachineBasicBlock(OrigBB->getBasicBlock());
734   MachineFunction::iterator MBBI = OrigBB; ++MBBI;
735   MF.insert(MBBI, NewBB);
736
737   // Splice the instructions starting with MI over to NewBB.
738   NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
739
740   // Add an unconditional branch from OrigBB to NewBB.
741   // Note the new unconditional branch is not being recorded.
742   // There doesn't seem to be meaningful DebugInfo available; this doesn't
743   // correspond to anything in the source.
744   unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
745   if (!isThumb)
746     BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB);
747   else
748     BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB)
749             .addImm(ARMCC::AL).addReg(0);
750   ++NumSplit;
751
752   // Update the CFG.  All succs of OrigBB are now succs of NewBB.
753   NewBB->transferSuccessors(OrigBB);
754
755   // OrigBB branches to NewBB.
756   OrigBB->addSuccessor(NewBB);
757
758   // Update internal data structures to account for the newly inserted MBB.
759   // This is almost the same as UpdateForInsertedWaterBlock, except that
760   // the Water goes after OrigBB, not NewBB.
761   MF.RenumberBlocks(NewBB);
762
763   // Insert a size into BBSizes to align it properly with the (newly
764   // renumbered) block numbers.
765   BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0);
766
767   // Likewise for BBOffsets.
768   BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0);
769
770   // Next, update WaterList.  Specifically, we need to add OrigMBB as having
771   // available water after it (but not if it's already there, which happens
772   // when splitting before a conditional branch that is followed by an
773   // unconditional branch - in that case we want to insert NewBB).
774   water_iterator IP =
775     std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
776                      CompareMBBNumbers);
777   MachineBasicBlock* WaterBB = *IP;
778   if (WaterBB == OrigBB)
779     WaterList.insert(llvm::next(IP), NewBB);
780   else
781     WaterList.insert(IP, OrigBB);
782   NewWaterList.insert(OrigBB);
783
784   unsigned OrigBBI = OrigBB->getNumber();
785   unsigned NewBBI = NewBB->getNumber();
786
787   int delta = isThumb1 ? 2 : 4;
788
789   // Figure out how large the OrigBB is.  As the first half of the original
790   // block, it cannot contain a tablejump.  The size includes
791   // the new jump we added.  (It should be possible to do this without
792   // recounting everything, but it's very confusing, and this is rarely
793   // executed.)
794   unsigned OrigBBSize = 0;
795   for (MachineBasicBlock::iterator I = OrigBB->begin(), E = OrigBB->end();
796        I != E; ++I)
797     OrigBBSize += TII->GetInstSizeInBytes(I);
798   BBSizes[OrigBBI] = OrigBBSize;
799
800   // ...and adjust BBOffsets for NewBB accordingly.
801   BBOffsets[NewBBI] = BBOffsets[OrigBBI] + BBSizes[OrigBBI];
802
803   // Figure out how large the NewMBB is.  As the second half of the original
804   // block, it may contain a tablejump.
805   unsigned NewBBSize = 0;
806   for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end();
807        I != E; ++I)
808     NewBBSize += TII->GetInstSizeInBytes(I);
809   // Set the size of NewBB in BBSizes.  It does not include any padding now.
810   BBSizes[NewBBI] = NewBBSize;
811
812   MachineInstr* ThumbJTMI = prior(NewBB->end());
813   if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) {
814     // We've added another 2-byte instruction before this tablejump, which
815     // means we will always need padding if we didn't before, and vice versa.
816
817     // The original offset of the jump instruction was:
818     unsigned OrigOffset = BBOffsets[OrigBBI] + BBSizes[OrigBBI] - delta;
819     if (OrigOffset%4 == 0) {
820       // We had padding before and now we don't.  No net change in code size.
821       delta = 0;
822     } else {
823       // We didn't have padding before and now we do.
824       BBSizes[NewBBI] += 2;
825       delta = 4;
826     }
827   }
828
829   // All BBOffsets following these blocks must be modified.
830   if (delta)
831     AdjustBBOffsetsAfter(NewBB, delta);
832
833   return NewBB;
834 }
835
836 /// OffsetIsInRange - Checks whether UserOffset (the location of a constant pool
837 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
838 /// constant pool entry).
839 bool ARMConstantIslands::OffsetIsInRange(unsigned UserOffset,
840                                          unsigned TrialOffset, unsigned MaxDisp,
841                                          bool NegativeOK, bool IsSoImm) {
842   // On Thumb offsets==2 mod 4 are rounded down by the hardware for
843   // purposes of the displacement computation; compensate for that here.
844   // Effectively, the valid range of displacements is 2 bytes smaller for such
845   // references.
846   unsigned TotalAdj = 0;
847   if (isThumb && UserOffset%4 !=0) {
848     UserOffset -= 2;
849     TotalAdj = 2;
850   }
851   // CPEs will be rounded up to a multiple of 4.
852   if (isThumb && TrialOffset%4 != 0) {
853     TrialOffset += 2;
854     TotalAdj += 2;
855   }
856
857   // In Thumb2 mode, later branch adjustments can shift instructions up and
858   // cause alignment change. In the worst case scenario this can cause the
859   // user's effective address to be subtracted by 2 and the CPE's address to
860   // be plus 2.
861   if (isThumb2 && TotalAdj != 4)
862     MaxDisp -= (4 - TotalAdj);
863
864   if (UserOffset <= TrialOffset) {
865     // User before the Trial.
866     if (TrialOffset - UserOffset <= MaxDisp)
867       return true;
868     // FIXME: Make use full range of soimm values.
869   } else if (NegativeOK) {
870     if (UserOffset - TrialOffset <= MaxDisp)
871       return true;
872     // FIXME: Make use full range of soimm values.
873   }
874   return false;
875 }
876
877 /// WaterIsInRange - Returns true if a CPE placed after the specified
878 /// Water (a basic block) will be in range for the specific MI.
879
880 bool ARMConstantIslands::WaterIsInRange(unsigned UserOffset,
881                                         MachineBasicBlock* Water, CPUser &U) {
882   unsigned MaxDisp = U.MaxDisp;
883   unsigned CPEOffset = BBOffsets[Water->getNumber()] +
884                        BBSizes[Water->getNumber()];
885
886   // If the CPE is to be inserted before the instruction, that will raise
887   // the offset of the instruction.
888   if (CPEOffset < UserOffset)
889     UserOffset += U.CPEMI->getOperand(2).getImm();
890
891   return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, U.NegOk, U.IsSoImm);
892 }
893
894 /// CPEIsInRange - Returns true if the distance between specific MI and
895 /// specific ConstPool entry instruction can fit in MI's displacement field.
896 bool ARMConstantIslands::CPEIsInRange(MachineInstr *MI, unsigned UserOffset,
897                                       MachineInstr *CPEMI, unsigned MaxDisp,
898                                       bool NegOk, bool DoDump) {
899   unsigned CPEOffset  = GetOffsetOf(CPEMI);
900   assert((CPEOffset%4 == 0 || HasInlineAsm) && "Misaligned CPE");
901
902   if (DoDump) {
903     DEBUG(errs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
904                  << " max delta=" << MaxDisp
905                  << " insn address=" << UserOffset
906                  << " CPE address=" << CPEOffset
907                  << " offset=" << int(CPEOffset-UserOffset) << "\t" << *MI);
908   }
909
910   return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
911 }
912
913 #ifndef NDEBUG
914 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
915 /// unconditionally branches to its only successor.
916 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
917   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
918     return false;
919
920   MachineBasicBlock *Succ = *MBB->succ_begin();
921   MachineBasicBlock *Pred = *MBB->pred_begin();
922   MachineInstr *PredMI = &Pred->back();
923   if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
924       || PredMI->getOpcode() == ARM::t2B)
925     return PredMI->getOperand(0).getMBB() == Succ;
926   return false;
927 }
928 #endif // NDEBUG
929
930 void ARMConstantIslands::AdjustBBOffsetsAfter(MachineBasicBlock *BB,
931                                               int delta) {
932   MachineFunction::iterator MBBI = BB; MBBI = llvm::next(MBBI);
933   for(unsigned i = BB->getNumber()+1, e = BB->getParent()->getNumBlockIDs();
934       i < e; ++i) {
935     BBOffsets[i] += delta;
936     // If some existing blocks have padding, adjust the padding as needed, a
937     // bit tricky.  delta can be negative so don't use % on that.
938     if (!isThumb)
939       continue;
940     MachineBasicBlock *MBB = MBBI;
941     if (!MBB->empty() && !HasInlineAsm) {
942       // Constant pool entries require padding.
943       if (MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) {
944         unsigned OldOffset = BBOffsets[i] - delta;
945         if ((OldOffset%4) == 0 && (BBOffsets[i]%4) != 0) {
946           // add new padding
947           BBSizes[i] += 2;
948           delta += 2;
949         } else if ((OldOffset%4) != 0 && (BBOffsets[i]%4) == 0) {
950           // remove existing padding
951           BBSizes[i] -= 2;
952           delta -= 2;
953         }
954       }
955       // Thumb1 jump tables require padding.  They should be at the end;
956       // following unconditional branches are removed by AnalyzeBranch.
957       // tBR_JTr expands to a mov pc followed by .align 2 and then the jump
958       // table entries. So this code checks whether offset of tBR_JTr
959       // is aligned; if it is, the offset of the jump table following the
960       // instruction will not be aligned, and we need padding.
961       MachineInstr *ThumbJTMI = prior(MBB->end());
962       if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) {
963         unsigned NewMIOffset = GetOffsetOf(ThumbJTMI);
964         unsigned OldMIOffset = NewMIOffset - delta;
965         if ((OldMIOffset%4) == 0 && (NewMIOffset%4) != 0) {
966           // remove existing padding
967           BBSizes[i] -= 2;
968           delta -= 2;
969         } else if ((OldMIOffset%4) != 0 && (NewMIOffset%4) == 0) {
970           // add new padding
971           BBSizes[i] += 2;
972           delta += 2;
973         }
974       }
975       if (delta==0)
976         return;
977     }
978     MBBI = llvm::next(MBBI);
979   }
980 }
981
982 /// DecrementOldEntry - find the constant pool entry with index CPI
983 /// and instruction CPEMI, and decrement its refcount.  If the refcount
984 /// becomes 0 remove the entry and instruction.  Returns true if we removed
985 /// the entry, false if we didn't.
986
987 bool ARMConstantIslands::DecrementOldEntry(unsigned CPI, MachineInstr *CPEMI) {
988   // Find the old entry. Eliminate it if it is no longer used.
989   CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
990   assert(CPE && "Unexpected!");
991   if (--CPE->RefCount == 0) {
992     RemoveDeadCPEMI(CPEMI);
993     CPE->CPEMI = NULL;
994     --NumCPEs;
995     return true;
996   }
997   return false;
998 }
999
1000 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1001 /// if not, see if an in-range clone of the CPE is in range, and if so,
1002 /// change the data structures so the user references the clone.  Returns:
1003 /// 0 = no existing entry found
1004 /// 1 = entry found, and there were no code insertions or deletions
1005 /// 2 = entry found, and there were code insertions or deletions
1006 int ARMConstantIslands::LookForExistingCPEntry(CPUser& U, unsigned UserOffset)
1007 {
1008   MachineInstr *UserMI = U.MI;
1009   MachineInstr *CPEMI  = U.CPEMI;
1010
1011   // Check to see if the CPE is already in-range.
1012   if (CPEIsInRange(UserMI, UserOffset, CPEMI, U.MaxDisp, U.NegOk, true)) {
1013     DEBUG(errs() << "In range\n");
1014     return 1;
1015   }
1016
1017   // No.  Look for previously created clones of the CPE that are in range.
1018   unsigned CPI = CPEMI->getOperand(1).getIndex();
1019   std::vector<CPEntry> &CPEs = CPEntries[CPI];
1020   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1021     // We already tried this one
1022     if (CPEs[i].CPEMI == CPEMI)
1023       continue;
1024     // Removing CPEs can leave empty entries, skip
1025     if (CPEs[i].CPEMI == NULL)
1026       continue;
1027     if (CPEIsInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.MaxDisp, U.NegOk)) {
1028       DEBUG(errs() << "Replacing CPE#" << CPI << " with CPE#"
1029                    << CPEs[i].CPI << "\n");
1030       // Point the CPUser node to the replacement
1031       U.CPEMI = CPEs[i].CPEMI;
1032       // Change the CPI in the instruction operand to refer to the clone.
1033       for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1034         if (UserMI->getOperand(j).isCPI()) {
1035           UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1036           break;
1037         }
1038       // Adjust the refcount of the clone...
1039       CPEs[i].RefCount++;
1040       // ...and the original.  If we didn't remove the old entry, none of the
1041       // addresses changed, so we don't need another pass.
1042       return DecrementOldEntry(CPI, CPEMI) ? 2 : 1;
1043     }
1044   }
1045   return 0;
1046 }
1047
1048 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1049 /// the specific unconditional branch instruction.
1050 static inline unsigned getUnconditionalBrDisp(int Opc) {
1051   switch (Opc) {
1052   case ARM::tB:
1053     return ((1<<10)-1)*2;
1054   case ARM::t2B:
1055     return ((1<<23)-1)*2;
1056   default:
1057     break;
1058   }
1059
1060   return ((1<<23)-1)*4;
1061 }
1062
1063 /// LookForWater - Look for an existing entry in the WaterList in which
1064 /// we can place the CPE referenced from U so it's within range of U's MI.
1065 /// Returns true if found, false if not.  If it returns true, WaterIter
1066 /// is set to the WaterList entry.  For Thumb, prefer water that will not
1067 /// introduce padding to water that will.  To ensure that this pass
1068 /// terminates, the CPE location for a particular CPUser is only allowed to
1069 /// move to a lower address, so search backward from the end of the list and
1070 /// prefer the first water that is in range.
1071 bool ARMConstantIslands::LookForWater(CPUser &U, unsigned UserOffset,
1072                                       water_iterator &WaterIter) {
1073   if (WaterList.empty())
1074     return false;
1075
1076   bool FoundWaterThatWouldPad = false;
1077   water_iterator IPThatWouldPad;
1078   for (water_iterator IP = prior(WaterList.end()),
1079          B = WaterList.begin();; --IP) {
1080     MachineBasicBlock* WaterBB = *IP;
1081     // Check if water is in range and is either at a lower address than the
1082     // current "high water mark" or a new water block that was created since
1083     // the previous iteration by inserting an unconditional branch.  In the
1084     // latter case, we want to allow resetting the high water mark back to
1085     // this new water since we haven't seen it before.  Inserting branches
1086     // should be relatively uncommon and when it does happen, we want to be
1087     // sure to take advantage of it for all the CPEs near that block, so that
1088     // we don't insert more branches than necessary.
1089     if (WaterIsInRange(UserOffset, WaterBB, U) &&
1090         (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1091          NewWaterList.count(WaterBB))) {
1092       unsigned WBBId = WaterBB->getNumber();
1093       if (isThumb &&
1094           (BBOffsets[WBBId] + BBSizes[WBBId])%4 != 0) {
1095         // This is valid Water, but would introduce padding.  Remember
1096         // it in case we don't find any Water that doesn't do this.
1097         if (!FoundWaterThatWouldPad) {
1098           FoundWaterThatWouldPad = true;
1099           IPThatWouldPad = IP;
1100         }
1101       } else {
1102         WaterIter = IP;
1103         return true;
1104       }
1105     }
1106     if (IP == B)
1107       break;
1108   }
1109   if (FoundWaterThatWouldPad) {
1110     WaterIter = IPThatWouldPad;
1111     return true;
1112   }
1113   return false;
1114 }
1115
1116 /// CreateNewWater - No existing WaterList entry will work for
1117 /// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
1118 /// block is used if in range, and the conditional branch munged so control
1119 /// flow is correct.  Otherwise the block is split to create a hole with an
1120 /// unconditional branch around it.  In either case NewMBB is set to a
1121 /// block following which the new island can be inserted (the WaterList
1122 /// is not adjusted).
1123 void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex,
1124                                         unsigned UserOffset,
1125                                         MachineBasicBlock *&NewMBB) {
1126   CPUser &U = CPUsers[CPUserIndex];
1127   MachineInstr *UserMI = U.MI;
1128   MachineInstr *CPEMI  = U.CPEMI;
1129   MachineBasicBlock *UserMBB = UserMI->getParent();
1130   unsigned OffsetOfNextBlock = BBOffsets[UserMBB->getNumber()] +
1131                                BBSizes[UserMBB->getNumber()];
1132   assert(OffsetOfNextBlock== BBOffsets[UserMBB->getNumber()+1]);
1133
1134   // If the block does not end in an unconditional branch already, and if the
1135   // end of the block is within range, make new water there.  (The addition
1136   // below is for the unconditional branch we will be adding: 4 bytes on ARM +
1137   // Thumb2, 2 on Thumb1.  Possible Thumb1 alignment padding is allowed for
1138   // inside OffsetIsInRange.
1139   if (BBHasFallthrough(UserMBB) &&
1140       OffsetIsInRange(UserOffset, OffsetOfNextBlock + (isThumb1 ? 2: 4),
1141                       U.MaxDisp, U.NegOk, U.IsSoImm)) {
1142     DEBUG(errs() << "Split at end of block\n");
1143     if (&UserMBB->back() == UserMI)
1144       assert(BBHasFallthrough(UserMBB) && "Expected a fallthrough BB!");
1145     NewMBB = llvm::next(MachineFunction::iterator(UserMBB));
1146     // Add an unconditional branch from UserMBB to fallthrough block.
1147     // Record it for branch lengthening; this new branch will not get out of
1148     // range, but if the preceding conditional branch is out of range, the
1149     // targets will be exchanged, and the altered branch may be out of
1150     // range, so the machinery has to know about it.
1151     int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
1152     if (!isThumb)
1153       BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1154     else
1155       BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB)
1156               .addImm(ARMCC::AL).addReg(0);
1157     unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1158     ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1159                           MaxDisp, false, UncondBr));
1160     int delta = isThumb1 ? 2 : 4;
1161     BBSizes[UserMBB->getNumber()] += delta;
1162     AdjustBBOffsetsAfter(UserMBB, delta);
1163   } else {
1164     // What a big block.  Find a place within the block to split it.
1165     // This is a little tricky on Thumb1 since instructions are 2 bytes
1166     // and constant pool entries are 4 bytes: if instruction I references
1167     // island CPE, and instruction I+1 references CPE', it will
1168     // not work well to put CPE as far forward as possible, since then
1169     // CPE' cannot immediately follow it (that location is 2 bytes
1170     // farther away from I+1 than CPE was from I) and we'd need to create
1171     // a new island.  So, we make a first guess, then walk through the
1172     // instructions between the one currently being looked at and the
1173     // possible insertion point, and make sure any other instructions
1174     // that reference CPEs will be able to use the same island area;
1175     // if not, we back up the insertion point.
1176
1177     // The 4 in the following is for the unconditional branch we'll be
1178     // inserting (allows for long branch on Thumb1).  Alignment of the
1179     // island is handled inside OffsetIsInRange.
1180     unsigned BaseInsertOffset = UserOffset + U.MaxDisp -4;
1181     // This could point off the end of the block if we've already got
1182     // constant pool entries following this block; only the last one is
1183     // in the water list.  Back past any possible branches (allow for a
1184     // conditional and a maximally long unconditional).
1185     if (BaseInsertOffset >= BBOffsets[UserMBB->getNumber()+1])
1186       BaseInsertOffset = BBOffsets[UserMBB->getNumber()+1] -
1187                               (isThumb1 ? 6 : 8);
1188     unsigned EndInsertOffset = BaseInsertOffset +
1189            CPEMI->getOperand(2).getImm();
1190     MachineBasicBlock::iterator MI = UserMI;
1191     ++MI;
1192     unsigned CPUIndex = CPUserIndex+1;
1193     unsigned NumCPUsers = CPUsers.size();
1194     MachineInstr *LastIT = 0;
1195     for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI);
1196          Offset < BaseInsertOffset;
1197          Offset += TII->GetInstSizeInBytes(MI),
1198            MI = llvm::next(MI)) {
1199       if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
1200         CPUser &U = CPUsers[CPUIndex];
1201         if (!OffsetIsInRange(Offset, EndInsertOffset,
1202                              U.MaxDisp, U.NegOk, U.IsSoImm)) {
1203           BaseInsertOffset -= (isThumb1 ? 2 : 4);
1204           EndInsertOffset  -= (isThumb1 ? 2 : 4);
1205         }
1206         // This is overly conservative, as we don't account for CPEMIs
1207         // being reused within the block, but it doesn't matter much.
1208         EndInsertOffset += CPUsers[CPUIndex].CPEMI->getOperand(2).getImm();
1209         CPUIndex++;
1210       }
1211
1212       // Remember the last IT instruction.
1213       if (MI->getOpcode() == ARM::t2IT)
1214         LastIT = MI;
1215     }
1216
1217     DEBUG(errs() << "Split in middle of big block\n");
1218     --MI;
1219
1220     // Avoid splitting an IT block.
1221     if (LastIT) {
1222       unsigned PredReg = 0;
1223       ARMCC::CondCodes CC = llvm::getITInstrPredicate(MI, PredReg);
1224       if (CC != ARMCC::AL)
1225         MI = LastIT;
1226     }
1227     NewMBB = SplitBlockBeforeInstr(MI);
1228   }
1229 }
1230
1231 /// HandleConstantPoolUser - Analyze the specified user, checking to see if it
1232 /// is out-of-range.  If so, pick up the constant pool value and move it some
1233 /// place in-range.  Return true if we changed any addresses (thus must run
1234 /// another pass of branch lengthening), false otherwise.
1235 bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &MF,
1236                                                 unsigned CPUserIndex) {
1237   CPUser &U = CPUsers[CPUserIndex];
1238   MachineInstr *UserMI = U.MI;
1239   MachineInstr *CPEMI  = U.CPEMI;
1240   unsigned CPI = CPEMI->getOperand(1).getIndex();
1241   unsigned Size = CPEMI->getOperand(2).getImm();
1242   // Compute this only once, it's expensive.  The 4 or 8 is the value the
1243   // hardware keeps in the PC.
1244   unsigned UserOffset = GetOffsetOf(UserMI) + (isThumb ? 4 : 8);
1245
1246   // See if the current entry is within range, or there is a clone of it
1247   // in range.
1248   int result = LookForExistingCPEntry(U, UserOffset);
1249   if (result==1) return false;
1250   else if (result==2) return true;
1251
1252   // No existing clone of this CPE is within range.
1253   // We will be generating a new clone.  Get a UID for it.
1254   unsigned ID = AFI->createPICLabelUId();
1255
1256   // Look for water where we can place this CPE.
1257   MachineBasicBlock *NewIsland = MF.CreateMachineBasicBlock();
1258   MachineBasicBlock *NewMBB;
1259   water_iterator IP;
1260   if (LookForWater(U, UserOffset, IP)) {
1261     DEBUG(errs() << "found water in range\n");
1262     MachineBasicBlock *WaterBB = *IP;
1263
1264     // If the original WaterList entry was "new water" on this iteration,
1265     // propagate that to the new island.  This is just keeping NewWaterList
1266     // updated to match the WaterList, which will be updated below.
1267     if (NewWaterList.count(WaterBB)) {
1268       NewWaterList.erase(WaterBB);
1269       NewWaterList.insert(NewIsland);
1270     }
1271     // The new CPE goes before the following block (NewMBB).
1272     NewMBB = llvm::next(MachineFunction::iterator(WaterBB));
1273
1274   } else {
1275     // No water found.
1276     DEBUG(errs() << "No water found\n");
1277     CreateNewWater(CPUserIndex, UserOffset, NewMBB);
1278
1279     // SplitBlockBeforeInstr adds to WaterList, which is important when it is
1280     // called while handling branches so that the water will be seen on the
1281     // next iteration for constant pools, but in this context, we don't want
1282     // it.  Check for this so it will be removed from the WaterList.
1283     // Also remove any entry from NewWaterList.
1284     MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB));
1285     IP = std::find(WaterList.begin(), WaterList.end(), WaterBB);
1286     if (IP != WaterList.end())
1287       NewWaterList.erase(WaterBB);
1288
1289     // We are adding new water.  Update NewWaterList.
1290     NewWaterList.insert(NewIsland);
1291   }
1292
1293   // Remove the original WaterList entry; we want subsequent insertions in
1294   // this vicinity to go after the one we're about to insert.  This
1295   // considerably reduces the number of times we have to move the same CPE
1296   // more than once and is also important to ensure the algorithm terminates.
1297   if (IP != WaterList.end())
1298     WaterList.erase(IP);
1299
1300   // Okay, we know we can put an island before NewMBB now, do it!
1301   MF.insert(NewMBB, NewIsland);
1302
1303   // Update internal data structures to account for the newly inserted MBB.
1304   UpdateForInsertedWaterBlock(NewIsland);
1305
1306   // Decrement the old entry, and remove it if refcount becomes 0.
1307   DecrementOldEntry(CPI, CPEMI);
1308
1309   // Now that we have an island to add the CPE to, clone the original CPE and
1310   // add it to the island.
1311   U.HighWaterMark = NewIsland;
1312   U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
1313                 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
1314   CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1315   ++NumCPEs;
1316
1317   // Mark the basic block as 4-byte aligned as required by the const-pool entry.
1318   NewIsland->setAlignment(2);
1319
1320   BBOffsets[NewIsland->getNumber()] = BBOffsets[NewMBB->getNumber()];
1321   // Compensate for .align 2 in thumb mode.
1322   if (isThumb && (BBOffsets[NewIsland->getNumber()]%4 != 0 || HasInlineAsm))
1323     Size += 2;
1324   // Increase the size of the island block to account for the new entry.
1325   BBSizes[NewIsland->getNumber()] += Size;
1326   AdjustBBOffsetsAfter(NewIsland, Size);
1327
1328   // Finally, change the CPI in the instruction operand to be ID.
1329   for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1330     if (UserMI->getOperand(i).isCPI()) {
1331       UserMI->getOperand(i).setIndex(ID);
1332       break;
1333     }
1334
1335   DEBUG(errs() << "  Moved CPE to #" << ID << " CPI=" << CPI
1336            << '\t' << *UserMI);
1337
1338   return true;
1339 }
1340
1341 /// RemoveDeadCPEMI - Remove a dead constant pool entry instruction. Update
1342 /// sizes and offsets of impacted basic blocks.
1343 void ARMConstantIslands::RemoveDeadCPEMI(MachineInstr *CPEMI) {
1344   MachineBasicBlock *CPEBB = CPEMI->getParent();
1345   unsigned Size = CPEMI->getOperand(2).getImm();
1346   CPEMI->eraseFromParent();
1347   BBSizes[CPEBB->getNumber()] -= Size;
1348   // All succeeding offsets have the current size value added in, fix this.
1349   if (CPEBB->empty()) {
1350     // In thumb1 mode, the size of island may be padded by two to compensate for
1351     // the alignment requirement.  Then it will now be 2 when the block is
1352     // empty, so fix this.
1353     // All succeeding offsets have the current size value added in, fix this.
1354     if (BBSizes[CPEBB->getNumber()] != 0) {
1355       Size += BBSizes[CPEBB->getNumber()];
1356       BBSizes[CPEBB->getNumber()] = 0;
1357     }
1358
1359     // This block no longer needs to be aligned. <rdar://problem/10534709>.
1360     CPEBB->setAlignment(0);
1361   }
1362   AdjustBBOffsetsAfter(CPEBB, -Size);
1363   // An island has only one predecessor BB and one successor BB. Check if
1364   // this BB's predecessor jumps directly to this BB's successor. This
1365   // shouldn't happen currently.
1366   assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1367   // FIXME: remove the empty blocks after all the work is done?
1368 }
1369
1370 /// RemoveUnusedCPEntries - Remove constant pool entries whose refcounts
1371 /// are zero.
1372 bool ARMConstantIslands::RemoveUnusedCPEntries() {
1373   unsigned MadeChange = false;
1374   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1375       std::vector<CPEntry> &CPEs = CPEntries[i];
1376       for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1377         if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1378           RemoveDeadCPEMI(CPEs[j].CPEMI);
1379           CPEs[j].CPEMI = NULL;
1380           MadeChange = true;
1381         }
1382       }
1383   }
1384   return MadeChange;
1385 }
1386
1387 /// BBIsInRange - Returns true if the distance between specific MI and
1388 /// specific BB can fit in MI's displacement field.
1389 bool ARMConstantIslands::BBIsInRange(MachineInstr *MI,MachineBasicBlock *DestBB,
1390                                      unsigned MaxDisp) {
1391   unsigned PCAdj      = isThumb ? 4 : 8;
1392   unsigned BrOffset   = GetOffsetOf(MI) + PCAdj;
1393   unsigned DestOffset = BBOffsets[DestBB->getNumber()];
1394
1395   DEBUG(errs() << "Branch of destination BB#" << DestBB->getNumber()
1396                << " from BB#" << MI->getParent()->getNumber()
1397                << " max delta=" << MaxDisp
1398                << " from " << GetOffsetOf(MI) << " to " << DestOffset
1399                << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
1400
1401   if (BrOffset <= DestOffset) {
1402     // Branch before the Dest.
1403     if (DestOffset-BrOffset <= MaxDisp)
1404       return true;
1405   } else {
1406     if (BrOffset-DestOffset <= MaxDisp)
1407       return true;
1408   }
1409   return false;
1410 }
1411
1412 /// FixUpImmediateBr - Fix up an immediate branch whose destination is too far
1413 /// away to fit in its displacement field.
1414 bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br) {
1415   MachineInstr *MI = Br.MI;
1416   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1417
1418   // Check to see if the DestBB is already in-range.
1419   if (BBIsInRange(MI, DestBB, Br.MaxDisp))
1420     return false;
1421
1422   if (!Br.isCond)
1423     return FixUpUnconditionalBr(MF, Br);
1424   return FixUpConditionalBr(MF, Br);
1425 }
1426
1427 /// FixUpUnconditionalBr - Fix up an unconditional branch whose destination is
1428 /// too far away to fit in its displacement field. If the LR register has been
1429 /// spilled in the epilogue, then we can use BL to implement a far jump.
1430 /// Otherwise, add an intermediate branch instruction to a branch.
1431 bool
1432 ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br) {
1433   MachineInstr *MI = Br.MI;
1434   MachineBasicBlock *MBB = MI->getParent();
1435   if (!isThumb1)
1436     llvm_unreachable("FixUpUnconditionalBr is Thumb1 only!");
1437
1438   // Use BL to implement far jump.
1439   Br.MaxDisp = (1 << 21) * 2;
1440   MI->setDesc(TII->get(ARM::tBfar));
1441   BBSizes[MBB->getNumber()] += 2;
1442   AdjustBBOffsetsAfter(MBB, 2);
1443   HasFarJump = true;
1444   ++NumUBrFixed;
1445
1446   DEBUG(errs() << "  Changed B to long jump " << *MI);
1447
1448   return true;
1449 }
1450
1451 /// FixUpConditionalBr - Fix up a conditional branch whose destination is too
1452 /// far away to fit in its displacement field. It is converted to an inverse
1453 /// conditional branch + an unconditional branch to the destination.
1454 bool
1455 ARMConstantIslands::FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br) {
1456   MachineInstr *MI = Br.MI;
1457   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1458
1459   // Add an unconditional branch to the destination and invert the branch
1460   // condition to jump over it:
1461   // blt L1
1462   // =>
1463   // bge L2
1464   // b   L1
1465   // L2:
1466   ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
1467   CC = ARMCC::getOppositeCondition(CC);
1468   unsigned CCReg = MI->getOperand(2).getReg();
1469
1470   // If the branch is at the end of its MBB and that has a fall-through block,
1471   // direct the updated conditional branch to the fall-through block. Otherwise,
1472   // split the MBB before the next instruction.
1473   MachineBasicBlock *MBB = MI->getParent();
1474   MachineInstr *BMI = &MBB->back();
1475   bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1476
1477   ++NumCBrFixed;
1478   if (BMI != MI) {
1479     if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) &&
1480         BMI->getOpcode() == Br.UncondBr) {
1481       // Last MI in the BB is an unconditional branch. Can we simply invert the
1482       // condition and swap destinations:
1483       // beq L1
1484       // b   L2
1485       // =>
1486       // bne L2
1487       // b   L1
1488       MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
1489       if (BBIsInRange(MI, NewDest, Br.MaxDisp)) {
1490         DEBUG(errs() << "  Invert Bcc condition and swap its destination with "
1491                      << *BMI);
1492         BMI->getOperand(0).setMBB(DestBB);
1493         MI->getOperand(0).setMBB(NewDest);
1494         MI->getOperand(1).setImm(CC);
1495         return true;
1496       }
1497     }
1498   }
1499
1500   if (NeedSplit) {
1501     SplitBlockBeforeInstr(MI);
1502     // No need for the branch to the next block. We're adding an unconditional
1503     // branch to the destination.
1504     int delta = TII->GetInstSizeInBytes(&MBB->back());
1505     BBSizes[MBB->getNumber()] -= delta;
1506     MachineBasicBlock* SplitBB = llvm::next(MachineFunction::iterator(MBB));
1507     AdjustBBOffsetsAfter(SplitBB, -delta);
1508     MBB->back().eraseFromParent();
1509     // BBOffsets[SplitBB] is wrong temporarily, fixed below
1510   }
1511   MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(MBB));
1512
1513   DEBUG(errs() << "  Insert B to BB#" << DestBB->getNumber()
1514                << " also invert condition and change dest. to BB#"
1515                << NextBB->getNumber() << "\n");
1516
1517   // Insert a new conditional branch and a new unconditional branch.
1518   // Also update the ImmBranch as well as adding a new entry for the new branch.
1519   BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
1520     .addMBB(NextBB).addImm(CC).addReg(CCReg);
1521   Br.MI = &MBB->back();
1522   BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back());
1523   if (isThumb)
1524     BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB)
1525             .addImm(ARMCC::AL).addReg(0);
1526   else
1527     BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1528   BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back());
1529   unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1530   ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1531
1532   // Remove the old conditional branch.  It may or may not still be in MBB.
1533   BBSizes[MI->getParent()->getNumber()] -= TII->GetInstSizeInBytes(MI);
1534   MI->eraseFromParent();
1535
1536   // The net size change is an addition of one unconditional branch.
1537   int delta = TII->GetInstSizeInBytes(&MBB->back());
1538   AdjustBBOffsetsAfter(MBB, delta);
1539   return true;
1540 }
1541
1542 /// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills
1543 /// LR / restores LR to pc. FIXME: This is done here because it's only possible
1544 /// to do this if tBfar is not used.
1545 bool ARMConstantIslands::UndoLRSpillRestore() {
1546   bool MadeChange = false;
1547   for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
1548     MachineInstr *MI = PushPopMIs[i];
1549     // First two operands are predicates.
1550     if (MI->getOpcode() == ARM::tPOP_RET &&
1551         MI->getOperand(2).getReg() == ARM::PC &&
1552         MI->getNumExplicitOperands() == 3) {
1553       // Create the new insn and copy the predicate from the old.
1554       BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET))
1555         .addOperand(MI->getOperand(0))
1556         .addOperand(MI->getOperand(1));
1557       MI->eraseFromParent();
1558       MadeChange = true;
1559     }
1560   }
1561   return MadeChange;
1562 }
1563
1564 bool ARMConstantIslands::OptimizeThumb2Instructions(MachineFunction &MF) {
1565   bool MadeChange = false;
1566
1567   // Shrink ADR and LDR from constantpool.
1568   for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
1569     CPUser &U = CPUsers[i];
1570     unsigned Opcode = U.MI->getOpcode();
1571     unsigned NewOpc = 0;
1572     unsigned Scale = 1;
1573     unsigned Bits = 0;
1574     switch (Opcode) {
1575     default: break;
1576     case ARM::t2LEApcrel:
1577       if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1578         NewOpc = ARM::tLEApcrel;
1579         Bits = 8;
1580         Scale = 4;
1581       }
1582       break;
1583     case ARM::t2LDRpci:
1584       if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1585         NewOpc = ARM::tLDRpci;
1586         Bits = 8;
1587         Scale = 4;
1588       }
1589       break;
1590     }
1591
1592     if (!NewOpc)
1593       continue;
1594
1595     unsigned UserOffset = GetOffsetOf(U.MI) + 4;
1596     unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
1597     // FIXME: Check if offset is multiple of scale if scale is not 4.
1598     if (CPEIsInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
1599       U.MI->setDesc(TII->get(NewOpc));
1600       MachineBasicBlock *MBB = U.MI->getParent();
1601       BBSizes[MBB->getNumber()] -= 2;
1602       AdjustBBOffsetsAfter(MBB, -2);
1603       ++NumT2CPShrunk;
1604       MadeChange = true;
1605     }
1606   }
1607
1608   MadeChange |= OptimizeThumb2Branches(MF);
1609   MadeChange |= OptimizeThumb2JumpTables(MF);
1610   return MadeChange;
1611 }
1612
1613 bool ARMConstantIslands::OptimizeThumb2Branches(MachineFunction &MF) {
1614   bool MadeChange = false;
1615
1616   for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) {
1617     ImmBranch &Br = ImmBranches[i];
1618     unsigned Opcode = Br.MI->getOpcode();
1619     unsigned NewOpc = 0;
1620     unsigned Scale = 1;
1621     unsigned Bits = 0;
1622     switch (Opcode) {
1623     default: break;
1624     case ARM::t2B:
1625       NewOpc = ARM::tB;
1626       Bits = 11;
1627       Scale = 2;
1628       break;
1629     case ARM::t2Bcc: {
1630       NewOpc = ARM::tBcc;
1631       Bits = 8;
1632       Scale = 2;
1633       break;
1634     }
1635     }
1636     if (NewOpc) {
1637       unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
1638       MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1639       if (BBIsInRange(Br.MI, DestBB, MaxOffs)) {
1640         Br.MI->setDesc(TII->get(NewOpc));
1641         MachineBasicBlock *MBB = Br.MI->getParent();
1642         BBSizes[MBB->getNumber()] -= 2;
1643         AdjustBBOffsetsAfter(MBB, -2);
1644         ++NumT2BrShrunk;
1645         MadeChange = true;
1646       }
1647     }
1648
1649     Opcode = Br.MI->getOpcode();
1650     if (Opcode != ARM::tBcc)
1651       continue;
1652
1653     NewOpc = 0;
1654     unsigned PredReg = 0;
1655     ARMCC::CondCodes Pred = llvm::getInstrPredicate(Br.MI, PredReg);
1656     if (Pred == ARMCC::EQ)
1657       NewOpc = ARM::tCBZ;
1658     else if (Pred == ARMCC::NE)
1659       NewOpc = ARM::tCBNZ;
1660     if (!NewOpc)
1661       continue;
1662     MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1663     // Check if the distance is within 126. Subtract starting offset by 2
1664     // because the cmp will be eliminated.
1665     unsigned BrOffset = GetOffsetOf(Br.MI) + 4 - 2;
1666     unsigned DestOffset = BBOffsets[DestBB->getNumber()];
1667     if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) {
1668       MachineBasicBlock::iterator CmpMI = Br.MI;
1669       if (CmpMI != Br.MI->getParent()->begin()) {
1670         --CmpMI;
1671         if (CmpMI->getOpcode() == ARM::tCMPi8) {
1672           unsigned Reg = CmpMI->getOperand(0).getReg();
1673           Pred = llvm::getInstrPredicate(CmpMI, PredReg);
1674           if (Pred == ARMCC::AL &&
1675               CmpMI->getOperand(1).getImm() == 0 &&
1676               isARMLowRegister(Reg)) {
1677             MachineBasicBlock *MBB = Br.MI->getParent();
1678             MachineInstr *NewBR =
1679               BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc))
1680               .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags());
1681             CmpMI->eraseFromParent();
1682             Br.MI->eraseFromParent();
1683             Br.MI = NewBR;
1684             BBSizes[MBB->getNumber()] -= 2;
1685             AdjustBBOffsetsAfter(MBB, -2);
1686             ++NumCBZ;
1687             MadeChange = true;
1688           }
1689         }
1690       }
1691     }
1692   }
1693
1694   return MadeChange;
1695 }
1696
1697 /// OptimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
1698 /// jumptables when it's possible.
1699 bool ARMConstantIslands::OptimizeThumb2JumpTables(MachineFunction &MF) {
1700   bool MadeChange = false;
1701
1702   // FIXME: After the tables are shrunk, can we get rid some of the
1703   // constantpool tables?
1704   MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
1705   if (MJTI == 0) return false;
1706
1707   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1708   for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
1709     MachineInstr *MI = T2JumpTables[i];
1710     const MCInstrDesc &MCID = MI->getDesc();
1711     unsigned NumOps = MCID.getNumOperands();
1712     unsigned JTOpIdx = NumOps - (MCID.isPredicable() ? 3 : 2);
1713     MachineOperand JTOP = MI->getOperand(JTOpIdx);
1714     unsigned JTI = JTOP.getIndex();
1715     assert(JTI < JT.size());
1716
1717     bool ByteOk = true;
1718     bool HalfWordOk = true;
1719     unsigned JTOffset = GetOffsetOf(MI) + 4;
1720     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1721     for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
1722       MachineBasicBlock *MBB = JTBBs[j];
1723       unsigned DstOffset = BBOffsets[MBB->getNumber()];
1724       // Negative offset is not ok. FIXME: We should change BB layout to make
1725       // sure all the branches are forward.
1726       if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
1727         ByteOk = false;
1728       unsigned TBHLimit = ((1<<16)-1)*2;
1729       if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
1730         HalfWordOk = false;
1731       if (!ByteOk && !HalfWordOk)
1732         break;
1733     }
1734
1735     if (ByteOk || HalfWordOk) {
1736       MachineBasicBlock *MBB = MI->getParent();
1737       unsigned BaseReg = MI->getOperand(0).getReg();
1738       bool BaseRegKill = MI->getOperand(0).isKill();
1739       if (!BaseRegKill)
1740         continue;
1741       unsigned IdxReg = MI->getOperand(1).getReg();
1742       bool IdxRegKill = MI->getOperand(1).isKill();
1743
1744       // Scan backwards to find the instruction that defines the base
1745       // register. Due to post-RA scheduling, we can't count on it
1746       // immediately preceding the branch instruction.
1747       MachineBasicBlock::iterator PrevI = MI;
1748       MachineBasicBlock::iterator B = MBB->begin();
1749       while (PrevI != B && !PrevI->definesRegister(BaseReg))
1750         --PrevI;
1751
1752       // If for some reason we didn't find it, we can't do anything, so
1753       // just skip this one.
1754       if (!PrevI->definesRegister(BaseReg))
1755         continue;
1756
1757       MachineInstr *AddrMI = PrevI;
1758       bool OptOk = true;
1759       // Examine the instruction that calculates the jumptable entry address.
1760       // Make sure it only defines the base register and kills any uses
1761       // other than the index register.
1762       for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) {
1763         const MachineOperand &MO = AddrMI->getOperand(k);
1764         if (!MO.isReg() || !MO.getReg())
1765           continue;
1766         if (MO.isDef() && MO.getReg() != BaseReg) {
1767           OptOk = false;
1768           break;
1769         }
1770         if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) {
1771           OptOk = false;
1772           break;
1773         }
1774       }
1775       if (!OptOk)
1776         continue;
1777
1778       // Now scan back again to find the tLEApcrel or t2LEApcrelJT instruction
1779       // that gave us the initial base register definition.
1780       for (--PrevI; PrevI != B && !PrevI->definesRegister(BaseReg); --PrevI)
1781         ;
1782
1783       // The instruction should be a tLEApcrel or t2LEApcrelJT; we want
1784       // to delete it as well.
1785       MachineInstr *LeaMI = PrevI;
1786       if ((LeaMI->getOpcode() != ARM::tLEApcrelJT &&
1787            LeaMI->getOpcode() != ARM::t2LEApcrelJT) ||
1788           LeaMI->getOperand(0).getReg() != BaseReg)
1789         OptOk = false;
1790
1791       if (!OptOk)
1792         continue;
1793
1794       unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT;
1795       MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc))
1796         .addReg(IdxReg, getKillRegState(IdxRegKill))
1797         .addJumpTableIndex(JTI, JTOP.getTargetFlags())
1798         .addImm(MI->getOperand(JTOpIdx+1).getImm());
1799       // FIXME: Insert an "ALIGN" instruction to ensure the next instruction
1800       // is 2-byte aligned. For now, asm printer will fix it up.
1801       unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI);
1802       unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI);
1803       OrigSize += TII->GetInstSizeInBytes(LeaMI);
1804       OrigSize += TII->GetInstSizeInBytes(MI);
1805
1806       AddrMI->eraseFromParent();
1807       LeaMI->eraseFromParent();
1808       MI->eraseFromParent();
1809
1810       int delta = OrigSize - NewSize;
1811       BBSizes[MBB->getNumber()] -= delta;
1812       AdjustBBOffsetsAfter(MBB, -delta);
1813
1814       ++NumTBs;
1815       MadeChange = true;
1816     }
1817   }
1818
1819   return MadeChange;
1820 }
1821
1822 /// ReorderThumb2JumpTables - Adjust the function's block layout to ensure that
1823 /// jump tables always branch forwards, since that's what tbb and tbh need.
1824 bool ARMConstantIslands::ReorderThumb2JumpTables(MachineFunction &MF) {
1825   bool MadeChange = false;
1826
1827   MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
1828   if (MJTI == 0) return false;
1829
1830   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1831   for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
1832     MachineInstr *MI = T2JumpTables[i];
1833     const MCInstrDesc &MCID = MI->getDesc();
1834     unsigned NumOps = MCID.getNumOperands();
1835     unsigned JTOpIdx = NumOps - (MCID.isPredicable() ? 3 : 2);
1836     MachineOperand JTOP = MI->getOperand(JTOpIdx);
1837     unsigned JTI = JTOP.getIndex();
1838     assert(JTI < JT.size());
1839
1840     // We prefer if target blocks for the jump table come after the jump
1841     // instruction so we can use TB[BH]. Loop through the target blocks
1842     // and try to adjust them such that that's true.
1843     int JTNumber = MI->getParent()->getNumber();
1844     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1845     for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
1846       MachineBasicBlock *MBB = JTBBs[j];
1847       int DTNumber = MBB->getNumber();
1848
1849       if (DTNumber < JTNumber) {
1850         // The destination precedes the switch. Try to move the block forward
1851         // so we have a positive offset.
1852         MachineBasicBlock *NewBB =
1853           AdjustJTTargetBlockForward(MBB, MI->getParent());
1854         if (NewBB)
1855           MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB);
1856         MadeChange = true;
1857       }
1858     }
1859   }
1860
1861   return MadeChange;
1862 }
1863
1864 MachineBasicBlock *ARMConstantIslands::
1865 AdjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB)
1866 {
1867   MachineFunction &MF = *BB->getParent();
1868
1869   // If the destination block is terminated by an unconditional branch,
1870   // try to move it; otherwise, create a new block following the jump
1871   // table that branches back to the actual target. This is a very simple
1872   // heuristic. FIXME: We can definitely improve it.
1873   MachineBasicBlock *TBB = 0, *FBB = 0;
1874   SmallVector<MachineOperand, 4> Cond;
1875   SmallVector<MachineOperand, 4> CondPrior;
1876   MachineFunction::iterator BBi = BB;
1877   MachineFunction::iterator OldPrior = prior(BBi);
1878
1879   // If the block terminator isn't analyzable, don't try to move the block
1880   bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond);
1881
1882   // If the block ends in an unconditional branch, move it. The prior block
1883   // has to have an analyzable terminator for us to move this one. Be paranoid
1884   // and make sure we're not trying to move the entry block of the function.
1885   if (!B && Cond.empty() && BB != MF.begin() &&
1886       !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) {
1887     BB->moveAfter(JTBB);
1888     OldPrior->updateTerminator();
1889     BB->updateTerminator();
1890     // Update numbering to account for the block being moved.
1891     MF.RenumberBlocks();
1892     ++NumJTMoved;
1893     return NULL;
1894   }
1895
1896   // Create a new MBB for the code after the jump BB.
1897   MachineBasicBlock *NewBB =
1898     MF.CreateMachineBasicBlock(JTBB->getBasicBlock());
1899   MachineFunction::iterator MBBI = JTBB; ++MBBI;
1900   MF.insert(MBBI, NewBB);
1901
1902   // Add an unconditional branch from NewBB to BB.
1903   // There doesn't seem to be meaningful DebugInfo available; this doesn't
1904   // correspond directly to anything in the source.
1905   assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?");
1906   BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB)
1907           .addImm(ARMCC::AL).addReg(0);
1908
1909   // Update internal data structures to account for the newly inserted MBB.
1910   MF.RenumberBlocks(NewBB);
1911
1912   // Update the CFG.
1913   NewBB->addSuccessor(BB);
1914   JTBB->removeSuccessor(BB);
1915   JTBB->addSuccessor(NewBB);
1916
1917   ++NumJTInserted;
1918   return NewBB;
1919 }