Revert "[DebugInfo] Add debug locations to constant SD nodes"
[oota-llvm.git] / lib / Target / AArch64 / AArch64ISelLowering.cpp
1 //===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation  ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AArch64TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "AArch64ISelLowering.h"
15 #include "AArch64CallingConvention.h"
16 #include "AArch64MachineFunctionInfo.h"
17 #include "AArch64PerfectShuffle.h"
18 #include "AArch64Subtarget.h"
19 #include "AArch64TargetMachine.h"
20 #include "AArch64TargetObjectFile.h"
21 #include "MCTargetDesc/AArch64AddressingModes.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetOptions.h"
35 using namespace llvm;
36
37 #define DEBUG_TYPE "aarch64-lower"
38
39 STATISTIC(NumTailCalls, "Number of tail calls");
40 STATISTIC(NumShiftInserts, "Number of vector shift inserts");
41
42 namespace {
43 enum AlignMode {
44   StrictAlign,
45   NoStrictAlign
46 };
47 }
48
49 static cl::opt<AlignMode>
50 Align(cl::desc("Load/store alignment support"),
51       cl::Hidden, cl::init(NoStrictAlign),
52       cl::values(
53           clEnumValN(StrictAlign,   "aarch64-strict-align",
54                      "Disallow all unaligned memory accesses"),
55           clEnumValN(NoStrictAlign, "aarch64-no-strict-align",
56                      "Allow unaligned memory accesses"),
57           clEnumValEnd));
58
59 // Place holder until extr generation is tested fully.
60 static cl::opt<bool>
61 EnableAArch64ExtrGeneration("aarch64-extr-generation", cl::Hidden,
62                           cl::desc("Allow AArch64 (or (shift)(shift))->extract"),
63                           cl::init(true));
64
65 static cl::opt<bool>
66 EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
67                            cl::desc("Allow AArch64 SLI/SRI formation"),
68                            cl::init(false));
69
70 // FIXME: The necessary dtprel relocations don't seem to be supported
71 // well in the GNU bfd and gold linkers at the moment. Therefore, by
72 // default, for now, fall back to GeneralDynamic code generation.
73 cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
74     "aarch64-elf-ldtls-generation", cl::Hidden,
75     cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
76     cl::init(false));
77
78 AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM,
79                                              const AArch64Subtarget &STI)
80     : TargetLowering(TM), Subtarget(&STI) {
81
82   // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
83   // we have to make something up. Arbitrarily, choose ZeroOrOne.
84   setBooleanContents(ZeroOrOneBooleanContent);
85   // When comparing vectors the result sets the different elements in the
86   // vector to all-one or all-zero.
87   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
88
89   // Set up the register classes.
90   addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
91   addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
92
93   if (Subtarget->hasFPARMv8()) {
94     addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
95     addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
96     addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
97     addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
98   }
99
100   if (Subtarget->hasNEON()) {
101     addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
102     addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
103     // Someone set us up the NEON.
104     addDRTypeForNEON(MVT::v2f32);
105     addDRTypeForNEON(MVT::v8i8);
106     addDRTypeForNEON(MVT::v4i16);
107     addDRTypeForNEON(MVT::v2i32);
108     addDRTypeForNEON(MVT::v1i64);
109     addDRTypeForNEON(MVT::v1f64);
110     addDRTypeForNEON(MVT::v4f16);
111
112     addQRTypeForNEON(MVT::v4f32);
113     addQRTypeForNEON(MVT::v2f64);
114     addQRTypeForNEON(MVT::v16i8);
115     addQRTypeForNEON(MVT::v8i16);
116     addQRTypeForNEON(MVT::v4i32);
117     addQRTypeForNEON(MVT::v2i64);
118     addQRTypeForNEON(MVT::v8f16);
119   }
120
121   // Compute derived properties from the register classes
122   computeRegisterProperties(Subtarget->getRegisterInfo());
123
124   // Provide all sorts of operation actions
125   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
126   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
127   setOperationAction(ISD::SETCC, MVT::i32, Custom);
128   setOperationAction(ISD::SETCC, MVT::i64, Custom);
129   setOperationAction(ISD::SETCC, MVT::f32, Custom);
130   setOperationAction(ISD::SETCC, MVT::f64, Custom);
131   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
132   setOperationAction(ISD::BR_CC, MVT::i32, Custom);
133   setOperationAction(ISD::BR_CC, MVT::i64, Custom);
134   setOperationAction(ISD::BR_CC, MVT::f32, Custom);
135   setOperationAction(ISD::BR_CC, MVT::f64, Custom);
136   setOperationAction(ISD::SELECT, MVT::i32, Custom);
137   setOperationAction(ISD::SELECT, MVT::i64, Custom);
138   setOperationAction(ISD::SELECT, MVT::f32, Custom);
139   setOperationAction(ISD::SELECT, MVT::f64, Custom);
140   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
141   setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
142   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
143   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
144   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
145   setOperationAction(ISD::JumpTable, MVT::i64, Custom);
146
147   setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
148   setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
149   setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
150
151   setOperationAction(ISD::FREM, MVT::f32, Expand);
152   setOperationAction(ISD::FREM, MVT::f64, Expand);
153   setOperationAction(ISD::FREM, MVT::f80, Expand);
154
155   // Custom lowering hooks are needed for XOR
156   // to fold it into CSINC/CSINV.
157   setOperationAction(ISD::XOR, MVT::i32, Custom);
158   setOperationAction(ISD::XOR, MVT::i64, Custom);
159
160   // Virtually no operation on f128 is legal, but LLVM can't expand them when
161   // there's a valid register class, so we need custom operations in most cases.
162   setOperationAction(ISD::FABS, MVT::f128, Expand);
163   setOperationAction(ISD::FADD, MVT::f128, Custom);
164   setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
165   setOperationAction(ISD::FCOS, MVT::f128, Expand);
166   setOperationAction(ISD::FDIV, MVT::f128, Custom);
167   setOperationAction(ISD::FMA, MVT::f128, Expand);
168   setOperationAction(ISD::FMUL, MVT::f128, Custom);
169   setOperationAction(ISD::FNEG, MVT::f128, Expand);
170   setOperationAction(ISD::FPOW, MVT::f128, Expand);
171   setOperationAction(ISD::FREM, MVT::f128, Expand);
172   setOperationAction(ISD::FRINT, MVT::f128, Expand);
173   setOperationAction(ISD::FSIN, MVT::f128, Expand);
174   setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
175   setOperationAction(ISD::FSQRT, MVT::f128, Expand);
176   setOperationAction(ISD::FSUB, MVT::f128, Custom);
177   setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
178   setOperationAction(ISD::SETCC, MVT::f128, Custom);
179   setOperationAction(ISD::BR_CC, MVT::f128, Custom);
180   setOperationAction(ISD::SELECT, MVT::f128, Custom);
181   setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
182   setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
183
184   // Lowering for many of the conversions is actually specified by the non-f128
185   // type. The LowerXXX function will be trivial when f128 isn't involved.
186   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
187   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
188   setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
189   setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
190   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
191   setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
192   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
193   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
194   setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
195   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
196   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
197   setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
198   setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
199   setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
200
201   // Variable arguments.
202   setOperationAction(ISD::VASTART, MVT::Other, Custom);
203   setOperationAction(ISD::VAARG, MVT::Other, Custom);
204   setOperationAction(ISD::VACOPY, MVT::Other, Custom);
205   setOperationAction(ISD::VAEND, MVT::Other, Expand);
206
207   // Variable-sized objects.
208   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
209   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
210   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
211
212   // Exception handling.
213   // FIXME: These are guesses. Has this been defined yet?
214   setExceptionPointerRegister(AArch64::X0);
215   setExceptionSelectorRegister(AArch64::X1);
216
217   // Constant pool entries
218   setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
219
220   // BlockAddress
221   setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
222
223   // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
224   setOperationAction(ISD::ADDC, MVT::i32, Custom);
225   setOperationAction(ISD::ADDE, MVT::i32, Custom);
226   setOperationAction(ISD::SUBC, MVT::i32, Custom);
227   setOperationAction(ISD::SUBE, MVT::i32, Custom);
228   setOperationAction(ISD::ADDC, MVT::i64, Custom);
229   setOperationAction(ISD::ADDE, MVT::i64, Custom);
230   setOperationAction(ISD::SUBC, MVT::i64, Custom);
231   setOperationAction(ISD::SUBE, MVT::i64, Custom);
232
233   // AArch64 lacks both left-rotate and popcount instructions.
234   setOperationAction(ISD::ROTL, MVT::i32, Expand);
235   setOperationAction(ISD::ROTL, MVT::i64, Expand);
236
237   // AArch64 doesn't have {U|S}MUL_LOHI.
238   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
239   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
240
241
242   // Expand the undefined-at-zero variants to cttz/ctlz to their defined-at-zero
243   // counterparts, which AArch64 supports directly.
244   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
245   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
246   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
247   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
248
249   setOperationAction(ISD::CTPOP, MVT::i32, Custom);
250   setOperationAction(ISD::CTPOP, MVT::i64, Custom);
251
252   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
253   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
254   setOperationAction(ISD::SREM, MVT::i32, Expand);
255   setOperationAction(ISD::SREM, MVT::i64, Expand);
256   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
257   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
258   setOperationAction(ISD::UREM, MVT::i32, Expand);
259   setOperationAction(ISD::UREM, MVT::i64, Expand);
260
261   // Custom lower Add/Sub/Mul with overflow.
262   setOperationAction(ISD::SADDO, MVT::i32, Custom);
263   setOperationAction(ISD::SADDO, MVT::i64, Custom);
264   setOperationAction(ISD::UADDO, MVT::i32, Custom);
265   setOperationAction(ISD::UADDO, MVT::i64, Custom);
266   setOperationAction(ISD::SSUBO, MVT::i32, Custom);
267   setOperationAction(ISD::SSUBO, MVT::i64, Custom);
268   setOperationAction(ISD::USUBO, MVT::i32, Custom);
269   setOperationAction(ISD::USUBO, MVT::i64, Custom);
270   setOperationAction(ISD::SMULO, MVT::i32, Custom);
271   setOperationAction(ISD::SMULO, MVT::i64, Custom);
272   setOperationAction(ISD::UMULO, MVT::i32, Custom);
273   setOperationAction(ISD::UMULO, MVT::i64, Custom);
274
275   setOperationAction(ISD::FSIN, MVT::f32, Expand);
276   setOperationAction(ISD::FSIN, MVT::f64, Expand);
277   setOperationAction(ISD::FCOS, MVT::f32, Expand);
278   setOperationAction(ISD::FCOS, MVT::f64, Expand);
279   setOperationAction(ISD::FPOW, MVT::f32, Expand);
280   setOperationAction(ISD::FPOW, MVT::f64, Expand);
281   setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
282   setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
283
284   // f16 is a storage-only type, always promote it to f32.
285   setOperationAction(ISD::SETCC,       MVT::f16,  Promote);
286   setOperationAction(ISD::BR_CC,       MVT::f16,  Promote);
287   setOperationAction(ISD::SELECT_CC,   MVT::f16,  Promote);
288   setOperationAction(ISD::SELECT,      MVT::f16,  Promote);
289   setOperationAction(ISD::FADD,        MVT::f16,  Promote);
290   setOperationAction(ISD::FSUB,        MVT::f16,  Promote);
291   setOperationAction(ISD::FMUL,        MVT::f16,  Promote);
292   setOperationAction(ISD::FDIV,        MVT::f16,  Promote);
293   setOperationAction(ISD::FREM,        MVT::f16,  Promote);
294   setOperationAction(ISD::FMA,         MVT::f16,  Promote);
295   setOperationAction(ISD::FNEG,        MVT::f16,  Promote);
296   setOperationAction(ISD::FABS,        MVT::f16,  Promote);
297   setOperationAction(ISD::FCEIL,       MVT::f16,  Promote);
298   setOperationAction(ISD::FCOPYSIGN,   MVT::f16,  Promote);
299   setOperationAction(ISD::FCOS,        MVT::f16,  Promote);
300   setOperationAction(ISD::FFLOOR,      MVT::f16,  Promote);
301   setOperationAction(ISD::FNEARBYINT,  MVT::f16,  Promote);
302   setOperationAction(ISD::FPOW,        MVT::f16,  Promote);
303   setOperationAction(ISD::FPOWI,       MVT::f16,  Promote);
304   setOperationAction(ISD::FRINT,       MVT::f16,  Promote);
305   setOperationAction(ISD::FSIN,        MVT::f16,  Promote);
306   setOperationAction(ISD::FSINCOS,     MVT::f16,  Promote);
307   setOperationAction(ISD::FSQRT,       MVT::f16,  Promote);
308   setOperationAction(ISD::FEXP,        MVT::f16,  Promote);
309   setOperationAction(ISD::FEXP2,       MVT::f16,  Promote);
310   setOperationAction(ISD::FLOG,        MVT::f16,  Promote);
311   setOperationAction(ISD::FLOG2,       MVT::f16,  Promote);
312   setOperationAction(ISD::FLOG10,      MVT::f16,  Promote);
313   setOperationAction(ISD::FROUND,      MVT::f16,  Promote);
314   setOperationAction(ISD::FTRUNC,      MVT::f16,  Promote);
315   setOperationAction(ISD::FMINNUM,     MVT::f16,  Promote);
316   setOperationAction(ISD::FMAXNUM,     MVT::f16,  Promote);
317
318   // v4f16 is also a storage-only type, so promote it to v4f32 when that is
319   // known to be safe.
320   setOperationAction(ISD::FADD, MVT::v4f16, Promote);
321   setOperationAction(ISD::FSUB, MVT::v4f16, Promote);
322   setOperationAction(ISD::FMUL, MVT::v4f16, Promote);
323   setOperationAction(ISD::FDIV, MVT::v4f16, Promote);
324   setOperationAction(ISD::FP_EXTEND, MVT::v4f16, Promote);
325   setOperationAction(ISD::FP_ROUND, MVT::v4f16, Promote);
326   AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32);
327   AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32);
328   AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32);
329   AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32);
330   AddPromotedToType(ISD::FP_EXTEND, MVT::v4f16, MVT::v4f32);
331   AddPromotedToType(ISD::FP_ROUND, MVT::v4f16, MVT::v4f32);
332
333   // Expand all other v4f16 operations.
334   // FIXME: We could generate better code by promoting some operations to
335   // a pair of v4f32s
336   setOperationAction(ISD::FABS, MVT::v4f16, Expand);
337   setOperationAction(ISD::FCEIL, MVT::v4f16, Expand);
338   setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand);
339   setOperationAction(ISD::FCOS, MVT::v4f16, Expand);
340   setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand);
341   setOperationAction(ISD::FMA, MVT::v4f16, Expand);
342   setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand);
343   setOperationAction(ISD::FNEG, MVT::v4f16, Expand);
344   setOperationAction(ISD::FPOW, MVT::v4f16, Expand);
345   setOperationAction(ISD::FPOWI, MVT::v4f16, Expand);
346   setOperationAction(ISD::FREM, MVT::v4f16, Expand);
347   setOperationAction(ISD::FROUND, MVT::v4f16, Expand);
348   setOperationAction(ISD::FRINT, MVT::v4f16, Expand);
349   setOperationAction(ISD::FSIN, MVT::v4f16, Expand);
350   setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand);
351   setOperationAction(ISD::FSQRT, MVT::v4f16, Expand);
352   setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand);
353   setOperationAction(ISD::SETCC, MVT::v4f16, Expand);
354   setOperationAction(ISD::BR_CC, MVT::v4f16, Expand);
355   setOperationAction(ISD::SELECT, MVT::v4f16, Expand);
356   setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand);
357   setOperationAction(ISD::FEXP, MVT::v4f16, Expand);
358   setOperationAction(ISD::FEXP2, MVT::v4f16, Expand);
359   setOperationAction(ISD::FLOG, MVT::v4f16, Expand);
360   setOperationAction(ISD::FLOG2, MVT::v4f16, Expand);
361   setOperationAction(ISD::FLOG10, MVT::v4f16, Expand);
362
363
364   // v8f16 is also a storage-only type, so expand it.
365   setOperationAction(ISD::FABS, MVT::v8f16, Expand);
366   setOperationAction(ISD::FADD, MVT::v8f16, Expand);
367   setOperationAction(ISD::FCEIL, MVT::v8f16, Expand);
368   setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand);
369   setOperationAction(ISD::FCOS, MVT::v8f16, Expand);
370   setOperationAction(ISD::FDIV, MVT::v8f16, Expand);
371   setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand);
372   setOperationAction(ISD::FMA, MVT::v8f16, Expand);
373   setOperationAction(ISD::FMUL, MVT::v8f16, Expand);
374   setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand);
375   setOperationAction(ISD::FNEG, MVT::v8f16, Expand);
376   setOperationAction(ISD::FPOW, MVT::v8f16, Expand);
377   setOperationAction(ISD::FPOWI, MVT::v8f16, Expand);
378   setOperationAction(ISD::FREM, MVT::v8f16, Expand);
379   setOperationAction(ISD::FROUND, MVT::v8f16, Expand);
380   setOperationAction(ISD::FRINT, MVT::v8f16, Expand);
381   setOperationAction(ISD::FSIN, MVT::v8f16, Expand);
382   setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand);
383   setOperationAction(ISD::FSQRT, MVT::v8f16, Expand);
384   setOperationAction(ISD::FSUB, MVT::v8f16, Expand);
385   setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand);
386   setOperationAction(ISD::SETCC, MVT::v8f16, Expand);
387   setOperationAction(ISD::BR_CC, MVT::v8f16, Expand);
388   setOperationAction(ISD::SELECT, MVT::v8f16, Expand);
389   setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand);
390   setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand);
391   setOperationAction(ISD::FEXP, MVT::v8f16, Expand);
392   setOperationAction(ISD::FEXP2, MVT::v8f16, Expand);
393   setOperationAction(ISD::FLOG, MVT::v8f16, Expand);
394   setOperationAction(ISD::FLOG2, MVT::v8f16, Expand);
395   setOperationAction(ISD::FLOG10, MVT::v8f16, Expand);
396
397   // AArch64 has implementations of a lot of rounding-like FP operations.
398   for (MVT Ty : {MVT::f32, MVT::f64}) {
399     setOperationAction(ISD::FFLOOR, Ty, Legal);
400     setOperationAction(ISD::FNEARBYINT, Ty, Legal);
401     setOperationAction(ISD::FCEIL, Ty, Legal);
402     setOperationAction(ISD::FRINT, Ty, Legal);
403     setOperationAction(ISD::FTRUNC, Ty, Legal);
404     setOperationAction(ISD::FROUND, Ty, Legal);
405   }
406
407   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
408
409   if (Subtarget->isTargetMachO()) {
410     // For iOS, we don't want to the normal expansion of a libcall to
411     // sincos. We want to issue a libcall to __sincos_stret to avoid memory
412     // traffic.
413     setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
414     setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
415   } else {
416     setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
417     setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
418   }
419
420   // Make floating-point constants legal for the large code model, so they don't
421   // become loads from the constant pool.
422   if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
423     setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
424     setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
425   }
426
427   // AArch64 does not have floating-point extending loads, i1 sign-extending
428   // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
429   for (MVT VT : MVT::fp_valuetypes()) {
430     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
431     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
432     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
433     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
434   }
435   for (MVT VT : MVT::integer_valuetypes())
436     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
437
438   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
439   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
440   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
441   setTruncStoreAction(MVT::f128, MVT::f80, Expand);
442   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
443   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
444   setTruncStoreAction(MVT::f128, MVT::f16, Expand);
445
446   setOperationAction(ISD::BITCAST, MVT::i16, Custom);
447   setOperationAction(ISD::BITCAST, MVT::f16, Custom);
448
449   // Indexed loads and stores are supported.
450   for (unsigned im = (unsigned)ISD::PRE_INC;
451        im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
452     setIndexedLoadAction(im, MVT::i8, Legal);
453     setIndexedLoadAction(im, MVT::i16, Legal);
454     setIndexedLoadAction(im, MVT::i32, Legal);
455     setIndexedLoadAction(im, MVT::i64, Legal);
456     setIndexedLoadAction(im, MVT::f64, Legal);
457     setIndexedLoadAction(im, MVT::f32, Legal);
458     setIndexedStoreAction(im, MVT::i8, Legal);
459     setIndexedStoreAction(im, MVT::i16, Legal);
460     setIndexedStoreAction(im, MVT::i32, Legal);
461     setIndexedStoreAction(im, MVT::i64, Legal);
462     setIndexedStoreAction(im, MVT::f64, Legal);
463     setIndexedStoreAction(im, MVT::f32, Legal);
464   }
465
466   // Trap.
467   setOperationAction(ISD::TRAP, MVT::Other, Legal);
468
469   // We combine OR nodes for bitfield operations.
470   setTargetDAGCombine(ISD::OR);
471
472   // Vector add and sub nodes may conceal a high-half opportunity.
473   // Also, try to fold ADD into CSINC/CSINV..
474   setTargetDAGCombine(ISD::ADD);
475   setTargetDAGCombine(ISD::SUB);
476
477   setTargetDAGCombine(ISD::XOR);
478   setTargetDAGCombine(ISD::SINT_TO_FP);
479   setTargetDAGCombine(ISD::UINT_TO_FP);
480
481   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
482
483   setTargetDAGCombine(ISD::ANY_EXTEND);
484   setTargetDAGCombine(ISD::ZERO_EXTEND);
485   setTargetDAGCombine(ISD::SIGN_EXTEND);
486   setTargetDAGCombine(ISD::BITCAST);
487   setTargetDAGCombine(ISD::CONCAT_VECTORS);
488   setTargetDAGCombine(ISD::STORE);
489
490   setTargetDAGCombine(ISD::MUL);
491
492   setTargetDAGCombine(ISD::SELECT);
493   setTargetDAGCombine(ISD::VSELECT);
494
495   setTargetDAGCombine(ISD::INTRINSIC_VOID);
496   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
497   setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
498
499   MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8;
500   MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4;
501   MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4;
502
503   setStackPointerRegisterToSaveRestore(AArch64::SP);
504
505   setSchedulingPreference(Sched::Hybrid);
506
507   // Enable TBZ/TBNZ
508   MaskAndBranchFoldingIsLegal = true;
509   EnableExtLdPromotion = true;
510
511   setMinFunctionAlignment(2);
512
513   RequireStrictAlign = (Align == StrictAlign);
514
515   setHasExtractBitsInsn(true);
516
517   if (Subtarget->hasNEON()) {
518     // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
519     // silliness like this:
520     setOperationAction(ISD::FABS, MVT::v1f64, Expand);
521     setOperationAction(ISD::FADD, MVT::v1f64, Expand);
522     setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
523     setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
524     setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
525     setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
526     setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
527     setOperationAction(ISD::FMA, MVT::v1f64, Expand);
528     setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
529     setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
530     setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
531     setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
532     setOperationAction(ISD::FREM, MVT::v1f64, Expand);
533     setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
534     setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
535     setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
536     setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
537     setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
538     setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
539     setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
540     setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
541     setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
542     setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
543     setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
544     setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
545
546     setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
547     setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
548     setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
549     setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
550     setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
551
552     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
553
554     // AArch64 doesn't have a direct vector ->f32 conversion instructions for
555     // elements smaller than i32, so promote the input to i32 first.
556     setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Promote);
557     setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Promote);
558     setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Promote);
559     setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Promote);
560     // i8 and i16 vector elements also need promotion to i32 for v8i8 or v8i16
561     // -> v8f16 conversions.
562     setOperationAction(ISD::SINT_TO_FP, MVT::v8i8, Promote);
563     setOperationAction(ISD::UINT_TO_FP, MVT::v8i8, Promote);
564     setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Promote);
565     setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Promote);
566     // Similarly, there is no direct i32 -> f64 vector conversion instruction.
567     setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
568     setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
569     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
570     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
571     // Or, direct i32 -> f16 vector conversion.  Set it so custom, so the
572     // conversion happens in two steps: v4i32 -> v4f32 -> v4f16
573     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Custom);
574     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom);
575
576     // AArch64 doesn't have MUL.2d:
577     setOperationAction(ISD::MUL, MVT::v2i64, Expand);
578     // Custom handling for some quad-vector types to detect MULL.
579     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
580     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
581     setOperationAction(ISD::MUL, MVT::v2i64, Custom);
582
583     setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
584     setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
585     // Likewise, narrowing and extending vector loads/stores aren't handled
586     // directly.
587     for (MVT VT : MVT::vector_valuetypes()) {
588       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
589
590       setOperationAction(ISD::MULHS, VT, Expand);
591       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
592       setOperationAction(ISD::MULHU, VT, Expand);
593       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
594
595       setOperationAction(ISD::BSWAP, VT, Expand);
596
597       for (MVT InnerVT : MVT::vector_valuetypes()) {
598         setTruncStoreAction(VT, InnerVT, Expand);
599         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
600         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
601         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
602       }
603     }
604
605     // AArch64 has implementations of a lot of rounding-like FP operations.
606     for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) {
607       setOperationAction(ISD::FFLOOR, Ty, Legal);
608       setOperationAction(ISD::FNEARBYINT, Ty, Legal);
609       setOperationAction(ISD::FCEIL, Ty, Legal);
610       setOperationAction(ISD::FRINT, Ty, Legal);
611       setOperationAction(ISD::FTRUNC, Ty, Legal);
612       setOperationAction(ISD::FROUND, Ty, Legal);
613     }
614   }
615
616   // Prefer likely predicted branches to selects on out-of-order cores.
617   if (Subtarget->isCortexA57())
618     PredictableSelectIsExpensive = true;
619 }
620
621 void AArch64TargetLowering::addTypeForNEON(EVT VT, EVT PromotedBitwiseVT) {
622   if (VT == MVT::v2f32 || VT == MVT::v4f16) {
623     setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
624     AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i32);
625
626     setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
627     AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i32);
628   } else if (VT == MVT::v2f64 || VT == MVT::v4f32 || VT == MVT::v8f16) {
629     setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
630     AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i64);
631
632     setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
633     AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i64);
634   }
635
636   // Mark vector float intrinsics as expand.
637   if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
638     setOperationAction(ISD::FSIN, VT.getSimpleVT(), Expand);
639     setOperationAction(ISD::FCOS, VT.getSimpleVT(), Expand);
640     setOperationAction(ISD::FPOWI, VT.getSimpleVT(), Expand);
641     setOperationAction(ISD::FPOW, VT.getSimpleVT(), Expand);
642     setOperationAction(ISD::FLOG, VT.getSimpleVT(), Expand);
643     setOperationAction(ISD::FLOG2, VT.getSimpleVT(), Expand);
644     setOperationAction(ISD::FLOG10, VT.getSimpleVT(), Expand);
645     setOperationAction(ISD::FEXP, VT.getSimpleVT(), Expand);
646     setOperationAction(ISD::FEXP2, VT.getSimpleVT(), Expand);
647   }
648
649   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
650   setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom);
651   setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
652   setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
653   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Custom);
654   setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
655   setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
656   setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
657   setOperationAction(ISD::AND, VT.getSimpleVT(), Custom);
658   setOperationAction(ISD::OR, VT.getSimpleVT(), Custom);
659   setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
660   setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
661
662   setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
663   setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
664   setOperationAction(ISD::VSELECT, VT.getSimpleVT(), Expand);
665   for (MVT InnerVT : MVT::all_valuetypes())
666     setLoadExtAction(ISD::EXTLOAD, InnerVT, VT.getSimpleVT(), Expand);
667
668   // CNT supports only B element sizes.
669   if (VT != MVT::v8i8 && VT != MVT::v16i8)
670     setOperationAction(ISD::CTPOP, VT.getSimpleVT(), Expand);
671
672   setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
673   setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
674   setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
675   setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
676   setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
677
678   setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom);
679   setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom);
680
681   if (Subtarget->isLittleEndian()) {
682     for (unsigned im = (unsigned)ISD::PRE_INC;
683          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
684       setIndexedLoadAction(im, VT.getSimpleVT(), Legal);
685       setIndexedStoreAction(im, VT.getSimpleVT(), Legal);
686     }
687   }
688 }
689
690 void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
691   addRegisterClass(VT, &AArch64::FPR64RegClass);
692   addTypeForNEON(VT, MVT::v2i32);
693 }
694
695 void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
696   addRegisterClass(VT, &AArch64::FPR128RegClass);
697   addTypeForNEON(VT, MVT::v4i32);
698 }
699
700 EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
701   if (!VT.isVector())
702     return MVT::i32;
703   return VT.changeVectorElementTypeToInteger();
704 }
705
706 /// computeKnownBitsForTargetNode - Determine which of the bits specified in
707 /// Mask are known to be either zero or one and return them in the
708 /// KnownZero/KnownOne bitsets.
709 void AArch64TargetLowering::computeKnownBitsForTargetNode(
710     const SDValue Op, APInt &KnownZero, APInt &KnownOne,
711     const SelectionDAG &DAG, unsigned Depth) const {
712   switch (Op.getOpcode()) {
713   default:
714     break;
715   case AArch64ISD::CSEL: {
716     APInt KnownZero2, KnownOne2;
717     DAG.computeKnownBits(Op->getOperand(0), KnownZero, KnownOne, Depth + 1);
718     DAG.computeKnownBits(Op->getOperand(1), KnownZero2, KnownOne2, Depth + 1);
719     KnownZero &= KnownZero2;
720     KnownOne &= KnownOne2;
721     break;
722   }
723   case ISD::INTRINSIC_W_CHAIN: {
724    ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
725     Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
726     switch (IntID) {
727     default: return;
728     case Intrinsic::aarch64_ldaxr:
729     case Intrinsic::aarch64_ldxr: {
730       unsigned BitWidth = KnownOne.getBitWidth();
731       EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
732       unsigned MemBits = VT.getScalarType().getSizeInBits();
733       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
734       return;
735     }
736     }
737     break;
738   }
739   case ISD::INTRINSIC_WO_CHAIN:
740   case ISD::INTRINSIC_VOID: {
741     unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
742     switch (IntNo) {
743     default:
744       break;
745     case Intrinsic::aarch64_neon_umaxv:
746     case Intrinsic::aarch64_neon_uminv: {
747       // Figure out the datatype of the vector operand. The UMINV instruction
748       // will zero extend the result, so we can mark as known zero all the
749       // bits larger than the element datatype. 32-bit or larget doesn't need
750       // this as those are legal types and will be handled by isel directly.
751       MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
752       unsigned BitWidth = KnownZero.getBitWidth();
753       if (VT == MVT::v8i8 || VT == MVT::v16i8) {
754         assert(BitWidth >= 8 && "Unexpected width!");
755         APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
756         KnownZero |= Mask;
757       } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
758         assert(BitWidth >= 16 && "Unexpected width!");
759         APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
760         KnownZero |= Mask;
761       }
762       break;
763     } break;
764     }
765   }
766   }
767 }
768
769 MVT AArch64TargetLowering::getScalarShiftAmountTy(EVT LHSTy) const {
770   return MVT::i64;
771 }
772
773 FastISel *
774 AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
775                                       const TargetLibraryInfo *libInfo) const {
776   return AArch64::createFastISel(funcInfo, libInfo);
777 }
778
779 const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
780   switch (Opcode) {
781   default:
782     return nullptr;
783   case AArch64ISD::CALL:              return "AArch64ISD::CALL";
784   case AArch64ISD::ADRP:              return "AArch64ISD::ADRP";
785   case AArch64ISD::ADDlow:            return "AArch64ISD::ADDlow";
786   case AArch64ISD::LOADgot:           return "AArch64ISD::LOADgot";
787   case AArch64ISD::RET_FLAG:          return "AArch64ISD::RET_FLAG";
788   case AArch64ISD::BRCOND:            return "AArch64ISD::BRCOND";
789   case AArch64ISD::CSEL:              return "AArch64ISD::CSEL";
790   case AArch64ISD::FCSEL:             return "AArch64ISD::FCSEL";
791   case AArch64ISD::CSINV:             return "AArch64ISD::CSINV";
792   case AArch64ISD::CSNEG:             return "AArch64ISD::CSNEG";
793   case AArch64ISD::CSINC:             return "AArch64ISD::CSINC";
794   case AArch64ISD::THREAD_POINTER:    return "AArch64ISD::THREAD_POINTER";
795   case AArch64ISD::TLSDESC_CALLSEQ:   return "AArch64ISD::TLSDESC_CALLSEQ";
796   case AArch64ISD::ADC:               return "AArch64ISD::ADC";
797   case AArch64ISD::SBC:               return "AArch64ISD::SBC";
798   case AArch64ISD::ADDS:              return "AArch64ISD::ADDS";
799   case AArch64ISD::SUBS:              return "AArch64ISD::SUBS";
800   case AArch64ISD::ADCS:              return "AArch64ISD::ADCS";
801   case AArch64ISD::SBCS:              return "AArch64ISD::SBCS";
802   case AArch64ISD::ANDS:              return "AArch64ISD::ANDS";
803   case AArch64ISD::FCMP:              return "AArch64ISD::FCMP";
804   case AArch64ISD::FMIN:              return "AArch64ISD::FMIN";
805   case AArch64ISD::FMAX:              return "AArch64ISD::FMAX";
806   case AArch64ISD::DUP:               return "AArch64ISD::DUP";
807   case AArch64ISD::DUPLANE8:          return "AArch64ISD::DUPLANE8";
808   case AArch64ISD::DUPLANE16:         return "AArch64ISD::DUPLANE16";
809   case AArch64ISD::DUPLANE32:         return "AArch64ISD::DUPLANE32";
810   case AArch64ISD::DUPLANE64:         return "AArch64ISD::DUPLANE64";
811   case AArch64ISD::MOVI:              return "AArch64ISD::MOVI";
812   case AArch64ISD::MOVIshift:         return "AArch64ISD::MOVIshift";
813   case AArch64ISD::MOVIedit:          return "AArch64ISD::MOVIedit";
814   case AArch64ISD::MOVImsl:           return "AArch64ISD::MOVImsl";
815   case AArch64ISD::FMOV:              return "AArch64ISD::FMOV";
816   case AArch64ISD::MVNIshift:         return "AArch64ISD::MVNIshift";
817   case AArch64ISD::MVNImsl:           return "AArch64ISD::MVNImsl";
818   case AArch64ISD::BICi:              return "AArch64ISD::BICi";
819   case AArch64ISD::ORRi:              return "AArch64ISD::ORRi";
820   case AArch64ISD::BSL:               return "AArch64ISD::BSL";
821   case AArch64ISD::NEG:               return "AArch64ISD::NEG";
822   case AArch64ISD::EXTR:              return "AArch64ISD::EXTR";
823   case AArch64ISD::ZIP1:              return "AArch64ISD::ZIP1";
824   case AArch64ISD::ZIP2:              return "AArch64ISD::ZIP2";
825   case AArch64ISD::UZP1:              return "AArch64ISD::UZP1";
826   case AArch64ISD::UZP2:              return "AArch64ISD::UZP2";
827   case AArch64ISD::TRN1:              return "AArch64ISD::TRN1";
828   case AArch64ISD::TRN2:              return "AArch64ISD::TRN2";
829   case AArch64ISD::REV16:             return "AArch64ISD::REV16";
830   case AArch64ISD::REV32:             return "AArch64ISD::REV32";
831   case AArch64ISD::REV64:             return "AArch64ISD::REV64";
832   case AArch64ISD::EXT:               return "AArch64ISD::EXT";
833   case AArch64ISD::VSHL:              return "AArch64ISD::VSHL";
834   case AArch64ISD::VLSHR:             return "AArch64ISD::VLSHR";
835   case AArch64ISD::VASHR:             return "AArch64ISD::VASHR";
836   case AArch64ISD::CMEQ:              return "AArch64ISD::CMEQ";
837   case AArch64ISD::CMGE:              return "AArch64ISD::CMGE";
838   case AArch64ISD::CMGT:              return "AArch64ISD::CMGT";
839   case AArch64ISD::CMHI:              return "AArch64ISD::CMHI";
840   case AArch64ISD::CMHS:              return "AArch64ISD::CMHS";
841   case AArch64ISD::FCMEQ:             return "AArch64ISD::FCMEQ";
842   case AArch64ISD::FCMGE:             return "AArch64ISD::FCMGE";
843   case AArch64ISD::FCMGT:             return "AArch64ISD::FCMGT";
844   case AArch64ISD::CMEQz:             return "AArch64ISD::CMEQz";
845   case AArch64ISD::CMGEz:             return "AArch64ISD::CMGEz";
846   case AArch64ISD::CMGTz:             return "AArch64ISD::CMGTz";
847   case AArch64ISD::CMLEz:             return "AArch64ISD::CMLEz";
848   case AArch64ISD::CMLTz:             return "AArch64ISD::CMLTz";
849   case AArch64ISD::FCMEQz:            return "AArch64ISD::FCMEQz";
850   case AArch64ISD::FCMGEz:            return "AArch64ISD::FCMGEz";
851   case AArch64ISD::FCMGTz:            return "AArch64ISD::FCMGTz";
852   case AArch64ISD::FCMLEz:            return "AArch64ISD::FCMLEz";
853   case AArch64ISD::FCMLTz:            return "AArch64ISD::FCMLTz";
854   case AArch64ISD::SADDV:             return "AArch64ISD::SADDV";
855   case AArch64ISD::UADDV:             return "AArch64ISD::UADDV";
856   case AArch64ISD::SMINV:             return "AArch64ISD::SMINV";
857   case AArch64ISD::UMINV:             return "AArch64ISD::UMINV";
858   case AArch64ISD::SMAXV:             return "AArch64ISD::SMAXV";
859   case AArch64ISD::UMAXV:             return "AArch64ISD::UMAXV";
860   case AArch64ISD::NOT:               return "AArch64ISD::NOT";
861   case AArch64ISD::BIT:               return "AArch64ISD::BIT";
862   case AArch64ISD::CBZ:               return "AArch64ISD::CBZ";
863   case AArch64ISD::CBNZ:              return "AArch64ISD::CBNZ";
864   case AArch64ISD::TBZ:               return "AArch64ISD::TBZ";
865   case AArch64ISD::TBNZ:              return "AArch64ISD::TBNZ";
866   case AArch64ISD::TC_RETURN:         return "AArch64ISD::TC_RETURN";
867   case AArch64ISD::SITOF:             return "AArch64ISD::SITOF";
868   case AArch64ISD::UITOF:             return "AArch64ISD::UITOF";
869   case AArch64ISD::NVCAST:            return "AArch64ISD::NVCAST";
870   case AArch64ISD::SQSHL_I:           return "AArch64ISD::SQSHL_I";
871   case AArch64ISD::UQSHL_I:           return "AArch64ISD::UQSHL_I";
872   case AArch64ISD::SRSHR_I:           return "AArch64ISD::SRSHR_I";
873   case AArch64ISD::URSHR_I:           return "AArch64ISD::URSHR_I";
874   case AArch64ISD::SQSHLU_I:          return "AArch64ISD::SQSHLU_I";
875   case AArch64ISD::WrapperLarge:      return "AArch64ISD::WrapperLarge";
876   case AArch64ISD::LD2post:           return "AArch64ISD::LD2post";
877   case AArch64ISD::LD3post:           return "AArch64ISD::LD3post";
878   case AArch64ISD::LD4post:           return "AArch64ISD::LD4post";
879   case AArch64ISD::ST2post:           return "AArch64ISD::ST2post";
880   case AArch64ISD::ST3post:           return "AArch64ISD::ST3post";
881   case AArch64ISD::ST4post:           return "AArch64ISD::ST4post";
882   case AArch64ISD::LD1x2post:         return "AArch64ISD::LD1x2post";
883   case AArch64ISD::LD1x3post:         return "AArch64ISD::LD1x3post";
884   case AArch64ISD::LD1x4post:         return "AArch64ISD::LD1x4post";
885   case AArch64ISD::ST1x2post:         return "AArch64ISD::ST1x2post";
886   case AArch64ISD::ST1x3post:         return "AArch64ISD::ST1x3post";
887   case AArch64ISD::ST1x4post:         return "AArch64ISD::ST1x4post";
888   case AArch64ISD::LD1DUPpost:        return "AArch64ISD::LD1DUPpost";
889   case AArch64ISD::LD2DUPpost:        return "AArch64ISD::LD2DUPpost";
890   case AArch64ISD::LD3DUPpost:        return "AArch64ISD::LD3DUPpost";
891   case AArch64ISD::LD4DUPpost:        return "AArch64ISD::LD4DUPpost";
892   case AArch64ISD::LD1LANEpost:       return "AArch64ISD::LD1LANEpost";
893   case AArch64ISD::LD2LANEpost:       return "AArch64ISD::LD2LANEpost";
894   case AArch64ISD::LD3LANEpost:       return "AArch64ISD::LD3LANEpost";
895   case AArch64ISD::LD4LANEpost:       return "AArch64ISD::LD4LANEpost";
896   case AArch64ISD::ST2LANEpost:       return "AArch64ISD::ST2LANEpost";
897   case AArch64ISD::ST3LANEpost:       return "AArch64ISD::ST3LANEpost";
898   case AArch64ISD::ST4LANEpost:       return "AArch64ISD::ST4LANEpost";
899   case AArch64ISD::SMULL:             return "AArch64ISD::SMULL";
900   case AArch64ISD::UMULL:             return "AArch64ISD::UMULL";
901   }
902 }
903
904 MachineBasicBlock *
905 AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
906                                     MachineBasicBlock *MBB) const {
907   // We materialise the F128CSEL pseudo-instruction as some control flow and a
908   // phi node:
909
910   // OrigBB:
911   //     [... previous instrs leading to comparison ...]
912   //     b.ne TrueBB
913   //     b EndBB
914   // TrueBB:
915   //     ; Fallthrough
916   // EndBB:
917   //     Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
918
919   MachineFunction *MF = MBB->getParent();
920   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
921   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
922   DebugLoc DL = MI->getDebugLoc();
923   MachineFunction::iterator It = MBB;
924   ++It;
925
926   unsigned DestReg = MI->getOperand(0).getReg();
927   unsigned IfTrueReg = MI->getOperand(1).getReg();
928   unsigned IfFalseReg = MI->getOperand(2).getReg();
929   unsigned CondCode = MI->getOperand(3).getImm();
930   bool NZCVKilled = MI->getOperand(4).isKill();
931
932   MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
933   MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
934   MF->insert(It, TrueBB);
935   MF->insert(It, EndBB);
936
937   // Transfer rest of current basic-block to EndBB
938   EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
939                 MBB->end());
940   EndBB->transferSuccessorsAndUpdatePHIs(MBB);
941
942   BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
943   BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
944   MBB->addSuccessor(TrueBB);
945   MBB->addSuccessor(EndBB);
946
947   // TrueBB falls through to the end.
948   TrueBB->addSuccessor(EndBB);
949
950   if (!NZCVKilled) {
951     TrueBB->addLiveIn(AArch64::NZCV);
952     EndBB->addLiveIn(AArch64::NZCV);
953   }
954
955   BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
956       .addReg(IfTrueReg)
957       .addMBB(TrueBB)
958       .addReg(IfFalseReg)
959       .addMBB(MBB);
960
961   MI->eraseFromParent();
962   return EndBB;
963 }
964
965 MachineBasicBlock *
966 AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
967                                                  MachineBasicBlock *BB) const {
968   switch (MI->getOpcode()) {
969   default:
970 #ifndef NDEBUG
971     MI->dump();
972 #endif
973     llvm_unreachable("Unexpected instruction for custom inserter!");
974
975   case AArch64::F128CSEL:
976     return EmitF128CSEL(MI, BB);
977
978   case TargetOpcode::STACKMAP:
979   case TargetOpcode::PATCHPOINT:
980     return emitPatchPoint(MI, BB);
981   }
982 }
983
984 //===----------------------------------------------------------------------===//
985 // AArch64 Lowering private implementation.
986 //===----------------------------------------------------------------------===//
987
988 //===----------------------------------------------------------------------===//
989 // Lowering Code
990 //===----------------------------------------------------------------------===//
991
992 /// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
993 /// CC
994 static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
995   switch (CC) {
996   default:
997     llvm_unreachable("Unknown condition code!");
998   case ISD::SETNE:
999     return AArch64CC::NE;
1000   case ISD::SETEQ:
1001     return AArch64CC::EQ;
1002   case ISD::SETGT:
1003     return AArch64CC::GT;
1004   case ISD::SETGE:
1005     return AArch64CC::GE;
1006   case ISD::SETLT:
1007     return AArch64CC::LT;
1008   case ISD::SETLE:
1009     return AArch64CC::LE;
1010   case ISD::SETUGT:
1011     return AArch64CC::HI;
1012   case ISD::SETUGE:
1013     return AArch64CC::HS;
1014   case ISD::SETULT:
1015     return AArch64CC::LO;
1016   case ISD::SETULE:
1017     return AArch64CC::LS;
1018   }
1019 }
1020
1021 /// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
1022 static void changeFPCCToAArch64CC(ISD::CondCode CC,
1023                                   AArch64CC::CondCode &CondCode,
1024                                   AArch64CC::CondCode &CondCode2) {
1025   CondCode2 = AArch64CC::AL;
1026   switch (CC) {
1027   default:
1028     llvm_unreachable("Unknown FP condition!");
1029   case ISD::SETEQ:
1030   case ISD::SETOEQ:
1031     CondCode = AArch64CC::EQ;
1032     break;
1033   case ISD::SETGT:
1034   case ISD::SETOGT:
1035     CondCode = AArch64CC::GT;
1036     break;
1037   case ISD::SETGE:
1038   case ISD::SETOGE:
1039     CondCode = AArch64CC::GE;
1040     break;
1041   case ISD::SETOLT:
1042     CondCode = AArch64CC::MI;
1043     break;
1044   case ISD::SETOLE:
1045     CondCode = AArch64CC::LS;
1046     break;
1047   case ISD::SETONE:
1048     CondCode = AArch64CC::MI;
1049     CondCode2 = AArch64CC::GT;
1050     break;
1051   case ISD::SETO:
1052     CondCode = AArch64CC::VC;
1053     break;
1054   case ISD::SETUO:
1055     CondCode = AArch64CC::VS;
1056     break;
1057   case ISD::SETUEQ:
1058     CondCode = AArch64CC::EQ;
1059     CondCode2 = AArch64CC::VS;
1060     break;
1061   case ISD::SETUGT:
1062     CondCode = AArch64CC::HI;
1063     break;
1064   case ISD::SETUGE:
1065     CondCode = AArch64CC::PL;
1066     break;
1067   case ISD::SETLT:
1068   case ISD::SETULT:
1069     CondCode = AArch64CC::LT;
1070     break;
1071   case ISD::SETLE:
1072   case ISD::SETULE:
1073     CondCode = AArch64CC::LE;
1074     break;
1075   case ISD::SETNE:
1076   case ISD::SETUNE:
1077     CondCode = AArch64CC::NE;
1078     break;
1079   }
1080 }
1081
1082 /// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
1083 /// CC usable with the vector instructions. Fewer operations are available
1084 /// without a real NZCV register, so we have to use less efficient combinations
1085 /// to get the same effect.
1086 static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
1087                                         AArch64CC::CondCode &CondCode,
1088                                         AArch64CC::CondCode &CondCode2,
1089                                         bool &Invert) {
1090   Invert = false;
1091   switch (CC) {
1092   default:
1093     // Mostly the scalar mappings work fine.
1094     changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1095     break;
1096   case ISD::SETUO:
1097     Invert = true; // Fallthrough
1098   case ISD::SETO:
1099     CondCode = AArch64CC::MI;
1100     CondCode2 = AArch64CC::GE;
1101     break;
1102   case ISD::SETUEQ:
1103   case ISD::SETULT:
1104   case ISD::SETULE:
1105   case ISD::SETUGT:
1106   case ISD::SETUGE:
1107     // All of the compare-mask comparisons are ordered, but we can switch
1108     // between the two by a double inversion. E.g. ULE == !OGT.
1109     Invert = true;
1110     changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
1111     break;
1112   }
1113 }
1114
1115 static bool isLegalArithImmed(uint64_t C) {
1116   // Matches AArch64DAGToDAGISel::SelectArithImmed().
1117   return (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
1118 }
1119
1120 static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1121                               SDLoc dl, SelectionDAG &DAG) {
1122   EVT VT = LHS.getValueType();
1123
1124   if (VT.isFloatingPoint())
1125     return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
1126
1127   // The CMP instruction is just an alias for SUBS, and representing it as
1128   // SUBS means that it's possible to get CSE with subtract operations.
1129   // A later phase can perform the optimization of setting the destination
1130   // register to WZR/XZR if it ends up being unused.
1131   unsigned Opcode = AArch64ISD::SUBS;
1132
1133   if (RHS.getOpcode() == ISD::SUB && isa<ConstantSDNode>(RHS.getOperand(0)) &&
1134       cast<ConstantSDNode>(RHS.getOperand(0))->getZExtValue() == 0 &&
1135       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1136     // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on
1137     // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags
1138     // can be set differently by this operation. It comes down to whether
1139     // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
1140     // everything is fine. If not then the optimization is wrong. Thus general
1141     // comparisons are only valid if op2 != 0.
1142
1143     // So, finally, the only LLVM-native comparisons that don't mention C and V
1144     // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
1145     // the absence of information about op2.
1146     Opcode = AArch64ISD::ADDS;
1147     RHS = RHS.getOperand(1);
1148   } else if (LHS.getOpcode() == ISD::AND && isa<ConstantSDNode>(RHS) &&
1149              cast<ConstantSDNode>(RHS)->getZExtValue() == 0 &&
1150              !isUnsignedIntSetCC(CC)) {
1151     // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
1152     // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
1153     // of the signed comparisons.
1154     Opcode = AArch64ISD::ANDS;
1155     RHS = LHS.getOperand(1);
1156     LHS = LHS.getOperand(0);
1157   }
1158
1159   return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS)
1160       .getValue(1);
1161 }
1162
1163 static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1164                              SDValue &AArch64cc, SelectionDAG &DAG, SDLoc dl) {
1165   SDValue Cmp;
1166   AArch64CC::CondCode AArch64CC;
1167   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1168     EVT VT = RHS.getValueType();
1169     uint64_t C = RHSC->getZExtValue();
1170     if (!isLegalArithImmed(C)) {
1171       // Constant does not fit, try adjusting it by one?
1172       switch (CC) {
1173       default:
1174         break;
1175       case ISD::SETLT:
1176       case ISD::SETGE:
1177         if ((VT == MVT::i32 && C != 0x80000000 &&
1178              isLegalArithImmed((uint32_t)(C - 1))) ||
1179             (VT == MVT::i64 && C != 0x80000000ULL &&
1180              isLegalArithImmed(C - 1ULL))) {
1181           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1182           C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1183           RHS = DAG.getConstant(C, VT);
1184         }
1185         break;
1186       case ISD::SETULT:
1187       case ISD::SETUGE:
1188         if ((VT == MVT::i32 && C != 0 &&
1189              isLegalArithImmed((uint32_t)(C - 1))) ||
1190             (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
1191           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1192           C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1193           RHS = DAG.getConstant(C, VT);
1194         }
1195         break;
1196       case ISD::SETLE:
1197       case ISD::SETGT:
1198         if ((VT == MVT::i32 && C != INT32_MAX &&
1199              isLegalArithImmed((uint32_t)(C + 1))) ||
1200             (VT == MVT::i64 && C != INT64_MAX &&
1201              isLegalArithImmed(C + 1ULL))) {
1202           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1203           C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1204           RHS = DAG.getConstant(C, VT);
1205         }
1206         break;
1207       case ISD::SETULE:
1208       case ISD::SETUGT:
1209         if ((VT == MVT::i32 && C != UINT32_MAX &&
1210              isLegalArithImmed((uint32_t)(C + 1))) ||
1211             (VT == MVT::i64 && C != UINT64_MAX &&
1212              isLegalArithImmed(C + 1ULL))) {
1213           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1214           C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1215           RHS = DAG.getConstant(C, VT);
1216         }
1217         break;
1218       }
1219     }
1220   }
1221   // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
1222   // For the i8 operand, the largest immediate is 255, so this can be easily
1223   // encoded in the compare instruction. For the i16 operand, however, the
1224   // largest immediate cannot be encoded in the compare.
1225   // Therefore, use a sign extending load and cmn to avoid materializing the -1
1226   // constant. For example,
1227   // movz w1, #65535
1228   // ldrh w0, [x0, #0]
1229   // cmp w0, w1
1230   // >
1231   // ldrsh w0, [x0, #0]
1232   // cmn w0, #1
1233   // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
1234   // if and only if (sext LHS) == (sext RHS). The checks are in place to ensure
1235   // both the LHS and RHS are truely zero extended and to make sure the
1236   // transformation is profitable.
1237   if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
1238     if ((cast<ConstantSDNode>(RHS)->getZExtValue() >> 16 == 0) &&
1239         isa<LoadSDNode>(LHS)) {
1240       if (cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
1241           cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
1242           LHS.getNode()->hasNUsesOfValue(1, 0)) {
1243         int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
1244         if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
1245           SDValue SExt =
1246               DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
1247                           DAG.getValueType(MVT::i16));
1248           Cmp = emitComparison(SExt,
1249                                DAG.getConstant(ValueofRHS, RHS.getValueType()),
1250                                CC, dl, DAG);
1251           AArch64CC = changeIntCCToAArch64CC(CC);
1252           AArch64cc = DAG.getConstant(AArch64CC, MVT::i32);
1253           return Cmp;
1254         }
1255       }
1256     }
1257   }
1258   Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
1259   AArch64CC = changeIntCCToAArch64CC(CC);
1260   AArch64cc = DAG.getConstant(AArch64CC, MVT::i32);
1261   return Cmp;
1262 }
1263
1264 static std::pair<SDValue, SDValue>
1265 getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
1266   assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
1267          "Unsupported value type");
1268   SDValue Value, Overflow;
1269   SDLoc DL(Op);
1270   SDValue LHS = Op.getOperand(0);
1271   SDValue RHS = Op.getOperand(1);
1272   unsigned Opc = 0;
1273   switch (Op.getOpcode()) {
1274   default:
1275     llvm_unreachable("Unknown overflow instruction!");
1276   case ISD::SADDO:
1277     Opc = AArch64ISD::ADDS;
1278     CC = AArch64CC::VS;
1279     break;
1280   case ISD::UADDO:
1281     Opc = AArch64ISD::ADDS;
1282     CC = AArch64CC::HS;
1283     break;
1284   case ISD::SSUBO:
1285     Opc = AArch64ISD::SUBS;
1286     CC = AArch64CC::VS;
1287     break;
1288   case ISD::USUBO:
1289     Opc = AArch64ISD::SUBS;
1290     CC = AArch64CC::LO;
1291     break;
1292   // Multiply needs a little bit extra work.
1293   case ISD::SMULO:
1294   case ISD::UMULO: {
1295     CC = AArch64CC::NE;
1296     bool IsSigned = Op.getOpcode() == ISD::SMULO;
1297     if (Op.getValueType() == MVT::i32) {
1298       unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1299       // For a 32 bit multiply with overflow check we want the instruction
1300       // selector to generate a widening multiply (SMADDL/UMADDL). For that we
1301       // need to generate the following pattern:
1302       // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
1303       LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
1304       RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
1305       SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1306       SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
1307                                 DAG.getConstant(0, MVT::i64));
1308       // On AArch64 the upper 32 bits are always zero extended for a 32 bit
1309       // operation. We need to clear out the upper 32 bits, because we used a
1310       // widening multiply that wrote all 64 bits. In the end this should be a
1311       // noop.
1312       Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
1313       if (IsSigned) {
1314         // The signed overflow check requires more than just a simple check for
1315         // any bit set in the upper 32 bits of the result. These bits could be
1316         // just the sign bits of a negative number. To perform the overflow
1317         // check we have to arithmetic shift right the 32nd bit of the result by
1318         // 31 bits. Then we compare the result to the upper 32 bits.
1319         SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
1320                                         DAG.getConstant(32, MVT::i64));
1321         UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
1322         SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
1323                                         DAG.getConstant(31, MVT::i64));
1324         // It is important that LowerBits is last, otherwise the arithmetic
1325         // shift will not be folded into the compare (SUBS).
1326         SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
1327         Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1328                        .getValue(1);
1329       } else {
1330         // The overflow check for unsigned multiply is easy. We only need to
1331         // check if any of the upper 32 bits are set. This can be done with a
1332         // CMP (shifted register). For that we need to generate the following
1333         // pattern:
1334         // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
1335         SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
1336                                         DAG.getConstant(32, MVT::i64));
1337         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1338         Overflow =
1339             DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
1340                         UpperBits).getValue(1);
1341       }
1342       break;
1343     }
1344     assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
1345     // For the 64 bit multiply
1346     Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1347     if (IsSigned) {
1348       SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
1349       SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
1350                                       DAG.getConstant(63, MVT::i64));
1351       // It is important that LowerBits is last, otherwise the arithmetic
1352       // shift will not be folded into the compare (SUBS).
1353       SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1354       Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1355                      .getValue(1);
1356     } else {
1357       SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
1358       SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1359       Overflow =
1360           DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
1361                       UpperBits).getValue(1);
1362     }
1363     break;
1364   }
1365   } // switch (...)
1366
1367   if (Opc) {
1368     SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
1369
1370     // Emit the AArch64 operation with overflow check.
1371     Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
1372     Overflow = Value.getValue(1);
1373   }
1374   return std::make_pair(Value, Overflow);
1375 }
1376
1377 SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
1378                                              RTLIB::Libcall Call) const {
1379   SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
1380   return makeLibCall(DAG, Call, MVT::f128, &Ops[0], Ops.size(), false,
1381                      SDLoc(Op)).first;
1382 }
1383
1384 static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
1385   SDValue Sel = Op.getOperand(0);
1386   SDValue Other = Op.getOperand(1);
1387
1388   // If neither operand is a SELECT_CC, give up.
1389   if (Sel.getOpcode() != ISD::SELECT_CC)
1390     std::swap(Sel, Other);
1391   if (Sel.getOpcode() != ISD::SELECT_CC)
1392     return Op;
1393
1394   // The folding we want to perform is:
1395   // (xor x, (select_cc a, b, cc, 0, -1) )
1396   //   -->
1397   // (csel x, (xor x, -1), cc ...)
1398   //
1399   // The latter will get matched to a CSINV instruction.
1400
1401   ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
1402   SDValue LHS = Sel.getOperand(0);
1403   SDValue RHS = Sel.getOperand(1);
1404   SDValue TVal = Sel.getOperand(2);
1405   SDValue FVal = Sel.getOperand(3);
1406   SDLoc dl(Sel);
1407
1408   // FIXME: This could be generalized to non-integer comparisons.
1409   if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
1410     return Op;
1411
1412   ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
1413   ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
1414
1415   // The the values aren't constants, this isn't the pattern we're looking for.
1416   if (!CFVal || !CTVal)
1417     return Op;
1418
1419   // We can commute the SELECT_CC by inverting the condition.  This
1420   // might be needed to make this fit into a CSINV pattern.
1421   if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
1422     std::swap(TVal, FVal);
1423     std::swap(CTVal, CFVal);
1424     CC = ISD::getSetCCInverse(CC, true);
1425   }
1426
1427   // If the constants line up, perform the transform!
1428   if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
1429     SDValue CCVal;
1430     SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
1431
1432     FVal = Other;
1433     TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
1434                        DAG.getConstant(-1ULL, Other.getValueType()));
1435
1436     return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
1437                        CCVal, Cmp);
1438   }
1439
1440   return Op;
1441 }
1442
1443 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
1444   EVT VT = Op.getValueType();
1445
1446   // Let legalize expand this if it isn't a legal type yet.
1447   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
1448     return SDValue();
1449
1450   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
1451
1452   unsigned Opc;
1453   bool ExtraOp = false;
1454   switch (Op.getOpcode()) {
1455   default:
1456     llvm_unreachable("Invalid code");
1457   case ISD::ADDC:
1458     Opc = AArch64ISD::ADDS;
1459     break;
1460   case ISD::SUBC:
1461     Opc = AArch64ISD::SUBS;
1462     break;
1463   case ISD::ADDE:
1464     Opc = AArch64ISD::ADCS;
1465     ExtraOp = true;
1466     break;
1467   case ISD::SUBE:
1468     Opc = AArch64ISD::SBCS;
1469     ExtraOp = true;
1470     break;
1471   }
1472
1473   if (!ExtraOp)
1474     return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
1475   return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
1476                      Op.getOperand(2));
1477 }
1478
1479 static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
1480   // Let legalize expand this if it isn't a legal type yet.
1481   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
1482     return SDValue();
1483
1484   AArch64CC::CondCode CC;
1485   // The actual operation that sets the overflow or carry flag.
1486   SDValue Value, Overflow;
1487   std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
1488
1489   // We use 0 and 1 as false and true values.
1490   SDValue TVal = DAG.getConstant(1, MVT::i32);
1491   SDValue FVal = DAG.getConstant(0, MVT::i32);
1492
1493   // We use an inverted condition, because the conditional select is inverted
1494   // too. This will allow it to be selected to a single instruction:
1495   // CSINC Wd, WZR, WZR, invert(cond).
1496   SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), MVT::i32);
1497   Overflow = DAG.getNode(AArch64ISD::CSEL, SDLoc(Op), MVT::i32, FVal, TVal,
1498                          CCVal, Overflow);
1499
1500   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
1501   return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), VTs, Value, Overflow);
1502 }
1503
1504 // Prefetch operands are:
1505 // 1: Address to prefetch
1506 // 2: bool isWrite
1507 // 3: int locality (0 = no locality ... 3 = extreme locality)
1508 // 4: bool isDataCache
1509 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
1510   SDLoc DL(Op);
1511   unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
1512   unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
1513   unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
1514
1515   bool IsStream = !Locality;
1516   // When the locality number is set
1517   if (Locality) {
1518     // The front-end should have filtered out the out-of-range values
1519     assert(Locality <= 3 && "Prefetch locality out-of-range");
1520     // The locality degree is the opposite of the cache speed.
1521     // Put the number the other way around.
1522     // The encoding starts at 0 for level 1
1523     Locality = 3 - Locality;
1524   }
1525
1526   // built the mask value encoding the expected behavior.
1527   unsigned PrfOp = (IsWrite << 4) |     // Load/Store bit
1528                    (!IsData << 3) |     // IsDataCache bit
1529                    (Locality << 1) |    // Cache level bits
1530                    (unsigned)IsStream;  // Stream bit
1531   return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
1532                      DAG.getConstant(PrfOp, MVT::i32), Op.getOperand(1));
1533 }
1534
1535 SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
1536                                               SelectionDAG &DAG) const {
1537   assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
1538
1539   RTLIB::Libcall LC;
1540   LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
1541
1542   return LowerF128Call(Op, DAG, LC);
1543 }
1544
1545 SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
1546                                              SelectionDAG &DAG) const {
1547   if (Op.getOperand(0).getValueType() != MVT::f128) {
1548     // It's legal except when f128 is involved
1549     return Op;
1550   }
1551
1552   RTLIB::Libcall LC;
1553   LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
1554
1555   // FP_ROUND node has a second operand indicating whether it is known to be
1556   // precise. That doesn't take part in the LibCall so we can't directly use
1557   // LowerF128Call.
1558   SDValue SrcVal = Op.getOperand(0);
1559   return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
1560                      /*isSigned*/ false, SDLoc(Op)).first;
1561 }
1562
1563 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
1564   // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1565   // Any additional optimization in this function should be recorded
1566   // in the cost tables.
1567   EVT InVT = Op.getOperand(0).getValueType();
1568   EVT VT = Op.getValueType();
1569
1570   if (VT.getSizeInBits() < InVT.getSizeInBits()) {
1571     SDLoc dl(Op);
1572     SDValue Cv =
1573         DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
1574                     Op.getOperand(0));
1575     return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
1576   }
1577
1578   if (VT.getSizeInBits() > InVT.getSizeInBits()) {
1579     SDLoc dl(Op);
1580     MVT ExtVT =
1581         MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
1582                          VT.getVectorNumElements());
1583     SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
1584     return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
1585   }
1586
1587   // Type changing conversions are illegal.
1588   return Op;
1589 }
1590
1591 SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
1592                                               SelectionDAG &DAG) const {
1593   if (Op.getOperand(0).getValueType().isVector())
1594     return LowerVectorFP_TO_INT(Op, DAG);
1595
1596   // f16 conversions are promoted to f32.
1597   if (Op.getOperand(0).getValueType() == MVT::f16) {
1598     SDLoc dl(Op);
1599     return DAG.getNode(
1600         Op.getOpcode(), dl, Op.getValueType(),
1601         DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Op.getOperand(0)));
1602   }
1603
1604   if (Op.getOperand(0).getValueType() != MVT::f128) {
1605     // It's legal except when f128 is involved
1606     return Op;
1607   }
1608
1609   RTLIB::Libcall LC;
1610   if (Op.getOpcode() == ISD::FP_TO_SINT)
1611     LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
1612   else
1613     LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
1614
1615   SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
1616   return makeLibCall(DAG, LC, Op.getValueType(), &Ops[0], Ops.size(), false,
1617                      SDLoc(Op)).first;
1618 }
1619
1620 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
1621   // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1622   // Any additional optimization in this function should be recorded
1623   // in the cost tables.
1624   EVT VT = Op.getValueType();
1625   SDLoc dl(Op);
1626   SDValue In = Op.getOperand(0);
1627   EVT InVT = In.getValueType();
1628
1629   if (VT.getSizeInBits() < InVT.getSizeInBits()) {
1630     MVT CastVT =
1631         MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
1632                          InVT.getVectorNumElements());
1633     In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
1634     return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0));
1635   }
1636
1637   if (VT.getSizeInBits() > InVT.getSizeInBits()) {
1638     unsigned CastOpc =
1639         Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1640     EVT CastVT = VT.changeVectorElementTypeToInteger();
1641     In = DAG.getNode(CastOpc, dl, CastVT, In);
1642     return DAG.getNode(Op.getOpcode(), dl, VT, In);
1643   }
1644
1645   return Op;
1646 }
1647
1648 SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
1649                                             SelectionDAG &DAG) const {
1650   if (Op.getValueType().isVector())
1651     return LowerVectorINT_TO_FP(Op, DAG);
1652
1653   // f16 conversions are promoted to f32.
1654   if (Op.getValueType() == MVT::f16) {
1655     SDLoc dl(Op);
1656     return DAG.getNode(
1657         ISD::FP_ROUND, dl, MVT::f16,
1658         DAG.getNode(Op.getOpcode(), dl, MVT::f32, Op.getOperand(0)),
1659         DAG.getIntPtrConstant(0));
1660   }
1661
1662   // i128 conversions are libcalls.
1663   if (Op.getOperand(0).getValueType() == MVT::i128)
1664     return SDValue();
1665
1666   // Other conversions are legal, unless it's to the completely software-based
1667   // fp128.
1668   if (Op.getValueType() != MVT::f128)
1669     return Op;
1670
1671   RTLIB::Libcall LC;
1672   if (Op.getOpcode() == ISD::SINT_TO_FP)
1673     LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1674   else
1675     LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1676
1677   return LowerF128Call(Op, DAG, LC);
1678 }
1679
1680 SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
1681                                             SelectionDAG &DAG) const {
1682   // For iOS, we want to call an alternative entry point: __sincos_stret,
1683   // which returns the values in two S / D registers.
1684   SDLoc dl(Op);
1685   SDValue Arg = Op.getOperand(0);
1686   EVT ArgVT = Arg.getValueType();
1687   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1688
1689   ArgListTy Args;
1690   ArgListEntry Entry;
1691
1692   Entry.Node = Arg;
1693   Entry.Ty = ArgTy;
1694   Entry.isSExt = false;
1695   Entry.isZExt = false;
1696   Args.push_back(Entry);
1697
1698   const char *LibcallName =
1699       (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
1700   SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
1701
1702   StructType *RetTy = StructType::get(ArgTy, ArgTy, nullptr);
1703   TargetLowering::CallLoweringInfo CLI(DAG);
1704   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
1705     .setCallee(CallingConv::Fast, RetTy, Callee, std::move(Args), 0);
1706
1707   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1708   return CallResult.first;
1709 }
1710
1711 static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
1712   if (Op.getValueType() != MVT::f16)
1713     return SDValue();
1714
1715   assert(Op.getOperand(0).getValueType() == MVT::i16);
1716   SDLoc DL(Op);
1717
1718   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
1719   Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
1720   return SDValue(
1721       DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op,
1722                          DAG.getTargetConstant(AArch64::hsub, MVT::i32)),
1723       0);
1724 }
1725
1726 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
1727   if (OrigVT.getSizeInBits() >= 64)
1728     return OrigVT;
1729
1730   assert(OrigVT.isSimple() && "Expecting a simple value type");
1731
1732   MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
1733   switch (OrigSimpleTy) {
1734   default: llvm_unreachable("Unexpected Vector Type");
1735   case MVT::v2i8:
1736   case MVT::v2i16:
1737      return MVT::v2i32;
1738   case MVT::v4i8:
1739     return  MVT::v4i16;
1740   }
1741 }
1742
1743 static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
1744                                                  const EVT &OrigTy,
1745                                                  const EVT &ExtTy,
1746                                                  unsigned ExtOpcode) {
1747   // The vector originally had a size of OrigTy. It was then extended to ExtTy.
1748   // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
1749   // 64-bits we need to insert a new extension so that it will be 64-bits.
1750   assert(ExtTy.is128BitVector() && "Unexpected extension size");
1751   if (OrigTy.getSizeInBits() >= 64)
1752     return N;
1753
1754   // Must extend size to at least 64 bits to be used as an operand for VMULL.
1755   EVT NewVT = getExtensionTo64Bits(OrigTy);
1756
1757   return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
1758 }
1759
1760 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
1761                                    bool isSigned) {
1762   EVT VT = N->getValueType(0);
1763
1764   if (N->getOpcode() != ISD::BUILD_VECTOR)
1765     return false;
1766
1767   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1768     SDNode *Elt = N->getOperand(i).getNode();
1769     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
1770       unsigned EltSize = VT.getVectorElementType().getSizeInBits();
1771       unsigned HalfSize = EltSize / 2;
1772       if (isSigned) {
1773         if (!isIntN(HalfSize, C->getSExtValue()))
1774           return false;
1775       } else {
1776         if (!isUIntN(HalfSize, C->getZExtValue()))
1777           return false;
1778       }
1779       continue;
1780     }
1781     return false;
1782   }
1783
1784   return true;
1785 }
1786
1787 static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
1788   if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
1789     return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG,
1790                                              N->getOperand(0)->getValueType(0),
1791                                              N->getValueType(0),
1792                                              N->getOpcode());
1793
1794   assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
1795   EVT VT = N->getValueType(0);
1796   unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
1797   unsigned NumElts = VT.getVectorNumElements();
1798   MVT TruncVT = MVT::getIntegerVT(EltSize);
1799   SmallVector<SDValue, 8> Ops;
1800   for (unsigned i = 0; i != NumElts; ++i) {
1801     ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
1802     const APInt &CInt = C->getAPIntValue();
1803     // Element types smaller than 32 bits are not legal, so use i32 elements.
1804     // The values are implicitly truncated so sext vs. zext doesn't matter.
1805     Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), MVT::i32));
1806   }
1807   return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
1808                      MVT::getVectorVT(TruncVT, NumElts), Ops);
1809 }
1810
1811 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
1812   if (N->getOpcode() == ISD::SIGN_EXTEND)
1813     return true;
1814   if (isExtendedBUILD_VECTOR(N, DAG, true))
1815     return true;
1816   return false;
1817 }
1818
1819 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
1820   if (N->getOpcode() == ISD::ZERO_EXTEND)
1821     return true;
1822   if (isExtendedBUILD_VECTOR(N, DAG, false))
1823     return true;
1824   return false;
1825 }
1826
1827 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
1828   unsigned Opcode = N->getOpcode();
1829   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
1830     SDNode *N0 = N->getOperand(0).getNode();
1831     SDNode *N1 = N->getOperand(1).getNode();
1832     return N0->hasOneUse() && N1->hasOneUse() &&
1833       isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
1834   }
1835   return false;
1836 }
1837
1838 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
1839   unsigned Opcode = N->getOpcode();
1840   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
1841     SDNode *N0 = N->getOperand(0).getNode();
1842     SDNode *N1 = N->getOperand(1).getNode();
1843     return N0->hasOneUse() && N1->hasOneUse() &&
1844       isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
1845   }
1846   return false;
1847 }
1848
1849 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
1850   // Multiplications are only custom-lowered for 128-bit vectors so that
1851   // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
1852   EVT VT = Op.getValueType();
1853   assert(VT.is128BitVector() && VT.isInteger() &&
1854          "unexpected type for custom-lowering ISD::MUL");
1855   SDNode *N0 = Op.getOperand(0).getNode();
1856   SDNode *N1 = Op.getOperand(1).getNode();
1857   unsigned NewOpc = 0;
1858   bool isMLA = false;
1859   bool isN0SExt = isSignExtended(N0, DAG);
1860   bool isN1SExt = isSignExtended(N1, DAG);
1861   if (isN0SExt && isN1SExt)
1862     NewOpc = AArch64ISD::SMULL;
1863   else {
1864     bool isN0ZExt = isZeroExtended(N0, DAG);
1865     bool isN1ZExt = isZeroExtended(N1, DAG);
1866     if (isN0ZExt && isN1ZExt)
1867       NewOpc = AArch64ISD::UMULL;
1868     else if (isN1SExt || isN1ZExt) {
1869       // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
1870       // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
1871       if (isN1SExt && isAddSubSExt(N0, DAG)) {
1872         NewOpc = AArch64ISD::SMULL;
1873         isMLA = true;
1874       } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
1875         NewOpc =  AArch64ISD::UMULL;
1876         isMLA = true;
1877       } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
1878         std::swap(N0, N1);
1879         NewOpc =  AArch64ISD::UMULL;
1880         isMLA = true;
1881       }
1882     }
1883
1884     if (!NewOpc) {
1885       if (VT == MVT::v2i64)
1886         // Fall through to expand this.  It is not legal.
1887         return SDValue();
1888       else
1889         // Other vector multiplications are legal.
1890         return Op;
1891     }
1892   }
1893
1894   // Legalize to a S/UMULL instruction
1895   SDLoc DL(Op);
1896   SDValue Op0;
1897   SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
1898   if (!isMLA) {
1899     Op0 = skipExtensionForVectorMULL(N0, DAG);
1900     assert(Op0.getValueType().is64BitVector() &&
1901            Op1.getValueType().is64BitVector() &&
1902            "unexpected types for extended operands to VMULL");
1903     return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
1904   }
1905   // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
1906   // isel lowering to take advantage of no-stall back to back s/umul + s/umla.
1907   // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
1908   SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG);
1909   SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG);
1910   EVT Op1VT = Op1.getValueType();
1911   return DAG.getNode(N0->getOpcode(), DL, VT,
1912                      DAG.getNode(NewOpc, DL, VT,
1913                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
1914                      DAG.getNode(NewOpc, DL, VT,
1915                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
1916 }
1917
1918 SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
1919                                               SelectionDAG &DAG) const {
1920   switch (Op.getOpcode()) {
1921   default:
1922     llvm_unreachable("unimplemented operand");
1923     return SDValue();
1924   case ISD::BITCAST:
1925     return LowerBITCAST(Op, DAG);
1926   case ISD::GlobalAddress:
1927     return LowerGlobalAddress(Op, DAG);
1928   case ISD::GlobalTLSAddress:
1929     return LowerGlobalTLSAddress(Op, DAG);
1930   case ISD::SETCC:
1931     return LowerSETCC(Op, DAG);
1932   case ISD::BR_CC:
1933     return LowerBR_CC(Op, DAG);
1934   case ISD::SELECT:
1935     return LowerSELECT(Op, DAG);
1936   case ISD::SELECT_CC:
1937     return LowerSELECT_CC(Op, DAG);
1938   case ISD::JumpTable:
1939     return LowerJumpTable(Op, DAG);
1940   case ISD::ConstantPool:
1941     return LowerConstantPool(Op, DAG);
1942   case ISD::BlockAddress:
1943     return LowerBlockAddress(Op, DAG);
1944   case ISD::VASTART:
1945     return LowerVASTART(Op, DAG);
1946   case ISD::VACOPY:
1947     return LowerVACOPY(Op, DAG);
1948   case ISD::VAARG:
1949     return LowerVAARG(Op, DAG);
1950   case ISD::ADDC:
1951   case ISD::ADDE:
1952   case ISD::SUBC:
1953   case ISD::SUBE:
1954     return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
1955   case ISD::SADDO:
1956   case ISD::UADDO:
1957   case ISD::SSUBO:
1958   case ISD::USUBO:
1959   case ISD::SMULO:
1960   case ISD::UMULO:
1961     return LowerXALUO(Op, DAG);
1962   case ISD::FADD:
1963     return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
1964   case ISD::FSUB:
1965     return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
1966   case ISD::FMUL:
1967     return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
1968   case ISD::FDIV:
1969     return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
1970   case ISD::FP_ROUND:
1971     return LowerFP_ROUND(Op, DAG);
1972   case ISD::FP_EXTEND:
1973     return LowerFP_EXTEND(Op, DAG);
1974   case ISD::FRAMEADDR:
1975     return LowerFRAMEADDR(Op, DAG);
1976   case ISD::RETURNADDR:
1977     return LowerRETURNADDR(Op, DAG);
1978   case ISD::INSERT_VECTOR_ELT:
1979     return LowerINSERT_VECTOR_ELT(Op, DAG);
1980   case ISD::EXTRACT_VECTOR_ELT:
1981     return LowerEXTRACT_VECTOR_ELT(Op, DAG);
1982   case ISD::BUILD_VECTOR:
1983     return LowerBUILD_VECTOR(Op, DAG);
1984   case ISD::VECTOR_SHUFFLE:
1985     return LowerVECTOR_SHUFFLE(Op, DAG);
1986   case ISD::EXTRACT_SUBVECTOR:
1987     return LowerEXTRACT_SUBVECTOR(Op, DAG);
1988   case ISD::SRA:
1989   case ISD::SRL:
1990   case ISD::SHL:
1991     return LowerVectorSRA_SRL_SHL(Op, DAG);
1992   case ISD::SHL_PARTS:
1993     return LowerShiftLeftParts(Op, DAG);
1994   case ISD::SRL_PARTS:
1995   case ISD::SRA_PARTS:
1996     return LowerShiftRightParts(Op, DAG);
1997   case ISD::CTPOP:
1998     return LowerCTPOP(Op, DAG);
1999   case ISD::FCOPYSIGN:
2000     return LowerFCOPYSIGN(Op, DAG);
2001   case ISD::AND:
2002     return LowerVectorAND(Op, DAG);
2003   case ISD::OR:
2004     return LowerVectorOR(Op, DAG);
2005   case ISD::XOR:
2006     return LowerXOR(Op, DAG);
2007   case ISD::PREFETCH:
2008     return LowerPREFETCH(Op, DAG);
2009   case ISD::SINT_TO_FP:
2010   case ISD::UINT_TO_FP:
2011     return LowerINT_TO_FP(Op, DAG);
2012   case ISD::FP_TO_SINT:
2013   case ISD::FP_TO_UINT:
2014     return LowerFP_TO_INT(Op, DAG);
2015   case ISD::FSINCOS:
2016     return LowerFSINCOS(Op, DAG);
2017   case ISD::MUL:
2018     return LowerMUL(Op, DAG);
2019   }
2020 }
2021
2022 /// getFunctionAlignment - Return the Log2 alignment of this function.
2023 unsigned AArch64TargetLowering::getFunctionAlignment(const Function *F) const {
2024   return 2;
2025 }
2026
2027 //===----------------------------------------------------------------------===//
2028 //                      Calling Convention Implementation
2029 //===----------------------------------------------------------------------===//
2030
2031 #include "AArch64GenCallingConv.inc"
2032
2033 /// Selects the correct CCAssignFn for a given CallingConvention value.
2034 CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
2035                                                      bool IsVarArg) const {
2036   switch (CC) {
2037   default:
2038     llvm_unreachable("Unsupported calling convention.");
2039   case CallingConv::WebKit_JS:
2040     return CC_AArch64_WebKit_JS;
2041   case CallingConv::GHC:
2042     return CC_AArch64_GHC;
2043   case CallingConv::C:
2044   case CallingConv::Fast:
2045     if (!Subtarget->isTargetDarwin())
2046       return CC_AArch64_AAPCS;
2047     return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
2048   }
2049 }
2050
2051 SDValue AArch64TargetLowering::LowerFormalArguments(
2052     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2053     const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
2054     SmallVectorImpl<SDValue> &InVals) const {
2055   MachineFunction &MF = DAG.getMachineFunction();
2056   MachineFrameInfo *MFI = MF.getFrameInfo();
2057
2058   // Assign locations to all of the incoming arguments.
2059   SmallVector<CCValAssign, 16> ArgLocs;
2060   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2061                  *DAG.getContext());
2062
2063   // At this point, Ins[].VT may already be promoted to i32. To correctly
2064   // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2065   // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2066   // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
2067   // we use a special version of AnalyzeFormalArguments to pass in ValVT and
2068   // LocVT.
2069   unsigned NumArgs = Ins.size();
2070   Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
2071   unsigned CurArgIdx = 0;
2072   for (unsigned i = 0; i != NumArgs; ++i) {
2073     MVT ValVT = Ins[i].VT;
2074     if (Ins[i].isOrigArg()) {
2075       std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx);
2076       CurArgIdx = Ins[i].getOrigArgIndex();
2077
2078       // Get type of the original argument.
2079       EVT ActualVT = getValueType(CurOrigArg->getType(), /*AllowUnknown*/ true);
2080       MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
2081       // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
2082       if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
2083         ValVT = MVT::i8;
2084       else if (ActualMVT == MVT::i16)
2085         ValVT = MVT::i16;
2086     }
2087     CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
2088     bool Res =
2089         AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
2090     assert(!Res && "Call operand has unhandled type");
2091     (void)Res;
2092   }
2093   assert(ArgLocs.size() == Ins.size());
2094   SmallVector<SDValue, 16> ArgValues;
2095   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2096     CCValAssign &VA = ArgLocs[i];
2097
2098     if (Ins[i].Flags.isByVal()) {
2099       // Byval is used for HFAs in the PCS, but the system should work in a
2100       // non-compliant manner for larger structs.
2101       EVT PtrTy = getPointerTy();
2102       int Size = Ins[i].Flags.getByValSize();
2103       unsigned NumRegs = (Size + 7) / 8;
2104
2105       // FIXME: This works on big-endian for composite byvals, which are the common
2106       // case. It should also work for fundamental types too.
2107       unsigned FrameIdx =
2108         MFI->CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
2109       SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy);
2110       InVals.push_back(FrameIdxN);
2111
2112       continue;
2113     }
2114     
2115     if (VA.isRegLoc()) {
2116       // Arguments stored in registers.
2117       EVT RegVT = VA.getLocVT();
2118
2119       SDValue ArgValue;
2120       const TargetRegisterClass *RC;
2121
2122       if (RegVT == MVT::i32)
2123         RC = &AArch64::GPR32RegClass;
2124       else if (RegVT == MVT::i64)
2125         RC = &AArch64::GPR64RegClass;
2126       else if (RegVT == MVT::f16)
2127         RC = &AArch64::FPR16RegClass;
2128       else if (RegVT == MVT::f32)
2129         RC = &AArch64::FPR32RegClass;
2130       else if (RegVT == MVT::f64 || RegVT.is64BitVector())
2131         RC = &AArch64::FPR64RegClass;
2132       else if (RegVT == MVT::f128 || RegVT.is128BitVector())
2133         RC = &AArch64::FPR128RegClass;
2134       else
2135         llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2136
2137       // Transform the arguments in physical registers into virtual ones.
2138       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2139       ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2140
2141       // If this is an 8, 16 or 32-bit value, it is really passed promoted
2142       // to 64 bits.  Insert an assert[sz]ext to capture this, then
2143       // truncate to the right size.
2144       switch (VA.getLocInfo()) {
2145       default:
2146         llvm_unreachable("Unknown loc info!");
2147       case CCValAssign::Full:
2148         break;
2149       case CCValAssign::BCvt:
2150         ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
2151         break;
2152       case CCValAssign::AExt:
2153       case CCValAssign::SExt:
2154       case CCValAssign::ZExt:
2155         // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt
2156         // nodes after our lowering.
2157         assert(RegVT == Ins[i].VT && "incorrect register location selected");
2158         break;
2159       }
2160
2161       InVals.push_back(ArgValue);
2162
2163     } else { // VA.isRegLoc()
2164       assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
2165       unsigned ArgOffset = VA.getLocMemOffset();
2166       unsigned ArgSize = VA.getValVT().getSizeInBits() / 8;
2167
2168       uint32_t BEAlign = 0;
2169       if (!Subtarget->isLittleEndian() && ArgSize < 8 &&
2170           !Ins[i].Flags.isInConsecutiveRegs())
2171         BEAlign = 8 - ArgSize;
2172
2173       int FI = MFI->CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
2174
2175       // Create load nodes to retrieve arguments from the stack.
2176       SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2177       SDValue ArgValue;
2178
2179       // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
2180       ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
2181       MVT MemVT = VA.getValVT();
2182
2183       switch (VA.getLocInfo()) {
2184       default:
2185         break;
2186       case CCValAssign::BCvt:
2187         MemVT = VA.getLocVT();
2188         break;
2189       case CCValAssign::SExt:
2190         ExtType = ISD::SEXTLOAD;
2191         break;
2192       case CCValAssign::ZExt:
2193         ExtType = ISD::ZEXTLOAD;
2194         break;
2195       case CCValAssign::AExt:
2196         ExtType = ISD::EXTLOAD;
2197         break;
2198       }
2199
2200       ArgValue = DAG.getExtLoad(ExtType, DL, VA.getLocVT(), Chain, FIN,
2201                                 MachinePointerInfo::getFixedStack(FI),
2202                                 MemVT, false, false, false, 0);
2203
2204       InVals.push_back(ArgValue);
2205     }
2206   }
2207
2208   // varargs
2209   if (isVarArg) {
2210     if (!Subtarget->isTargetDarwin()) {
2211       // The AAPCS variadic function ABI is identical to the non-variadic
2212       // one. As a result there may be more arguments in registers and we should
2213       // save them for future reference.
2214       saveVarArgRegisters(CCInfo, DAG, DL, Chain);
2215     }
2216
2217     AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2218     // This will point to the next argument passed via stack.
2219     unsigned StackOffset = CCInfo.getNextStackOffset();
2220     // We currently pass all varargs at 8-byte alignment.
2221     StackOffset = ((StackOffset + 7) & ~7);
2222     AFI->setVarArgsStackIndex(MFI->CreateFixedObject(4, StackOffset, true));
2223   }
2224
2225   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2226   unsigned StackArgSize = CCInfo.getNextStackOffset();
2227   bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2228   if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
2229     // This is a non-standard ABI so by fiat I say we're allowed to make full
2230     // use of the stack area to be popped, which must be aligned to 16 bytes in
2231     // any case:
2232     StackArgSize = RoundUpToAlignment(StackArgSize, 16);
2233
2234     // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
2235     // a multiple of 16.
2236     FuncInfo->setArgumentStackToRestore(StackArgSize);
2237
2238     // This realignment carries over to the available bytes below. Our own
2239     // callers will guarantee the space is free by giving an aligned value to
2240     // CALLSEQ_START.
2241   }
2242   // Even if we're not expected to free up the space, it's useful to know how
2243   // much is there while considering tail calls (because we can reuse it).
2244   FuncInfo->setBytesInStackArgArea(StackArgSize);
2245
2246   return Chain;
2247 }
2248
2249 void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
2250                                                 SelectionDAG &DAG, SDLoc DL,
2251                                                 SDValue &Chain) const {
2252   MachineFunction &MF = DAG.getMachineFunction();
2253   MachineFrameInfo *MFI = MF.getFrameInfo();
2254   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2255
2256   SmallVector<SDValue, 8> MemOps;
2257
2258   static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
2259                                           AArch64::X3, AArch64::X4, AArch64::X5,
2260                                           AArch64::X6, AArch64::X7 };
2261   static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
2262   unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs);
2263
2264   unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
2265   int GPRIdx = 0;
2266   if (GPRSaveSize != 0) {
2267     GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
2268
2269     SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());
2270
2271     for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
2272       unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
2273       SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
2274       SDValue Store =
2275           DAG.getStore(Val.getValue(1), DL, Val, FIN,
2276                        MachinePointerInfo::getStack(i * 8), false, false, 0);
2277       MemOps.push_back(Store);
2278       FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
2279                         DAG.getConstant(8, getPointerTy()));
2280     }
2281   }
2282   FuncInfo->setVarArgsGPRIndex(GPRIdx);
2283   FuncInfo->setVarArgsGPRSize(GPRSaveSize);
2284
2285   if (Subtarget->hasFPARMv8()) {
2286     static const MCPhysReg FPRArgRegs[] = {
2287         AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
2288         AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
2289     static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
2290     unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs);
2291
2292     unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
2293     int FPRIdx = 0;
2294     if (FPRSaveSize != 0) {
2295       FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
2296
2297       SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
2298
2299       for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
2300         unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
2301         SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
2302
2303         SDValue Store =
2304             DAG.getStore(Val.getValue(1), DL, Val, FIN,
2305                          MachinePointerInfo::getStack(i * 16), false, false, 0);
2306         MemOps.push_back(Store);
2307         FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
2308                           DAG.getConstant(16, getPointerTy()));
2309       }
2310     }
2311     FuncInfo->setVarArgsFPRIndex(FPRIdx);
2312     FuncInfo->setVarArgsFPRSize(FPRSaveSize);
2313   }
2314
2315   if (!MemOps.empty()) {
2316     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
2317   }
2318 }
2319
2320 /// LowerCallResult - Lower the result values of a call into the
2321 /// appropriate copies out of appropriate physical registers.
2322 SDValue AArch64TargetLowering::LowerCallResult(
2323     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
2324     const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
2325     SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
2326     SDValue ThisVal) const {
2327   CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2328                           ? RetCC_AArch64_WebKit_JS
2329                           : RetCC_AArch64_AAPCS;
2330   // Assign locations to each value returned by this call.
2331   SmallVector<CCValAssign, 16> RVLocs;
2332   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2333                  *DAG.getContext());
2334   CCInfo.AnalyzeCallResult(Ins, RetCC);
2335
2336   // Copy all of the result registers out of their specified physreg.
2337   for (unsigned i = 0; i != RVLocs.size(); ++i) {
2338     CCValAssign VA = RVLocs[i];
2339
2340     // Pass 'this' value directly from the argument to return value, to avoid
2341     // reg unit interference
2342     if (i == 0 && isThisReturn) {
2343       assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
2344              "unexpected return calling convention register assignment");
2345       InVals.push_back(ThisVal);
2346       continue;
2347     }
2348
2349     SDValue Val =
2350         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2351     Chain = Val.getValue(1);
2352     InFlag = Val.getValue(2);
2353
2354     switch (VA.getLocInfo()) {
2355     default:
2356       llvm_unreachable("Unknown loc info!");
2357     case CCValAssign::Full:
2358       break;
2359     case CCValAssign::BCvt:
2360       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2361       break;
2362     }
2363
2364     InVals.push_back(Val);
2365   }
2366
2367   return Chain;
2368 }
2369
2370 bool AArch64TargetLowering::isEligibleForTailCallOptimization(
2371     SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
2372     bool isCalleeStructRet, bool isCallerStructRet,
2373     const SmallVectorImpl<ISD::OutputArg> &Outs,
2374     const SmallVectorImpl<SDValue> &OutVals,
2375     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2376   // For CallingConv::C this function knows whether the ABI needs
2377   // changing. That's not true for other conventions so they will have to opt in
2378   // manually.
2379   if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
2380     return false;
2381
2382   const MachineFunction &MF = DAG.getMachineFunction();
2383   const Function *CallerF = MF.getFunction();
2384   CallingConv::ID CallerCC = CallerF->getCallingConv();
2385   bool CCMatch = CallerCC == CalleeCC;
2386
2387   // Byval parameters hand the function a pointer directly into the stack area
2388   // we want to reuse during a tail call. Working around this *is* possible (see
2389   // X86) but less efficient and uglier in LowerCall.
2390   for (Function::const_arg_iterator i = CallerF->arg_begin(),
2391                                     e = CallerF->arg_end();
2392        i != e; ++i)
2393     if (i->hasByValAttr())
2394       return false;
2395
2396   if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2397     if (IsTailCallConvention(CalleeCC) && CCMatch)
2398       return true;
2399     return false;
2400   }
2401
2402   // Externally-defined functions with weak linkage should not be
2403   // tail-called on AArch64 when the OS does not support dynamic
2404   // pre-emption of symbols, as the AAELF spec requires normal calls
2405   // to undefined weak functions to be replaced with a NOP or jump to the
2406   // next instruction. The behaviour of branch instructions in this
2407   // situation (as used for tail calls) is implementation-defined, so we
2408   // cannot rely on the linker replacing the tail call with a return.
2409   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2410     const GlobalValue *GV = G->getGlobal();
2411     const Triple TT(getTargetMachine().getTargetTriple());
2412     if (GV->hasExternalWeakLinkage() &&
2413         (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
2414       return false;
2415   }
2416
2417   // Now we search for cases where we can use a tail call without changing the
2418   // ABI. Sibcall is used in some places (particularly gcc) to refer to this
2419   // concept.
2420
2421   // I want anyone implementing a new calling convention to think long and hard
2422   // about this assert.
2423   assert((!isVarArg || CalleeCC == CallingConv::C) &&
2424          "Unexpected variadic calling convention");
2425
2426   if (isVarArg && !Outs.empty()) {
2427     // At least two cases here: if caller is fastcc then we can't have any
2428     // memory arguments (we'd be expected to clean up the stack afterwards). If
2429     // caller is C then we could potentially use its argument area.
2430
2431     // FIXME: for now we take the most conservative of these in both cases:
2432     // disallow all variadic memory operands.
2433     SmallVector<CCValAssign, 16> ArgLocs;
2434     CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
2435                    *DAG.getContext());
2436
2437     CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
2438     for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2439       if (!ArgLocs[i].isRegLoc())
2440         return false;
2441   }
2442
2443   // If the calling conventions do not match, then we'd better make sure the
2444   // results are returned in the same way as what the caller expects.
2445   if (!CCMatch) {
2446     SmallVector<CCValAssign, 16> RVLocs1;
2447     CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1,
2448                     *DAG.getContext());
2449     CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForCall(CalleeCC, isVarArg));
2450
2451     SmallVector<CCValAssign, 16> RVLocs2;
2452     CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2,
2453                     *DAG.getContext());
2454     CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForCall(CallerCC, isVarArg));
2455
2456     if (RVLocs1.size() != RVLocs2.size())
2457       return false;
2458     for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2459       if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2460         return false;
2461       if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2462         return false;
2463       if (RVLocs1[i].isRegLoc()) {
2464         if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2465           return false;
2466       } else {
2467         if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2468           return false;
2469       }
2470     }
2471   }
2472
2473   // Nothing more to check if the callee is taking no arguments
2474   if (Outs.empty())
2475     return true;
2476
2477   SmallVector<CCValAssign, 16> ArgLocs;
2478   CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
2479                  *DAG.getContext());
2480
2481   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2482
2483   const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2484
2485   // If the stack arguments for this call would fit into our own save area then
2486   // the call can be made tail.
2487   return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
2488 }
2489
2490 SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
2491                                                    SelectionDAG &DAG,
2492                                                    MachineFrameInfo *MFI,
2493                                                    int ClobberedFI) const {
2494   SmallVector<SDValue, 8> ArgChains;
2495   int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
2496   int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
2497
2498   // Include the original chain at the beginning of the list. When this is
2499   // used by target LowerCall hooks, this helps legalize find the
2500   // CALLSEQ_BEGIN node.
2501   ArgChains.push_back(Chain);
2502
2503   // Add a chain value for each stack argument corresponding
2504   for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
2505                             UE = DAG.getEntryNode().getNode()->use_end();
2506        U != UE; ++U)
2507     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
2508       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
2509         if (FI->getIndex() < 0) {
2510           int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
2511           int64_t InLastByte = InFirstByte;
2512           InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
2513
2514           if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
2515               (FirstByte <= InFirstByte && InFirstByte <= LastByte))
2516             ArgChains.push_back(SDValue(L, 1));
2517         }
2518
2519   // Build a tokenfactor for all the chains.
2520   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
2521 }
2522
2523 bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
2524                                                    bool TailCallOpt) const {
2525   return CallCC == CallingConv::Fast && TailCallOpt;
2526 }
2527
2528 bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
2529   return CallCC == CallingConv::Fast;
2530 }
2531
2532 /// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
2533 /// and add input and output parameter nodes.
2534 SDValue
2535 AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
2536                                  SmallVectorImpl<SDValue> &InVals) const {
2537   SelectionDAG &DAG = CLI.DAG;
2538   SDLoc &DL = CLI.DL;
2539   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2540   SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2541   SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2542   SDValue Chain = CLI.Chain;
2543   SDValue Callee = CLI.Callee;
2544   bool &IsTailCall = CLI.IsTailCall;
2545   CallingConv::ID CallConv = CLI.CallConv;
2546   bool IsVarArg = CLI.IsVarArg;
2547
2548   MachineFunction &MF = DAG.getMachineFunction();
2549   bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
2550   bool IsThisReturn = false;
2551
2552   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2553   bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2554   bool IsSibCall = false;
2555
2556   if (IsTailCall) {
2557     // Check if it's really possible to do a tail call.
2558     IsTailCall = isEligibleForTailCallOptimization(
2559         Callee, CallConv, IsVarArg, IsStructRet,
2560         MF.getFunction()->hasStructRetAttr(), Outs, OutVals, Ins, DAG);
2561     if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
2562       report_fatal_error("failed to perform tail call elimination on a call "
2563                          "site marked musttail");
2564
2565     // A sibling call is one where we're under the usual C ABI and not planning
2566     // to change that but can still do a tail call:
2567     if (!TailCallOpt && IsTailCall)
2568       IsSibCall = true;
2569
2570     if (IsTailCall)
2571       ++NumTailCalls;
2572   }
2573
2574   // Analyze operands of the call, assigning locations to each operand.
2575   SmallVector<CCValAssign, 16> ArgLocs;
2576   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
2577                  *DAG.getContext());
2578
2579   if (IsVarArg) {
2580     // Handle fixed and variable vector arguments differently.
2581     // Variable vector arguments always go into memory.
2582     unsigned NumArgs = Outs.size();
2583
2584     for (unsigned i = 0; i != NumArgs; ++i) {
2585       MVT ArgVT = Outs[i].VT;
2586       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2587       CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
2588                                                /*IsVarArg=*/ !Outs[i].IsFixed);
2589       bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2590       assert(!Res && "Call operand has unhandled type");
2591       (void)Res;
2592     }
2593   } else {
2594     // At this point, Outs[].VT may already be promoted to i32. To correctly
2595     // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2596     // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2597     // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
2598     // we use a special version of AnalyzeCallOperands to pass in ValVT and
2599     // LocVT.
2600     unsigned NumArgs = Outs.size();
2601     for (unsigned i = 0; i != NumArgs; ++i) {
2602       MVT ValVT = Outs[i].VT;
2603       // Get type of the original argument.
2604       EVT ActualVT = getValueType(CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
2605                                   /*AllowUnknown*/ true);
2606       MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
2607       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2608       // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
2609       if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
2610         ValVT = MVT::i8;
2611       else if (ActualMVT == MVT::i16)
2612         ValVT = MVT::i16;
2613
2614       CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
2615       bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
2616       assert(!Res && "Call operand has unhandled type");
2617       (void)Res;
2618     }
2619   }
2620
2621   // Get a count of how many bytes are to be pushed on the stack.
2622   unsigned NumBytes = CCInfo.getNextStackOffset();
2623
2624   if (IsSibCall) {
2625     // Since we're not changing the ABI to make this a tail call, the memory
2626     // operands are already available in the caller's incoming argument space.
2627     NumBytes = 0;
2628   }
2629
2630   // FPDiff is the byte offset of the call's argument area from the callee's.
2631   // Stores to callee stack arguments will be placed in FixedStackSlots offset
2632   // by this amount for a tail call. In a sibling call it must be 0 because the
2633   // caller will deallocate the entire stack and the callee still expects its
2634   // arguments to begin at SP+0. Completely unused for non-tail calls.
2635   int FPDiff = 0;
2636
2637   if (IsTailCall && !IsSibCall) {
2638     unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
2639
2640     // Since callee will pop argument stack as a tail call, we must keep the
2641     // popped size 16-byte aligned.
2642     NumBytes = RoundUpToAlignment(NumBytes, 16);
2643
2644     // FPDiff will be negative if this tail call requires more space than we
2645     // would automatically have in our incoming argument space. Positive if we
2646     // can actually shrink the stack.
2647     FPDiff = NumReusableBytes - NumBytes;
2648
2649     // The stack pointer must be 16-byte aligned at all times it's used for a
2650     // memory operation, which in practice means at *all* times and in
2651     // particular across call boundaries. Therefore our own arguments started at
2652     // a 16-byte aligned SP and the delta applied for the tail call should
2653     // satisfy the same constraint.
2654     assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
2655   }
2656
2657   // Adjust the stack pointer for the new arguments...
2658   // These operations are automatically eliminated by the prolog/epilog pass
2659   if (!IsSibCall)
2660     Chain =
2661         DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), DL);
2662
2663   SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP, getPointerTy());
2664
2665   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2666   SmallVector<SDValue, 8> MemOpChains;
2667
2668   // Walk the register/memloc assignments, inserting copies/loads.
2669   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
2670        ++i, ++realArgIdx) {
2671     CCValAssign &VA = ArgLocs[i];
2672     SDValue Arg = OutVals[realArgIdx];
2673     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2674
2675     // Promote the value if needed.
2676     switch (VA.getLocInfo()) {
2677     default:
2678       llvm_unreachable("Unknown loc info!");
2679     case CCValAssign::Full:
2680       break;
2681     case CCValAssign::SExt:
2682       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2683       break;
2684     case CCValAssign::ZExt:
2685       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2686       break;
2687     case CCValAssign::AExt:
2688       if (Outs[realArgIdx].ArgVT == MVT::i1) {
2689         // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
2690         Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
2691         Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
2692       }
2693       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2694       break;
2695     case CCValAssign::BCvt:
2696       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2697       break;
2698     case CCValAssign::FPExt:
2699       Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
2700       break;
2701     }
2702
2703     if (VA.isRegLoc()) {
2704       if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i64) {
2705         assert(VA.getLocVT() == MVT::i64 &&
2706                "unexpected calling convention register assignment");
2707         assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
2708                "unexpected use of 'returned'");
2709         IsThisReturn = true;
2710       }
2711       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2712     } else {
2713       assert(VA.isMemLoc());
2714
2715       SDValue DstAddr;
2716       MachinePointerInfo DstInfo;
2717
2718       // FIXME: This works on big-endian for composite byvals, which are the
2719       // common case. It should also work for fundamental types too.
2720       uint32_t BEAlign = 0;
2721       unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
2722                                         : VA.getValVT().getSizeInBits();
2723       OpSize = (OpSize + 7) / 8;
2724       if (!Subtarget->isLittleEndian() && !Flags.isByVal() &&
2725           !Flags.isInConsecutiveRegs()) {
2726         if (OpSize < 8)
2727           BEAlign = 8 - OpSize;
2728       }
2729       unsigned LocMemOffset = VA.getLocMemOffset();
2730       int32_t Offset = LocMemOffset + BEAlign;
2731       SDValue PtrOff = DAG.getIntPtrConstant(Offset);
2732       PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
2733
2734       if (IsTailCall) {
2735         Offset = Offset + FPDiff;
2736         int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2737
2738         DstAddr = DAG.getFrameIndex(FI, getPointerTy());
2739         DstInfo = MachinePointerInfo::getFixedStack(FI);
2740
2741         // Make sure any stack arguments overlapping with where we're storing
2742         // are loaded before this eventual operation. Otherwise they'll be
2743         // clobbered.
2744         Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
2745       } else {
2746         SDValue PtrOff = DAG.getIntPtrConstant(Offset);
2747
2748         DstAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
2749         DstInfo = MachinePointerInfo::getStack(LocMemOffset);
2750       }
2751
2752       if (Outs[i].Flags.isByVal()) {
2753         SDValue SizeNode =
2754             DAG.getConstant(Outs[i].Flags.getByValSize(), MVT::i64);
2755         SDValue Cpy = DAG.getMemcpy(
2756             Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
2757             /*isVol = */ false, /*AlwaysInline = */ false,
2758             /*isTailCall = */ false,
2759             DstInfo, MachinePointerInfo());
2760
2761         MemOpChains.push_back(Cpy);
2762       } else {
2763         // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
2764         // promoted to a legal register type i32, we should truncate Arg back to
2765         // i1/i8/i16.
2766         if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
2767             VA.getValVT() == MVT::i16)
2768           Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
2769
2770         SDValue Store =
2771             DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, false, false, 0);
2772         MemOpChains.push_back(Store);
2773       }
2774     }
2775   }
2776
2777   if (!MemOpChains.empty())
2778     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2779
2780   // Build a sequence of copy-to-reg nodes chained together with token chain
2781   // and flag operands which copy the outgoing args into the appropriate regs.
2782   SDValue InFlag;
2783   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2784     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first,
2785                              RegsToPass[i].second, InFlag);
2786     InFlag = Chain.getValue(1);
2787   }
2788
2789   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2790   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2791   // node so that legalize doesn't hack it.
2792   if (getTargetMachine().getCodeModel() == CodeModel::Large &&
2793       Subtarget->isTargetMachO()) {
2794     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2795       const GlobalValue *GV = G->getGlobal();
2796       bool InternalLinkage = GV->hasInternalLinkage();
2797       if (InternalLinkage)
2798         Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
2799       else {
2800         Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0,
2801                                             AArch64II::MO_GOT);
2802         Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
2803       }
2804     } else if (ExternalSymbolSDNode *S =
2805                    dyn_cast<ExternalSymbolSDNode>(Callee)) {
2806       const char *Sym = S->getSymbol();
2807       Callee =
2808           DAG.getTargetExternalSymbol(Sym, getPointerTy(), AArch64II::MO_GOT);
2809       Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
2810     }
2811   } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2812     const GlobalValue *GV = G->getGlobal();
2813     Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
2814   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2815     const char *Sym = S->getSymbol();
2816     Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), 0);
2817   }
2818
2819   // We don't usually want to end the call-sequence here because we would tidy
2820   // the frame up *after* the call, however in the ABI-changing tail-call case
2821   // we've carefully laid out the parameters so that when sp is reset they'll be
2822   // in the correct location.
2823   if (IsTailCall && !IsSibCall) {
2824     Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2825                                DAG.getIntPtrConstant(0, true), InFlag, DL);
2826     InFlag = Chain.getValue(1);
2827   }
2828
2829   std::vector<SDValue> Ops;
2830   Ops.push_back(Chain);
2831   Ops.push_back(Callee);
2832
2833   if (IsTailCall) {
2834     // Each tail call may have to adjust the stack by a different amount, so
2835     // this information must travel along with the operation for eventual
2836     // consumption by emitEpilogue.
2837     Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32));
2838   }
2839
2840   // Add argument registers to the end of the list so that they are known live
2841   // into the call.
2842   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2843     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2844                                   RegsToPass[i].second.getValueType()));
2845
2846   // Add a register mask operand representing the call-preserved registers.
2847   const uint32_t *Mask;
2848   const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
2849   if (IsThisReturn) {
2850     // For 'this' returns, use the X0-preserving mask if applicable
2851     Mask = TRI->getThisReturnPreservedMask(MF, CallConv);
2852     if (!Mask) {
2853       IsThisReturn = false;
2854       Mask = TRI->getCallPreservedMask(MF, CallConv);
2855     }
2856   } else
2857     Mask = TRI->getCallPreservedMask(MF, CallConv);
2858
2859   assert(Mask && "Missing call preserved mask for calling convention");
2860   Ops.push_back(DAG.getRegisterMask(Mask));
2861
2862   if (InFlag.getNode())
2863     Ops.push_back(InFlag);
2864
2865   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2866
2867   // If we're doing a tall call, use a TC_RETURN here rather than an
2868   // actual call instruction.
2869   if (IsTailCall)
2870     return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
2871
2872   // Returns a chain and a flag for retval copy to use.
2873   Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
2874   InFlag = Chain.getValue(1);
2875
2876   uint64_t CalleePopBytes = DoesCalleeRestoreStack(CallConv, TailCallOpt)
2877                                 ? RoundUpToAlignment(NumBytes, 16)
2878                                 : 0;
2879
2880   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2881                              DAG.getIntPtrConstant(CalleePopBytes, true),
2882                              InFlag, DL);
2883   if (!Ins.empty())
2884     InFlag = Chain.getValue(1);
2885
2886   // Handle result values, copying them out of physregs into vregs that we
2887   // return.
2888   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
2889                          InVals, IsThisReturn,
2890                          IsThisReturn ? OutVals[0] : SDValue());
2891 }
2892
2893 bool AArch64TargetLowering::CanLowerReturn(
2894     CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
2895     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
2896   CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2897                           ? RetCC_AArch64_WebKit_JS
2898                           : RetCC_AArch64_AAPCS;
2899   SmallVector<CCValAssign, 16> RVLocs;
2900   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
2901   return CCInfo.CheckReturn(Outs, RetCC);
2902 }
2903
2904 SDValue
2905 AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2906                                    bool isVarArg,
2907                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2908                                    const SmallVectorImpl<SDValue> &OutVals,
2909                                    SDLoc DL, SelectionDAG &DAG) const {
2910   CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2911                           ? RetCC_AArch64_WebKit_JS
2912                           : RetCC_AArch64_AAPCS;
2913   SmallVector<CCValAssign, 16> RVLocs;
2914   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2915                  *DAG.getContext());
2916   CCInfo.AnalyzeReturn(Outs, RetCC);
2917
2918   // Copy the result values into the output registers.
2919   SDValue Flag;
2920   SmallVector<SDValue, 4> RetOps(1, Chain);
2921   for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
2922        ++i, ++realRVLocIdx) {
2923     CCValAssign &VA = RVLocs[i];
2924     assert(VA.isRegLoc() && "Can only return in registers!");
2925     SDValue Arg = OutVals[realRVLocIdx];
2926
2927     switch (VA.getLocInfo()) {
2928     default:
2929       llvm_unreachable("Unknown loc info!");
2930     case CCValAssign::Full:
2931       if (Outs[i].ArgVT == MVT::i1) {
2932         // AAPCS requires i1 to be zero-extended to i8 by the producer of the
2933         // value. This is strictly redundant on Darwin (which uses "zeroext
2934         // i1"), but will be optimised out before ISel.
2935         Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
2936         Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2937       }
2938       break;
2939     case CCValAssign::BCvt:
2940       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2941       break;
2942     }
2943
2944     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2945     Flag = Chain.getValue(1);
2946     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2947   }
2948
2949   RetOps[0] = Chain; // Update chain.
2950
2951   // Add the flag if we have it.
2952   if (Flag.getNode())
2953     RetOps.push_back(Flag);
2954
2955   return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
2956 }
2957
2958 //===----------------------------------------------------------------------===//
2959 //  Other Lowering Code
2960 //===----------------------------------------------------------------------===//
2961
2962 SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
2963                                                   SelectionDAG &DAG) const {
2964   EVT PtrVT = getPointerTy();
2965   SDLoc DL(Op);
2966   const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
2967   const GlobalValue *GV = GN->getGlobal();
2968   unsigned char OpFlags =
2969       Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
2970
2971   assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
2972          "unexpected offset in global node");
2973
2974   // This also catched the large code model case for Darwin.
2975   if ((OpFlags & AArch64II::MO_GOT) != 0) {
2976     SDValue GotAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
2977     // FIXME: Once remat is capable of dealing with instructions with register
2978     // operands, expand this into two nodes instead of using a wrapper node.
2979     return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
2980   }
2981
2982   if ((OpFlags & AArch64II::MO_CONSTPOOL) != 0) {
2983     assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
2984            "use of MO_CONSTPOOL only supported on small model");
2985     SDValue Hi = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, AArch64II::MO_PAGE);
2986     SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
2987     unsigned char LoFlags = AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
2988     SDValue Lo = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, LoFlags);
2989     SDValue PoolAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
2990     SDValue GlobalAddr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), PoolAddr,
2991                                      MachinePointerInfo::getConstantPool(),
2992                                      /*isVolatile=*/ false,
2993                                      /*isNonTemporal=*/ true,
2994                                      /*isInvariant=*/ true, 8);
2995     if (GN->getOffset() != 0)
2996       return DAG.getNode(ISD::ADD, DL, PtrVT, GlobalAddr,
2997                          DAG.getConstant(GN->getOffset(), PtrVT));
2998     return GlobalAddr;
2999   }
3000
3001   if (getTargetMachine().getCodeModel() == CodeModel::Large) {
3002     const unsigned char MO_NC = AArch64II::MO_NC;
3003     return DAG.getNode(
3004         AArch64ISD::WrapperLarge, DL, PtrVT,
3005         DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G3),
3006         DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
3007         DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
3008         DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
3009   } else {
3010     // Use ADRP/ADD or ADRP/LDR for everything else: the small model on ELF and
3011     // the only correct model on Darwin.
3012     SDValue Hi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3013                                             OpFlags | AArch64II::MO_PAGE);
3014     unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
3015     SDValue Lo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, LoFlags);
3016
3017     SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3018     return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3019   }
3020 }
3021
3022 /// \brief Convert a TLS address reference into the correct sequence of loads
3023 /// and calls to compute the variable's address (for Darwin, currently) and
3024 /// return an SDValue containing the final node.
3025
3026 /// Darwin only has one TLS scheme which must be capable of dealing with the
3027 /// fully general situation, in the worst case. This means:
3028 ///     + "extern __thread" declaration.
3029 ///     + Defined in a possibly unknown dynamic library.
3030 ///
3031 /// The general system is that each __thread variable has a [3 x i64] descriptor
3032 /// which contains information used by the runtime to calculate the address. The
3033 /// only part of this the compiler needs to know about is the first xword, which
3034 /// contains a function pointer that must be called with the address of the
3035 /// entire descriptor in "x0".
3036 ///
3037 /// Since this descriptor may be in a different unit, in general even the
3038 /// descriptor must be accessed via an indirect load. The "ideal" code sequence
3039 /// is:
3040 ///     adrp x0, _var@TLVPPAGE
3041 ///     ldr x0, [x0, _var@TLVPPAGEOFF]   ; x0 now contains address of descriptor
3042 ///     ldr x1, [x0]                     ; x1 contains 1st entry of descriptor,
3043 ///                                      ; the function pointer
3044 ///     blr x1                           ; Uses descriptor address in x0
3045 ///     ; Address of _var is now in x0.
3046 ///
3047 /// If the address of _var's descriptor *is* known to the linker, then it can
3048 /// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
3049 /// a slight efficiency gain.
3050 SDValue
3051 AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
3052                                                    SelectionDAG &DAG) const {
3053   assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
3054
3055   SDLoc DL(Op);
3056   MVT PtrVT = getPointerTy();
3057   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3058
3059   SDValue TLVPAddr =
3060       DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3061   SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
3062
3063   // The first entry in the descriptor is a function pointer that we must call
3064   // to obtain the address of the variable.
3065   SDValue Chain = DAG.getEntryNode();
3066   SDValue FuncTLVGet =
3067       DAG.getLoad(MVT::i64, DL, Chain, DescAddr, MachinePointerInfo::getGOT(),
3068                   false, true, true, 8);
3069   Chain = FuncTLVGet.getValue(1);
3070
3071   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3072   MFI->setAdjustsStack(true);
3073
3074   // TLS calls preserve all registers except those that absolutely must be
3075   // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
3076   // silly).
3077   const uint32_t *Mask =
3078       Subtarget->getRegisterInfo()->getTLSCallPreservedMask();
3079
3080   // Finally, we can make the call. This is just a degenerate version of a
3081   // normal AArch64 call node: x0 takes the address of the descriptor, and
3082   // returns the address of the variable in this thread.
3083   Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
3084   Chain =
3085       DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
3086                   Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
3087                   DAG.getRegisterMask(Mask), Chain.getValue(1));
3088   return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
3089 }
3090
3091 /// When accessing thread-local variables under either the general-dynamic or
3092 /// local-dynamic system, we make a "TLS-descriptor" call. The variable will
3093 /// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
3094 /// is a function pointer to carry out the resolution.
3095 ///
3096 /// The sequence is:
3097 ///    adrp  x0, :tlsdesc:var
3098 ///    ldr   x1, [x0, #:tlsdesc_lo12:var]
3099 ///    add   x0, x0, #:tlsdesc_lo12:var
3100 ///    .tlsdesccall var
3101 ///    blr   x1
3102 ///    (TPIDR_EL0 offset now in x0)
3103 ///
3104 ///  The above sequence must be produced unscheduled, to enable the linker to
3105 ///  optimize/relax this sequence.
3106 ///  Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the
3107 ///  above sequence, and expanded really late in the compilation flow, to ensure
3108 ///  the sequence is produced as per above.
3109 SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr, SDLoc DL,
3110                                                       SelectionDAG &DAG) const {
3111   EVT PtrVT = getPointerTy();
3112
3113   SDValue Chain = DAG.getEntryNode();
3114   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3115
3116   SmallVector<SDValue, 2> Ops;
3117   Ops.push_back(Chain);
3118   Ops.push_back(SymAddr);
3119
3120   Chain = DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, Ops);
3121   SDValue Glue = Chain.getValue(1);
3122
3123   return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
3124 }
3125
3126 SDValue
3127 AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
3128                                                 SelectionDAG &DAG) const {
3129   assert(Subtarget->isTargetELF() && "This function expects an ELF target");
3130   assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
3131          "ELF TLS only supported in small memory model");
3132   // Different choices can be made for the maximum size of the TLS area for a
3133   // module. For the small address model, the default TLS size is 16MiB and the
3134   // maximum TLS size is 4GiB.
3135   // FIXME: add -mtls-size command line option and make it control the 16MiB
3136   // vs. 4GiB code sequence generation.
3137   const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3138
3139   TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
3140   if (!EnableAArch64ELFLocalDynamicTLSGeneration) {
3141     if (Model == TLSModel::LocalDynamic)
3142       Model = TLSModel::GeneralDynamic;
3143   }
3144
3145   SDValue TPOff;
3146   EVT PtrVT = getPointerTy();
3147   SDLoc DL(Op);
3148   const GlobalValue *GV = GA->getGlobal();
3149
3150   SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
3151
3152   if (Model == TLSModel::LocalExec) {
3153     SDValue HiVar = DAG.getTargetGlobalAddress(
3154         GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
3155     SDValue LoVar = DAG.getTargetGlobalAddress(
3156         GV, DL, PtrVT, 0,
3157         AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3158
3159     SDValue TPWithOff_lo =
3160         SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
3161                                    HiVar, DAG.getTargetConstant(0, MVT::i32)),
3162                 0);
3163     SDValue TPWithOff =
3164         SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPWithOff_lo,
3165                                    LoVar, DAG.getTargetConstant(0, MVT::i32)),
3166                 0);
3167     return TPWithOff;
3168   } else if (Model == TLSModel::InitialExec) {
3169     TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3170     TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
3171   } else if (Model == TLSModel::LocalDynamic) {
3172     // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
3173     // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
3174     // the beginning of the module's TLS region, followed by a DTPREL offset
3175     // calculation.
3176
3177     // These accesses will need deduplicating if there's more than one.
3178     AArch64FunctionInfo *MFI =
3179         DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
3180     MFI->incNumLocalDynamicTLSAccesses();
3181
3182     // The call needs a relocation too for linker relaxation. It doesn't make
3183     // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3184     // the address.
3185     SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
3186                                                   AArch64II::MO_TLS);
3187
3188     // Now we can calculate the offset from TPIDR_EL0 to this module's
3189     // thread-local area.
3190     TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
3191
3192     // Now use :dtprel_whatever: operations to calculate this variable's offset
3193     // in its thread-storage area.
3194     SDValue HiVar = DAG.getTargetGlobalAddress(
3195         GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
3196     SDValue LoVar = DAG.getTargetGlobalAddress(
3197         GV, DL, MVT::i64, 0,
3198         AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3199
3200     TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar,
3201                                        DAG.getTargetConstant(0, MVT::i32)),
3202                     0);
3203     TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar,
3204                                        DAG.getTargetConstant(0, MVT::i32)),
3205                     0);
3206   } else if (Model == TLSModel::GeneralDynamic) {
3207     // The call needs a relocation too for linker relaxation. It doesn't make
3208     // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3209     // the address.
3210     SDValue SymAddr =
3211         DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3212
3213     // Finally we can make a call to calculate the offset from tpidr_el0.
3214     TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
3215   } else
3216     llvm_unreachable("Unsupported ELF TLS access model");
3217
3218   return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
3219 }
3220
3221 SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
3222                                                      SelectionDAG &DAG) const {
3223   if (Subtarget->isTargetDarwin())
3224     return LowerDarwinGlobalTLSAddress(Op, DAG);
3225   else if (Subtarget->isTargetELF())
3226     return LowerELFGlobalTLSAddress(Op, DAG);
3227
3228   llvm_unreachable("Unexpected platform trying to use TLS");
3229 }
3230 SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3231   SDValue Chain = Op.getOperand(0);
3232   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3233   SDValue LHS = Op.getOperand(2);
3234   SDValue RHS = Op.getOperand(3);
3235   SDValue Dest = Op.getOperand(4);
3236   SDLoc dl(Op);
3237
3238   // Handle f128 first, since lowering it will result in comparing the return
3239   // value of a libcall against zero, which is just what the rest of LowerBR_CC
3240   // is expecting to deal with.
3241   if (LHS.getValueType() == MVT::f128) {
3242     softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3243
3244     // If softenSetCCOperands returned a scalar, we need to compare the result
3245     // against zero to select between true and false values.
3246     if (!RHS.getNode()) {
3247       RHS = DAG.getConstant(0, LHS.getValueType());
3248       CC = ISD::SETNE;
3249     }
3250   }
3251
3252   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
3253   // instruction.
3254   unsigned Opc = LHS.getOpcode();
3255   if (LHS.getResNo() == 1 && isa<ConstantSDNode>(RHS) &&
3256       cast<ConstantSDNode>(RHS)->isOne() &&
3257       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3258        Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3259     assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
3260            "Unexpected condition code.");
3261     // Only lower legal XALUO ops.
3262     if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
3263       return SDValue();
3264
3265     // The actual operation with overflow check.
3266     AArch64CC::CondCode OFCC;
3267     SDValue Value, Overflow;
3268     std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
3269
3270     if (CC == ISD::SETNE)
3271       OFCC = getInvertedCondCode(OFCC);
3272     SDValue CCVal = DAG.getConstant(OFCC, MVT::i32);
3273
3274     return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3275                        Overflow);
3276   }
3277
3278   if (LHS.getValueType().isInteger()) {
3279     assert((LHS.getValueType() == RHS.getValueType()) &&
3280            (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3281
3282     // If the RHS of the comparison is zero, we can potentially fold this
3283     // to a specialized branch.
3284     const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
3285     if (RHSC && RHSC->getZExtValue() == 0) {
3286       if (CC == ISD::SETEQ) {
3287         // See if we can use a TBZ to fold in an AND as well.
3288         // TBZ has a smaller branch displacement than CBZ.  If the offset is
3289         // out of bounds, a late MI-layer pass rewrites branches.
3290         // 403.gcc is an example that hits this case.
3291         if (LHS.getOpcode() == ISD::AND &&
3292             isa<ConstantSDNode>(LHS.getOperand(1)) &&
3293             isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3294           SDValue Test = LHS.getOperand(0);
3295           uint64_t Mask = LHS.getConstantOperandVal(1);
3296           return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
3297                              DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
3298         }
3299
3300         return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
3301       } else if (CC == ISD::SETNE) {
3302         // See if we can use a TBZ to fold in an AND as well.
3303         // TBZ has a smaller branch displacement than CBZ.  If the offset is
3304         // out of bounds, a late MI-layer pass rewrites branches.
3305         // 403.gcc is an example that hits this case.
3306         if (LHS.getOpcode() == ISD::AND &&
3307             isa<ConstantSDNode>(LHS.getOperand(1)) &&
3308             isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3309           SDValue Test = LHS.getOperand(0);
3310           uint64_t Mask = LHS.getConstantOperandVal(1);
3311           return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
3312                              DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
3313         }
3314
3315         return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
3316       } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
3317         // Don't combine AND since emitComparison converts the AND to an ANDS
3318         // (a.k.a. TST) and the test in the test bit and branch instruction
3319         // becomes redundant.  This would also increase register pressure.
3320         uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3321         return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
3322                            DAG.getConstant(Mask, MVT::i64), Dest);
3323       }
3324     }
3325     if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
3326         LHS.getOpcode() != ISD::AND) {
3327       // Don't combine AND since emitComparison converts the AND to an ANDS
3328       // (a.k.a. TST) and the test in the test bit and branch instruction
3329       // becomes redundant.  This would also increase register pressure.
3330       uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3331       return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
3332                          DAG.getConstant(Mask, MVT::i64), Dest);
3333     }
3334
3335     SDValue CCVal;
3336     SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3337     return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3338                        Cmp);
3339   }
3340
3341   assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3342
3343   // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3344   // clean.  Some of them require two branches to implement.
3345   SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3346   AArch64CC::CondCode CC1, CC2;
3347   changeFPCCToAArch64CC(CC, CC1, CC2);
3348   SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3349   SDValue BR1 =
3350       DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
3351   if (CC2 != AArch64CC::AL) {
3352     SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
3353     return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
3354                        Cmp);
3355   }
3356
3357   return BR1;
3358 }
3359
3360 SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
3361                                               SelectionDAG &DAG) const {
3362   EVT VT = Op.getValueType();
3363   SDLoc DL(Op);
3364
3365   SDValue In1 = Op.getOperand(0);
3366   SDValue In2 = Op.getOperand(1);
3367   EVT SrcVT = In2.getValueType();
3368   if (SrcVT != VT) {
3369     if (SrcVT == MVT::f32 && VT == MVT::f64)
3370       In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
3371     else if (SrcVT == MVT::f64 && VT == MVT::f32)
3372       In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0));
3373     else
3374       // FIXME: Src type is different, bail out for now. Can VT really be a
3375       // vector type?
3376       return SDValue();
3377   }
3378
3379   EVT VecVT;
3380   EVT EltVT;
3381   uint64_t EltMask;
3382   SDValue VecVal1, VecVal2;
3383   if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
3384     EltVT = MVT::i32;
3385     VecVT = MVT::v4i32;
3386     EltMask = 0x80000000ULL;
3387
3388     if (!VT.isVector()) {
3389       VecVal1 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3390                                           DAG.getUNDEF(VecVT), In1);
3391       VecVal2 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3392                                           DAG.getUNDEF(VecVT), In2);
3393     } else {
3394       VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3395       VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3396     }
3397   } else if (VT == MVT::f64 || VT == MVT::v2f64) {
3398     EltVT = MVT::i64;
3399     VecVT = MVT::v2i64;
3400
3401     // We want to materialize a mask with the the high bit set, but the AdvSIMD
3402     // immediate moves cannot materialize that in a single instruction for
3403     // 64-bit elements. Instead, materialize zero and then negate it.
3404     EltMask = 0;
3405
3406     if (!VT.isVector()) {
3407       VecVal1 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3408                                           DAG.getUNDEF(VecVT), In1);
3409       VecVal2 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3410                                           DAG.getUNDEF(VecVT), In2);
3411     } else {
3412       VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3413       VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3414     }
3415   } else {
3416     llvm_unreachable("Invalid type for copysign!");
3417   }
3418
3419   SDValue BuildVec = DAG.getConstant(EltMask, VecVT);
3420
3421   // If we couldn't materialize the mask above, then the mask vector will be
3422   // the zero vector, and we need to negate it here.
3423   if (VT == MVT::f64 || VT == MVT::v2f64) {
3424     BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
3425     BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
3426     BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
3427   }
3428
3429   SDValue Sel =
3430       DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
3431
3432   if (VT == MVT::f32)
3433     return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
3434   else if (VT == MVT::f64)
3435     return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
3436   else
3437     return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
3438 }
3439
3440 SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
3441   if (DAG.getMachineFunction().getFunction()->hasFnAttribute(
3442           Attribute::NoImplicitFloat))
3443     return SDValue();
3444
3445   if (!Subtarget->hasNEON())
3446     return SDValue();
3447
3448   // While there is no integer popcount instruction, it can
3449   // be more efficiently lowered to the following sequence that uses
3450   // AdvSIMD registers/instructions as long as the copies to/from
3451   // the AdvSIMD registers are cheap.
3452   //  FMOV    D0, X0        // copy 64-bit int to vector, high bits zero'd
3453   //  CNT     V0.8B, V0.8B  // 8xbyte pop-counts
3454   //  ADDV    B0, V0.8B     // sum 8xbyte pop-counts
3455   //  UMOV    X0, V0.B[0]   // copy byte result back to integer reg
3456   SDValue Val = Op.getOperand(0);
3457   SDLoc DL(Op);
3458   EVT VT = Op.getValueType();
3459
3460   if (VT == MVT::i32)
3461     Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
3462   Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
3463
3464   SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val);
3465   SDValue UaddLV = DAG.getNode(
3466       ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
3467       DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, MVT::i32), CtPop);
3468
3469   if (VT == MVT::i64)
3470     UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
3471   return UaddLV;
3472 }
3473
3474 SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3475
3476   if (Op.getValueType().isVector())
3477     return LowerVSETCC(Op, DAG);
3478
3479   SDValue LHS = Op.getOperand(0);
3480   SDValue RHS = Op.getOperand(1);
3481   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3482   SDLoc dl(Op);
3483
3484   // We chose ZeroOrOneBooleanContents, so use zero and one.
3485   EVT VT = Op.getValueType();
3486   SDValue TVal = DAG.getConstant(1, VT);
3487   SDValue FVal = DAG.getConstant(0, VT);
3488
3489   // Handle f128 first, since one possible outcome is a normal integer
3490   // comparison which gets picked up by the next if statement.
3491   if (LHS.getValueType() == MVT::f128) {
3492     softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3493
3494     // If softenSetCCOperands returned a scalar, use it.
3495     if (!RHS.getNode()) {
3496       assert(LHS.getValueType() == Op.getValueType() &&
3497              "Unexpected setcc expansion!");
3498       return LHS;
3499     }
3500   }
3501
3502   if (LHS.getValueType().isInteger()) {
3503     SDValue CCVal;
3504     SDValue Cmp =
3505         getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
3506
3507     // Note that we inverted the condition above, so we reverse the order of
3508     // the true and false operands here.  This will allow the setcc to be
3509     // matched to a single CSINC instruction.
3510     return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
3511   }
3512
3513   // Now we know we're dealing with FP values.
3514   assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3515
3516   // If that fails, we'll need to perform an FCMP + CSEL sequence.  Go ahead
3517   // and do the comparison.
3518   SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3519
3520   AArch64CC::CondCode CC1, CC2;
3521   changeFPCCToAArch64CC(CC, CC1, CC2);
3522   if (CC2 == AArch64CC::AL) {
3523     changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
3524     SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3525
3526     // Note that we inverted the condition above, so we reverse the order of
3527     // the true and false operands here.  This will allow the setcc to be
3528     // matched to a single CSINC instruction.
3529     return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
3530   } else {
3531     // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
3532     // totally clean.  Some of them require two CSELs to implement.  As is in
3533     // this case, we emit the first CSEL and then emit a second using the output
3534     // of the first as the RHS.  We're effectively OR'ing the two CC's together.
3535
3536     // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
3537     SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3538     SDValue CS1 =
3539         DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3540
3541     SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
3542     return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3543   }
3544 }
3545
3546 /// A SELECT_CC operation is really some kind of max or min if both values being
3547 /// compared are, in some sense, equal to the results in either case. However,
3548 /// it is permissible to compare f32 values and produce directly extended f64
3549 /// values.
3550 ///
3551 /// Extending the comparison operands would also be allowed, but is less likely
3552 /// to happen in practice since their use is right here. Note that truncate
3553 /// operations would *not* be semantically equivalent.
3554 static bool selectCCOpsAreFMaxCompatible(SDValue Cmp, SDValue Result) {
3555   if (Cmp == Result)
3556     return true;
3557
3558   ConstantFPSDNode *CCmp = dyn_cast<ConstantFPSDNode>(Cmp);
3559   ConstantFPSDNode *CResult = dyn_cast<ConstantFPSDNode>(Result);
3560   if (CCmp && CResult && Cmp.getValueType() == MVT::f32 &&
3561       Result.getValueType() == MVT::f64) {
3562     bool Lossy;
3563     APFloat CmpVal = CCmp->getValueAPF();
3564     CmpVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &Lossy);
3565     return CResult->getValueAPF().bitwiseIsEqual(CmpVal);
3566   }
3567
3568   return Result->getOpcode() == ISD::FP_EXTEND && Result->getOperand(0) == Cmp;
3569 }
3570
3571 SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS,
3572                                               SDValue RHS, SDValue TVal,
3573                                               SDValue FVal, SDLoc dl,
3574                                               SelectionDAG &DAG) const {
3575   // Handle f128 first, because it will result in a comparison of some RTLIB
3576   // call result against zero.
3577   if (LHS.getValueType() == MVT::f128) {
3578     softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3579
3580     // If softenSetCCOperands returned a scalar, we need to compare the result
3581     // against zero to select between true and false values.
3582     if (!RHS.getNode()) {
3583       RHS = DAG.getConstant(0, LHS.getValueType());
3584       CC = ISD::SETNE;
3585     }
3586   }
3587
3588   // Handle integers first.
3589   if (LHS.getValueType().isInteger()) {
3590     assert((LHS.getValueType() == RHS.getValueType()) &&
3591            (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3592
3593     unsigned Opcode = AArch64ISD::CSEL;
3594
3595     // If both the TVal and the FVal are constants, see if we can swap them in
3596     // order to for a CSINV or CSINC out of them.
3597     ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
3598     ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
3599
3600     if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
3601       std::swap(TVal, FVal);
3602       std::swap(CTVal, CFVal);
3603       CC = ISD::getSetCCInverse(CC, true);
3604     } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
3605       std::swap(TVal, FVal);
3606       std::swap(CTVal, CFVal);
3607       CC = ISD::getSetCCInverse(CC, true);
3608     } else if (TVal.getOpcode() == ISD::XOR) {
3609       // If TVal is a NOT we want to swap TVal and FVal so that we can match
3610       // with a CSINV rather than a CSEL.
3611       ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(1));
3612
3613       if (CVal && CVal->isAllOnesValue()) {
3614         std::swap(TVal, FVal);
3615         std::swap(CTVal, CFVal);
3616         CC = ISD::getSetCCInverse(CC, true);
3617       }
3618     } else if (TVal.getOpcode() == ISD::SUB) {
3619       // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
3620       // that we can match with a CSNEG rather than a CSEL.
3621       ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(0));
3622
3623       if (CVal && CVal->isNullValue()) {
3624         std::swap(TVal, FVal);
3625         std::swap(CTVal, CFVal);
3626         CC = ISD::getSetCCInverse(CC, true);
3627       }
3628     } else if (CTVal && CFVal) {
3629       const int64_t TrueVal = CTVal->getSExtValue();
3630       const int64_t FalseVal = CFVal->getSExtValue();
3631       bool Swap = false;
3632
3633       // If both TVal and FVal are constants, see if FVal is the
3634       // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
3635       // instead of a CSEL in that case.
3636       if (TrueVal == ~FalseVal) {
3637         Opcode = AArch64ISD::CSINV;
3638       } else if (TrueVal == -FalseVal) {
3639         Opcode = AArch64ISD::CSNEG;
3640       } else if (TVal.getValueType() == MVT::i32) {
3641         // If our operands are only 32-bit wide, make sure we use 32-bit
3642         // arithmetic for the check whether we can use CSINC. This ensures that
3643         // the addition in the check will wrap around properly in case there is
3644         // an overflow (which would not be the case if we do the check with
3645         // 64-bit arithmetic).
3646         const uint32_t TrueVal32 = CTVal->getZExtValue();
3647         const uint32_t FalseVal32 = CFVal->getZExtValue();
3648
3649         if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
3650           Opcode = AArch64ISD::CSINC;
3651
3652           if (TrueVal32 > FalseVal32) {
3653             Swap = true;
3654           }
3655         }
3656         // 64-bit check whether we can use CSINC.
3657       } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
3658         Opcode = AArch64ISD::CSINC;
3659
3660         if (TrueVal > FalseVal) {
3661           Swap = true;
3662         }
3663       }
3664
3665       // Swap TVal and FVal if necessary.
3666       if (Swap) {
3667         std::swap(TVal, FVal);
3668         std::swap(CTVal, CFVal);
3669         CC = ISD::getSetCCInverse(CC, true);
3670       }
3671
3672       if (Opcode != AArch64ISD::CSEL) {
3673         // Drop FVal since we can get its value by simply inverting/negating
3674         // TVal.
3675         FVal = TVal;
3676       }
3677     }
3678
3679     SDValue CCVal;
3680     SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3681
3682     EVT VT = TVal.getValueType();
3683     return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
3684   }
3685
3686   // Now we know we're dealing with FP values.
3687   assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3688   assert(LHS.getValueType() == RHS.getValueType());
3689   EVT VT = TVal.getValueType();
3690
3691   // Try to match this select into a max/min operation, which have dedicated
3692   // opcode in the instruction set.
3693   // FIXME: This is not correct in the presence of NaNs, so we only enable this
3694   // in no-NaNs mode.
3695   if (getTargetMachine().Options.NoNaNsFPMath) {
3696     SDValue MinMaxLHS = TVal, MinMaxRHS = FVal;
3697     if (selectCCOpsAreFMaxCompatible(LHS, MinMaxRHS) &&
3698         selectCCOpsAreFMaxCompatible(RHS, MinMaxLHS)) {
3699       CC = ISD::getSetCCSwappedOperands(CC);
3700       std::swap(MinMaxLHS, MinMaxRHS);
3701     }
3702
3703     if (selectCCOpsAreFMaxCompatible(LHS, MinMaxLHS) &&
3704         selectCCOpsAreFMaxCompatible(RHS, MinMaxRHS)) {
3705       switch (CC) {
3706       default:
3707         break;
3708       case ISD::SETGT:
3709       case ISD::SETGE:
3710       case ISD::SETUGT:
3711       case ISD::SETUGE:
3712       case ISD::SETOGT:
3713       case ISD::SETOGE:
3714         return DAG.getNode(AArch64ISD::FMAX, dl, VT, MinMaxLHS, MinMaxRHS);
3715         break;
3716       case ISD::SETLT:
3717       case ISD::SETLE:
3718       case ISD::SETULT:
3719       case ISD::SETULE:
3720       case ISD::SETOLT:
3721       case ISD::SETOLE:
3722         return DAG.getNode(AArch64ISD::FMIN, dl, VT, MinMaxLHS, MinMaxRHS);
3723         break;
3724       }
3725     }
3726   }
3727
3728   // If that fails, we'll need to perform an FCMP + CSEL sequence.  Go ahead
3729   // and do the comparison.
3730   SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3731
3732   // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3733   // clean.  Some of them require two CSELs to implement.
3734   AArch64CC::CondCode CC1, CC2;
3735   changeFPCCToAArch64CC(CC, CC1, CC2);
3736   SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
3737   SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3738
3739   // If we need a second CSEL, emit it, using the output of the first as the
3740   // RHS.  We're effectively OR'ing the two CC's together.
3741   if (CC2 != AArch64CC::AL) {
3742     SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
3743     return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3744   }
3745
3746   // Otherwise, return the output of the first CSEL.
3747   return CS1;
3748 }
3749
3750 SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
3751                                               SelectionDAG &DAG) const {
3752   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3753   SDValue LHS = Op.getOperand(0);
3754   SDValue RHS = Op.getOperand(1);
3755   SDValue TVal = Op.getOperand(2);
3756   SDValue FVal = Op.getOperand(3);
3757   SDLoc DL(Op);
3758   return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
3759 }
3760
3761 SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
3762                                            SelectionDAG &DAG) const {
3763   SDValue CCVal = Op->getOperand(0);
3764   SDValue TVal = Op->getOperand(1);
3765   SDValue FVal = Op->getOperand(2);
3766   SDLoc DL(Op);
3767
3768   unsigned Opc = CCVal.getOpcode();
3769   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
3770   // instruction.
3771   if (CCVal.getResNo() == 1 &&
3772       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3773        Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3774     // Only lower legal XALUO ops.
3775     if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0)))
3776       return SDValue();
3777
3778     AArch64CC::CondCode OFCC;
3779     SDValue Value, Overflow;
3780     std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG);
3781     SDValue CCVal = DAG.getConstant(OFCC, MVT::i32);
3782
3783     return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
3784                        CCVal, Overflow);
3785   }
3786
3787   // Lower it the same way as we would lower a SELECT_CC node.
3788   ISD::CondCode CC;
3789   SDValue LHS, RHS;
3790   if (CCVal.getOpcode() == ISD::SETCC) {
3791     LHS = CCVal.getOperand(0);
3792     RHS = CCVal.getOperand(1);
3793     CC = cast<CondCodeSDNode>(CCVal->getOperand(2))->get();
3794   } else {
3795     LHS = CCVal;
3796     RHS = DAG.getConstant(0, CCVal.getValueType());
3797     CC = ISD::SETNE;
3798   }
3799   return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
3800 }
3801
3802 SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
3803                                               SelectionDAG &DAG) const {
3804   // Jump table entries as PC relative offsets. No additional tweaking
3805   // is necessary here. Just get the address of the jump table.
3806   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3807   EVT PtrVT = getPointerTy();
3808   SDLoc DL(Op);
3809
3810   if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3811       !Subtarget->isTargetMachO()) {
3812     const unsigned char MO_NC = AArch64II::MO_NC;
3813     return DAG.getNode(
3814         AArch64ISD::WrapperLarge, DL, PtrVT,
3815         DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G3),
3816         DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G2 | MO_NC),
3817         DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G1 | MO_NC),
3818         DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3819                                AArch64II::MO_G0 | MO_NC));
3820   }
3821
3822   SDValue Hi =
3823       DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_PAGE);
3824   SDValue Lo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3825                                       AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3826   SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3827   return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3828 }
3829
3830 SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
3831                                                  SelectionDAG &DAG) const {
3832   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3833   EVT PtrVT = getPointerTy();
3834   SDLoc DL(Op);
3835
3836   if (getTargetMachine().getCodeModel() == CodeModel::Large) {
3837     // Use the GOT for the large code model on iOS.
3838     if (Subtarget->isTargetMachO()) {
3839       SDValue GotAddr = DAG.getTargetConstantPool(
3840           CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
3841           AArch64II::MO_GOT);
3842       return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
3843     }
3844
3845     const unsigned char MO_NC = AArch64II::MO_NC;
3846     return DAG.getNode(
3847         AArch64ISD::WrapperLarge, DL, PtrVT,
3848         DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3849                                   CP->getOffset(), AArch64II::MO_G3),
3850         DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3851                                   CP->getOffset(), AArch64II::MO_G2 | MO_NC),
3852         DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3853                                   CP->getOffset(), AArch64II::MO_G1 | MO_NC),
3854         DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3855                                   CP->getOffset(), AArch64II::MO_G0 | MO_NC));
3856   } else {
3857     // Use ADRP/ADD or ADRP/LDR for everything else: the small memory model on
3858     // ELF, the only valid one on Darwin.
3859     SDValue Hi =
3860         DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3861                                   CP->getOffset(), AArch64II::MO_PAGE);
3862     SDValue Lo = DAG.getTargetConstantPool(
3863         CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
3864         AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3865
3866     SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3867     return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3868   }
3869 }
3870
3871 SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
3872                                                SelectionDAG &DAG) const {
3873   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
3874   EVT PtrVT = getPointerTy();
3875   SDLoc DL(Op);
3876   if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3877       !Subtarget->isTargetMachO()) {
3878     const unsigned char MO_NC = AArch64II::MO_NC;
3879     return DAG.getNode(
3880         AArch64ISD::WrapperLarge, DL, PtrVT,
3881         DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G3),
3882         DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
3883         DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
3884         DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
3885   } else {
3886     SDValue Hi = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGE);
3887     SDValue Lo = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGEOFF |
3888                                                              AArch64II::MO_NC);
3889     SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3890     return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3891   }
3892 }
3893
3894 SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
3895                                                  SelectionDAG &DAG) const {
3896   AArch64FunctionInfo *FuncInfo =
3897       DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
3898
3899   SDLoc DL(Op);
3900   SDValue FR =
3901       DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
3902   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3903   return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
3904                       MachinePointerInfo(SV), false, false, 0);
3905 }
3906
3907 SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
3908                                                 SelectionDAG &DAG) const {
3909   // The layout of the va_list struct is specified in the AArch64 Procedure Call
3910   // Standard, section B.3.
3911   MachineFunction &MF = DAG.getMachineFunction();
3912   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3913   SDLoc DL(Op);
3914
3915   SDValue Chain = Op.getOperand(0);
3916   SDValue VAList = Op.getOperand(1);
3917   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3918   SmallVector<SDValue, 4> MemOps;
3919
3920   // void *__stack at offset 0
3921   SDValue Stack =
3922       DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
3923   MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
3924                                 MachinePointerInfo(SV), false, false, 8));
3925
3926   // void *__gr_top at offset 8
3927   int GPRSize = FuncInfo->getVarArgsGPRSize();
3928   if (GPRSize > 0) {
3929     SDValue GRTop, GRTopAddr;
3930
3931     GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3932                             DAG.getConstant(8, getPointerTy()));
3933
3934     GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), getPointerTy());
3935     GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
3936                         DAG.getConstant(GPRSize, getPointerTy()));
3937
3938     MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
3939                                   MachinePointerInfo(SV, 8), false, false, 8));
3940   }
3941
3942   // void *__vr_top at offset 16
3943   int FPRSize = FuncInfo->getVarArgsFPRSize();
3944   if (FPRSize > 0) {
3945     SDValue VRTop, VRTopAddr;
3946     VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3947                             DAG.getConstant(16, getPointerTy()));
3948
3949     VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), getPointerTy());
3950     VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
3951                         DAG.getConstant(FPRSize, getPointerTy()));
3952
3953     MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
3954                                   MachinePointerInfo(SV, 16), false, false, 8));
3955   }
3956
3957   // int __gr_offs at offset 24
3958   SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3959                                    DAG.getConstant(24, getPointerTy()));
3960   MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32),
3961                                 GROffsAddr, MachinePointerInfo(SV, 24), false,
3962                                 false, 4));
3963
3964   // int __vr_offs at offset 28
3965   SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
3966                                    DAG.getConstant(28, getPointerTy()));
3967   MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32),
3968                                 VROffsAddr, MachinePointerInfo(SV, 28), false,
3969                                 false, 4));
3970
3971   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3972 }
3973
3974 SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
3975                                             SelectionDAG &DAG) const {
3976   return Subtarget->isTargetDarwin() ? LowerDarwin_VASTART(Op, DAG)
3977                                      : LowerAAPCS_VASTART(Op, DAG);
3978 }
3979
3980 SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
3981                                            SelectionDAG &DAG) const {
3982   // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
3983   // pointer.
3984   unsigned VaListSize = Subtarget->isTargetDarwin() ? 8 : 32;
3985   const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3986   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3987
3988   return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op), Op.getOperand(1),
3989                        Op.getOperand(2), DAG.getConstant(VaListSize, MVT::i32),
3990                        8, false, false, false, MachinePointerInfo(DestSV),
3991                        MachinePointerInfo(SrcSV));
3992 }
3993
3994 SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3995   assert(Subtarget->isTargetDarwin() &&
3996          "automatic va_arg instruction only works on Darwin");
3997
3998   const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3999   EVT VT = Op.getValueType();
4000   SDLoc DL(Op);
4001   SDValue Chain = Op.getOperand(0);
4002   SDValue Addr = Op.getOperand(1);
4003   unsigned Align = Op.getConstantOperandVal(3);
4004
4005   SDValue VAList = DAG.getLoad(getPointerTy(), DL, Chain, Addr,
4006                                MachinePointerInfo(V), false, false, false, 0);
4007   Chain = VAList.getValue(1);
4008
4009   if (Align > 8) {
4010     assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
4011     VAList = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
4012                          DAG.getConstant(Align - 1, getPointerTy()));
4013     VAList = DAG.getNode(ISD::AND, DL, getPointerTy(), VAList,
4014                          DAG.getConstant(-(int64_t)Align, getPointerTy()));
4015   }
4016
4017   Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
4018   uint64_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
4019
4020   // Scalar integer and FP values smaller than 64 bits are implicitly extended
4021   // up to 64 bits.  At the very least, we have to increase the striding of the
4022   // vaargs list to match this, and for FP values we need to introduce
4023   // FP_ROUND nodes as well.
4024   if (VT.isInteger() && !VT.isVector())
4025     ArgSize = 8;
4026   bool NeedFPTrunc = false;
4027   if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
4028     ArgSize = 8;
4029     NeedFPTrunc = true;
4030   }
4031
4032   // Increment the pointer, VAList, to the next vaarg
4033   SDValue VANext = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
4034                                DAG.getConstant(ArgSize, getPointerTy()));
4035   // Store the incremented VAList to the legalized pointer
4036   SDValue APStore = DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V),
4037                                  false, false, 0);
4038
4039   // Load the actual argument out of the pointer VAList
4040   if (NeedFPTrunc) {
4041     // Load the value as an f64.
4042     SDValue WideFP = DAG.getLoad(MVT::f64, DL, APStore, VAList,
4043                                  MachinePointerInfo(), false, false, false, 0);
4044     // Round the value down to an f32.
4045     SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
4046                                    DAG.getIntPtrConstant(1));
4047     SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
4048     // Merge the rounded value with the chain output of the load.
4049     return DAG.getMergeValues(Ops, DL);
4050   }
4051
4052   return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo(), false,
4053                      false, false, 0);
4054 }
4055
4056 SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
4057                                               SelectionDAG &DAG) const {
4058   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4059   MFI->setFrameAddressIsTaken(true);
4060
4061   EVT VT = Op.getValueType();
4062   SDLoc DL(Op);
4063   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4064   SDValue FrameAddr =
4065       DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
4066   while (Depth--)
4067     FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
4068                             MachinePointerInfo(), false, false, false, 0);
4069   return FrameAddr;
4070 }
4071
4072 // FIXME? Maybe this could be a TableGen attribute on some registers and
4073 // this table could be generated automatically from RegInfo.
4074 unsigned AArch64TargetLowering::getRegisterByName(const char* RegName,
4075                                                   EVT VT) const {
4076   unsigned Reg = StringSwitch<unsigned>(RegName)
4077                        .Case("sp", AArch64::SP)
4078                        .Default(0);
4079   if (Reg)
4080     return Reg;
4081   report_fatal_error("Invalid register name global variable");
4082 }
4083
4084 SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
4085                                                SelectionDAG &DAG) const {
4086   MachineFunction &MF = DAG.getMachineFunction();
4087   MachineFrameInfo *MFI = MF.getFrameInfo();
4088   MFI->setReturnAddressIsTaken(true);
4089
4090   EVT VT = Op.getValueType();
4091   SDLoc DL(Op);
4092   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4093   if (Depth) {
4094     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
4095     SDValue Offset = DAG.getConstant(8, getPointerTy());
4096     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4097                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
4098                        MachinePointerInfo(), false, false, false, 0);
4099   }
4100
4101   // Return LR, which contains the return address. Mark it an implicit live-in.
4102   unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
4103   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
4104 }
4105
4106 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
4107 /// i64 values and take a 2 x i64 value to shift plus a shift amount.
4108 SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
4109                                                     SelectionDAG &DAG) const {
4110   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4111   EVT VT = Op.getValueType();
4112   unsigned VTBits = VT.getSizeInBits();
4113   SDLoc dl(Op);
4114   SDValue ShOpLo = Op.getOperand(0);
4115   SDValue ShOpHi = Op.getOperand(1);
4116   SDValue ShAmt = Op.getOperand(2);
4117   SDValue ARMcc;
4118   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
4119
4120   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
4121
4122   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
4123                                  DAG.getConstant(VTBits, MVT::i64), ShAmt);
4124   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
4125   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
4126                                    DAG.getConstant(VTBits, MVT::i64));
4127   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
4128
4129   SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64),
4130                                ISD::SETGE, dl, DAG);
4131   SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32);
4132
4133   SDValue FalseValLo = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4134   SDValue TrueValLo = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
4135   SDValue Lo =
4136       DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
4137
4138   // AArch64 shifts larger than the register width are wrapped rather than
4139   // clamped, so we can't just emit "hi >> x".
4140   SDValue FalseValHi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
4141   SDValue TrueValHi = Opc == ISD::SRA
4142                           ? DAG.getNode(Opc, dl, VT, ShOpHi,
4143                                         DAG.getConstant(VTBits - 1, MVT::i64))
4144                           : DAG.getConstant(0, VT);
4145   SDValue Hi =
4146       DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValHi, FalseValHi, CCVal, Cmp);
4147
4148   SDValue Ops[2] = { Lo, Hi };
4149   return DAG.getMergeValues(Ops, dl);
4150 }
4151
4152 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
4153 /// i64 values and take a 2 x i64 value to shift plus a shift amount.
4154 SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
4155                                                  SelectionDAG &DAG) const {
4156   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4157   EVT VT = Op.getValueType();
4158   unsigned VTBits = VT.getSizeInBits();
4159   SDLoc dl(Op);
4160   SDValue ShOpLo = Op.getOperand(0);
4161   SDValue ShOpHi = Op.getOperand(1);
4162   SDValue ShAmt = Op.getOperand(2);
4163   SDValue ARMcc;
4164
4165   assert(Op.getOpcode() == ISD::SHL_PARTS);
4166   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
4167                                  DAG.getConstant(VTBits, MVT::i64), ShAmt);
4168   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
4169   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
4170                                    DAG.getConstant(VTBits, MVT::i64));
4171   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
4172   SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
4173
4174   SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4175
4176   SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64),
4177                                ISD::SETGE, dl, DAG);
4178   SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32);
4179   SDValue Hi =
4180       DAG.getNode(AArch64ISD::CSEL, dl, VT, Tmp3, FalseVal, CCVal, Cmp);
4181
4182   // AArch64 shifts of larger than register sizes are wrapped rather than
4183   // clamped, so we can't just emit "lo << a" if a is too big.
4184   SDValue TrueValLo = DAG.getConstant(0, VT);
4185   SDValue FalseValLo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4186   SDValue Lo =
4187       DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
4188
4189   SDValue Ops[2] = { Lo, Hi };
4190   return DAG.getMergeValues(Ops, dl);
4191 }
4192
4193 bool AArch64TargetLowering::isOffsetFoldingLegal(
4194     const GlobalAddressSDNode *GA) const {
4195   // The AArch64 target doesn't support folding offsets into global addresses.
4196   return false;
4197 }
4198
4199 bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
4200   // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases.
4201   // FIXME: We should be able to handle f128 as well with a clever lowering.
4202   if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32))
4203     return true;
4204
4205   if (VT == MVT::f64)
4206     return AArch64_AM::getFP64Imm(Imm) != -1;
4207   else if (VT == MVT::f32)
4208     return AArch64_AM::getFP32Imm(Imm) != -1;
4209   return false;
4210 }
4211
4212 //===----------------------------------------------------------------------===//
4213 //                          AArch64 Optimization Hooks
4214 //===----------------------------------------------------------------------===//
4215
4216 //===----------------------------------------------------------------------===//
4217 //                          AArch64 Inline Assembly Support
4218 //===----------------------------------------------------------------------===//
4219
4220 // Table of Constraints
4221 // TODO: This is the current set of constraints supported by ARM for the
4222 // compiler, not all of them may make sense, e.g. S may be difficult to support.
4223 //
4224 // r - A general register
4225 // w - An FP/SIMD register of some size in the range v0-v31
4226 // x - An FP/SIMD register of some size in the range v0-v15
4227 // I - Constant that can be used with an ADD instruction
4228 // J - Constant that can be used with a SUB instruction
4229 // K - Constant that can be used with a 32-bit logical instruction
4230 // L - Constant that can be used with a 64-bit logical instruction
4231 // M - Constant that can be used as a 32-bit MOV immediate
4232 // N - Constant that can be used as a 64-bit MOV immediate
4233 // Q - A memory reference with base register and no offset
4234 // S - A symbolic address
4235 // Y - Floating point constant zero
4236 // Z - Integer constant zero
4237 //
4238 //   Note that general register operands will be output using their 64-bit x
4239 // register name, whatever the size of the variable, unless the asm operand
4240 // is prefixed by the %w modifier. Floating-point and SIMD register operands
4241 // will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
4242 // %q modifier.
4243
4244 /// getConstraintType - Given a constraint letter, return the type of
4245 /// constraint it is for this target.
4246 AArch64TargetLowering::ConstraintType
4247 AArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
4248   if (Constraint.size() == 1) {
4249     switch (Constraint[0]) {
4250     default:
4251       break;
4252     case 'z':
4253       return C_Other;
4254     case 'x':
4255     case 'w':
4256       return C_RegisterClass;
4257     // An address with a single base register. Due to the way we
4258     // currently handle addresses it is the same as 'r'.
4259     case 'Q':
4260       return C_Memory;
4261     }
4262   }
4263   return TargetLowering::getConstraintType(Constraint);
4264 }
4265
4266 /// Examine constraint type and operand type and determine a weight value.
4267 /// This object must already have been set up with the operand type
4268 /// and the current alternative constraint selected.
4269 TargetLowering::ConstraintWeight
4270 AArch64TargetLowering::getSingleConstraintMatchWeight(
4271     AsmOperandInfo &info, const char *constraint) const {
4272   ConstraintWeight weight = CW_Invalid;
4273   Value *CallOperandVal = info.CallOperandVal;
4274   // If we don't have a value, we can't do a match,
4275   // but allow it at the lowest weight.
4276   if (!CallOperandVal)
4277     return CW_Default;
4278   Type *type = CallOperandVal->getType();
4279   // Look at the constraint type.
4280   switch (*constraint) {
4281   default:
4282     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
4283     break;
4284   case 'x':
4285   case 'w':
4286     if (type->isFloatingPointTy() || type->isVectorTy())
4287       weight = CW_Register;
4288     break;
4289   case 'z':
4290     weight = CW_Constant;
4291     break;
4292   }
4293   return weight;
4294 }
4295
4296 std::pair<unsigned, const TargetRegisterClass *>
4297 AArch64TargetLowering::getRegForInlineAsmConstraint(
4298     const TargetRegisterInfo *TRI, const std::string &Constraint,
4299     MVT VT) const {
4300   if (Constraint.size() == 1) {
4301     switch (Constraint[0]) {
4302     case 'r':
4303       if (VT.getSizeInBits() == 64)
4304         return std::make_pair(0U, &AArch64::GPR64commonRegClass);
4305       return std::make_pair(0U, &AArch64::GPR32commonRegClass);
4306     case 'w':
4307       if (VT == MVT::f32)
4308         return std::make_pair(0U, &AArch64::FPR32RegClass);
4309       if (VT.getSizeInBits() == 64)
4310         return std::make_pair(0U, &AArch64::FPR64RegClass);
4311       if (VT.getSizeInBits() == 128)
4312         return std::make_pair(0U, &AArch64::FPR128RegClass);
4313       break;
4314     // The instructions that this constraint is designed for can
4315     // only take 128-bit registers so just use that regclass.
4316     case 'x':
4317       if (VT.getSizeInBits() == 128)
4318         return std::make_pair(0U, &AArch64::FPR128_loRegClass);
4319       break;
4320     }
4321   }
4322   if (StringRef("{cc}").equals_lower(Constraint))
4323     return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
4324
4325   // Use the default implementation in TargetLowering to convert the register
4326   // constraint into a member of a register class.
4327   std::pair<unsigned, const TargetRegisterClass *> Res;
4328   Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
4329
4330   // Not found as a standard register?
4331   if (!Res.second) {
4332     unsigned Size = Constraint.size();
4333     if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
4334         tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
4335       const std::string Reg =
4336           std::string(&Constraint[2], &Constraint[Size - 1]);
4337       int RegNo = atoi(Reg.c_str());
4338       if (RegNo >= 0 && RegNo <= 31) {
4339         // v0 - v31 are aliases of q0 - q31.
4340         // By default we'll emit v0-v31 for this unless there's a modifier where
4341         // we'll emit the correct register as well.
4342         Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
4343         Res.second = &AArch64::FPR128RegClass;
4344       }
4345     }
4346   }
4347
4348   return Res;
4349 }
4350
4351 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4352 /// vector.  If it is invalid, don't add anything to Ops.
4353 void AArch64TargetLowering::LowerAsmOperandForConstraint(
4354     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
4355     SelectionDAG &DAG) const {
4356   SDValue Result;
4357
4358   // Currently only support length 1 constraints.
4359   if (Constraint.length() != 1)
4360     return;
4361
4362   char ConstraintLetter = Constraint[0];
4363   switch (ConstraintLetter) {
4364   default:
4365     break;
4366
4367   // This set of constraints deal with valid constants for various instructions.
4368   // Validate and return a target constant for them if we can.
4369   case 'z': {
4370     // 'z' maps to xzr or wzr so it needs an input of 0.
4371     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4372     if (!C || C->getZExtValue() != 0)
4373       return;
4374
4375     if (Op.getValueType() == MVT::i64)
4376       Result = DAG.getRegister(AArch64::XZR, MVT::i64);
4377     else
4378       Result = DAG.getRegister(AArch64::WZR, MVT::i32);
4379     break;
4380   }
4381
4382   case 'I':
4383   case 'J':
4384   case 'K':
4385   case 'L':
4386   case 'M':
4387   case 'N':
4388     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4389     if (!C)
4390       return;
4391
4392     // Grab the value and do some validation.
4393     uint64_t CVal = C->getZExtValue();
4394     switch (ConstraintLetter) {
4395     // The I constraint applies only to simple ADD or SUB immediate operands:
4396     // i.e. 0 to 4095 with optional shift by 12
4397     // The J constraint applies only to ADD or SUB immediates that would be
4398     // valid when negated, i.e. if [an add pattern] were to be output as a SUB
4399     // instruction [or vice versa], in other words -1 to -4095 with optional
4400     // left shift by 12.
4401     case 'I':
4402       if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
4403         break;
4404       return;
4405     case 'J': {
4406       uint64_t NVal = -C->getSExtValue();
4407       if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
4408         CVal = C->getSExtValue();
4409         break;
4410       }
4411       return;
4412     }
4413     // The K and L constraints apply *only* to logical immediates, including
4414     // what used to be the MOVI alias for ORR (though the MOVI alias has now
4415     // been removed and MOV should be used). So these constraints have to
4416     // distinguish between bit patterns that are valid 32-bit or 64-bit
4417     // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
4418     // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
4419     // versa.
4420     case 'K':
4421       if (AArch64_AM::isLogicalImmediate(CVal, 32))
4422         break;
4423       return;
4424     case 'L':
4425       if (AArch64_AM::isLogicalImmediate(CVal, 64))
4426         break;
4427       return;
4428     // The M and N constraints are a superset of K and L respectively, for use
4429     // with the MOV (immediate) alias. As well as the logical immediates they
4430     // also match 32 or 64-bit immediates that can be loaded either using a
4431     // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
4432     // (M) or 64-bit 0x1234000000000000 (N) etc.
4433     // As a note some of this code is liberally stolen from the asm parser.
4434     case 'M': {
4435       if (!isUInt<32>(CVal))
4436         return;
4437       if (AArch64_AM::isLogicalImmediate(CVal, 32))
4438         break;
4439       if ((CVal & 0xFFFF) == CVal)
4440         break;
4441       if ((CVal & 0xFFFF0000ULL) == CVal)
4442         break;
4443       uint64_t NCVal = ~(uint32_t)CVal;
4444       if ((NCVal & 0xFFFFULL) == NCVal)
4445         break;
4446       if ((NCVal & 0xFFFF0000ULL) == NCVal)
4447         break;
4448       return;
4449     }
4450     case 'N': {
4451       if (AArch64_AM::isLogicalImmediate(CVal, 64))
4452         break;
4453       if ((CVal & 0xFFFFULL) == CVal)
4454         break;
4455       if ((CVal & 0xFFFF0000ULL) == CVal)
4456         break;
4457       if ((CVal & 0xFFFF00000000ULL) == CVal)
4458         break;
4459       if ((CVal & 0xFFFF000000000000ULL) == CVal)
4460         break;
4461       uint64_t NCVal = ~CVal;
4462       if ((NCVal & 0xFFFFULL) == NCVal)
4463         break;
4464       if ((NCVal & 0xFFFF0000ULL) == NCVal)
4465         break;
4466       if ((NCVal & 0xFFFF00000000ULL) == NCVal)
4467         break;
4468       if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
4469         break;
4470       return;
4471     }
4472     default:
4473       return;
4474     }
4475
4476     // All assembler immediates are 64-bit integers.
4477     Result = DAG.getTargetConstant(CVal, MVT::i64);
4478     break;
4479   }
4480
4481   if (Result.getNode()) {
4482     Ops.push_back(Result);
4483     return;
4484   }
4485
4486   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4487 }
4488
4489 //===----------------------------------------------------------------------===//
4490 //                     AArch64 Advanced SIMD Support
4491 //===----------------------------------------------------------------------===//
4492
4493 /// WidenVector - Given a value in the V64 register class, produce the
4494 /// equivalent value in the V128 register class.
4495 static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
4496   EVT VT = V64Reg.getValueType();
4497   unsigned NarrowSize = VT.getVectorNumElements();
4498   MVT EltTy = VT.getVectorElementType().getSimpleVT();
4499   MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
4500   SDLoc DL(V64Reg);
4501
4502   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
4503                      V64Reg, DAG.getConstant(0, MVT::i32));
4504 }
4505
4506 /// getExtFactor - Determine the adjustment factor for the position when
4507 /// generating an "extract from vector registers" instruction.
4508 static unsigned getExtFactor(SDValue &V) {
4509   EVT EltType = V.getValueType().getVectorElementType();
4510   return EltType.getSizeInBits() / 8;
4511 }
4512
4513 /// NarrowVector - Given a value in the V128 register class, produce the
4514 /// equivalent value in the V64 register class.
4515 static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
4516   EVT VT = V128Reg.getValueType();
4517   unsigned WideSize = VT.getVectorNumElements();
4518   MVT EltTy = VT.getVectorElementType().getSimpleVT();
4519   MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
4520   SDLoc DL(V128Reg);
4521
4522   return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
4523 }
4524
4525 // Gather data to see if the operation can be modelled as a
4526 // shuffle in combination with VEXTs.
4527 SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
4528                                                   SelectionDAG &DAG) const {
4529   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
4530   SDLoc dl(Op);
4531   EVT VT = Op.getValueType();
4532   unsigned NumElts = VT.getVectorNumElements();
4533
4534   struct ShuffleSourceInfo {
4535     SDValue Vec;
4536     unsigned MinElt;
4537     unsigned MaxElt;
4538
4539     // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
4540     // be compatible with the shuffle we intend to construct. As a result
4541     // ShuffleVec will be some sliding window into the original Vec.
4542     SDValue ShuffleVec;
4543
4544     // Code should guarantee that element i in Vec starts at element "WindowBase
4545     // + i * WindowScale in ShuffleVec".
4546     int WindowBase;
4547     int WindowScale;
4548
4549     bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
4550     ShuffleSourceInfo(SDValue Vec)
4551         : Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0),
4552           WindowScale(1) {}
4553   };
4554
4555   // First gather all vectors used as an immediate source for this BUILD_VECTOR
4556   // node.
4557   SmallVector<ShuffleSourceInfo, 2> Sources;
4558   for (unsigned i = 0; i < NumElts; ++i) {
4559     SDValue V = Op.getOperand(i);
4560     if (V.getOpcode() == ISD::UNDEF)
4561       continue;
4562     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4563       // A shuffle can only come from building a vector from various
4564       // elements of other vectors.
4565       return SDValue();
4566     }
4567
4568     // Add this element source to the list if it's not already there.
4569     SDValue SourceVec = V.getOperand(0);
4570     auto Source = std::find(Sources.begin(), Sources.end(), SourceVec);
4571     if (Source == Sources.end())
4572       Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
4573
4574     // Update the minimum and maximum lane number seen.
4575     unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4576     Source->MinElt = std::min(Source->MinElt, EltNo);
4577     Source->MaxElt = std::max(Source->MaxElt, EltNo);
4578   }
4579
4580   // Currently only do something sane when at most two source vectors
4581   // are involved.
4582   if (Sources.size() > 2)
4583     return SDValue();
4584
4585   // Find out the smallest element size among result and two sources, and use
4586   // it as element size to build the shuffle_vector.
4587   EVT SmallestEltTy = VT.getVectorElementType();
4588   for (auto &Source : Sources) {
4589     EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
4590     if (SrcEltTy.bitsLT(SmallestEltTy)) {
4591       SmallestEltTy = SrcEltTy;
4592     }
4593   }
4594   unsigned ResMultiplier =
4595       VT.getVectorElementType().getSizeInBits() / SmallestEltTy.getSizeInBits();
4596   NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
4597   EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
4598
4599   // If the source vector is too wide or too narrow, we may nevertheless be able
4600   // to construct a compatible shuffle either by concatenating it with UNDEF or
4601   // extracting a suitable range of elements.
4602   for (auto &Src : Sources) {
4603     EVT SrcVT = Src.ShuffleVec.getValueType();
4604
4605     if (SrcVT.getSizeInBits() == VT.getSizeInBits())
4606       continue;
4607
4608     // This stage of the search produces a source with the same element type as
4609     // the original, but with a total width matching the BUILD_VECTOR output.
4610     EVT EltVT = SrcVT.getVectorElementType();
4611     unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
4612     EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
4613
4614     if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
4615       assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits());
4616       // We can pad out the smaller vector for free, so if it's part of a
4617       // shuffle...
4618       Src.ShuffleVec =
4619           DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
4620                       DAG.getUNDEF(Src.ShuffleVec.getValueType()));
4621       continue;
4622     }
4623
4624     assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits());
4625
4626     if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
4627       // Span too large for a VEXT to cope
4628       return SDValue();
4629     }
4630
4631     if (Src.MinElt >= NumSrcElts) {
4632       // The extraction can just take the second half
4633       Src.ShuffleVec =
4634           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
4635                       DAG.getConstant(NumSrcElts, MVT::i64));
4636       Src.WindowBase = -NumSrcElts;
4637     } else if (Src.MaxElt < NumSrcElts) {
4638       // The extraction can just take the first half
4639       Src.ShuffleVec =
4640           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
4641                       DAG.getConstant(0, MVT::i64));
4642     } else {
4643       // An actual VEXT is needed
4644       SDValue VEXTSrc1 =
4645           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
4646                       DAG.getConstant(0, MVT::i64));
4647       SDValue VEXTSrc2 =
4648           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
4649                       DAG.getConstant(NumSrcElts, MVT::i64));
4650       unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
4651
4652       Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
4653                                    VEXTSrc2, DAG.getConstant(Imm, MVT::i32));
4654       Src.WindowBase = -Src.MinElt;
4655     }
4656   }
4657
4658   // Another possible incompatibility occurs from the vector element types. We
4659   // can fix this by bitcasting the source vectors to the same type we intend
4660   // for the shuffle.
4661   for (auto &Src : Sources) {
4662     EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
4663     if (SrcEltTy == SmallestEltTy)
4664       continue;
4665     assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
4666     Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
4667     Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
4668     Src.WindowBase *= Src.WindowScale;
4669   }
4670
4671   // Final sanity check before we try to actually produce a shuffle.
4672   DEBUG(
4673     for (auto Src : Sources)
4674       assert(Src.ShuffleVec.getValueType() == ShuffleVT);
4675   );
4676
4677   // The stars all align, our next step is to produce the mask for the shuffle.
4678   SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
4679   int BitsPerShuffleLane = ShuffleVT.getVectorElementType().getSizeInBits();
4680   for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
4681     SDValue Entry = Op.getOperand(i);
4682     if (Entry.getOpcode() == ISD::UNDEF)
4683       continue;
4684
4685     auto Src = std::find(Sources.begin(), Sources.end(), Entry.getOperand(0));
4686     int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
4687
4688     // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
4689     // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
4690     // segment.
4691     EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
4692     int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
4693                                VT.getVectorElementType().getSizeInBits());
4694     int LanesDefined = BitsDefined / BitsPerShuffleLane;
4695
4696     // This source is expected to fill ResMultiplier lanes of the final shuffle,
4697     // starting at the appropriate offset.
4698     int *LaneMask = &Mask[i * ResMultiplier];
4699
4700     int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
4701     ExtractBase += NumElts * (Src - Sources.begin());
4702     for (int j = 0; j < LanesDefined; ++j)
4703       LaneMask[j] = ExtractBase + j;
4704   }
4705
4706   // Final check before we try to produce nonsense...
4707   if (!isShuffleMaskLegal(Mask, ShuffleVT))
4708     return SDValue();
4709
4710   SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
4711   for (unsigned i = 0; i < Sources.size(); ++i)
4712     ShuffleOps[i] = Sources[i].ShuffleVec;
4713
4714   SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
4715                                          ShuffleOps[1], &Mask[0]);
4716   return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
4717 }
4718
4719 // check if an EXT instruction can handle the shuffle mask when the
4720 // vector sources of the shuffle are the same.
4721 static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
4722   unsigned NumElts = VT.getVectorNumElements();
4723
4724   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
4725   if (M[0] < 0)
4726     return false;
4727
4728   Imm = M[0];
4729
4730   // If this is a VEXT shuffle, the immediate value is the index of the first
4731   // element.  The other shuffle indices must be the successive elements after
4732   // the first one.
4733   unsigned ExpectedElt = Imm;
4734   for (unsigned i = 1; i < NumElts; ++i) {
4735     // Increment the expected index.  If it wraps around, just follow it
4736     // back to index zero and keep going.
4737     ++ExpectedElt;
4738     if (ExpectedElt == NumElts)
4739       ExpectedElt = 0;
4740
4741     if (M[i] < 0)
4742       continue; // ignore UNDEF indices
4743     if (ExpectedElt != static_cast<unsigned>(M[i]))
4744       return false;
4745   }
4746
4747   return true;
4748 }
4749
4750 // check if an EXT instruction can handle the shuffle mask when the
4751 // vector sources of the shuffle are different.
4752 static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
4753                       unsigned &Imm) {
4754   // Look for the first non-undef element.
4755   const int *FirstRealElt = std::find_if(M.begin(), M.end(),
4756       [](int Elt) {return Elt >= 0;});
4757
4758   // Benefit form APInt to handle overflow when calculating expected element.
4759   unsigned NumElts = VT.getVectorNumElements();
4760   unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
4761   APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
4762   // The following shuffle indices must be the successive elements after the
4763   // first real element.
4764   const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
4765       [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
4766   if (FirstWrongElt != M.end())
4767     return false;
4768
4769   // The index of an EXT is the first element if it is not UNDEF.
4770   // Watch out for the beginning UNDEFs. The EXT index should be the expected
4771   // value of the first element.  E.g. 
4772   // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
4773   // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
4774   // ExpectedElt is the last mask index plus 1.
4775   Imm = ExpectedElt.getZExtValue();
4776
4777   // There are two difference cases requiring to reverse input vectors.
4778   // For example, for vector <4 x i32> we have the following cases,
4779   // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
4780   // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
4781   // For both cases, we finally use mask <5, 6, 7, 0>, which requires
4782   // to reverse two input vectors.
4783   if (Imm < NumElts)
4784     ReverseEXT = true;
4785   else
4786     Imm -= NumElts;
4787
4788   return true;
4789 }
4790
4791 /// isREVMask - Check if a vector shuffle corresponds to a REV
4792 /// instruction with the specified blocksize.  (The order of the elements
4793 /// within each block of the vector is reversed.)
4794 static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
4795   assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
4796          "Only possible block sizes for REV are: 16, 32, 64");
4797
4798   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4799   if (EltSz == 64)
4800     return false;
4801
4802   unsigned NumElts = VT.getVectorNumElements();
4803   unsigned BlockElts = M[0] + 1;
4804   // If the first shuffle index is UNDEF, be optimistic.
4805   if (M[0] < 0)
4806     BlockElts = BlockSize / EltSz;
4807
4808   if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
4809     return false;
4810
4811   for (unsigned i = 0; i < NumElts; ++i) {
4812     if (M[i] < 0)
4813       continue; // ignore UNDEF indices
4814     if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
4815       return false;
4816   }
4817
4818   return true;
4819 }
4820
4821 static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4822   unsigned NumElts = VT.getVectorNumElements();
4823   WhichResult = (M[0] == 0 ? 0 : 1);
4824   unsigned Idx = WhichResult * NumElts / 2;
4825   for (unsigned i = 0; i != NumElts; i += 2) {
4826     if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
4827         (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
4828       return false;
4829     Idx += 1;
4830   }
4831
4832   return true;
4833 }
4834
4835 static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4836   unsigned NumElts = VT.getVectorNumElements();
4837   WhichResult = (M[0] == 0 ? 0 : 1);
4838   for (unsigned i = 0; i != NumElts; ++i) {
4839     if (M[i] < 0)
4840       continue; // ignore UNDEF indices
4841     if ((unsigned)M[i] != 2 * i + WhichResult)
4842       return false;
4843   }
4844
4845   return true;
4846 }
4847
4848 static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4849   unsigned NumElts = VT.getVectorNumElements();
4850   WhichResult = (M[0] == 0 ? 0 : 1);
4851   for (unsigned i = 0; i < NumElts; i += 2) {
4852     if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
4853         (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
4854       return false;
4855   }
4856   return true;
4857 }
4858
4859 /// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
4860 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4861 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
4862 static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4863   unsigned NumElts = VT.getVectorNumElements();
4864   WhichResult = (M[0] == 0 ? 0 : 1);
4865   unsigned Idx = WhichResult * NumElts / 2;
4866   for (unsigned i = 0; i != NumElts; i += 2) {
4867     if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
4868         (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
4869       return false;
4870     Idx += 1;
4871   }
4872
4873   return true;
4874 }
4875
4876 /// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
4877 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4878 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
4879 static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4880   unsigned Half = VT.getVectorNumElements() / 2;
4881   WhichResult = (M[0] == 0 ? 0 : 1);
4882   for (unsigned j = 0; j != 2; ++j) {
4883     unsigned Idx = WhichResult;
4884     for (unsigned i = 0; i != Half; ++i) {
4885       int MIdx = M[i + j * Half];
4886       if (MIdx >= 0 && (unsigned)MIdx != Idx)
4887         return false;
4888       Idx += 2;
4889     }
4890   }
4891
4892   return true;
4893 }
4894
4895 /// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
4896 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4897 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
4898 static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4899   unsigned NumElts = VT.getVectorNumElements();
4900   WhichResult = (M[0] == 0 ? 0 : 1);
4901   for (unsigned i = 0; i < NumElts; i += 2) {
4902     if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
4903         (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
4904       return false;
4905   }
4906   return true;
4907 }
4908
4909 static bool isINSMask(ArrayRef<int> M, int NumInputElements,
4910                       bool &DstIsLeft, int &Anomaly) {
4911   if (M.size() != static_cast<size_t>(NumInputElements))
4912     return false;
4913
4914   int NumLHSMatch = 0, NumRHSMatch = 0;
4915   int LastLHSMismatch = -1, LastRHSMismatch = -1;
4916
4917   for (int i = 0; i < NumInputElements; ++i) {
4918     if (M[i] == -1) {
4919       ++NumLHSMatch;
4920       ++NumRHSMatch;
4921       continue;
4922     }
4923
4924     if (M[i] == i)
4925       ++NumLHSMatch;
4926     else
4927       LastLHSMismatch = i;
4928
4929     if (M[i] == i + NumInputElements)
4930       ++NumRHSMatch;
4931     else
4932       LastRHSMismatch = i;
4933   }
4934
4935   if (NumLHSMatch == NumInputElements - 1) {
4936     DstIsLeft = true;
4937     Anomaly = LastLHSMismatch;
4938     return true;
4939   } else if (NumRHSMatch == NumInputElements - 1) {
4940     DstIsLeft = false;
4941     Anomaly = LastRHSMismatch;
4942     return true;
4943   }
4944
4945   return false;
4946 }
4947
4948 static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
4949   if (VT.getSizeInBits() != 128)
4950     return false;
4951
4952   unsigned NumElts = VT.getVectorNumElements();
4953
4954   for (int I = 0, E = NumElts / 2; I != E; I++) {
4955     if (Mask[I] != I)
4956       return false;
4957   }
4958
4959   int Offset = NumElts / 2;
4960   for (int I = NumElts / 2, E = NumElts; I != E; I++) {
4961     if (Mask[I] != I + SplitLHS * Offset)
4962       return false;
4963   }
4964
4965   return true;
4966 }
4967
4968 static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
4969   SDLoc DL(Op);
4970   EVT VT = Op.getValueType();
4971   SDValue V0 = Op.getOperand(0);
4972   SDValue V1 = Op.getOperand(1);
4973   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
4974
4975   if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
4976       VT.getVectorElementType() != V1.getValueType().getVectorElementType())
4977     return SDValue();
4978
4979   bool SplitV0 = V0.getValueType().getSizeInBits() == 128;
4980
4981   if (!isConcatMask(Mask, VT, SplitV0))
4982     return SDValue();
4983
4984   EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
4985                                 VT.getVectorNumElements() / 2);
4986   if (SplitV0) {
4987     V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
4988                      DAG.getConstant(0, MVT::i64));
4989   }
4990   if (V1.getValueType().getSizeInBits() == 128) {
4991     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
4992                      DAG.getConstant(0, MVT::i64));
4993   }
4994   return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
4995 }
4996
4997 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4998 /// the specified operations to build the shuffle.
4999 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
5000                                       SDValue RHS, SelectionDAG &DAG,
5001                                       SDLoc dl) {
5002   unsigned OpNum = (PFEntry >> 26) & 0x0F;
5003   unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
5004   unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
5005
5006   enum {
5007     OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
5008     OP_VREV,
5009     OP_VDUP0,
5010     OP_VDUP1,
5011     OP_VDUP2,
5012     OP_VDUP3,
5013     OP_VEXT1,
5014     OP_VEXT2,
5015     OP_VEXT3,
5016     OP_VUZPL, // VUZP, left result
5017     OP_VUZPR, // VUZP, right result
5018     OP_VZIPL, // VZIP, left result
5019     OP_VZIPR, // VZIP, right result
5020     OP_VTRNL, // VTRN, left result
5021     OP_VTRNR  // VTRN, right result
5022   };
5023
5024   if (OpNum == OP_COPY) {
5025     if (LHSID == (1 * 9 + 2) * 9 + 3)
5026       return LHS;
5027     assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
5028     return RHS;
5029   }
5030
5031   SDValue OpLHS, OpRHS;
5032   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5033   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5034   EVT VT = OpLHS.getValueType();
5035
5036   switch (OpNum) {
5037   default:
5038     llvm_unreachable("Unknown shuffle opcode!");
5039   case OP_VREV:
5040     // VREV divides the vector in half and swaps within the half.
5041     if (VT.getVectorElementType() == MVT::i32 ||
5042         VT.getVectorElementType() == MVT::f32)
5043       return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
5044     // vrev <4 x i16> -> REV32
5045     if (VT.getVectorElementType() == MVT::i16 ||
5046         VT.getVectorElementType() == MVT::f16)
5047       return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
5048     // vrev <4 x i8> -> REV16
5049     assert(VT.getVectorElementType() == MVT::i8);
5050     return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
5051   case OP_VDUP0:
5052   case OP_VDUP1:
5053   case OP_VDUP2:
5054   case OP_VDUP3: {
5055     EVT EltTy = VT.getVectorElementType();
5056     unsigned Opcode;
5057     if (EltTy == MVT::i8)
5058       Opcode = AArch64ISD::DUPLANE8;
5059     else if (EltTy == MVT::i16 || EltTy == MVT::f16)
5060       Opcode = AArch64ISD::DUPLANE16;
5061     else if (EltTy == MVT::i32 || EltTy == MVT::f32)
5062       Opcode = AArch64ISD::DUPLANE32;
5063     else if (EltTy == MVT::i64 || EltTy == MVT::f64)
5064       Opcode = AArch64ISD::DUPLANE64;
5065     else
5066       llvm_unreachable("Invalid vector element type?");
5067
5068     if (VT.getSizeInBits() == 64)
5069       OpLHS = WidenVector(OpLHS, DAG);
5070     SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, MVT::i64);
5071     return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
5072   }
5073   case OP_VEXT1:
5074   case OP_VEXT2:
5075   case OP_VEXT3: {
5076     unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
5077     return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
5078                        DAG.getConstant(Imm, MVT::i32));
5079   }
5080   case OP_VUZPL:
5081     return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
5082                        OpRHS);
5083   case OP_VUZPR:
5084     return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
5085                        OpRHS);
5086   case OP_VZIPL:
5087     return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
5088                        OpRHS);
5089   case OP_VZIPR:
5090     return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
5091                        OpRHS);
5092   case OP_VTRNL:
5093     return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
5094                        OpRHS);
5095   case OP_VTRNR:
5096     return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
5097                        OpRHS);
5098   }
5099 }
5100
5101 static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
5102                            SelectionDAG &DAG) {
5103   // Check to see if we can use the TBL instruction.
5104   SDValue V1 = Op.getOperand(0);
5105   SDValue V2 = Op.getOperand(1);
5106   SDLoc DL(Op);
5107
5108   EVT EltVT = Op.getValueType().getVectorElementType();
5109   unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
5110
5111   SmallVector<SDValue, 8> TBLMask;
5112   for (int Val : ShuffleMask) {
5113     for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
5114       unsigned Offset = Byte + Val * BytesPerElt;
5115       TBLMask.push_back(DAG.getConstant(Offset, MVT::i32));
5116     }
5117   }
5118
5119   MVT IndexVT = MVT::v8i8;
5120   unsigned IndexLen = 8;
5121   if (Op.getValueType().getSizeInBits() == 128) {
5122     IndexVT = MVT::v16i8;
5123     IndexLen = 16;
5124   }
5125
5126   SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
5127   SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
5128
5129   SDValue Shuffle;
5130   if (V2.getNode()->getOpcode() == ISD::UNDEF) {
5131     if (IndexLen == 8)
5132       V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
5133     Shuffle = DAG.getNode(
5134         ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
5135         DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst,
5136         DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5137                     makeArrayRef(TBLMask.data(), IndexLen)));
5138   } else {
5139     if (IndexLen == 8) {
5140       V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
5141       Shuffle = DAG.getNode(
5142           ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
5143           DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst,
5144           DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5145                       makeArrayRef(TBLMask.data(), IndexLen)));
5146     } else {
5147       // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
5148       // cannot currently represent the register constraints on the input
5149       // table registers.
5150       //  Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
5151       //                   DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5152       //                               &TBLMask[0], IndexLen));
5153       Shuffle = DAG.getNode(
5154           ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
5155           DAG.getConstant(Intrinsic::aarch64_neon_tbl2, MVT::i32), V1Cst, V2Cst,
5156           DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5157                       makeArrayRef(TBLMask.data(), IndexLen)));
5158     }
5159   }
5160   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
5161 }
5162
5163 static unsigned getDUPLANEOp(EVT EltType) {
5164   if (EltType == MVT::i8)
5165     return AArch64ISD::DUPLANE8;
5166   if (EltType == MVT::i16 || EltType == MVT::f16)
5167     return AArch64ISD::DUPLANE16;
5168   if (EltType == MVT::i32 || EltType == MVT::f32)
5169     return AArch64ISD::DUPLANE32;
5170   if (EltType == MVT::i64 || EltType == MVT::f64)
5171     return AArch64ISD::DUPLANE64;
5172
5173   llvm_unreachable("Invalid vector element type?");
5174 }
5175
5176 SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
5177                                                    SelectionDAG &DAG) const {
5178   SDLoc dl(Op);
5179   EVT VT = Op.getValueType();
5180
5181   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
5182
5183   // Convert shuffles that are directly supported on NEON to target-specific
5184   // DAG nodes, instead of keeping them as shuffles and matching them again
5185   // during code selection.  This is more efficient and avoids the possibility
5186   // of inconsistencies between legalization and selection.
5187   ArrayRef<int> ShuffleMask = SVN->getMask();
5188
5189   SDValue V1 = Op.getOperand(0);
5190   SDValue V2 = Op.getOperand(1);
5191
5192   if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0],
5193                                        V1.getValueType().getSimpleVT())) {
5194     int Lane = SVN->getSplatIndex();
5195     // If this is undef splat, generate it via "just" vdup, if possible.
5196     if (Lane == -1)
5197       Lane = 0;
5198
5199     if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
5200       return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
5201                          V1.getOperand(0));
5202     // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
5203     // constant. If so, we can just reference the lane's definition directly.
5204     if (V1.getOpcode() == ISD::BUILD_VECTOR &&
5205         !isa<ConstantSDNode>(V1.getOperand(Lane)))
5206       return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
5207
5208     // Otherwise, duplicate from the lane of the input vector.
5209     unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
5210
5211     // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
5212     // to make a vector of the same size as this SHUFFLE. We can ignore the
5213     // extract entirely, and canonicalise the concat using WidenVector.
5214     if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
5215       Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
5216       V1 = V1.getOperand(0);
5217     } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
5218       unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
5219       Lane -= Idx * VT.getVectorNumElements() / 2;
5220       V1 = WidenVector(V1.getOperand(Idx), DAG);
5221     } else if (VT.getSizeInBits() == 64)
5222       V1 = WidenVector(V1, DAG);
5223
5224     return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, MVT::i64));
5225   }
5226
5227   if (isREVMask(ShuffleMask, VT, 64))
5228     return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
5229   if (isREVMask(ShuffleMask, VT, 32))
5230     return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
5231   if (isREVMask(ShuffleMask, VT, 16))
5232     return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
5233
5234   bool ReverseEXT = false;
5235   unsigned Imm;
5236   if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
5237     if (ReverseEXT)
5238       std::swap(V1, V2);
5239     Imm *= getExtFactor(V1);
5240     return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
5241                        DAG.getConstant(Imm, MVT::i32));
5242   } else if (V2->getOpcode() == ISD::UNDEF &&
5243              isSingletonEXTMask(ShuffleMask, VT, Imm)) {
5244     Imm *= getExtFactor(V1);
5245     return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
5246                        DAG.getConstant(Imm, MVT::i32));
5247   }
5248
5249   unsigned WhichResult;
5250   if (isZIPMask(ShuffleMask, VT, WhichResult)) {
5251     unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5252     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5253   }
5254   if (isUZPMask(ShuffleMask, VT, WhichResult)) {
5255     unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5256     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5257   }
5258   if (isTRNMask(ShuffleMask, VT, WhichResult)) {
5259     unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5260     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5261   }
5262
5263   if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5264     unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5265     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5266   }
5267   if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5268     unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5269     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5270   }
5271   if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5272     unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5273     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5274   }
5275
5276   SDValue Concat = tryFormConcatFromShuffle(Op, DAG);
5277   if (Concat.getNode())
5278     return Concat;
5279
5280   bool DstIsLeft;
5281   int Anomaly;
5282   int NumInputElements = V1.getValueType().getVectorNumElements();
5283   if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
5284     SDValue DstVec = DstIsLeft ? V1 : V2;
5285     SDValue DstLaneV = DAG.getConstant(Anomaly, MVT::i64);
5286
5287     SDValue SrcVec = V1;
5288     int SrcLane = ShuffleMask[Anomaly];
5289     if (SrcLane >= NumInputElements) {
5290       SrcVec = V2;
5291       SrcLane -= VT.getVectorNumElements();
5292     }
5293     SDValue SrcLaneV = DAG.getConstant(SrcLane, MVT::i64);
5294
5295     EVT ScalarVT = VT.getVectorElementType();
5296
5297     if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger())
5298       ScalarVT = MVT::i32;
5299
5300     return DAG.getNode(
5301         ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
5302         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
5303         DstLaneV);
5304   }
5305
5306   // If the shuffle is not directly supported and it has 4 elements, use
5307   // the PerfectShuffle-generated table to synthesize it from other shuffles.
5308   unsigned NumElts = VT.getVectorNumElements();
5309   if (NumElts == 4) {
5310     unsigned PFIndexes[4];
5311     for (unsigned i = 0; i != 4; ++i) {
5312       if (ShuffleMask[i] < 0)
5313         PFIndexes[i] = 8;
5314       else
5315         PFIndexes[i] = ShuffleMask[i];
5316     }
5317
5318     // Compute the index in the perfect shuffle table.
5319     unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
5320                             PFIndexes[2] * 9 + PFIndexes[3];
5321     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5322     unsigned Cost = (PFEntry >> 30);
5323
5324     if (Cost <= 4)
5325       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5326   }
5327
5328   return GenerateTBL(Op, ShuffleMask, DAG);
5329 }
5330
5331 static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
5332                                APInt &UndefBits) {
5333   EVT VT = BVN->getValueType(0);
5334   APInt SplatBits, SplatUndef;
5335   unsigned SplatBitSize;
5336   bool HasAnyUndefs;
5337   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5338     unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
5339
5340     for (unsigned i = 0; i < NumSplats; ++i) {
5341       CnstBits <<= SplatBitSize;
5342       UndefBits <<= SplatBitSize;
5343       CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
5344       UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
5345     }
5346
5347     return true;
5348   }
5349
5350   return false;
5351 }
5352
5353 SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
5354                                               SelectionDAG &DAG) const {
5355   BuildVectorSDNode *BVN =
5356       dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5357   SDValue LHS = Op.getOperand(0);
5358   SDLoc dl(Op);
5359   EVT VT = Op.getValueType();
5360
5361   if (!BVN)
5362     return Op;
5363
5364   APInt CnstBits(VT.getSizeInBits(), 0);
5365   APInt UndefBits(VT.getSizeInBits(), 0);
5366   if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5367     // We only have BIC vector immediate instruction, which is and-not.
5368     CnstBits = ~CnstBits;
5369
5370     // We make use of a little bit of goto ickiness in order to avoid having to
5371     // duplicate the immediate matching logic for the undef toggled case.
5372     bool SecondTry = false;
5373   AttemptModImm:
5374
5375     if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5376       CnstBits = CnstBits.zextOrTrunc(64);
5377       uint64_t CnstVal = CnstBits.getZExtValue();
5378
5379       if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5380         CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5381         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5382         SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5383                                   DAG.getConstant(CnstVal, MVT::i32),
5384                                   DAG.getConstant(0, MVT::i32));
5385         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5386       }
5387
5388       if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5389         CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5390         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5391         SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5392                                   DAG.getConstant(CnstVal, MVT::i32),
5393                                   DAG.getConstant(8, MVT::i32));
5394         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5395       }
5396
5397       if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5398         CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5399         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5400         SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5401                                   DAG.getConstant(CnstVal, MVT::i32),
5402                                   DAG.getConstant(16, MVT::i32));
5403         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5404       }
5405
5406       if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5407         CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5408         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5409         SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5410                                   DAG.getConstant(CnstVal, MVT::i32),
5411                                   DAG.getConstant(24, MVT::i32));
5412         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5413       }
5414
5415       if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5416         CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5417         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5418         SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5419                                   DAG.getConstant(CnstVal, MVT::i32),
5420                                   DAG.getConstant(0, MVT::i32));
5421         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5422       }
5423
5424       if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5425         CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5426         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5427         SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5428                                   DAG.getConstant(CnstVal, MVT::i32),
5429                                   DAG.getConstant(8, MVT::i32));
5430         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5431       }
5432     }
5433
5434     if (SecondTry)
5435       goto FailedModImm;
5436     SecondTry = true;
5437     CnstBits = ~UndefBits;
5438     goto AttemptModImm;
5439   }
5440
5441 // We can always fall back to a non-immediate AND.
5442 FailedModImm:
5443   return Op;
5444 }
5445
5446 // Specialized code to quickly find if PotentialBVec is a BuildVector that
5447 // consists of only the same constant int value, returned in reference arg
5448 // ConstVal
5449 static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
5450                                      uint64_t &ConstVal) {
5451   BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
5452   if (!Bvec)
5453     return false;
5454   ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
5455   if (!FirstElt)
5456     return false;
5457   EVT VT = Bvec->getValueType(0);
5458   unsigned NumElts = VT.getVectorNumElements();
5459   for (unsigned i = 1; i < NumElts; ++i)
5460     if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
5461       return false;
5462   ConstVal = FirstElt->getZExtValue();
5463   return true;
5464 }
5465
5466 static unsigned getIntrinsicID(const SDNode *N) {
5467   unsigned Opcode = N->getOpcode();
5468   switch (Opcode) {
5469   default:
5470     return Intrinsic::not_intrinsic;
5471   case ISD::INTRINSIC_WO_CHAIN: {
5472     unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5473     if (IID < Intrinsic::num_intrinsics)
5474       return IID;
5475     return Intrinsic::not_intrinsic;
5476   }
5477   }
5478 }
5479
5480 // Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
5481 // to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
5482 // BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
5483 // Also, logical shift right -> sri, with the same structure.
5484 static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
5485   EVT VT = N->getValueType(0);
5486
5487   if (!VT.isVector())
5488     return SDValue();
5489
5490   SDLoc DL(N);
5491
5492   // Is the first op an AND?
5493   const SDValue And = N->getOperand(0);
5494   if (And.getOpcode() != ISD::AND)
5495     return SDValue();
5496
5497   // Is the second op an shl or lshr?
5498   SDValue Shift = N->getOperand(1);
5499   // This will have been turned into: AArch64ISD::VSHL vector, #shift
5500   // or AArch64ISD::VLSHR vector, #shift
5501   unsigned ShiftOpc = Shift.getOpcode();
5502   if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
5503     return SDValue();
5504   bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
5505
5506   // Is the shift amount constant?
5507   ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
5508   if (!C2node)
5509     return SDValue();
5510
5511   // Is the and mask vector all constant?
5512   uint64_t C1;
5513   if (!isAllConstantBuildVector(And.getOperand(1), C1))
5514     return SDValue();
5515
5516   // Is C1 == ~C2, taking into account how much one can shift elements of a
5517   // particular size?
5518   uint64_t C2 = C2node->getZExtValue();
5519   unsigned ElemSizeInBits = VT.getVectorElementType().getSizeInBits();
5520   if (C2 > ElemSizeInBits)
5521     return SDValue();
5522   unsigned ElemMask = (1 << ElemSizeInBits) - 1;
5523   if ((C1 & ElemMask) != (~C2 & ElemMask))
5524     return SDValue();
5525
5526   SDValue X = And.getOperand(0);
5527   SDValue Y = Shift.getOperand(0);
5528
5529   unsigned Intrin =
5530       IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
5531   SDValue ResultSLI =
5532       DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
5533                   DAG.getConstant(Intrin, MVT::i32), X, Y, Shift.getOperand(1));
5534
5535   DEBUG(dbgs() << "aarch64-lower: transformed: \n");
5536   DEBUG(N->dump(&DAG));
5537   DEBUG(dbgs() << "into: \n");
5538   DEBUG(ResultSLI->dump(&DAG));
5539
5540   ++NumShiftInserts;
5541   return ResultSLI;
5542 }
5543
5544 SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
5545                                              SelectionDAG &DAG) const {
5546   // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
5547   if (EnableAArch64SlrGeneration) {
5548     SDValue Res = tryLowerToSLI(Op.getNode(), DAG);
5549     if (Res.getNode())
5550       return Res;
5551   }
5552
5553   BuildVectorSDNode *BVN =
5554       dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
5555   SDValue LHS = Op.getOperand(1);
5556   SDLoc dl(Op);
5557   EVT VT = Op.getValueType();
5558
5559   // OR commutes, so try swapping the operands.
5560   if (!BVN) {
5561     LHS = Op.getOperand(0);
5562     BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5563   }
5564   if (!BVN)
5565     return Op;
5566
5567   APInt CnstBits(VT.getSizeInBits(), 0);
5568   APInt UndefBits(VT.getSizeInBits(), 0);
5569   if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5570     // We make use of a little bit of goto ickiness in order to avoid having to
5571     // duplicate the immediate matching logic for the undef toggled case.
5572     bool SecondTry = false;
5573   AttemptModImm:
5574
5575     if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5576       CnstBits = CnstBits.zextOrTrunc(64);
5577       uint64_t CnstVal = CnstBits.getZExtValue();
5578
5579       if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5580         CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5581         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5582         SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5583                                   DAG.getConstant(CnstVal, MVT::i32),
5584                                   DAG.getConstant(0, MVT::i32));
5585         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5586       }
5587
5588       if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5589         CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5590         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5591         SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5592                                   DAG.getConstant(CnstVal, MVT::i32),
5593                                   DAG.getConstant(8, MVT::i32));
5594         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5595       }
5596
5597       if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5598         CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5599         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5600         SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5601                                   DAG.getConstant(CnstVal, MVT::i32),
5602                                   DAG.getConstant(16, MVT::i32));
5603         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5604       }
5605
5606       if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5607         CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5608         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5609         SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5610                                   DAG.getConstant(CnstVal, MVT::i32),
5611                                   DAG.getConstant(24, MVT::i32));
5612         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5613       }
5614
5615       if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5616         CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5617         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5618         SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5619                                   DAG.getConstant(CnstVal, MVT::i32),
5620                                   DAG.getConstant(0, MVT::i32));
5621         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5622       }
5623
5624       if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5625         CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5626         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5627         SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5628                                   DAG.getConstant(CnstVal, MVT::i32),
5629                                   DAG.getConstant(8, MVT::i32));
5630         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5631       }
5632     }
5633
5634     if (SecondTry)
5635       goto FailedModImm;
5636     SecondTry = true;
5637     CnstBits = UndefBits;
5638     goto AttemptModImm;
5639   }
5640
5641 // We can always fall back to a non-immediate OR.
5642 FailedModImm:
5643   return Op;
5644 }
5645
5646 // Normalize the operands of BUILD_VECTOR. The value of constant operands will
5647 // be truncated to fit element width.
5648 static SDValue NormalizeBuildVector(SDValue Op,
5649                                     SelectionDAG &DAG) {
5650   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
5651   SDLoc dl(Op);
5652   EVT VT = Op.getValueType();
5653   EVT EltTy= VT.getVectorElementType();
5654
5655   if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
5656     return Op;
5657
5658   SmallVector<SDValue, 16> Ops;
5659   for (unsigned I = 0, E = VT.getVectorNumElements(); I != E; ++I) {
5660     SDValue Lane = Op.getOperand(I);
5661     if (Lane.getOpcode() == ISD::Constant) {
5662       APInt LowBits(EltTy.getSizeInBits(),
5663                     cast<ConstantSDNode>(Lane)->getZExtValue());
5664       Lane = DAG.getConstant(LowBits.getZExtValue(), MVT::i32);
5665     }
5666     Ops.push_back(Lane);
5667   }
5668   return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
5669 }
5670
5671 SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
5672                                                  SelectionDAG &DAG) const {
5673   SDLoc dl(Op);
5674   EVT VT = Op.getValueType();
5675   Op = NormalizeBuildVector(Op, DAG);
5676   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
5677
5678   APInt CnstBits(VT.getSizeInBits(), 0);
5679   APInt UndefBits(VT.getSizeInBits(), 0);
5680   if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5681     // We make use of a little bit of goto ickiness in order to avoid having to
5682     // duplicate the immediate matching logic for the undef toggled case.
5683     bool SecondTry = false;
5684   AttemptModImm:
5685
5686     if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5687       CnstBits = CnstBits.zextOrTrunc(64);
5688       uint64_t CnstVal = CnstBits.getZExtValue();
5689
5690       // Certain magic vector constants (used to express things like NOT
5691       // and NEG) are passed through unmodified.  This allows codegen patterns
5692       // for these operations to match.  Special-purpose patterns will lower
5693       // these immediates to MOVIs if it proves necessary.
5694       if (VT.isInteger() && (CnstVal == 0 || CnstVal == ~0ULL))
5695         return Op;
5696
5697       // The many faces of MOVI...
5698       if (AArch64_AM::isAdvSIMDModImmType10(CnstVal)) {
5699         CnstVal = AArch64_AM::encodeAdvSIMDModImmType10(CnstVal);
5700         if (VT.getSizeInBits() == 128) {
5701           SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::v2i64,
5702                                     DAG.getConstant(CnstVal, MVT::i32));
5703           return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5704         }
5705
5706         // Support the V64 version via subregister insertion.
5707         SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::f64,
5708                                   DAG.getConstant(CnstVal, MVT::i32));
5709         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5710       }
5711
5712       if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5713         CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5714         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5715         SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5716                                   DAG.getConstant(CnstVal, MVT::i32),
5717                                   DAG.getConstant(0, MVT::i32));
5718         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5719       }
5720
5721       if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5722         CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5723         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5724         SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5725                                   DAG.getConstant(CnstVal, MVT::i32),
5726                                   DAG.getConstant(8, MVT::i32));
5727         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5728       }
5729
5730       if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5731         CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5732         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5733         SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5734                                   DAG.getConstant(CnstVal, MVT::i32),
5735                                   DAG.getConstant(16, MVT::i32));
5736         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5737       }
5738
5739       if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5740         CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5741         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5742         SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5743                                   DAG.getConstant(CnstVal, MVT::i32),
5744                                   DAG.getConstant(24, MVT::i32));
5745         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5746       }
5747
5748       if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5749         CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5750         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5751         SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5752                                   DAG.getConstant(CnstVal, MVT::i32),
5753                                   DAG.getConstant(0, MVT::i32));
5754         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5755       }
5756
5757       if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5758         CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5759         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5760         SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
5761                                   DAG.getConstant(CnstVal, MVT::i32),
5762                                   DAG.getConstant(8, MVT::i32));
5763         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5764       }
5765
5766       if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
5767         CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
5768         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5769         SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
5770                                   DAG.getConstant(CnstVal, MVT::i32),
5771                                   DAG.getConstant(264, MVT::i32));
5772         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5773       }
5774
5775       if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
5776         CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
5777         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5778         SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
5779                                   DAG.getConstant(CnstVal, MVT::i32),
5780                                   DAG.getConstant(272, MVT::i32));
5781         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5782       }
5783
5784       if (AArch64_AM::isAdvSIMDModImmType9(CnstVal)) {
5785         CnstVal = AArch64_AM::encodeAdvSIMDModImmType9(CnstVal);
5786         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
5787         SDValue Mov = DAG.getNode(AArch64ISD::MOVI, dl, MovTy,
5788                                   DAG.getConstant(CnstVal, MVT::i32));
5789         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5790       }
5791
5792       // The few faces of FMOV...
5793       if (AArch64_AM::isAdvSIMDModImmType11(CnstVal)) {
5794         CnstVal = AArch64_AM::encodeAdvSIMDModImmType11(CnstVal);
5795         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32;
5796         SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MovTy,
5797                                   DAG.getConstant(CnstVal, MVT::i32));
5798         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5799       }
5800
5801       if (AArch64_AM::isAdvSIMDModImmType12(CnstVal) &&
5802           VT.getSizeInBits() == 128) {
5803         CnstVal = AArch64_AM::encodeAdvSIMDModImmType12(CnstVal);
5804         SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MVT::v2f64,
5805                                   DAG.getConstant(CnstVal, MVT::i32));
5806         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5807       }
5808
5809       // The many faces of MVNI...
5810       CnstVal = ~CnstVal;
5811       if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5812         CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5813         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5814         SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5815                                   DAG.getConstant(CnstVal, MVT::i32),
5816                                   DAG.getConstant(0, MVT::i32));
5817         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5818       }
5819
5820       if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5821         CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5822         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5823         SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5824                                   DAG.getConstant(CnstVal, MVT::i32),
5825                                   DAG.getConstant(8, MVT::i32));
5826         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5827       }
5828
5829       if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5830         CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5831         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5832         SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5833                                   DAG.getConstant(CnstVal, MVT::i32),
5834                                   DAG.getConstant(16, MVT::i32));
5835         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5836       }
5837
5838       if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5839         CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5840         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5841         SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5842                                   DAG.getConstant(CnstVal, MVT::i32),
5843                                   DAG.getConstant(24, MVT::i32));
5844         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5845       }
5846
5847       if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5848         CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5849         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5850         SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5851                                   DAG.getConstant(CnstVal, MVT::i32),
5852                                   DAG.getConstant(0, MVT::i32));
5853         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5854       }
5855
5856       if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5857         CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5858         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5859         SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
5860                                   DAG.getConstant(CnstVal, MVT::i32),
5861                                   DAG.getConstant(8, MVT::i32));
5862         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5863       }
5864
5865       if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
5866         CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
5867         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5868         SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
5869                                   DAG.getConstant(CnstVal, MVT::i32),
5870                                   DAG.getConstant(264, MVT::i32));
5871         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5872       }
5873
5874       if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
5875         CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
5876         MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5877         SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
5878                                   DAG.getConstant(CnstVal, MVT::i32),
5879                                   DAG.getConstant(272, MVT::i32));
5880         return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5881       }
5882     }
5883
5884     if (SecondTry)
5885       goto FailedModImm;
5886     SecondTry = true;
5887     CnstBits = UndefBits;
5888     goto AttemptModImm;
5889   }
5890 FailedModImm:
5891
5892   // Scan through the operands to find some interesting properties we can
5893   // exploit:
5894   //   1) If only one value is used, we can use a DUP, or
5895   //   2) if only the low element is not undef, we can just insert that, or
5896   //   3) if only one constant value is used (w/ some non-constant lanes),
5897   //      we can splat the constant value into the whole vector then fill
5898   //      in the non-constant lanes.
5899   //   4) FIXME: If different constant values are used, but we can intelligently
5900   //             select the values we'll be overwriting for the non-constant
5901   //             lanes such that we can directly materialize the vector
5902   //             some other way (MOVI, e.g.), we can be sneaky.
5903   unsigned NumElts = VT.getVectorNumElements();
5904   bool isOnlyLowElement = true;
5905   bool usesOnlyOneValue = true;
5906   bool usesOnlyOneConstantValue = true;
5907   bool isConstant = true;
5908   unsigned NumConstantLanes = 0;
5909   SDValue Value;
5910   SDValue ConstantValue;
5911   for (unsigned i = 0; i < NumElts; ++i) {
5912     SDValue V = Op.getOperand(i);
5913     if (V.getOpcode() == ISD::UNDEF)
5914       continue;
5915     if (i > 0)
5916       isOnlyLowElement = false;
5917     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
5918       isConstant = false;
5919
5920     if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
5921       ++NumConstantLanes;
5922       if (!ConstantValue.getNode())
5923         ConstantValue = V;
5924       else if (ConstantValue != V)
5925         usesOnlyOneConstantValue = false;
5926     }
5927
5928     if (!Value.getNode())
5929       Value = V;
5930     else if (V != Value)
5931       usesOnlyOneValue = false;
5932   }
5933
5934   if (!Value.getNode())
5935     return DAG.getUNDEF(VT);
5936
5937   if (isOnlyLowElement)
5938     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
5939
5940   // Use DUP for non-constant splats.  For f32 constant splats, reduce to
5941   // i32 and try again.
5942   if (usesOnlyOneValue) {
5943     if (!isConstant) {
5944       if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5945           Value.getValueType() != VT)
5946         return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
5947
5948       // This is actually a DUPLANExx operation, which keeps everything vectory.
5949
5950       // DUPLANE works on 128-bit vectors, widen it if necessary.
5951       SDValue Lane = Value.getOperand(1);
5952       Value = Value.getOperand(0);
5953       if (Value.getValueType().getSizeInBits() == 64)
5954         Value = WidenVector(Value, DAG);
5955
5956       unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
5957       return DAG.getNode(Opcode, dl, VT, Value, Lane);
5958     }
5959
5960     if (VT.getVectorElementType().isFloatingPoint()) {
5961       SmallVector<SDValue, 8> Ops;
5962       EVT EltTy = VT.getVectorElementType();
5963       assert ((EltTy == MVT::f16 || EltTy == MVT::f32 || EltTy == MVT::f64) &&
5964               "Unsupported floating-point vector type");
5965       MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits());
5966       for (unsigned i = 0; i < NumElts; ++i)
5967         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
5968       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
5969       SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
5970       Val = LowerBUILD_VECTOR(Val, DAG);
5971       if (Val.getNode())
5972         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
5973     }
5974   }
5975
5976   // If there was only one constant value used and for more than one lane,
5977   // start by splatting that value, then replace the non-constant lanes. This
5978   // is better than the default, which will perform a separate initialization
5979   // for each lane.
5980   if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
5981     SDValue Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
5982     // Now insert the non-constant lanes.
5983     for (unsigned i = 0; i < NumElts; ++i) {
5984       SDValue V = Op.getOperand(i);
5985       SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
5986       if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) {
5987         // Note that type legalization likely mucked about with the VT of the
5988         // source operand, so we may have to convert it here before inserting.
5989         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
5990       }
5991     }
5992     return Val;
5993   }
5994
5995   // If all elements are constants and the case above didn't get hit, fall back
5996   // to the default expansion, which will generate a load from the constant
5997   // pool.
5998   if (isConstant)
5999     return SDValue();
6000
6001   // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
6002   if (NumElts >= 4) {
6003     SDValue shuffle = ReconstructShuffle(Op, DAG);
6004     if (shuffle != SDValue())
6005       return shuffle;
6006   }
6007
6008   // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
6009   // know the default expansion would otherwise fall back on something even
6010   // worse. For a vector with one or two non-undef values, that's
6011   // scalar_to_vector for the elements followed by a shuffle (provided the
6012   // shuffle is valid for the target) and materialization element by element
6013   // on the stack followed by a load for everything else.
6014   if (!isConstant && !usesOnlyOneValue) {
6015     SDValue Vec = DAG.getUNDEF(VT);
6016     SDValue Op0 = Op.getOperand(0);
6017     unsigned ElemSize = VT.getVectorElementType().getSizeInBits();
6018     unsigned i = 0;
6019     // For 32 and 64 bit types, use INSERT_SUBREG for lane zero to
6020     // a) Avoid a RMW dependency on the full vector register, and
6021     // b) Allow the register coalescer to fold away the copy if the
6022     //    value is already in an S or D register.
6023     if (Op0.getOpcode() != ISD::UNDEF && (ElemSize == 32 || ElemSize == 64)) {
6024       unsigned SubIdx = ElemSize == 32 ? AArch64::ssub : AArch64::dsub;
6025       MachineSDNode *N =
6026           DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Vec, Op0,
6027                              DAG.getTargetConstant(SubIdx, MVT::i32));
6028       Vec = SDValue(N, 0);
6029       ++i;
6030     }
6031     for (; i < NumElts; ++i) {
6032       SDValue V = Op.getOperand(i);
6033       if (V.getOpcode() == ISD::UNDEF)
6034         continue;
6035       SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
6036       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
6037     }
6038     return Vec;
6039   }
6040
6041   // Just use the default expansion. We failed to find a better alternative.
6042   return SDValue();
6043 }
6044
6045 SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
6046                                                       SelectionDAG &DAG) const {
6047   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
6048
6049   // Check for non-constant or out of range lane.
6050   EVT VT = Op.getOperand(0).getValueType();
6051   ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
6052   if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
6053     return SDValue();
6054
6055
6056   // Insertion/extraction are legal for V128 types.
6057   if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
6058       VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
6059       VT == MVT::v8f16)
6060     return Op;
6061
6062   if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
6063       VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
6064     return SDValue();
6065
6066   // For V64 types, we perform insertion by expanding the value
6067   // to a V128 type and perform the insertion on that.
6068   SDLoc DL(Op);
6069   SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6070   EVT WideTy = WideVec.getValueType();
6071
6072   SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
6073                              Op.getOperand(1), Op.getOperand(2));
6074   // Re-narrow the resultant vector.
6075   return NarrowVector(Node, DAG);
6076 }
6077
6078 SDValue
6079 AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6080                                                SelectionDAG &DAG) const {
6081   assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
6082
6083   // Check for non-constant or out of range lane.
6084   EVT VT = Op.getOperand(0).getValueType();
6085   ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6086   if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
6087     return SDValue();
6088
6089
6090   // Insertion/extraction are legal for V128 types.
6091   if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
6092       VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
6093       VT == MVT::v8f16)
6094     return Op;
6095
6096   if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
6097       VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
6098     return SDValue();
6099
6100   // For V64 types, we perform extraction by expanding the value
6101   // to a V128 type and perform the extraction on that.
6102   SDLoc DL(Op);
6103   SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6104   EVT WideTy = WideVec.getValueType();
6105
6106   EVT ExtrTy = WideTy.getVectorElementType();
6107   if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
6108     ExtrTy = MVT::i32;
6109
6110   // For extractions, we just return the result directly.
6111   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
6112                      Op.getOperand(1));
6113 }
6114
6115 SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
6116                                                       SelectionDAG &DAG) const {
6117   EVT VT = Op.getOperand(0).getValueType();
6118   SDLoc dl(Op);
6119   // Just in case...
6120   if (!VT.isVector())
6121     return SDValue();
6122
6123   ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6124   if (!Cst)
6125     return SDValue();
6126   unsigned Val = Cst->getZExtValue();
6127
6128   unsigned Size = Op.getValueType().getSizeInBits();
6129   if (Val == 0) {
6130     switch (Size) {
6131     case 8:
6132       return DAG.getTargetExtractSubreg(AArch64::bsub, dl, Op.getValueType(),
6133                                         Op.getOperand(0));
6134     case 16:
6135       return DAG.getTargetExtractSubreg(AArch64::hsub, dl, Op.getValueType(),
6136                                         Op.getOperand(0));
6137     case 32:
6138       return DAG.getTargetExtractSubreg(AArch64::ssub, dl, Op.getValueType(),
6139                                         Op.getOperand(0));
6140     case 64:
6141       return DAG.getTargetExtractSubreg(AArch64::dsub, dl, Op.getValueType(),
6142                                         Op.getOperand(0));
6143     default:
6144       llvm_unreachable("Unexpected vector type in extract_subvector!");
6145     }
6146   }
6147   // If this is extracting the upper 64-bits of a 128-bit vector, we match
6148   // that directly.
6149   if (Size == 64 && Val * VT.getVectorElementType().getSizeInBits() == 64)
6150     return Op;
6151
6152   return SDValue();
6153 }
6154
6155 bool AArch64TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
6156                                                EVT VT) const {
6157   if (VT.getVectorNumElements() == 4 &&
6158       (VT.is128BitVector() || VT.is64BitVector())) {
6159     unsigned PFIndexes[4];
6160     for (unsigned i = 0; i != 4; ++i) {
6161       if (M[i] < 0)
6162         PFIndexes[i] = 8;
6163       else
6164         PFIndexes[i] = M[i];
6165     }
6166
6167     // Compute the index in the perfect shuffle table.
6168     unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
6169                             PFIndexes[2] * 9 + PFIndexes[3];
6170     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6171     unsigned Cost = (PFEntry >> 30);
6172
6173     if (Cost <= 4)
6174       return true;
6175   }
6176
6177   bool DummyBool;
6178   int DummyInt;
6179   unsigned DummyUnsigned;
6180
6181   return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
6182           isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
6183           isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
6184           // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
6185           isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
6186           isZIPMask(M, VT, DummyUnsigned) ||
6187           isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
6188           isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
6189           isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
6190           isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
6191           isConcatMask(M, VT, VT.getSizeInBits() == 128));
6192 }
6193
6194 /// getVShiftImm - Check if this is a valid build_vector for the immediate
6195 /// operand of a vector shift operation, where all the elements of the
6196 /// build_vector must have the same constant integer value.
6197 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
6198   // Ignore bit_converts.
6199   while (Op.getOpcode() == ISD::BITCAST)
6200     Op = Op.getOperand(0);
6201   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6202   APInt SplatBits, SplatUndef;
6203   unsigned SplatBitSize;
6204   bool HasAnyUndefs;
6205   if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
6206                                     HasAnyUndefs, ElementBits) ||
6207       SplatBitSize > ElementBits)
6208     return false;
6209   Cnt = SplatBits.getSExtValue();
6210   return true;
6211 }
6212
6213 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
6214 /// operand of a vector shift left operation.  That value must be in the range:
6215 ///   0 <= Value < ElementBits for a left shift; or
6216 ///   0 <= Value <= ElementBits for a long left shift.
6217 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
6218   assert(VT.isVector() && "vector shift count is not a vector type");
6219   unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
6220   if (!getVShiftImm(Op, ElementBits, Cnt))
6221     return false;
6222   return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
6223 }
6224
6225 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
6226 /// operand of a vector shift right operation.  For a shift opcode, the value
6227 /// is positive, but for an intrinsic the value count must be negative. The
6228 /// absolute value must be in the range:
6229 ///   1 <= |Value| <= ElementBits for a right shift; or
6230 ///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
6231 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
6232                          int64_t &Cnt) {
6233   assert(VT.isVector() && "vector shift count is not a vector type");
6234   unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
6235   if (!getVShiftImm(Op, ElementBits, Cnt))
6236     return false;
6237   if (isIntrinsic)
6238     Cnt = -Cnt;
6239   return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
6240 }
6241
6242 SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
6243                                                       SelectionDAG &DAG) const {
6244   EVT VT = Op.getValueType();
6245   SDLoc DL(Op);
6246   int64_t Cnt;
6247
6248   if (!Op.getOperand(1).getValueType().isVector())
6249     return Op;
6250   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
6251
6252   switch (Op.getOpcode()) {
6253   default:
6254     llvm_unreachable("unexpected shift opcode");
6255
6256   case ISD::SHL:
6257     if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
6258       return DAG.getNode(AArch64ISD::VSHL, SDLoc(Op), VT, Op.getOperand(0),
6259                          DAG.getConstant(Cnt, MVT::i32));
6260     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
6261                        DAG.getConstant(Intrinsic::aarch64_neon_ushl, MVT::i32),
6262                        Op.getOperand(0), Op.getOperand(1));
6263   case ISD::SRA:
6264   case ISD::SRL:
6265     // Right shift immediate
6266     if (isVShiftRImm(Op.getOperand(1), VT, false, false, Cnt) &&
6267         Cnt < EltSize) {
6268       unsigned Opc =
6269           (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
6270       return DAG.getNode(Opc, SDLoc(Op), VT, Op.getOperand(0),
6271                          DAG.getConstant(Cnt, MVT::i32));
6272     }
6273
6274     // Right shift register.  Note, there is not a shift right register
6275     // instruction, but the shift left register instruction takes a signed
6276     // value, where negative numbers specify a right shift.
6277     unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
6278                                                 : Intrinsic::aarch64_neon_ushl;
6279     // negate the shift amount
6280     SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
6281     SDValue NegShiftLeft =
6282         DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
6283                     DAG.getConstant(Opc, MVT::i32), Op.getOperand(0), NegShift);
6284     return NegShiftLeft;
6285   }
6286
6287   return SDValue();
6288 }
6289
6290 static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
6291                                     AArch64CC::CondCode CC, bool NoNans, EVT VT,
6292                                     SDLoc dl, SelectionDAG &DAG) {
6293   EVT SrcVT = LHS.getValueType();
6294   assert(VT.getSizeInBits() == SrcVT.getSizeInBits() &&
6295          "function only supposed to emit natural comparisons");
6296
6297   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
6298   APInt CnstBits(VT.getSizeInBits(), 0);
6299   APInt UndefBits(VT.getSizeInBits(), 0);
6300   bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
6301   bool IsZero = IsCnst && (CnstBits == 0);
6302
6303   if (SrcVT.getVectorElementType().isFloatingPoint()) {
6304     switch (CC) {
6305     default:
6306       return SDValue();
6307     case AArch64CC::NE: {
6308       SDValue Fcmeq;
6309       if (IsZero)
6310         Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6311       else
6312         Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6313       return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
6314     }
6315     case AArch64CC::EQ:
6316       if (IsZero)
6317         return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6318       return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6319     case AArch64CC::GE:
6320       if (IsZero)
6321         return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
6322       return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
6323     case AArch64CC::GT:
6324       if (IsZero)
6325         return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
6326       return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
6327     case AArch64CC::LS:
6328       if (IsZero)
6329         return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
6330       return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
6331     case AArch64CC::LT:
6332       if (!NoNans)
6333         return SDValue();
6334     // If we ignore NaNs then we can use to the MI implementation.
6335     // Fallthrough.
6336     case AArch64CC::MI:
6337       if (IsZero)
6338         return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
6339       return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
6340     }
6341   }
6342
6343   switch (CC) {
6344   default:
6345     return SDValue();
6346   case AArch64CC::NE: {
6347     SDValue Cmeq;
6348     if (IsZero)
6349       Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6350     else
6351       Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6352     return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
6353   }
6354   case AArch64CC::EQ:
6355     if (IsZero)
6356       return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6357     return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6358   case AArch64CC::GE:
6359     if (IsZero)
6360       return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
6361     return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
6362   case AArch64CC::GT:
6363     if (IsZero)
6364       return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
6365     return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
6366   case AArch64CC::LE:
6367     if (IsZero)
6368       return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
6369     return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
6370   case AArch64CC::LS:
6371     return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
6372   case AArch64CC::LO:
6373     return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
6374   case AArch64CC::LT:
6375     if (IsZero)
6376       return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
6377     return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
6378   case AArch64CC::HI:
6379     return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
6380   case AArch64CC::HS:
6381     return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
6382   }
6383 }
6384
6385 SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
6386                                            SelectionDAG &DAG) const {
6387   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6388   SDValue LHS = Op.getOperand(0);
6389   SDValue RHS = Op.getOperand(1);
6390   EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger();
6391   SDLoc dl(Op);
6392
6393   if (LHS.getValueType().getVectorElementType().isInteger()) {
6394     assert(LHS.getValueType() == RHS.getValueType());
6395     AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
6396     SDValue Cmp =
6397         EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG);
6398     return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
6399   }
6400
6401   assert(LHS.getValueType().getVectorElementType() == MVT::f32 ||
6402          LHS.getValueType().getVectorElementType() == MVT::f64);
6403
6404   // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
6405   // clean.  Some of them require two branches to implement.
6406   AArch64CC::CondCode CC1, CC2;
6407   bool ShouldInvert;
6408   changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
6409
6410   bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
6411   SDValue Cmp =
6412       EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG);
6413   if (!Cmp.getNode())
6414     return SDValue();
6415
6416   if (CC2 != AArch64CC::AL) {
6417     SDValue Cmp2 =
6418         EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG);
6419     if (!Cmp2.getNode())
6420       return SDValue();
6421
6422     Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2);
6423   }
6424
6425   Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
6426
6427   if (ShouldInvert)
6428     return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
6429
6430   return Cmp;
6431 }
6432
6433 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
6434 /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
6435 /// specified in the intrinsic calls.
6436 bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
6437                                                const CallInst &I,
6438                                                unsigned Intrinsic) const {
6439   switch (Intrinsic) {
6440   case Intrinsic::aarch64_neon_ld2:
6441   case Intrinsic::aarch64_neon_ld3:
6442   case Intrinsic::aarch64_neon_ld4:
6443   case Intrinsic::aarch64_neon_ld1x2:
6444   case Intrinsic::aarch64_neon_ld1x3:
6445   case Intrinsic::aarch64_neon_ld1x4:
6446   case Intrinsic::aarch64_neon_ld2lane:
6447   case Intrinsic::aarch64_neon_ld3lane:
6448   case Intrinsic::aarch64_neon_ld4lane:
6449   case Intrinsic::aarch64_neon_ld2r:
6450   case Intrinsic::aarch64_neon_ld3r:
6451   case Intrinsic::aarch64_neon_ld4r: {
6452     Info.opc = ISD::INTRINSIC_W_CHAIN;
6453     // Conservatively set memVT to the entire set of vectors loaded.
6454     uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
6455     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6456     Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6457     Info.offset = 0;
6458     Info.align = 0;
6459     Info.vol = false; // volatile loads with NEON intrinsics not supported
6460     Info.readMem = true;
6461     Info.writeMem = false;
6462     return true;
6463   }
6464   case Intrinsic::aarch64_neon_st2:
6465   case Intrinsic::aarch64_neon_st3:
6466   case Intrinsic::aarch64_neon_st4:
6467   case Intrinsic::aarch64_neon_st1x2:
6468   case Intrinsic::aarch64_neon_st1x3:
6469   case Intrinsic::aarch64_neon_st1x4:
6470   case Intrinsic::aarch64_neon_st2lane:
6471   case Intrinsic::aarch64_neon_st3lane:
6472   case Intrinsic::aarch64_neon_st4lane: {
6473     Info.opc = ISD::INTRINSIC_VOID;
6474     // Conservatively set memVT to the entire set of vectors stored.
6475     unsigned NumElts = 0;
6476     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
6477       Type *ArgTy = I.getArgOperand(ArgI)->getType();
6478       if (!ArgTy->isVectorTy())
6479         break;
6480       NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
6481     }
6482     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6483     Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6484     Info.offset = 0;
6485     Info.align = 0;
6486     Info.vol = false; // volatile stores with NEON intrinsics not supported
6487     Info.readMem = false;
6488     Info.writeMem = true;
6489     return true;
6490   }
6491   case Intrinsic::aarch64_ldaxr:
6492   case Intrinsic::aarch64_ldxr: {
6493     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
6494     Info.opc = ISD::INTRINSIC_W_CHAIN;
6495     Info.memVT = MVT::getVT(PtrTy->getElementType());
6496     Info.ptrVal = I.getArgOperand(0);
6497     Info.offset = 0;
6498     Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
6499     Info.vol = true;
6500     Info.readMem = true;
6501     Info.writeMem = false;
6502     return true;
6503   }
6504   case Intrinsic::aarch64_stlxr:
6505   case Intrinsic::aarch64_stxr: {
6506     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
6507     Info.opc = ISD::INTRINSIC_W_CHAIN;
6508     Info.memVT = MVT::getVT(PtrTy->getElementType());
6509     Info.ptrVal = I.getArgOperand(1);
6510     Info.offset = 0;
6511     Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
6512     Info.vol = true;
6513     Info.readMem = false;
6514     Info.writeMem = true;
6515     return true;
6516   }
6517   case Intrinsic::aarch64_ldaxp:
6518   case Intrinsic::aarch64_ldxp: {
6519     Info.opc = ISD::INTRINSIC_W_CHAIN;
6520     Info.memVT = MVT::i128;
6521     Info.ptrVal = I.getArgOperand(0);
6522     Info.offset = 0;
6523     Info.align = 16;
6524     Info.vol = true;
6525     Info.readMem = true;
6526     Info.writeMem = false;
6527     return true;
6528   }
6529   case Intrinsic::aarch64_stlxp:
6530   case Intrinsic::aarch64_stxp: {
6531     Info.opc = ISD::INTRINSIC_W_CHAIN;
6532     Info.memVT = MVT::i128;
6533     Info.ptrVal = I.getArgOperand(2);
6534     Info.offset = 0;
6535     Info.align = 16;
6536     Info.vol = true;
6537     Info.readMem = false;
6538     Info.writeMem = true;
6539     return true;
6540   }
6541   default:
6542     break;
6543   }
6544
6545   return false;
6546 }
6547
6548 // Truncations from 64-bit GPR to 32-bit GPR is free.
6549 bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
6550   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6551     return false;
6552   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6553   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
6554   return NumBits1 > NumBits2;
6555 }
6556 bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
6557   if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
6558     return false;
6559   unsigned NumBits1 = VT1.getSizeInBits();
6560   unsigned NumBits2 = VT2.getSizeInBits();
6561   return NumBits1 > NumBits2;
6562 }
6563
6564 /// Check if it is profitable to hoist instruction in then/else to if.
6565 /// Not profitable if I and it's user can form a FMA instruction
6566 /// because we prefer FMSUB/FMADD.
6567 bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const {
6568   if (I->getOpcode() != Instruction::FMul)
6569     return true;
6570
6571   if (I->getNumUses() != 1)
6572     return true;
6573
6574   Instruction *User = I->user_back();
6575
6576   if (User &&
6577       !(User->getOpcode() == Instruction::FSub ||
6578         User->getOpcode() == Instruction::FAdd))
6579     return true;
6580
6581   const TargetOptions &Options = getTargetMachine().Options;
6582   EVT VT = getValueType(User->getOperand(0)->getType());
6583
6584   if (isFMAFasterThanFMulAndFAdd(VT) &&
6585       isOperationLegalOrCustom(ISD::FMA, VT) &&
6586       (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath))
6587     return false;
6588
6589   return true;
6590 }
6591
6592 // All 32-bit GPR operations implicitly zero the high-half of the corresponding
6593 // 64-bit GPR.
6594 bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
6595   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6596     return false;
6597   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6598   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
6599   return NumBits1 == 32 && NumBits2 == 64;
6600 }
6601 bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
6602   if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
6603     return false;
6604   unsigned NumBits1 = VT1.getSizeInBits();
6605   unsigned NumBits2 = VT2.getSizeInBits();
6606   return NumBits1 == 32 && NumBits2 == 64;
6607 }
6608
6609 bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
6610   EVT VT1 = Val.getValueType();
6611   if (isZExtFree(VT1, VT2)) {
6612     return true;
6613   }
6614
6615   if (Val.getOpcode() != ISD::LOAD)
6616     return false;
6617
6618   // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
6619   return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
6620           VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
6621           VT1.getSizeInBits() <= 32);
6622 }
6623
6624 bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const {
6625   if (isa<FPExtInst>(Ext))
6626     return false;
6627
6628   // Vector types are next free.
6629   if (Ext->getType()->isVectorTy())
6630     return false;
6631
6632   for (const Use &U : Ext->uses()) {
6633     // The extension is free if we can fold it with a left shift in an
6634     // addressing mode or an arithmetic operation: add, sub, and cmp.
6635
6636     // Is there a shift?
6637     const Instruction *Instr = cast<Instruction>(U.getUser());
6638
6639     // Is this a constant shift?
6640     switch (Instr->getOpcode()) {
6641     case Instruction::Shl:
6642       if (!isa<ConstantInt>(Instr->getOperand(1)))
6643         return false;
6644       break;
6645     case Instruction::GetElementPtr: {
6646       gep_type_iterator GTI = gep_type_begin(Instr);
6647       std::advance(GTI, U.getOperandNo());
6648       Type *IdxTy = *GTI;
6649       // This extension will end up with a shift because of the scaling factor.
6650       // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0.
6651       // Get the shift amount based on the scaling factor:
6652       // log2(sizeof(IdxTy)) - log2(8).
6653       uint64_t ShiftAmt =
6654         countTrailingZeros(getDataLayout()->getTypeStoreSizeInBits(IdxTy)) - 3;
6655       // Is the constant foldable in the shift of the addressing mode?
6656       // I.e., shift amount is between 1 and 4 inclusive.
6657       if (ShiftAmt == 0 || ShiftAmt > 4)
6658         return false;
6659       break;
6660     }
6661     case Instruction::Trunc:
6662       // Check if this is a noop.
6663       // trunc(sext ty1 to ty2) to ty1.
6664       if (Instr->getType() == Ext->getOperand(0)->getType())
6665         continue;
6666     // FALL THROUGH.
6667     default:
6668       return false;
6669     }
6670
6671     // At this point we can use the bfm family, so this extension is free
6672     // for that use.
6673   }
6674   return true;
6675 }
6676
6677 bool AArch64TargetLowering::hasPairedLoad(Type *LoadedType,
6678                                           unsigned &RequiredAligment) const {
6679   if (!LoadedType->isIntegerTy() && !LoadedType->isFloatTy())
6680     return false;
6681   // Cyclone supports unaligned accesses.
6682   RequiredAligment = 0;
6683   unsigned NumBits = LoadedType->getPrimitiveSizeInBits();
6684   return NumBits == 32 || NumBits == 64;
6685 }
6686
6687 bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
6688                                           unsigned &RequiredAligment) const {
6689   if (!LoadedType.isSimple() ||
6690       (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
6691     return false;
6692   // Cyclone supports unaligned accesses.
6693   RequiredAligment = 0;
6694   unsigned NumBits = LoadedType.getSizeInBits();
6695   return NumBits == 32 || NumBits == 64;
6696 }
6697
6698 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
6699                        unsigned AlignCheck) {
6700   return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
6701           (DstAlign == 0 || DstAlign % AlignCheck == 0));
6702 }
6703
6704 EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
6705                                                unsigned SrcAlign, bool IsMemset,
6706                                                bool ZeroMemset,
6707                                                bool MemcpyStrSrc,
6708                                                MachineFunction &MF) const {
6709   // Don't use AdvSIMD to implement 16-byte memset. It would have taken one
6710   // instruction to materialize the v2i64 zero and one store (with restrictive
6711   // addressing mode). Just do two i64 store of zero-registers.
6712   bool Fast;
6713   const Function *F = MF.getFunction();
6714   if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 &&
6715       !F->hasFnAttribute(Attribute::NoImplicitFloat) &&
6716       (memOpAlign(SrcAlign, DstAlign, 16) ||
6717        (allowsMisalignedMemoryAccesses(MVT::f128, 0, 1, &Fast) && Fast)))
6718     return MVT::f128;
6719
6720   if (Size >= 8 &&
6721       (memOpAlign(SrcAlign, DstAlign, 8) ||
6722        (allowsMisalignedMemoryAccesses(MVT::i64, 0, 1, &Fast) && Fast)))
6723     return MVT::i64;
6724
6725   if (Size >= 4 &&
6726       (memOpAlign(SrcAlign, DstAlign, 4) ||
6727        (allowsMisalignedMemoryAccesses(MVT::i32, 0, 1, &Fast) && Fast)))
6728     return MVT::i32;
6729
6730   return MVT::Other;
6731 }
6732
6733 // 12-bit optionally shifted immediates are legal for adds.
6734 bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
6735   if ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0))
6736     return true;
6737   return false;
6738 }
6739
6740 // Integer comparisons are implemented with ADDS/SUBS, so the range of valid
6741 // immediates is the same as for an add or a sub.
6742 bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
6743   if (Immed < 0)
6744     Immed *= -1;
6745   return isLegalAddImmediate(Immed);
6746 }
6747
6748 /// isLegalAddressingMode - Return true if the addressing mode represented
6749 /// by AM is legal for this target, for a load/store of the specified type.
6750 bool AArch64TargetLowering::isLegalAddressingMode(const AddrMode &AM,
6751                                                   Type *Ty) const {
6752   // AArch64 has five basic addressing modes:
6753   //  reg
6754   //  reg + 9-bit signed offset
6755   //  reg + SIZE_IN_BYTES * 12-bit unsigned offset
6756   //  reg1 + reg2
6757   //  reg + SIZE_IN_BYTES * reg
6758
6759   // No global is ever allowed as a base.
6760   if (AM.BaseGV)
6761     return false;
6762
6763   // No reg+reg+imm addressing.
6764   if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
6765     return false;
6766
6767   // check reg + imm case:
6768   // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
6769   uint64_t NumBytes = 0;
6770   if (Ty->isSized()) {
6771     uint64_t NumBits = getDataLayout()->getTypeSizeInBits(Ty);
6772     NumBytes = NumBits / 8;
6773     if (!isPowerOf2_64(NumBits))
6774       NumBytes = 0;
6775   }
6776
6777   if (!AM.Scale) {
6778     int64_t Offset = AM.BaseOffs;
6779
6780     // 9-bit signed offset
6781     if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1)
6782       return true;
6783
6784     // 12-bit unsigned offset
6785     unsigned shift = Log2_64(NumBytes);
6786     if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
6787         // Must be a multiple of NumBytes (NumBytes is a power of 2)
6788         (Offset >> shift) << shift == Offset)
6789       return true;
6790     return false;
6791   }
6792
6793   // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
6794
6795   if (!AM.Scale || AM.Scale == 1 ||
6796       (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes))
6797     return true;
6798   return false;
6799 }
6800
6801 int AArch64TargetLowering::getScalingFactorCost(const AddrMode &AM,
6802                                                 Type *Ty) const {
6803   // Scaling factors are not free at all.
6804   // Operands                     | Rt Latency
6805   // -------------------------------------------
6806   // Rt, [Xn, Xm]                 | 4
6807   // -------------------------------------------
6808   // Rt, [Xn, Xm, lsl #imm]       | Rn: 4 Rm: 5
6809   // Rt, [Xn, Wm, <extend> #imm]  |
6810   if (isLegalAddressingMode(AM, Ty))
6811     // Scale represents reg2 * scale, thus account for 1 if
6812     // it is not equal to 0 or 1.
6813     return AM.Scale != 0 && AM.Scale != 1;
6814   return -1;
6815 }
6816
6817 bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
6818   VT = VT.getScalarType();
6819
6820   if (!VT.isSimple())
6821     return false;
6822
6823   switch (VT.getSimpleVT().SimpleTy) {
6824   case MVT::f32:
6825   case MVT::f64:
6826     return true;
6827   default:
6828     break;
6829   }
6830
6831   return false;
6832 }
6833
6834 const MCPhysReg *
6835 AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
6836   // LR is a callee-save register, but we must treat it as clobbered by any call
6837   // site. Hence we include LR in the scratch registers, which are in turn added
6838   // as implicit-defs for stackmaps and patchpoints.
6839   static const MCPhysReg ScratchRegs[] = {
6840     AArch64::X16, AArch64::X17, AArch64::LR, 0
6841   };
6842   return ScratchRegs;
6843 }
6844
6845 bool
6846 AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const {
6847   EVT VT = N->getValueType(0);
6848     // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
6849     // it with shift to let it be lowered to UBFX.
6850   if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
6851       isa<ConstantSDNode>(N->getOperand(1))) {
6852     uint64_t TruncMask = N->getConstantOperandVal(1);
6853     if (isMask_64(TruncMask) &&
6854       N->getOperand(0).getOpcode() == ISD::SRL &&
6855       isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
6856       return false;
6857   }
6858   return true;
6859 }
6860
6861 bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
6862                                                               Type *Ty) const {
6863   assert(Ty->isIntegerTy());
6864
6865   unsigned BitSize = Ty->getPrimitiveSizeInBits();
6866   if (BitSize == 0)
6867     return false;
6868
6869   int64_t Val = Imm.getSExtValue();
6870   if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
6871     return true;
6872
6873   if ((int64_t)Val < 0)
6874     Val = ~Val;
6875   if (BitSize == 32)
6876     Val &= (1LL << 32) - 1;
6877
6878   unsigned LZ = countLeadingZeros((uint64_t)Val);
6879   unsigned Shift = (63 - LZ) / 16;
6880   // MOVZ is free so return true for one or fewer MOVK.
6881   return Shift < 3;
6882 }
6883
6884 // Generate SUBS and CSEL for integer abs.
6885 static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
6886   EVT VT = N->getValueType(0);
6887
6888   SDValue N0 = N->getOperand(0);
6889   SDValue N1 = N->getOperand(1);
6890   SDLoc DL(N);
6891
6892   // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
6893   // and change it to SUB and CSEL.
6894   if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
6895       N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
6896       N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
6897     if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
6898       if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
6899         SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
6900                                   N0.getOperand(0));
6901         // Generate SUBS & CSEL.
6902         SDValue Cmp =
6903             DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
6904                         N0.getOperand(0), DAG.getConstant(0, VT));
6905         return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
6906                            DAG.getConstant(AArch64CC::PL, MVT::i32),
6907                            SDValue(Cmp.getNode(), 1));
6908       }
6909   return SDValue();
6910 }
6911
6912 // performXorCombine - Attempts to handle integer ABS.
6913 static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
6914                                  TargetLowering::DAGCombinerInfo &DCI,
6915                                  const AArch64Subtarget *Subtarget) {
6916   if (DCI.isBeforeLegalizeOps())
6917     return SDValue();
6918
6919   return performIntegerAbsCombine(N, DAG);
6920 }
6921
6922 SDValue
6923 AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
6924                                      SelectionDAG &DAG,
6925                                      std::vector<SDNode *> *Created) const {
6926   // fold (sdiv X, pow2)
6927   EVT VT = N->getValueType(0);
6928   if ((VT != MVT::i32 && VT != MVT::i64) ||
6929       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
6930     return SDValue();
6931
6932   SDLoc DL(N);
6933   SDValue N0 = N->getOperand(0);
6934   unsigned Lg2 = Divisor.countTrailingZeros();
6935   SDValue Zero = DAG.getConstant(0, VT);
6936   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, VT);
6937
6938   // Add (N0 < 0) ? Pow2 - 1 : 0;
6939   SDValue CCVal;
6940   SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
6941   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
6942   SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);
6943
6944   if (Created) {
6945     Created->push_back(Cmp.getNode());
6946     Created->push_back(Add.getNode());
6947     Created->push_back(CSel.getNode());
6948   }
6949
6950   // Divide by pow2.
6951   SDValue SRA =
6952       DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, MVT::i64));
6953
6954   // If we're dividing by a positive value, we're done.  Otherwise, we must
6955   // negate the result.
6956   if (Divisor.isNonNegative())
6957     return SRA;
6958
6959   if (Created)
6960     Created->push_back(SRA.getNode());
6961   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT), SRA);
6962 }
6963
6964 static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
6965                                  TargetLowering::DAGCombinerInfo &DCI,
6966                                  const AArch64Subtarget *Subtarget) {
6967   if (DCI.isBeforeLegalizeOps())
6968     return SDValue();
6969
6970   // Multiplication of a power of two plus/minus one can be done more
6971   // cheaply as as shift+add/sub. For now, this is true unilaterally. If
6972   // future CPUs have a cheaper MADD instruction, this may need to be
6973   // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
6974   // 64-bit is 5 cycles, so this is always a win.
6975   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6976     APInt Value = C->getAPIntValue();
6977     EVT VT = N->getValueType(0);
6978     if (Value.isNonNegative()) {
6979       // (mul x, 2^N + 1) => (add (shl x, N), x)
6980       APInt VM1 = Value - 1;
6981       if (VM1.isPowerOf2()) {
6982         SDValue ShiftedVal =
6983             DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6984                         DAG.getConstant(VM1.logBase2(), MVT::i64));
6985         return DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal,
6986                            N->getOperand(0));
6987       }
6988       // (mul x, 2^N - 1) => (sub (shl x, N), x)
6989       APInt VP1 = Value + 1;
6990       if (VP1.isPowerOf2()) {
6991         SDValue ShiftedVal =
6992             DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
6993                         DAG.getConstant(VP1.logBase2(), MVT::i64));
6994         return DAG.getNode(ISD::SUB, SDLoc(N), VT, ShiftedVal,
6995                            N->getOperand(0));
6996       }
6997     } else {
6998       // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
6999       APInt VNP1 = -Value + 1;
7000       if (VNP1.isPowerOf2()) {
7001         SDValue ShiftedVal =
7002             DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
7003                         DAG.getConstant(VNP1.logBase2(), MVT::i64));
7004         return DAG.getNode(ISD::SUB, SDLoc(N), VT, N->getOperand(0),
7005                            ShiftedVal);
7006       }
7007       // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
7008       APInt VNM1 = -Value - 1;
7009       if (VNM1.isPowerOf2()) {
7010         SDValue ShiftedVal =
7011             DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
7012                         DAG.getConstant(VNM1.logBase2(), MVT::i64));
7013         SDValue Add =
7014             DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal, N->getOperand(0));
7015         return DAG.getNode(ISD::SUB, SDLoc(N), VT, DAG.getConstant(0, VT), Add);
7016       }
7017     }
7018   }
7019   return SDValue();
7020 }
7021
7022 static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
7023                                                          SelectionDAG &DAG) {
7024   // Take advantage of vector comparisons producing 0 or -1 in each lane to
7025   // optimize away operation when it's from a constant.
7026   //
7027   // The general transformation is:
7028   //    UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
7029   //       AND(VECTOR_CMP(x,y), constant2)
7030   //    constant2 = UNARYOP(constant)
7031
7032   // Early exit if this isn't a vector operation, the operand of the
7033   // unary operation isn't a bitwise AND, or if the sizes of the operations
7034   // aren't the same.
7035   EVT VT = N->getValueType(0);
7036   if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
7037       N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
7038       VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
7039     return SDValue();
7040
7041   // Now check that the other operand of the AND is a constant. We could
7042   // make the transformation for non-constant splats as well, but it's unclear
7043   // that would be a benefit as it would not eliminate any operations, just
7044   // perform one more step in scalar code before moving to the vector unit.
7045   if (BuildVectorSDNode *BV =
7046           dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
7047     // Bail out if the vector isn't a constant.
7048     if (!BV->isConstant())
7049       return SDValue();
7050
7051     // Everything checks out. Build up the new and improved node.
7052     SDLoc DL(N);
7053     EVT IntVT = BV->getValueType(0);
7054     // Create a new constant of the appropriate type for the transformed
7055     // DAG.
7056     SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
7057     // The AND node needs bitcasts to/from an integer vector type around it.
7058     SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
7059     SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
7060                                  N->getOperand(0)->getOperand(0), MaskConst);
7061     SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
7062     return Res;
7063   }
7064
7065   return SDValue();
7066 }
7067
7068 static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG,
7069                                      const AArch64Subtarget *Subtarget) {
7070   // First try to optimize away the conversion when it's conditionally from
7071   // a constant. Vectors only.
7072   SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG);
7073   if (Res != SDValue())
7074     return Res;
7075
7076   EVT VT = N->getValueType(0);
7077   if (VT != MVT::f32 && VT != MVT::f64)
7078     return SDValue();
7079
7080   // Only optimize when the source and destination types have the same width.
7081   if (VT.getSizeInBits() != N->getOperand(0).getValueType().getSizeInBits())
7082     return SDValue();
7083
7084   // If the result of an integer load is only used by an integer-to-float
7085   // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
7086   // This eliminates an "integer-to-vector-move UOP and improve throughput.
7087   SDValue N0 = N->getOperand(0);
7088   if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
7089       // Do not change the width of a volatile load.
7090       !cast<LoadSDNode>(N0)->isVolatile()) {
7091     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
7092     SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
7093                                LN0->getPointerInfo(), LN0->isVolatile(),
7094                                LN0->isNonTemporal(), LN0->isInvariant(),
7095                                LN0->getAlignment());
7096
7097     // Make sure successors of the original load stay after it by updating them
7098     // to use the new Chain.
7099     DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
7100
7101     unsigned Opcode =
7102         (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
7103     return DAG.getNode(Opcode, SDLoc(N), VT, Load);
7104   }
7105
7106   return SDValue();
7107 }
7108
7109 /// An EXTR instruction is made up of two shifts, ORed together. This helper
7110 /// searches for and classifies those shifts.
7111 static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
7112                          bool &FromHi) {
7113   if (N.getOpcode() == ISD::SHL)
7114     FromHi = false;
7115   else if (N.getOpcode() == ISD::SRL)
7116     FromHi = true;
7117   else
7118     return false;
7119
7120   if (!isa<ConstantSDNode>(N.getOperand(1)))
7121     return false;
7122
7123   ShiftAmount = N->getConstantOperandVal(1);
7124   Src = N->getOperand(0);
7125   return true;
7126 }
7127
7128 /// EXTR instruction extracts a contiguous chunk of bits from two existing
7129 /// registers viewed as a high/low pair. This function looks for the pattern:
7130 /// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
7131 /// EXTR. Can't quite be done in TableGen because the two immediates aren't
7132 /// independent.
7133 static SDValue tryCombineToEXTR(SDNode *N,
7134                                 TargetLowering::DAGCombinerInfo &DCI) {
7135   SelectionDAG &DAG = DCI.DAG;
7136   SDLoc DL(N);
7137   EVT VT = N->getValueType(0);
7138
7139   assert(N->getOpcode() == ISD::OR && "Unexpected root");
7140
7141   if (VT != MVT::i32 && VT != MVT::i64)
7142     return SDValue();
7143
7144   SDValue LHS;
7145   uint32_t ShiftLHS = 0;
7146   bool LHSFromHi = 0;
7147   if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
7148     return SDValue();
7149
7150   SDValue RHS;
7151   uint32_t ShiftRHS = 0;
7152   bool RHSFromHi = 0;
7153   if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
7154     return SDValue();
7155
7156   // If they're both trying to come from the high part of the register, they're
7157   // not really an EXTR.
7158   if (LHSFromHi == RHSFromHi)
7159     return SDValue();
7160
7161   if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
7162     return SDValue();
7163
7164   if (LHSFromHi) {
7165     std::swap(LHS, RHS);
7166     std::swap(ShiftLHS, ShiftRHS);
7167   }
7168
7169   return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
7170                      DAG.getConstant(ShiftRHS, MVT::i64));
7171 }
7172
7173 static SDValue tryCombineToBSL(SDNode *N,
7174                                 TargetLowering::DAGCombinerInfo &DCI) {
7175   EVT VT = N->getValueType(0);
7176   SelectionDAG &DAG = DCI.DAG;
7177   SDLoc DL(N);
7178
7179   if (!VT.isVector())
7180     return SDValue();
7181
7182   SDValue N0 = N->getOperand(0);
7183   if (N0.getOpcode() != ISD::AND)
7184     return SDValue();
7185
7186   SDValue N1 = N->getOperand(1);
7187   if (N1.getOpcode() != ISD::AND)
7188     return SDValue();
7189
7190   // We only have to look for constant vectors here since the general, variable
7191   // case can be handled in TableGen.
7192   unsigned Bits = VT.getVectorElementType().getSizeInBits();
7193   uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
7194   for (int i = 1; i >= 0; --i)
7195     for (int j = 1; j >= 0; --j) {
7196       BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
7197       BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
7198       if (!BVN0 || !BVN1)
7199         continue;
7200
7201       bool FoundMatch = true;
7202       for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
7203         ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
7204         ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
7205         if (!CN0 || !CN1 ||
7206             CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
7207           FoundMatch = false;
7208           break;
7209         }
7210       }
7211
7212       if (FoundMatch)
7213         return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
7214                            N0->getOperand(1 - i), N1->getOperand(1 - j));
7215     }
7216
7217   return SDValue();
7218 }
7219
7220 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
7221                                 const AArch64Subtarget *Subtarget) {
7222   // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
7223   if (!EnableAArch64ExtrGeneration)
7224     return SDValue();
7225   SelectionDAG &DAG = DCI.DAG;
7226   EVT VT = N->getValueType(0);
7227
7228   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7229     return SDValue();
7230
7231   SDValue Res = tryCombineToEXTR(N, DCI);
7232   if (Res.getNode())
7233     return Res;
7234
7235   Res = tryCombineToBSL(N, DCI);
7236   if (Res.getNode())
7237     return Res;
7238
7239   return SDValue();
7240 }
7241
7242 static SDValue performBitcastCombine(SDNode *N,
7243                                      TargetLowering::DAGCombinerInfo &DCI,
7244                                      SelectionDAG &DAG) {
7245   // Wait 'til after everything is legalized to try this. That way we have
7246   // legal vector types and such.
7247   if (DCI.isBeforeLegalizeOps())
7248     return SDValue();
7249
7250   // Remove extraneous bitcasts around an extract_subvector.
7251   // For example,
7252   //    (v4i16 (bitconvert
7253   //             (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
7254   //  becomes
7255   //    (extract_subvector ((v8i16 ...), (i64 4)))
7256
7257   // Only interested in 64-bit vectors as the ultimate result.
7258   EVT VT = N->getValueType(0);
7259   if (!VT.isVector())
7260     return SDValue();
7261   if (VT.getSimpleVT().getSizeInBits() != 64)
7262     return SDValue();
7263   // Is the operand an extract_subvector starting at the beginning or halfway
7264   // point of the vector? A low half may also come through as an
7265   // EXTRACT_SUBREG, so look for that, too.
7266   SDValue Op0 = N->getOperand(0);
7267   if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
7268       !(Op0->isMachineOpcode() &&
7269         Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
7270     return SDValue();
7271   uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
7272   if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
7273     if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
7274       return SDValue();
7275   } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
7276     if (idx != AArch64::dsub)
7277       return SDValue();
7278     // The dsub reference is equivalent to a lane zero subvector reference.
7279     idx = 0;
7280   }
7281   // Look through the bitcast of the input to the extract.
7282   if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
7283     return SDValue();
7284   SDValue Source = Op0->getOperand(0)->getOperand(0);
7285   // If the source type has twice the number of elements as our destination
7286   // type, we know this is an extract of the high or low half of the vector.
7287   EVT SVT = Source->getValueType(0);
7288   if (SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
7289     return SDValue();
7290
7291   DEBUG(dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
7292
7293   // Create the simplified form to just extract the low or high half of the
7294   // vector directly rather than bothering with the bitcasts.
7295   SDLoc dl(N);
7296   unsigned NumElements = VT.getVectorNumElements();
7297   if (idx) {
7298     SDValue HalfIdx = DAG.getConstant(NumElements, MVT::i64);
7299     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
7300   } else {
7301     SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, MVT::i32);
7302     return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
7303                                       Source, SubReg),
7304                    0);
7305   }
7306 }
7307
7308 static SDValue performConcatVectorsCombine(SDNode *N,
7309                                            TargetLowering::DAGCombinerInfo &DCI,
7310                                            SelectionDAG &DAG) {
7311   SDLoc dl(N);
7312   EVT VT = N->getValueType(0);
7313   SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
7314
7315   // Optimize concat_vectors of truncated vectors, where the intermediate
7316   // type is illegal, to avoid said illegality,  e.g.,
7317   //   (v4i16 (concat_vectors (v2i16 (truncate (v2i64))),
7318   //                          (v2i16 (truncate (v2i64)))))
7319   // ->
7320   //   (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))),
7321   //                                    (v4i32 (bitcast (v2i64))),
7322   //                                    <0, 2, 4, 6>)))
7323   // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed
7324   // on both input and result type, so we might generate worse code.
7325   // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8.
7326   if (N->getNumOperands() == 2 &&
7327       N0->getOpcode() == ISD::TRUNCATE &&
7328       N1->getOpcode() == ISD::TRUNCATE) {
7329     SDValue N00 = N0->getOperand(0);
7330     SDValue N10 = N1->getOperand(0);
7331     EVT N00VT = N00.getValueType();
7332
7333     if (N00VT == N10.getValueType() &&
7334         (N00VT == MVT::v2i64 || N00VT == MVT::v4i32) &&
7335         N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) {
7336       MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16);
7337       SmallVector<int, 8> Mask(MidVT.getVectorNumElements());
7338       for (size_t i = 0; i < Mask.size(); ++i)
7339         Mask[i] = i * 2;
7340       return DAG.getNode(ISD::TRUNCATE, dl, VT,
7341                          DAG.getVectorShuffle(
7342                              MidVT, dl,
7343                              DAG.getNode(ISD::BITCAST, dl, MidVT, N00),
7344                              DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask));
7345     }
7346   }
7347
7348   // Wait 'til after everything is legalized to try this. That way we have
7349   // legal vector types and such.
7350   if (DCI.isBeforeLegalizeOps())
7351     return SDValue();
7352
7353   // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
7354   // splat. The indexed instructions are going to be expecting a DUPLANE64, so
7355   // canonicalise to that.
7356   if (N0 == N1 && VT.getVectorNumElements() == 2) {
7357     assert(VT.getVectorElementType().getSizeInBits() == 64);
7358     return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG),
7359                        DAG.getConstant(0, MVT::i64));
7360   }
7361
7362   // Canonicalise concat_vectors so that the right-hand vector has as few
7363   // bit-casts as possible before its real operation. The primary matching
7364   // destination for these operations will be the narrowing "2" instructions,
7365   // which depend on the operation being performed on this right-hand vector.
7366   // For example,
7367   //    (concat_vectors LHS,  (v1i64 (bitconvert (v4i16 RHS))))
7368   // becomes
7369   //    (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
7370
7371   if (N1->getOpcode() != ISD::BITCAST)
7372     return SDValue();
7373   SDValue RHS = N1->getOperand(0);
7374   MVT RHSTy = RHS.getValueType().getSimpleVT();
7375   // If the RHS is not a vector, this is not the pattern we're looking for.
7376   if (!RHSTy.isVector())
7377     return SDValue();
7378
7379   DEBUG(dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
7380
7381   MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
7382                                   RHSTy.getVectorNumElements() * 2);
7383   return DAG.getNode(ISD::BITCAST, dl, VT,
7384                      DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
7385                                  DAG.getNode(ISD::BITCAST, dl, RHSTy, N0),
7386                                  RHS));
7387 }
7388
7389 static SDValue tryCombineFixedPointConvert(SDNode *N,
7390                                            TargetLowering::DAGCombinerInfo &DCI,
7391                                            SelectionDAG &DAG) {
7392   // Wait 'til after everything is legalized to try this. That way we have
7393   // legal vector types and such.
7394   if (DCI.isBeforeLegalizeOps())
7395     return SDValue();
7396   // Transform a scalar conversion of a value from a lane extract into a
7397   // lane extract of a vector conversion. E.g., from foo1 to foo2:
7398   // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
7399   // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
7400   //
7401   // The second form interacts better with instruction selection and the
7402   // register allocator to avoid cross-class register copies that aren't
7403   // coalescable due to a lane reference.
7404
7405   // Check the operand and see if it originates from a lane extract.
7406   SDValue Op1 = N->getOperand(1);
7407   if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7408     // Yep, no additional predication needed. Perform the transform.
7409     SDValue IID = N->getOperand(0);
7410     SDValue Shift = N->getOperand(2);
7411     SDValue Vec = Op1.getOperand(0);
7412     SDValue Lane = Op1.getOperand(1);
7413     EVT ResTy = N->getValueType(0);
7414     EVT VecResTy;
7415     SDLoc DL(N);
7416
7417     // The vector width should be 128 bits by the time we get here, even
7418     // if it started as 64 bits (the extract_vector handling will have
7419     // done so).
7420     assert(Vec.getValueType().getSizeInBits() == 128 &&
7421            "unexpected vector size on extract_vector_elt!");
7422     if (Vec.getValueType() == MVT::v4i32)
7423       VecResTy = MVT::v4f32;
7424     else if (Vec.getValueType() == MVT::v2i64)
7425       VecResTy = MVT::v2f64;
7426     else
7427       llvm_unreachable("unexpected vector type!");
7428
7429     SDValue Convert =
7430         DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
7431     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
7432   }
7433   return SDValue();
7434 }
7435
7436 // AArch64 high-vector "long" operations are formed by performing the non-high
7437 // version on an extract_subvector of each operand which gets the high half:
7438 //
7439 //  (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
7440 //
7441 // However, there are cases which don't have an extract_high explicitly, but
7442 // have another operation that can be made compatible with one for free. For
7443 // example:
7444 //
7445 //  (dupv64 scalar) --> (extract_high (dup128 scalar))
7446 //
7447 // This routine does the actual conversion of such DUPs, once outer routines
7448 // have determined that everything else is in order.
7449 static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
7450   // We can handle most types of duplicate, but the lane ones have an extra
7451   // operand saying *which* lane, so we need to know.
7452   bool IsDUPLANE;
7453   switch (N.getOpcode()) {
7454   case AArch64ISD::DUP:
7455     IsDUPLANE = false;
7456     break;
7457   case AArch64ISD::DUPLANE8:
7458   case AArch64ISD::DUPLANE16:
7459   case AArch64ISD::DUPLANE32:
7460   case AArch64ISD::DUPLANE64:
7461     IsDUPLANE = true;
7462     break;
7463   default:
7464     return SDValue();
7465   }
7466
7467   MVT NarrowTy = N.getSimpleValueType();
7468   if (!NarrowTy.is64BitVector())
7469     return SDValue();
7470
7471   MVT ElementTy = NarrowTy.getVectorElementType();
7472   unsigned NumElems = NarrowTy.getVectorNumElements();
7473   MVT NewDUPVT = MVT::getVectorVT(ElementTy, NumElems * 2);
7474
7475   SDValue NewDUP;
7476   if (IsDUPLANE)
7477     NewDUP = DAG.getNode(N.getOpcode(), SDLoc(N), NewDUPVT, N.getOperand(0),
7478                          N.getOperand(1));
7479   else
7480     NewDUP = DAG.getNode(AArch64ISD::DUP, SDLoc(N), NewDUPVT, N.getOperand(0));
7481
7482   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N.getNode()), NarrowTy,
7483                      NewDUP, DAG.getConstant(NumElems, MVT::i64));
7484 }
7485
7486 static bool isEssentiallyExtractSubvector(SDValue N) {
7487   if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
7488     return true;
7489
7490   return N.getOpcode() == ISD::BITCAST &&
7491          N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR;
7492 }
7493
7494 /// \brief Helper structure to keep track of ISD::SET_CC operands.
7495 struct GenericSetCCInfo {
7496   const SDValue *Opnd0;
7497   const SDValue *Opnd1;
7498   ISD::CondCode CC;
7499 };
7500
7501 /// \brief Helper structure to keep track of a SET_CC lowered into AArch64 code.
7502 struct AArch64SetCCInfo {
7503   const SDValue *Cmp;
7504   AArch64CC::CondCode CC;
7505 };
7506
7507 /// \brief Helper structure to keep track of SetCC information.
7508 union SetCCInfo {
7509   GenericSetCCInfo Generic;
7510   AArch64SetCCInfo AArch64;
7511 };
7512
7513 /// \brief Helper structure to be able to read SetCC information.  If set to
7514 /// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
7515 /// GenericSetCCInfo.
7516 struct SetCCInfoAndKind {
7517   SetCCInfo Info;
7518   bool IsAArch64;
7519 };
7520
7521 /// \brief Check whether or not \p Op is a SET_CC operation, either a generic or
7522 /// an
7523 /// AArch64 lowered one.
7524 /// \p SetCCInfo is filled accordingly.
7525 /// \post SetCCInfo is meanginfull only when this function returns true.
7526 /// \return True when Op is a kind of SET_CC operation.
7527 static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
7528   // If this is a setcc, this is straight forward.
7529   if (Op.getOpcode() == ISD::SETCC) {
7530     SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
7531     SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
7532     SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7533     SetCCInfo.IsAArch64 = false;
7534     return true;
7535   }
7536   // Otherwise, check if this is a matching csel instruction.
7537   // In other words:
7538   // - csel 1, 0, cc
7539   // - csel 0, 1, !cc
7540   if (Op.getOpcode() != AArch64ISD::CSEL)
7541     return false;
7542   // Set the information about the operands.
7543   // TODO: we want the operands of the Cmp not the csel
7544   SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
7545   SetCCInfo.IsAArch64 = true;
7546   SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
7547       cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
7548
7549   // Check that the operands matches the constraints:
7550   // (1) Both operands must be constants.
7551   // (2) One must be 1 and the other must be 0.
7552   ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
7553   ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7554
7555   // Check (1).
7556   if (!TValue || !FValue)
7557     return false;
7558
7559   // Check (2).
7560   if (!TValue->isOne()) {
7561     // Update the comparison when we are interested in !cc.
7562     std::swap(TValue, FValue);
7563     SetCCInfo.Info.AArch64.CC =
7564         AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
7565   }
7566   return TValue->isOne() && FValue->isNullValue();
7567 }
7568
7569 // Returns true if Op is setcc or zext of setcc.
7570 static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
7571   if (isSetCC(Op, Info))
7572     return true;
7573   return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
7574     isSetCC(Op->getOperand(0), Info));
7575 }
7576
7577 // The folding we want to perform is:
7578 // (add x, [zext] (setcc cc ...) )
7579 //   -->
7580 // (csel x, (add x, 1), !cc ...)
7581 //
7582 // The latter will get matched to a CSINC instruction.
7583 static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
7584   assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
7585   SDValue LHS = Op->getOperand(0);
7586   SDValue RHS = Op->getOperand(1);
7587   SetCCInfoAndKind InfoAndKind;
7588
7589   // If neither operand is a SET_CC, give up.
7590   if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
7591     std::swap(LHS, RHS);
7592     if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
7593       return SDValue();
7594   }
7595
7596   // FIXME: This could be generatized to work for FP comparisons.
7597   EVT CmpVT = InfoAndKind.IsAArch64
7598                   ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
7599                   : InfoAndKind.Info.Generic.Opnd0->getValueType();
7600   if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
7601     return SDValue();
7602
7603   SDValue CCVal;
7604   SDValue Cmp;
7605   SDLoc dl(Op);
7606   if (InfoAndKind.IsAArch64) {
7607     CCVal = DAG.getConstant(
7608         AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), MVT::i32);
7609     Cmp = *InfoAndKind.Info.AArch64.Cmp;
7610   } else
7611     Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
7612                       *InfoAndKind.Info.Generic.Opnd1,
7613                       ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
7614                       CCVal, DAG, dl);
7615
7616   EVT VT = Op->getValueType(0);
7617   LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, VT));
7618   return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
7619 }
7620
7621 // The basic add/sub long vector instructions have variants with "2" on the end
7622 // which act on the high-half of their inputs. They are normally matched by
7623 // patterns like:
7624 //
7625 // (add (zeroext (extract_high LHS)),
7626 //      (zeroext (extract_high RHS)))
7627 // -> uaddl2 vD, vN, vM
7628 //
7629 // However, if one of the extracts is something like a duplicate, this
7630 // instruction can still be used profitably. This function puts the DAG into a
7631 // more appropriate form for those patterns to trigger.
7632 static SDValue performAddSubLongCombine(SDNode *N,
7633                                         TargetLowering::DAGCombinerInfo &DCI,
7634                                         SelectionDAG &DAG) {
7635   if (DCI.isBeforeLegalizeOps())
7636     return SDValue();
7637
7638   MVT VT = N->getSimpleValueType(0);
7639   if (!VT.is128BitVector()) {
7640     if (N->getOpcode() == ISD::ADD)
7641       return performSetccAddFolding(N, DAG);
7642     return SDValue();
7643   }
7644
7645   // Make sure both branches are extended in the same way.
7646   SDValue LHS = N->getOperand(0);
7647   SDValue RHS = N->getOperand(1);
7648   if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
7649        LHS.getOpcode() != ISD::SIGN_EXTEND) ||
7650       LHS.getOpcode() != RHS.getOpcode())
7651     return SDValue();
7652
7653   unsigned ExtType = LHS.getOpcode();
7654
7655   // It's not worth doing if at least one of the inputs isn't already an
7656   // extract, but we don't know which it'll be so we have to try both.
7657   if (isEssentiallyExtractSubvector(LHS.getOperand(0))) {
7658     RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
7659     if (!RHS.getNode())
7660       return SDValue();
7661
7662     RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
7663   } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) {
7664     LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
7665     if (!LHS.getNode())
7666       return SDValue();
7667
7668     LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
7669   }
7670
7671   return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
7672 }
7673
7674 // Massage DAGs which we can use the high-half "long" operations on into
7675 // something isel will recognize better. E.g.
7676 //
7677 // (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
7678 //   (aarch64_neon_umull (extract_high (v2i64 vec)))
7679 //                     (extract_high (v2i64 (dup128 scalar)))))
7680 //
7681 static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
7682                                        TargetLowering::DAGCombinerInfo &DCI,
7683                                        SelectionDAG &DAG) {
7684   if (DCI.isBeforeLegalizeOps())
7685     return SDValue();
7686
7687   SDValue LHS = N->getOperand(1);
7688   SDValue RHS = N->getOperand(2);
7689   assert(LHS.getValueType().is64BitVector() &&
7690          RHS.getValueType().is64BitVector() &&
7691          "unexpected shape for long operation");
7692
7693   // Either node could be a DUP, but it's not worth doing both of them (you'd
7694   // just as well use the non-high version) so look for a corresponding extract
7695   // operation on the other "wing".
7696   if (isEssentiallyExtractSubvector(LHS)) {
7697     RHS = tryExtendDUPToExtractHigh(RHS, DAG);
7698     if (!RHS.getNode())
7699       return SDValue();
7700   } else if (isEssentiallyExtractSubvector(RHS)) {
7701     LHS = tryExtendDUPToExtractHigh(LHS, DAG);
7702     if (!LHS.getNode())
7703       return SDValue();
7704   }
7705
7706   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
7707                      N->getOperand(0), LHS, RHS);
7708 }
7709
7710 static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
7711   MVT ElemTy = N->getSimpleValueType(0).getScalarType();
7712   unsigned ElemBits = ElemTy.getSizeInBits();
7713
7714   int64_t ShiftAmount;
7715   if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
7716     APInt SplatValue, SplatUndef;
7717     unsigned SplatBitSize;
7718     bool HasAnyUndefs;
7719     if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
7720                               HasAnyUndefs, ElemBits) ||
7721         SplatBitSize != ElemBits)
7722       return SDValue();
7723
7724     ShiftAmount = SplatValue.getSExtValue();
7725   } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
7726     ShiftAmount = CVN->getSExtValue();
7727   } else
7728     return SDValue();
7729
7730   unsigned Opcode;
7731   bool IsRightShift;
7732   switch (IID) {
7733   default:
7734     llvm_unreachable("Unknown shift intrinsic");
7735   case Intrinsic::aarch64_neon_sqshl:
7736     Opcode = AArch64ISD::SQSHL_I;
7737     IsRightShift = false;
7738     break;
7739   case Intrinsic::aarch64_neon_uqshl:
7740     Opcode = AArch64ISD::UQSHL_I;
7741     IsRightShift = false;
7742     break;
7743   case Intrinsic::aarch64_neon_srshl:
7744     Opcode = AArch64ISD::SRSHR_I;
7745     IsRightShift = true;
7746     break;
7747   case Intrinsic::aarch64_neon_urshl:
7748     Opcode = AArch64ISD::URSHR_I;
7749     IsRightShift = true;
7750     break;
7751   case Intrinsic::aarch64_neon_sqshlu:
7752     Opcode = AArch64ISD::SQSHLU_I;
7753     IsRightShift = false;
7754     break;
7755   }
7756
7757   if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits)
7758     return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1),
7759                        DAG.getConstant(-ShiftAmount, MVT::i32));
7760   else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits)
7761     return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1),
7762                        DAG.getConstant(ShiftAmount, MVT::i32));
7763
7764   return SDValue();
7765 }
7766
7767 // The CRC32[BH] instructions ignore the high bits of their data operand. Since
7768 // the intrinsics must be legal and take an i32, this means there's almost
7769 // certainly going to be a zext in the DAG which we can eliminate.
7770 static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
7771   SDValue AndN = N->getOperand(2);
7772   if (AndN.getOpcode() != ISD::AND)
7773     return SDValue();
7774
7775   ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
7776   if (!CMask || CMask->getZExtValue() != Mask)
7777     return SDValue();
7778
7779   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
7780                      N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
7781 }
7782
7783 static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N,
7784                                            SelectionDAG &DAG) {
7785   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), N->getValueType(0),
7786                      DAG.getNode(Opc, SDLoc(N),
7787                                  N->getOperand(1).getSimpleValueType(),
7788                                  N->getOperand(1)),
7789                      DAG.getConstant(0, MVT::i64));
7790 }
7791
7792 static SDValue performIntrinsicCombine(SDNode *N,
7793                                        TargetLowering::DAGCombinerInfo &DCI,
7794                                        const AArch64Subtarget *Subtarget) {
7795   SelectionDAG &DAG = DCI.DAG;
7796   unsigned IID = getIntrinsicID(N);
7797   switch (IID) {
7798   default:
7799     break;
7800   case Intrinsic::aarch64_neon_vcvtfxs2fp:
7801   case Intrinsic::aarch64_neon_vcvtfxu2fp:
7802     return tryCombineFixedPointConvert(N, DCI, DAG);
7803     break;
7804   case Intrinsic::aarch64_neon_saddv:
7805     return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG);
7806   case Intrinsic::aarch64_neon_uaddv:
7807     return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG);
7808   case Intrinsic::aarch64_neon_sminv:
7809     return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG);
7810   case Intrinsic::aarch64_neon_uminv:
7811     return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG);
7812   case Intrinsic::aarch64_neon_smaxv:
7813     return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG);
7814   case Intrinsic::aarch64_neon_umaxv:
7815     return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG);
7816   case Intrinsic::aarch64_neon_fmax:
7817     return DAG.getNode(AArch64ISD::FMAX, SDLoc(N), N->getValueType(0),
7818                        N->getOperand(1), N->getOperand(2));
7819   case Intrinsic::aarch64_neon_fmin:
7820     return DAG.getNode(AArch64ISD::FMIN, SDLoc(N), N->getValueType(0),
7821                        N->getOperand(1), N->getOperand(2));
7822   case Intrinsic::aarch64_neon_smull:
7823   case Intrinsic::aarch64_neon_umull:
7824   case Intrinsic::aarch64_neon_pmull:
7825   case Intrinsic::aarch64_neon_sqdmull:
7826     return tryCombineLongOpWithDup(IID, N, DCI, DAG);
7827   case Intrinsic::aarch64_neon_sqshl:
7828   case Intrinsic::aarch64_neon_uqshl:
7829   case Intrinsic::aarch64_neon_sqshlu:
7830   case Intrinsic::aarch64_neon_srshl:
7831   case Intrinsic::aarch64_neon_urshl:
7832     return tryCombineShiftImm(IID, N, DAG);
7833   case Intrinsic::aarch64_crc32b:
7834   case Intrinsic::aarch64_crc32cb:
7835     return tryCombineCRC32(0xff, N, DAG);
7836   case Intrinsic::aarch64_crc32h:
7837   case Intrinsic::aarch64_crc32ch:
7838     return tryCombineCRC32(0xffff, N, DAG);
7839   }
7840   return SDValue();
7841 }
7842
7843 static SDValue performExtendCombine(SDNode *N,
7844                                     TargetLowering::DAGCombinerInfo &DCI,
7845                                     SelectionDAG &DAG) {
7846   // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
7847   // we can convert that DUP into another extract_high (of a bigger DUP), which
7848   // helps the backend to decide that an sabdl2 would be useful, saving a real
7849   // extract_high operation.
7850   if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
7851       N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
7852     SDNode *ABDNode = N->getOperand(0).getNode();
7853     unsigned IID = getIntrinsicID(ABDNode);
7854     if (IID == Intrinsic::aarch64_neon_sabd ||
7855         IID == Intrinsic::aarch64_neon_uabd) {
7856       SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
7857       if (!NewABD.getNode())
7858         return SDValue();
7859
7860       return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
7861                          NewABD);
7862     }
7863   }
7864
7865   // This is effectively a custom type legalization for AArch64.
7866   //
7867   // Type legalization will split an extend of a small, legal, type to a larger
7868   // illegal type by first splitting the destination type, often creating
7869   // illegal source types, which then get legalized in isel-confusing ways,
7870   // leading to really terrible codegen. E.g.,
7871   //   %result = v8i32 sext v8i8 %value
7872   // becomes
7873   //   %losrc = extract_subreg %value, ...
7874   //   %hisrc = extract_subreg %value, ...
7875   //   %lo = v4i32 sext v4i8 %losrc
7876   //   %hi = v4i32 sext v4i8 %hisrc
7877   // Things go rapidly downhill from there.
7878   //
7879   // For AArch64, the [sz]ext vector instructions can only go up one element
7880   // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
7881   // take two instructions.
7882   //
7883   // This implies that the most efficient way to do the extend from v8i8
7884   // to two v4i32 values is to first extend the v8i8 to v8i16, then do
7885   // the normal splitting to happen for the v8i16->v8i32.
7886
7887   // This is pre-legalization to catch some cases where the default
7888   // type legalization will create ill-tempered code.
7889   if (!DCI.isBeforeLegalizeOps())
7890     return SDValue();
7891
7892   // We're only interested in cleaning things up for non-legal vector types
7893   // here. If both the source and destination are legal, things will just
7894   // work naturally without any fiddling.
7895   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7896   EVT ResVT = N->getValueType(0);
7897   if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
7898     return SDValue();
7899   // If the vector type isn't a simple VT, it's beyond the scope of what
7900   // we're  worried about here. Let legalization do its thing and hope for
7901   // the best.
7902   SDValue Src = N->getOperand(0);
7903   EVT SrcVT = Src->getValueType(0);
7904   if (!ResVT.isSimple() || !SrcVT.isSimple())
7905     return SDValue();
7906
7907   // If the source VT is a 64-bit vector, we can play games and get the
7908   // better results we want.
7909   if (SrcVT.getSizeInBits() != 64)
7910     return SDValue();
7911
7912   unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits();
7913   unsigned ElementCount = SrcVT.getVectorNumElements();
7914   SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
7915   SDLoc DL(N);
7916   Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
7917
7918   // Now split the rest of the operation into two halves, each with a 64
7919   // bit source.
7920   EVT LoVT, HiVT;
7921   SDValue Lo, Hi;
7922   unsigned NumElements = ResVT.getVectorNumElements();
7923   assert(!(NumElements & 1) && "Splitting vector, but not in half!");
7924   LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
7925                                  ResVT.getVectorElementType(), NumElements / 2);
7926
7927   EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
7928                                LoVT.getVectorNumElements());
7929   Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
7930                    DAG.getConstant(0, MVT::i64));
7931   Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
7932                    DAG.getConstant(InNVT.getVectorNumElements(), MVT::i64));
7933   Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
7934   Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
7935
7936   // Now combine the parts back together so we still have a single result
7937   // like the combiner expects.
7938   return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
7939 }
7940
7941 /// Replace a splat of a scalar to a vector store by scalar stores of the scalar
7942 /// value. The load store optimizer pass will merge them to store pair stores.
7943 /// This has better performance than a splat of the scalar followed by a split
7944 /// vector store. Even if the stores are not merged it is four stores vs a dup,
7945 /// followed by an ext.b and two stores.
7946 static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode *St) {
7947   SDValue StVal = St->getValue();
7948   EVT VT = StVal.getValueType();
7949
7950   // Don't replace floating point stores, they possibly won't be transformed to
7951   // stp because of the store pair suppress pass.
7952   if (VT.isFloatingPoint())
7953     return SDValue();
7954
7955   // Check for insert vector elements.
7956   if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
7957     return SDValue();
7958
7959   // We can express a splat as store pair(s) for 2 or 4 elements.
7960   unsigned NumVecElts = VT.getVectorNumElements();
7961   if (NumVecElts != 4 && NumVecElts != 2)
7962     return SDValue();
7963   SDValue SplatVal = StVal.getOperand(1);
7964   unsigned RemainInsertElts = NumVecElts - 1;
7965
7966   // Check that this is a splat.
7967   while (--RemainInsertElts) {
7968     SDValue NextInsertElt = StVal.getOperand(0);
7969     if (NextInsertElt.getOpcode() != ISD::INSERT_VECTOR_ELT)
7970       return SDValue();
7971     if (NextInsertElt.getOperand(1) != SplatVal)
7972       return SDValue();
7973     StVal = NextInsertElt;
7974   }
7975   unsigned OrigAlignment = St->getAlignment();
7976   unsigned EltOffset = NumVecElts == 4 ? 4 : 8;
7977   unsigned Alignment = std::min(OrigAlignment, EltOffset);
7978
7979   // Create scalar stores. This is at least as good as the code sequence for a
7980   // split unaligned store wich is a dup.s, ext.b, and two stores.
7981   // Most of the time the three stores should be replaced by store pair
7982   // instructions (stp).
7983   SDLoc DL(St);
7984   SDValue BasePtr = St->getBasePtr();
7985   SDValue NewST1 =
7986       DAG.getStore(St->getChain(), DL, SplatVal, BasePtr, St->getPointerInfo(),
7987                    St->isVolatile(), St->isNonTemporal(), St->getAlignment());
7988
7989   unsigned Offset = EltOffset;
7990   while (--NumVecElts) {
7991     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
7992                                     DAG.getConstant(Offset, MVT::i64));
7993     NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
7994                           St->getPointerInfo(), St->isVolatile(),
7995                           St->isNonTemporal(), Alignment);
7996     Offset += EltOffset;
7997   }
7998   return NewST1;
7999 }
8000
8001 static SDValue performSTORECombine(SDNode *N,
8002                                    TargetLowering::DAGCombinerInfo &DCI,
8003                                    SelectionDAG &DAG,
8004                                    const AArch64Subtarget *Subtarget) {
8005   if (!DCI.isBeforeLegalize())
8006     return SDValue();
8007
8008   StoreSDNode *S = cast<StoreSDNode>(N);
8009   if (S->isVolatile())
8010     return SDValue();
8011
8012   // Cyclone has bad performance on unaligned 16B stores when crossing line and
8013   // page boundaries. We want to split such stores.
8014   if (!Subtarget->isCyclone())
8015     return SDValue();
8016
8017   // Don't split at Oz.
8018   MachineFunction &MF = DAG.getMachineFunction();
8019   bool IsMinSize = MF.getFunction()->hasFnAttribute(Attribute::MinSize);
8020   if (IsMinSize)
8021     return SDValue();
8022
8023   SDValue StVal = S->getValue();
8024   EVT VT = StVal.getValueType();
8025
8026   // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
8027   // those up regresses performance on micro-benchmarks and olden/bh.
8028   if (!VT.isVector() || VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
8029     return SDValue();
8030
8031   // Split unaligned 16B stores. They are terrible for performance.
8032   // Don't split stores with alignment of 1 or 2. Code that uses clang vector
8033   // extensions can use this to mark that it does not want splitting to happen
8034   // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
8035   // eliminating alignment hazards is only 1 in 8 for alignment of 2.
8036   if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
8037       S->getAlignment() <= 2)
8038     return SDValue();
8039
8040   // If we get a splat of a scalar convert this vector store to a store of
8041   // scalars. They will be merged into store pairs thereby removing two
8042   // instructions.
8043   SDValue ReplacedSplat = replaceSplatVectorStore(DAG, S);
8044   if (ReplacedSplat != SDValue())
8045     return ReplacedSplat;
8046
8047   SDLoc DL(S);
8048   unsigned NumElts = VT.getVectorNumElements() / 2;
8049   // Split VT into two.
8050   EVT HalfVT =
8051       EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
8052   SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
8053                                    DAG.getConstant(0, MVT::i64));
8054   SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
8055                                    DAG.getConstant(NumElts, MVT::i64));
8056   SDValue BasePtr = S->getBasePtr();
8057   SDValue NewST1 =
8058       DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
8059                    S->isVolatile(), S->isNonTemporal(), S->getAlignment());
8060   SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
8061                                   DAG.getConstant(8, MVT::i64));
8062   return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
8063                       S->getPointerInfo(), S->isVolatile(), S->isNonTemporal(),
8064                       S->getAlignment());
8065 }
8066
8067 /// Target-specific DAG combine function for post-increment LD1 (lane) and
8068 /// post-increment LD1R.
8069 static SDValue performPostLD1Combine(SDNode *N,
8070                                      TargetLowering::DAGCombinerInfo &DCI,
8071                                      bool IsLaneOp) {
8072   if (DCI.isBeforeLegalizeOps())
8073     return SDValue();
8074
8075   SelectionDAG &DAG = DCI.DAG;
8076   EVT VT = N->getValueType(0);
8077
8078   unsigned LoadIdx = IsLaneOp ? 1 : 0;
8079   SDNode *LD = N->getOperand(LoadIdx).getNode();
8080   // If it is not LOAD, can not do such combine.
8081   if (LD->getOpcode() != ISD::LOAD)
8082     return SDValue();
8083
8084   LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
8085   EVT MemVT = LoadSDN->getMemoryVT();
8086   // Check if memory operand is the same type as the vector element.
8087   if (MemVT != VT.getVectorElementType())
8088     return SDValue();
8089
8090   // Check if there are other uses. If so, do not combine as it will introduce
8091   // an extra load.
8092   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
8093        ++UI) {
8094     if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
8095       continue;
8096     if (*UI != N)
8097       return SDValue();
8098   }
8099
8100   SDValue Addr = LD->getOperand(1);
8101   SDValue Vector = N->getOperand(0);
8102   // Search for a use of the address operand that is an increment.
8103   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
8104        Addr.getNode()->use_end(); UI != UE; ++UI) {
8105     SDNode *User = *UI;
8106     if (User->getOpcode() != ISD::ADD
8107         || UI.getUse().getResNo() != Addr.getResNo())
8108       continue;
8109
8110     // Check that the add is independent of the load.  Otherwise, folding it
8111     // would create a cycle.
8112     if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User))
8113       continue;
8114     // Also check that add is not used in the vector operand.  This would also
8115     // create a cycle.
8116     if (User->isPredecessorOf(Vector.getNode()))
8117       continue;
8118
8119     // If the increment is a constant, it must match the memory ref size.
8120     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
8121     if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
8122       uint32_t IncVal = CInc->getZExtValue();
8123       unsigned NumBytes = VT.getScalarSizeInBits() / 8;
8124       if (IncVal != NumBytes)
8125         continue;
8126       Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
8127     }
8128
8129     // Finally, check that the vector doesn't depend on the load.
8130     // Again, this would create a cycle.
8131     // The load depending on the vector is fine, as that's the case for the
8132     // LD1*post we'll eventually generate anyway.
8133     if (LoadSDN->isPredecessorOf(Vector.getNode()))
8134       continue;
8135
8136     SmallVector<SDValue, 8> Ops;
8137     Ops.push_back(LD->getOperand(0));  // Chain
8138     if (IsLaneOp) {
8139       Ops.push_back(Vector);           // The vector to be inserted
8140       Ops.push_back(N->getOperand(2)); // The lane to be inserted in the vector
8141     }
8142     Ops.push_back(Addr);
8143     Ops.push_back(Inc);
8144
8145     EVT Tys[3] = { VT, MVT::i64, MVT::Other };
8146     SDVTList SDTys = DAG.getVTList(Tys);
8147     unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
8148     SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
8149                                            MemVT,
8150                                            LoadSDN->getMemOperand());
8151
8152     // Update the uses.
8153     SmallVector<SDValue, 2> NewResults;
8154     NewResults.push_back(SDValue(LD, 0));             // The result of load
8155     NewResults.push_back(SDValue(UpdN.getNode(), 2)); // Chain
8156     DCI.CombineTo(LD, NewResults);
8157     DCI.CombineTo(N, SDValue(UpdN.getNode(), 0));     // Dup/Inserted Result
8158     DCI.CombineTo(User, SDValue(UpdN.getNode(), 1));  // Write back register
8159
8160     break;
8161   }
8162   return SDValue();
8163 }
8164
8165 /// Target-specific DAG combine function for NEON load/store intrinsics
8166 /// to merge base address updates.
8167 static SDValue performNEONPostLDSTCombine(SDNode *N,
8168                                           TargetLowering::DAGCombinerInfo &DCI,
8169                                           SelectionDAG &DAG) {
8170   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8171     return SDValue();
8172
8173   unsigned AddrOpIdx = N->getNumOperands() - 1;
8174   SDValue Addr = N->getOperand(AddrOpIdx);
8175
8176   // Search for a use of the address operand that is an increment.
8177   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
8178        UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
8179     SDNode *User = *UI;
8180     if (User->getOpcode() != ISD::ADD ||
8181         UI.getUse().getResNo() != Addr.getResNo())
8182       continue;
8183
8184     // Check that the add is independent of the load/store.  Otherwise, folding
8185     // it would create a cycle.
8186     if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
8187       continue;
8188
8189     // Find the new opcode for the updating load/store.
8190     bool IsStore = false;
8191     bool IsLaneOp = false;
8192     bool IsDupOp = false;
8193     unsigned NewOpc = 0;
8194     unsigned NumVecs = 0;
8195     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
8196     switch (IntNo) {
8197     default: llvm_unreachable("unexpected intrinsic for Neon base update");
8198     case Intrinsic::aarch64_neon_ld2:       NewOpc = AArch64ISD::LD2post;
8199       NumVecs = 2; break;
8200     case Intrinsic::aarch64_neon_ld3:       NewOpc = AArch64ISD::LD3post;
8201       NumVecs = 3; break;
8202     case Intrinsic::aarch64_neon_ld4:       NewOpc = AArch64ISD::LD4post;
8203       NumVecs = 4; break;
8204     case Intrinsic::aarch64_neon_st2:       NewOpc = AArch64ISD::ST2post;
8205       NumVecs = 2; IsStore = true; break;
8206     case Intrinsic::aarch64_neon_st3:       NewOpc = AArch64ISD::ST3post;
8207       NumVecs = 3; IsStore = true; break;
8208     case Intrinsic::aarch64_neon_st4:       NewOpc = AArch64ISD::ST4post;
8209       NumVecs = 4; IsStore = true; break;
8210     case Intrinsic::aarch64_neon_ld1x2:     NewOpc = AArch64ISD::LD1x2post;
8211       NumVecs = 2; break;
8212     case Intrinsic::aarch64_neon_ld1x3:     NewOpc = AArch64ISD::LD1x3post;
8213       NumVecs = 3; break;
8214     case Intrinsic::aarch64_neon_ld1x4:     NewOpc = AArch64ISD::LD1x4post;
8215       NumVecs = 4; break;
8216     case Intrinsic::aarch64_neon_st1x2:     NewOpc = AArch64ISD::ST1x2post;
8217       NumVecs = 2; IsStore = true; break;
8218     case Intrinsic::aarch64_neon_st1x3:     NewOpc = AArch64ISD::ST1x3post;
8219       NumVecs = 3; IsStore = true; break;
8220     case Intrinsic::aarch64_neon_st1x4:     NewOpc = AArch64ISD::ST1x4post;
8221       NumVecs = 4; IsStore = true; break;
8222     case Intrinsic::aarch64_neon_ld2r:      NewOpc = AArch64ISD::LD2DUPpost;
8223       NumVecs = 2; IsDupOp = true; break;
8224     case Intrinsic::aarch64_neon_ld3r:      NewOpc = AArch64ISD::LD3DUPpost;
8225       NumVecs = 3; IsDupOp = true; break;
8226     case Intrinsic::aarch64_neon_ld4r:      NewOpc = AArch64ISD::LD4DUPpost;
8227       NumVecs = 4; IsDupOp = true; break;
8228     case Intrinsic::aarch64_neon_ld2lane:   NewOpc = AArch64ISD::LD2LANEpost;
8229       NumVecs = 2; IsLaneOp = true; break;
8230     case Intrinsic::aarch64_neon_ld3lane:   NewOpc = AArch64ISD::LD3LANEpost;
8231       NumVecs = 3; IsLaneOp = true; break;
8232     case Intrinsic::aarch64_neon_ld4lane:   NewOpc = AArch64ISD::LD4LANEpost;
8233       NumVecs = 4; IsLaneOp = true; break;
8234     case Intrinsic::aarch64_neon_st2lane:   NewOpc = AArch64ISD::ST2LANEpost;
8235       NumVecs = 2; IsStore = true; IsLaneOp = true; break;
8236     case Intrinsic::aarch64_neon_st3lane:   NewOpc = AArch64ISD::ST3LANEpost;
8237       NumVecs = 3; IsStore = true; IsLaneOp = true; break;
8238     case Intrinsic::aarch64_neon_st4lane:   NewOpc = AArch64ISD::ST4LANEpost;
8239       NumVecs = 4; IsStore = true; IsLaneOp = true; break;
8240     }
8241
8242     EVT VecTy;
8243     if (IsStore)
8244       VecTy = N->getOperand(2).getValueType();
8245     else
8246       VecTy = N->getValueType(0);
8247
8248     // If the increment is a constant, it must match the memory ref size.
8249     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
8250     if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
8251       uint32_t IncVal = CInc->getZExtValue();
8252       unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
8253       if (IsLaneOp || IsDupOp)
8254         NumBytes /= VecTy.getVectorNumElements();
8255       if (IncVal != NumBytes)
8256         continue;
8257       Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
8258     }
8259     SmallVector<SDValue, 8> Ops;
8260     Ops.push_back(N->getOperand(0)); // Incoming chain
8261     // Load lane and store have vector list as input.
8262     if (IsLaneOp || IsStore)
8263       for (unsigned i = 2; i < AddrOpIdx; ++i)
8264         Ops.push_back(N->getOperand(i));
8265     Ops.push_back(Addr); // Base register
8266     Ops.push_back(Inc);
8267
8268     // Return Types.
8269     EVT Tys[6];
8270     unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
8271     unsigned n;
8272     for (n = 0; n < NumResultVecs; ++n)
8273       Tys[n] = VecTy;
8274     Tys[n++] = MVT::i64;  // Type of write back register
8275     Tys[n] = MVT::Other;  // Type of the chain
8276     SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
8277
8278     MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
8279     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
8280                                            MemInt->getMemoryVT(),
8281                                            MemInt->getMemOperand());
8282
8283     // Update the uses.
8284     std::vector<SDValue> NewResults;
8285     for (unsigned i = 0; i < NumResultVecs; ++i) {
8286       NewResults.push_back(SDValue(UpdN.getNode(), i));
8287     }
8288     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
8289     DCI.CombineTo(N, NewResults);
8290     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
8291
8292     break;
8293   }
8294   return SDValue();
8295 }
8296
8297 // Checks to see if the value is the prescribed width and returns information
8298 // about its extension mode.
8299 static
8300 bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
8301   ExtType = ISD::NON_EXTLOAD;
8302   switch(V.getNode()->getOpcode()) {
8303   default:
8304     return false;
8305   case ISD::LOAD: {
8306     LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
8307     if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
8308        || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
8309       ExtType = LoadNode->getExtensionType();
8310       return true;
8311     }
8312     return false;
8313   }
8314   case ISD::AssertSext: {
8315     VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
8316     if ((TypeNode->getVT() == MVT::i8 && width == 8)
8317        || (TypeNode->getVT() == MVT::i16 && width == 16)) {
8318       ExtType = ISD::SEXTLOAD;
8319       return true;
8320     }
8321     return false;
8322   }
8323   case ISD::AssertZext: {
8324     VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
8325     if ((TypeNode->getVT() == MVT::i8 && width == 8)
8326        || (TypeNode->getVT() == MVT::i16 && width == 16)) {
8327       ExtType = ISD::ZEXTLOAD;
8328       return true;
8329     }
8330     return false;
8331   }
8332   case ISD::Constant:
8333   case ISD::TargetConstant: {
8334     if (std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
8335         1LL << (width - 1))
8336       return true;
8337     return false;
8338   }
8339   }
8340
8341   return true;
8342 }
8343
8344 // This function does a whole lot of voodoo to determine if the tests are
8345 // equivalent without and with a mask. Essentially what happens is that given a
8346 // DAG resembling:
8347 //
8348 //  +-------------+ +-------------+ +-------------+ +-------------+
8349 //  |    Input    | | AddConstant | | CompConstant| |     CC      |
8350 //  +-------------+ +-------------+ +-------------+ +-------------+
8351 //           |           |           |               |
8352 //           V           V           |    +----------+
8353 //          +-------------+  +----+  |    |
8354 //          |     ADD     |  |0xff|  |    |
8355 //          +-------------+  +----+  |    |
8356 //                  |           |    |    |
8357 //                  V           V    |    |
8358 //                 +-------------+   |    |
8359 //                 |     AND     |   |    |
8360 //                 +-------------+   |    |
8361 //                      |            |    |
8362 //                      +-----+      |    |
8363 //                            |      |    |
8364 //                            V      V    V
8365 //                           +-------------+
8366 //                           |     CMP     |
8367 //                           +-------------+
8368 //
8369 // The AND node may be safely removed for some combinations of inputs. In
8370 // particular we need to take into account the extension type of the Input,
8371 // the exact values of AddConstant, CompConstant, and CC, along with the nominal
8372 // width of the input (this can work for any width inputs, the above graph is
8373 // specific to 8 bits.
8374 //
8375 // The specific equations were worked out by generating output tables for each
8376 // AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
8377 // problem was simplified by working with 4 bit inputs, which means we only
8378 // needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
8379 // extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
8380 // patterns present in both extensions (0,7). For every distinct set of
8381 // AddConstant and CompConstants bit patterns we can consider the masked and
8382 // unmasked versions to be equivalent if the result of this function is true for
8383 // all 16 distinct bit patterns of for the current extension type of Input (w0).
8384 //
8385 //   sub      w8, w0, w1
8386 //   and      w10, w8, #0x0f
8387 //   cmp      w8, w2
8388 //   cset     w9, AArch64CC
8389 //   cmp      w10, w2
8390 //   cset     w11, AArch64CC
8391 //   cmp      w9, w11
8392 //   cset     w0, eq
8393 //   ret
8394 //
8395 // Since the above function shows when the outputs are equivalent it defines
8396 // when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
8397 // would be expensive to run during compiles. The equations below were written
8398 // in a test harness that confirmed they gave equivalent outputs to the above
8399 // for all inputs function, so they can be used determine if the removal is
8400 // legal instead.
8401 //
8402 // isEquivalentMaskless() is the code for testing if the AND can be removed
8403 // factored out of the DAG recognition as the DAG can take several forms.
8404
8405 static
8406 bool isEquivalentMaskless(unsigned CC, unsigned width,
8407                           ISD::LoadExtType ExtType, signed AddConstant,
8408                           signed CompConstant) {
8409   // By being careful about our equations and only writing the in term
8410   // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
8411   // make them generally applicable to all bit widths.
8412   signed MaxUInt = (1 << width);
8413
8414   // For the purposes of these comparisons sign extending the type is
8415   // equivalent to zero extending the add and displacing it by half the integer
8416   // width. Provided we are careful and make sure our equations are valid over
8417   // the whole range we can just adjust the input and avoid writing equations
8418   // for sign extended inputs.
8419   if (ExtType == ISD::SEXTLOAD)
8420     AddConstant -= (1 << (width-1));
8421
8422   switch(CC) {
8423   case AArch64CC::LE:
8424   case AArch64CC::GT: {
8425     if ((AddConstant == 0) ||
8426         (CompConstant == MaxUInt - 1 && AddConstant < 0) ||
8427         (AddConstant >= 0 && CompConstant < 0) ||
8428         (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
8429       return true;
8430   } break;
8431   case AArch64CC::LT:
8432   case AArch64CC::GE: {
8433     if ((AddConstant == 0) ||
8434         (AddConstant >= 0 && CompConstant <= 0) ||
8435         (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
8436       return true;
8437   } break;
8438   case AArch64CC::HI:
8439   case AArch64CC::LS: {
8440     if ((AddConstant >= 0 && CompConstant < 0) ||
8441        (AddConstant <= 0 && CompConstant >= -1 &&
8442         CompConstant < AddConstant + MaxUInt))
8443       return true;
8444   } break;
8445   case AArch64CC::PL:
8446   case AArch64CC::MI: {
8447     if ((AddConstant == 0) ||
8448         (AddConstant > 0 && CompConstant <= 0) ||
8449         (AddConstant < 0 && CompConstant <= AddConstant))
8450       return true;
8451   } break;
8452   case AArch64CC::LO:
8453   case AArch64CC::HS: {
8454     if ((AddConstant >= 0 && CompConstant <= 0) ||
8455         (AddConstant <= 0 && CompConstant >= 0 &&
8456          CompConstant <= AddConstant + MaxUInt))
8457       return true;
8458   } break;
8459   case AArch64CC::EQ:
8460   case AArch64CC::NE: {
8461     if ((AddConstant > 0 && CompConstant < 0) ||
8462         (AddConstant < 0 && CompConstant >= 0 &&
8463          CompConstant < AddConstant + MaxUInt) ||
8464         (AddConstant >= 0 && CompConstant >= 0 &&
8465          CompConstant >= AddConstant) ||
8466         (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
8467
8468       return true;
8469   } break;
8470   case AArch64CC::VS:
8471   case AArch64CC::VC:
8472   case AArch64CC::AL:
8473   case AArch64CC::NV:
8474     return true;
8475   case AArch64CC::Invalid:
8476     break;
8477   }
8478
8479   return false;
8480 }
8481
8482 static
8483 SDValue performCONDCombine(SDNode *N,
8484                            TargetLowering::DAGCombinerInfo &DCI,
8485                            SelectionDAG &DAG, unsigned CCIndex,
8486                            unsigned CmpIndex) {
8487   unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
8488   SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
8489   unsigned CondOpcode = SubsNode->getOpcode();
8490
8491   if (CondOpcode != AArch64ISD::SUBS)
8492     return SDValue();
8493
8494   // There is a SUBS feeding this condition. Is it fed by a mask we can
8495   // use?
8496
8497   SDNode *AndNode = SubsNode->getOperand(0).getNode();
8498   unsigned MaskBits = 0;
8499
8500   if (AndNode->getOpcode() != ISD::AND)
8501     return SDValue();
8502
8503   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
8504     uint32_t CNV = CN->getZExtValue();
8505     if (CNV == 255)
8506       MaskBits = 8;
8507     else if (CNV == 65535)
8508       MaskBits = 16;
8509   }
8510
8511   if (!MaskBits)
8512     return SDValue();
8513
8514   SDValue AddValue = AndNode->getOperand(0);
8515
8516   if (AddValue.getOpcode() != ISD::ADD)
8517     return SDValue();
8518
8519   // The basic dag structure is correct, grab the inputs and validate them.
8520
8521   SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
8522   SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
8523   SDValue SubsInputValue = SubsNode->getOperand(1);
8524
8525   // The mask is present and the provenance of all the values is a smaller type,
8526   // lets see if the mask is superfluous.
8527
8528   if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
8529       !isa<ConstantSDNode>(SubsInputValue.getNode()))
8530     return SDValue();
8531
8532   ISD::LoadExtType ExtType;
8533
8534   if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
8535       !checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
8536       !checkValueWidth(AddInputValue1, MaskBits, ExtType) )
8537     return SDValue();
8538
8539   if(!isEquivalentMaskless(CC, MaskBits, ExtType,
8540                 cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
8541                 cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
8542     return SDValue();
8543
8544   // The AND is not necessary, remove it.
8545
8546   SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
8547                                SubsNode->getValueType(1));
8548   SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };
8549
8550   SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
8551   DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());
8552
8553   return SDValue(N, 0);
8554 }
8555
8556 // Optimize compare with zero and branch.
8557 static SDValue performBRCONDCombine(SDNode *N,
8558                                     TargetLowering::DAGCombinerInfo &DCI,
8559                                     SelectionDAG &DAG) {
8560   SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3);
8561   if (NV.getNode())
8562     N = NV.getNode();
8563   SDValue Chain = N->getOperand(0);
8564   SDValue Dest = N->getOperand(1);
8565   SDValue CCVal = N->getOperand(2);
8566   SDValue Cmp = N->getOperand(3);
8567
8568   assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
8569   unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
8570   if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
8571     return SDValue();
8572
8573   unsigned CmpOpc = Cmp.getOpcode();
8574   if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
8575     return SDValue();
8576
8577   // Only attempt folding if there is only one use of the flag and no use of the
8578   // value.
8579   if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
8580     return SDValue();
8581
8582   SDValue LHS = Cmp.getOperand(0);
8583   SDValue RHS = Cmp.getOperand(1);
8584
8585   assert(LHS.getValueType() == RHS.getValueType() &&
8586          "Expected the value type to be the same for both operands!");
8587   if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
8588     return SDValue();
8589
8590   if (isa<ConstantSDNode>(LHS) && cast<ConstantSDNode>(LHS)->isNullValue())
8591     std::swap(LHS, RHS);
8592
8593   if (!isa<ConstantSDNode>(RHS) || !cast<ConstantSDNode>(RHS)->isNullValue())
8594     return SDValue();
8595
8596   if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
8597       LHS.getOpcode() == ISD::SRL)
8598     return SDValue();
8599
8600   // Fold the compare into the branch instruction.
8601   SDValue BR;
8602   if (CC == AArch64CC::EQ)
8603     BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
8604   else
8605     BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
8606
8607   // Do not add new nodes to DAG combiner worklist.
8608   DCI.CombineTo(N, BR, false);
8609
8610   return SDValue();
8611 }
8612
8613 // vselect (v1i1 setcc) ->
8614 //     vselect (v1iXX setcc)  (XX is the size of the compared operand type)
8615 // FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
8616 // condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
8617 // such VSELECT.
8618 static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
8619   SDValue N0 = N->getOperand(0);
8620   EVT CCVT = N0.getValueType();
8621
8622   if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
8623       CCVT.getVectorElementType() != MVT::i1)
8624     return SDValue();
8625
8626   EVT ResVT = N->getValueType(0);
8627   EVT CmpVT = N0.getOperand(0).getValueType();
8628   // Only combine when the result type is of the same size as the compared
8629   // operands.
8630   if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
8631     return SDValue();
8632
8633   SDValue IfTrue = N->getOperand(1);
8634   SDValue IfFalse = N->getOperand(2);
8635   SDValue SetCC =
8636       DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
8637                    N0.getOperand(0), N0.getOperand(1),
8638                    cast<CondCodeSDNode>(N0.getOperand(2))->get());
8639   return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
8640                      IfTrue, IfFalse);
8641 }
8642
8643 /// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
8644 /// the compare-mask instructions rather than going via NZCV, even if LHS and
8645 /// RHS are really scalar. This replaces any scalar setcc in the above pattern
8646 /// with a vector one followed by a DUP shuffle on the result.
8647 static SDValue performSelectCombine(SDNode *N,
8648                                     TargetLowering::DAGCombinerInfo &DCI) {
8649   SelectionDAG &DAG = DCI.DAG;
8650   SDValue N0 = N->getOperand(0);
8651   EVT ResVT = N->getValueType(0);
8652
8653   if (N0.getOpcode() != ISD::SETCC)
8654     return SDValue();
8655
8656   // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered
8657   // scalar SetCCResultType. We also don't expect vectors, because we assume
8658   // that selects fed by vector SETCCs are canonicalized to VSELECT.
8659   assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) &&
8660          "Scalar-SETCC feeding SELECT has unexpected result type!");
8661
8662   // If NumMaskElts == 0, the comparison is larger than select result. The
8663   // largest real NEON comparison is 64-bits per lane, which means the result is
8664   // at most 32-bits and an illegal vector. Just bail out for now.
8665   EVT SrcVT = N0.getOperand(0).getValueType();
8666
8667   // Don't try to do this optimization when the setcc itself has i1 operands.
8668   // There are no legal vectors of i1, so this would be pointless.
8669   if (SrcVT == MVT::i1)
8670     return SDValue();
8671
8672   int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
8673   if (!ResVT.isVector() || NumMaskElts == 0)
8674     return SDValue();
8675
8676   SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
8677   EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
8678
8679   // Also bail out if the vector CCVT isn't the same size as ResVT.
8680   // This can happen if the SETCC operand size doesn't divide the ResVT size
8681   // (e.g., f64 vs v3f32).
8682   if (CCVT.getSizeInBits() != ResVT.getSizeInBits())
8683     return SDValue();
8684
8685   // Make sure we didn't create illegal types, if we're not supposed to.
8686   assert(DCI.isBeforeLegalize() ||
8687          DAG.getTargetLoweringInfo().isTypeLegal(SrcVT));
8688
8689   // First perform a vector comparison, where lane 0 is the one we're interested
8690   // in.
8691   SDLoc DL(N0);
8692   SDValue LHS =
8693       DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
8694   SDValue RHS =
8695       DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
8696   SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
8697
8698   // Now duplicate the comparison mask we want across all other lanes.
8699   SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
8700   SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask.data());
8701   Mask = DAG.getNode(ISD::BITCAST, DL,
8702                      ResVT.changeVectorElementTypeToInteger(), Mask);
8703
8704   return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
8705 }
8706
8707 SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
8708                                                  DAGCombinerInfo &DCI) const {
8709   SelectionDAG &DAG = DCI.DAG;
8710   switch (N->getOpcode()) {
8711   default:
8712     break;
8713   case ISD::ADD:
8714   case ISD::SUB:
8715     return performAddSubLongCombine(N, DCI, DAG);
8716   case ISD::XOR:
8717     return performXorCombine(N, DAG, DCI, Subtarget);
8718   case ISD::MUL:
8719     return performMulCombine(N, DAG, DCI, Subtarget);
8720   case ISD::SINT_TO_FP:
8721   case ISD::UINT_TO_FP:
8722     return performIntToFpCombine(N, DAG, Subtarget);
8723   case ISD::OR:
8724     return performORCombine(N, DCI, Subtarget);
8725   case ISD::INTRINSIC_WO_CHAIN:
8726     return performIntrinsicCombine(N, DCI, Subtarget);
8727   case ISD::ANY_EXTEND:
8728   case ISD::ZERO_EXTEND:
8729   case ISD::SIGN_EXTEND:
8730     return performExtendCombine(N, DCI, DAG);
8731   case ISD::BITCAST:
8732     return performBitcastCombine(N, DCI, DAG);
8733   case ISD::CONCAT_VECTORS:
8734     return performConcatVectorsCombine(N, DCI, DAG);
8735   case ISD::SELECT:
8736     return performSelectCombine(N, DCI);
8737   case ISD::VSELECT:
8738     return performVSelectCombine(N, DCI.DAG);
8739   case ISD::STORE:
8740     return performSTORECombine(N, DCI, DAG, Subtarget);
8741   case AArch64ISD::BRCOND:
8742     return performBRCONDCombine(N, DCI, DAG);
8743   case AArch64ISD::CSEL:
8744     return performCONDCombine(N, DCI, DAG, 2, 3);
8745   case AArch64ISD::DUP:
8746     return performPostLD1Combine(N, DCI, false);
8747   case ISD::INSERT_VECTOR_ELT:
8748     return performPostLD1Combine(N, DCI, true);
8749   case ISD::INTRINSIC_VOID:
8750   case ISD::INTRINSIC_W_CHAIN:
8751     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
8752     case Intrinsic::aarch64_neon_ld2:
8753     case Intrinsic::aarch64_neon_ld3:
8754     case Intrinsic::aarch64_neon_ld4:
8755     case Intrinsic::aarch64_neon_ld1x2:
8756     case Intrinsic::aarch64_neon_ld1x3:
8757     case Intrinsic::aarch64_neon_ld1x4:
8758     case Intrinsic::aarch64_neon_ld2lane:
8759     case Intrinsic::aarch64_neon_ld3lane:
8760     case Intrinsic::aarch64_neon_ld4lane:
8761     case Intrinsic::aarch64_neon_ld2r:
8762     case Intrinsic::aarch64_neon_ld3r:
8763     case Intrinsic::aarch64_neon_ld4r:
8764     case Intrinsic::aarch64_neon_st2:
8765     case Intrinsic::aarch64_neon_st3:
8766     case Intrinsic::aarch64_neon_st4:
8767     case Intrinsic::aarch64_neon_st1x2:
8768     case Intrinsic::aarch64_neon_st1x3:
8769     case Intrinsic::aarch64_neon_st1x4:
8770     case Intrinsic::aarch64_neon_st2lane:
8771     case Intrinsic::aarch64_neon_st3lane:
8772     case Intrinsic::aarch64_neon_st4lane:
8773       return performNEONPostLDSTCombine(N, DCI, DAG);
8774     default:
8775       break;
8776     }
8777   }
8778   return SDValue();
8779 }
8780
8781 // Check if the return value is used as only a return value, as otherwise
8782 // we can't perform a tail-call. In particular, we need to check for
8783 // target ISD nodes that are returns and any other "odd" constructs
8784 // that the generic analysis code won't necessarily catch.
8785 bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
8786                                                SDValue &Chain) const {
8787   if (N->getNumValues() != 1)
8788     return false;
8789   if (!N->hasNUsesOfValue(1, 0))
8790     return false;
8791
8792   SDValue TCChain = Chain;
8793   SDNode *Copy = *N->use_begin();
8794   if (Copy->getOpcode() == ISD::CopyToReg) {
8795     // If the copy has a glue operand, we conservatively assume it isn't safe to
8796     // perform a tail call.
8797     if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
8798         MVT::Glue)
8799       return false;
8800     TCChain = Copy->getOperand(0);
8801   } else if (Copy->getOpcode() != ISD::FP_EXTEND)
8802     return false;
8803
8804   bool HasRet = false;
8805   for (SDNode *Node : Copy->uses()) {
8806     if (Node->getOpcode() != AArch64ISD::RET_FLAG)
8807       return false;
8808     HasRet = true;
8809   }
8810
8811   if (!HasRet)
8812     return false;
8813
8814   Chain = TCChain;
8815   return true;
8816 }
8817
8818 // Return whether the an instruction can potentially be optimized to a tail
8819 // call. This will cause the optimizers to attempt to move, or duplicate,
8820 // return instructions to help enable tail call optimizations for this
8821 // instruction.
8822 bool AArch64TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
8823   if (!CI->isTailCall())
8824     return false;
8825
8826   return true;
8827 }
8828
8829 bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
8830                                                    SDValue &Offset,
8831                                                    ISD::MemIndexedMode &AM,
8832                                                    bool &IsInc,
8833                                                    SelectionDAG &DAG) const {
8834   if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
8835     return false;
8836
8837   Base = Op->getOperand(0);
8838   // All of the indexed addressing mode instructions take a signed
8839   // 9 bit immediate offset.
8840   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
8841     int64_t RHSC = (int64_t)RHS->getZExtValue();
8842     if (RHSC >= 256 || RHSC <= -256)
8843       return false;
8844     IsInc = (Op->getOpcode() == ISD::ADD);
8845     Offset = Op->getOperand(1);
8846     return true;
8847   }
8848   return false;
8849 }
8850
8851 bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
8852                                                       SDValue &Offset,
8853                                                       ISD::MemIndexedMode &AM,
8854                                                       SelectionDAG &DAG) const {
8855   EVT VT;
8856   SDValue Ptr;
8857   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8858     VT = LD->getMemoryVT();
8859     Ptr = LD->getBasePtr();
8860   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8861     VT = ST->getMemoryVT();
8862     Ptr = ST->getBasePtr();
8863   } else
8864     return false;
8865
8866   bool IsInc;
8867   if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
8868     return false;
8869   AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
8870   return true;
8871 }
8872
8873 bool AArch64TargetLowering::getPostIndexedAddressParts(
8874     SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
8875     ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
8876   EVT VT;
8877   SDValue Ptr;
8878   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8879     VT = LD->getMemoryVT();
8880     Ptr = LD->getBasePtr();
8881   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8882     VT = ST->getMemoryVT();
8883     Ptr = ST->getBasePtr();
8884   } else
8885     return false;
8886
8887   bool IsInc;
8888   if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
8889     return false;
8890   // Post-indexing updates the base, so it's not a valid transform
8891   // if that's not the same as the load's pointer.
8892   if (Ptr != Base)
8893     return false;
8894   AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
8895   return true;
8896 }
8897
8898 static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
8899                                   SelectionDAG &DAG) {
8900   SDLoc DL(N);
8901   SDValue Op = N->getOperand(0);
8902
8903   if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16)
8904     return;
8905
8906   Op = SDValue(
8907       DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
8908                          DAG.getUNDEF(MVT::i32), Op,
8909                          DAG.getTargetConstant(AArch64::hsub, MVT::i32)),
8910       0);
8911   Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
8912   Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
8913 }
8914
8915 void AArch64TargetLowering::ReplaceNodeResults(
8916     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
8917   switch (N->getOpcode()) {
8918   default:
8919     llvm_unreachable("Don't know how to custom expand this");
8920   case ISD::BITCAST:
8921     ReplaceBITCASTResults(N, Results, DAG);
8922     return;
8923   case ISD::FP_TO_UINT:
8924   case ISD::FP_TO_SINT:
8925     assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
8926     // Let normal code take care of it by not adding anything to Results.
8927     return;
8928   }
8929 }
8930
8931 bool AArch64TargetLowering::useLoadStackGuardNode() const {
8932   return true;
8933 }
8934
8935 bool AArch64TargetLowering::combineRepeatedFPDivisors(unsigned NumUsers) const {
8936   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
8937   // reciprocal if there are three or more FDIVs.
8938   return NumUsers > 2;
8939 }
8940
8941 TargetLoweringBase::LegalizeTypeAction
8942 AArch64TargetLowering::getPreferredVectorAction(EVT VT) const {
8943   MVT SVT = VT.getSimpleVT();
8944   // During type legalization, we prefer to widen v1i8, v1i16, v1i32  to v8i8,
8945   // v4i16, v2i32 instead of to promote.
8946   if (SVT == MVT::v1i8 || SVT == MVT::v1i16 || SVT == MVT::v1i32
8947       || SVT == MVT::v1f32)
8948     return TypeWidenVector;
8949
8950   return TargetLoweringBase::getPreferredVectorAction(VT);
8951 }
8952
8953 // Loads and stores less than 128-bits are already atomic; ones above that
8954 // are doomed anyway, so defer to the default libcall and blame the OS when
8955 // things go wrong.
8956 bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
8957   unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
8958   return Size == 128;
8959 }
8960
8961 // Loads and stores less than 128-bits are already atomic; ones above that
8962 // are doomed anyway, so defer to the default libcall and blame the OS when
8963 // things go wrong.
8964 bool AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
8965   unsigned Size = LI->getType()->getPrimitiveSizeInBits();
8966   return Size == 128;
8967 }
8968
8969 // For the real atomic operations, we have ldxr/stxr up to 128 bits,
8970 TargetLoweringBase::AtomicRMWExpansionKind
8971 AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
8972   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
8973   return Size <= 128 ? AtomicRMWExpansionKind::LLSC
8974                      : AtomicRMWExpansionKind::None;
8975 }
8976
8977 bool AArch64TargetLowering::hasLoadLinkedStoreConditional() const {
8978   return true;
8979 }
8980
8981 Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
8982                                              AtomicOrdering Ord) const {
8983   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
8984   Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
8985   bool IsAcquire = isAtLeastAcquire(Ord);
8986
8987   // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
8988   // intrinsic must return {i64, i64} and we have to recombine them into a
8989   // single i128 here.
8990   if (ValTy->getPrimitiveSizeInBits() == 128) {
8991     Intrinsic::ID Int =
8992         IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
8993     Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int);
8994
8995     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
8996     Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
8997
8998     Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
8999     Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
9000     Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
9001     Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
9002     return Builder.CreateOr(
9003         Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
9004   }
9005
9006   Type *Tys[] = { Addr->getType() };
9007   Intrinsic::ID Int =
9008       IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
9009   Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int, Tys);
9010
9011   return Builder.CreateTruncOrBitCast(
9012       Builder.CreateCall(Ldxr, Addr),
9013       cast<PointerType>(Addr->getType())->getElementType());
9014 }
9015
9016 Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
9017                                                    Value *Val, Value *Addr,
9018                                                    AtomicOrdering Ord) const {
9019   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
9020   bool IsRelease = isAtLeastRelease(Ord);
9021
9022   // Since the intrinsics must have legal type, the i128 intrinsics take two
9023   // parameters: "i64, i64". We must marshal Val into the appropriate form
9024   // before the call.
9025   if (Val->getType()->getPrimitiveSizeInBits() == 128) {
9026     Intrinsic::ID Int =
9027         IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
9028     Function *Stxr = Intrinsic::getDeclaration(M, Int);
9029     Type *Int64Ty = Type::getInt64Ty(M->getContext());
9030
9031     Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
9032     Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
9033     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
9034     return Builder.CreateCall3(Stxr, Lo, Hi, Addr);
9035   }
9036
9037   Intrinsic::ID Int =
9038       IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
9039   Type *Tys[] = { Addr->getType() };
9040   Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
9041
9042   return Builder.CreateCall2(
9043       Stxr, Builder.CreateZExtOrBitCast(
9044                 Val, Stxr->getFunctionType()->getParamType(0)),
9045       Addr);
9046 }
9047
9048 bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
9049     Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
9050   return Ty->isArrayTy();
9051 }